
Multilevel frames for

sparse tensor product spaces

H. Harbrecht2 , R. Schneider3 and C. Schwab

Research Report No. 2007-06

September 2007

Seminar für Angewandte Mathematik
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Abstract

For Au = f with an elliptic differential operator A : H → H′ and stochastic data

f , the m-point correlation function Mmu of the random solution u satisfies a deter-

ministic, hypoelliptic equation with the m-fold tensor product operator A(m) of A.

Sparse tensor products of hierarchic FE-spaces in H are known to allow for approxi-

mations to Mmu which converge at essentially the rate as in the case m = 1, i.e. for

the deterministic problem. They can be realized by wavelet-type FE bases [28]. If

wavelet bases are not available, we show here how to achieve log-linear complexity

computation of sparse approximations of Mmu for Galerkin discretizations of A by

multilevel frames such as BPX or other multilevel preconditioners of any standard

FEM approximation for A. Numerical examples illustrate feasibility and scope of

the method.
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1. Introduction

Up to now sparse tensor product spaces were constructed with the help of wavelet

or multilevel bases, e.g. hierarchical bases, see [5, 6, 7, 17, 34]. However, there are

some drawbacks at least from the practical point of view: on the one hand, wavelets

are not easy to construct on complicated domains or manifolds. On the other hand,

the computation of system matrices in wavelet coordinates is a nontrivial task since

then also interactions of functions on different levels will appear.

In the present paper we are going to use a multilevel frame instead of wavelet or

multilevel bases to approximate functions from the sparse tensor product space.

Especially, we have in mind standard multigrid hierarchies and traditional finite

elements. The frame construction is based on the BPX-preconditioner (see e.g. [4,

11, 18, 19, 27]) and related generating systems (see e.g. [16, 17]).

We intend to present a self-contained paper on multilevel frames for sparse tensor

product spaces. The application of frames to partial differential equations has been

established in very recent years, see [9, 10, 33]. Most, if not all results have analogues

in the context of generating systems as considered in the pioneering publications of

Griebel and Oswald [16, 17, 18, 19, 27]. Under the perspective of frames the earlier

results on generating systems and stable splittings gain a new interpretation and

actuality.

Since the representation of functions with respect to a frame is non-unique, stiffness

matrices corresponding to bijective operators have a nontrivial, in general large

kernel. However, the load vector with respect to the frame lies in the image of the

stiffness matrix. Therefore, Krylov subspace methods, such as the conjugate gradient

method or GMRES, will converge without further modifications (see, e.g., [10, 16,

17, 25]). This is due to the fact that (in exact arithmetic) the Krylov subspace, and

thus the residuum, stays orthogonal to the kernel.

In particular, preconditioning becomes obsolete provided that the frame is normal-

ized with respect to the energy space H of the elliptic operator A. In the present

paper, we use a finite element frame for elliptic differential operators of positive

order derived from the BPX-preconditioner.

Sparse tensor product spaces allow linear complexity computation of deterministic

solution statistics for elliptic partial differential equations with stochastic data, see

for example [20, 28, 31, 32].

As an example, the two-point and m-point correlation functions of second order

elliptic problems with stochastic source terms are known to satisfy a deterministic,

hypoelliptic partial differential equation of order 2m with m-fold tensor product of
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the elliptic operator on the m-fold cartesian product Ωm of the bounded physical

domain Ω ⊂ R
n, i.e. in a computational domain of dimension mn.

Specifically, let A denote a linear, second order elliptic partial differential operator

that maps the Hilbert space H onto its dual H′. Typically one might think of H
being a Sobolev space with dual H′.

For a given stochastic load vector f ∈ H′ with known expectation and two-point

correlation, we consider the stochastic operator equation

Au = f.

Then the random solution’s expectation E(u) satisfies the mean field equation

(1.1) AE(u) = E(f)

while its two-point correlation is given by

(1.2) (A⊗ A) Cor(u) = Cor(f),

see [28, 31] for details; here E(u) denotes the expectation (or “ensemble average”)

for the random field u taking values in H, and Cor(u) = E(u ⊗ u) where now E(·)
denotes the expectation with respect to the product measure on the tensor product

space H ⊗ H (see [28, 31]). Similarly, deterministic hypoelliptic equations can be

obtained also for m-th order moments of the random field u (see [32]).

Regularity results for tensor product operators resp. boundary value problems, par-

ticularly non-hypoelliptic equations, can be found in [14, 22, 23, 24].

In the present paper, we present a new algorithm for the approximate solution

of (1.2) with a complexity that stays essentially proportional to the number of

unknowns N required for discretizing the domain or manifold of the mean field

equation (1.1). Similar algorithmical techniques have been used in [1, 2, 29]. Unlike

e.g. [28, 32], our algorithm does not require explicit hierarchical or wavelet bases for

the “increment” spaces in the multilevel hierarchy used in Galerkin approximation

of the mean-field equation (1.1), but rather works with standard finite element shape

functions.

Here and throughout the paper, “essentially” means up to powers of logN resp.,

in the context of convergence rates, up to powers of | log h|. Our algorithm involves

only prolongations, restrictions, and finite element stiffness matrices associated with

the elliptic operator A in a standard, nonhierarchical FE-Basis. These ingredients

are provided by standard finite element tools.

We emphasize that the algorithm in the present form is only feasible for partial

differential operators, that is, for local operators. Nonlocal operators, like integral

operators, induce densely populated system matrices such that the approach is no
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longer efficient. Here, one has to apply modern boundary element methods like the

multipole method [15], adaptive cross approximation [3] or the H-matrix approach

[21] to approximate the dense system matrices. In case of wavelet matrix compression

for nonlocal operators (see [13] and the references therein) one can use the wavelet

basis also for the sparse tensor product approximation of (1.2), see e.g. [20, 28].

The outline of the paper is as follows. In Section 2 we give the mathematical theory

of the multilevel frame. We introduce the finite element spaces and define the frame

in one coordinate. Then, we show that the tensor product of this frame is still a

frame. We obtain the frame for the sparse tensor product space V̂J by restriction of

the given set of basis functions to all functions that are contained in V̂J . Section 3 is

dedicated to the efficient solution of tensor product equations like (1.2). We develop

an algorithm that computes the solution of (1.2) in essentially the complexity needed

to discretize the corresponding mean field equation. Finally, in Section 4 we present

two numerical examples to demonstrate our method.

Throughout the paper, in order to avoid the repeated use of generic but unspecified

constants, by C . D we mean that C can be bounded by a multiple of D, indepen-

dently of parameters which C and D may depend on. Obviously, C & D is defined

as D . C, and C ∼ D as C . D and C & D.

2. Multilevel frames

2.1. Frames. Let H be a separable Hilbert space with dual H′. We denote the

duality product on (H,H′) by 〈·, ·〉. Typically we have here in mind a Sobolev space

and the L2-inner product. According to [8, 12, 33] a frame for H is defined as follows:

Definition 1. A countable collection Φ = {ϕi : i ∈ ∆} ⊂ H is called a frame for H
if there holds

(2.1) C‖f‖2
H′ ≤

∑

i∈∆

|〈f, ϕi〉|2 ≤ D‖f‖2
H′

for all f ∈ H′.

In what follows the collection Φ of functions will be viewed as a row vector, which

means that for f = [fi]i∈∆ ∈ `2(∆), the function f = Φf is defined as v =
∑

i∈∆ fiϕi.

As a consequence of (2.1), the frame operator

F : H′ → `2(∆), f 7→ [〈f, ϕi〉]i∈∆

and its dual

F ′ : `2(∆) → H, f 7→ Φf
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are bounded with constant
√
D. The composition F ′F : H′ → H is boundedly

invertible and we have

`2(∆) = ranF
⊥
⊕ kerF ′.

In particular, the collection Φ̃ := Φ(F ′F )−1 is a frame for H′, the so-called canonical

dual frame, satisfying

1

D
‖f‖2

H ≤
∑

i∈∆

|〈f, ϕ̃i〉|2 ≤
1

C
‖f‖2

H

for all f ∈ H. The associated frame operators are given by

F̃ = F (F ′F )−1, F̃ ′ = (F ′F )−1F ′.

Functions u ∈ H and v ∈ H′ own the unique representations

u = ΦF̃ u =
∑

i∈∆

〈u, φ̃i〉φi, v = Φ̃Fv =
∑

i∈∆

〈v, φi〉φ̃i.

The operator

Q := F (F ′F )−1F ′ = F̃ (F̃ ′F̃ )−1F̃ ′ : `2(∆) → `2(∆)

is the orthogonal projector onto ranF = ran F̃ .

We shall consider a linear elliptic operator A : H → H′ and a load vector f ∈ H′.

Then, the solution u = F ′u of the partial differential equation Au = f satisfies the

infinite dimensional discrete equation

(2.2) Au = f , A = FAF ′ = 〈AΦ,Φ〉, f = Ff = 〈f,Φ〉.

Herein, A|ranF : ranF → ranF is boundedly invertible, whereas ker A = kerF .

More precisely, we have the lemma:

Lemma 2. Let A : H → H′ be a given elliptic partial differential operator satisfying

γ‖u‖2
H ≤ |〈Au, u〉|, |〈Au, v〉| ≤ Γ‖u‖H‖v‖H,

for 0 < γ ≤ Γ. Then, there holds

∥∥A|−1
ran F

∥∥
`2(∆)→`2(∆)

≤ 1

γC
, ‖A‖`2(∆)→`2(∆) ≤ DΓ.

Proof. On the one hand we have for v ∈ ranF that

‖Av‖`2(∆) = ‖FAF ′v‖`2(∆) = sup
u∈`2(∆)\{0}

〈AF ′v, F ′u〉
‖u‖`2(∆)

≥ γ
‖F ′v‖2

H′

‖v‖`2(∆)

≥ γC‖v‖`2(∆),
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which implies the first estimate. On the other hand there holds for all v ∈ `2(∆)

‖Av‖`2(∆) = ‖FAF ′v‖`2(∆) ≤ ‖F‖`2(∆)→H′‖A‖H→H′‖F ′‖H→`2(∆)‖v‖`2(∆)

≤ DΓ‖v‖`2(∆).

�

With the help of this lemma we conclude that (2.2) is well-posed in ranF ⊂ `2(∆)

since f ∈ ranF . But in general the frame Φ consists of an infinite number of func-

tions. Therefore, we choose an appropriate finite index set ∇ ⊂ ∆ and consider the

collection Ψ = {ϕi : i ∈ ∇} ⊂ Φ for numerical approximation:

Definition 3. We call the collection Ψ = {ϕi : i ∈ ∇} ⊂ H a subframe of Φ if there

holds

(2.3) C‖f‖2
H′ ≤

∑

i∈∇

|〈f, ϕi〉|2 ≤ D‖f‖2
H′

for all f ∈ V := span Ψ.

With the frame operators

G : H′ → `2(∇), f 7→ [〈f, ϕi〉]i∈∇
G′ : `2(∇) → H, f 7→ Ψf

it follows by the same reasoning as above that the Galerkin matrix B := 〈AΨ,Ψ〉
satisfies

‖B|−1
ranG‖ ≤ 1

γC
, ‖B‖ ≤ DΓ.

This means that the Galerkin system Bu = g is well-posed due to g := 〈f,Ψ〉 ∈
ranG.

2.2. Multiresolution analyses. Let Ω ⊂ R
n be a sufficiently smooth, bounded

domain. We consider a dense, nested sequence of finite dimensional subspaces

(2.4) V0 ⊂ V1 ⊂ . . . ⊂ Vj . . . ⊂ L2(Ω),

consisting of piecewise polynomial ansatz functions Vj = span{ϕj,k : k ∈ ∆j}, such

that dimVj ∼ 2jn and

(2.5) L2(Ω) =
⋃

j∈N0

Vj, V0 =
⋂

j∈N0

Vj .

Since we are going to use the spaces Vj as test and trial spaces for the approximate

solution in a Galerkin method, we shall assume that the following Jackson and

Bernstein type estimates hold for s ≤ t < γ, t ≤ q ≤ d,

(2.6) inf
vj∈Vj

‖u− vj‖Ht(Ω) . hq−t
j ‖u‖Hq(Ω), u ∈ Hq(Ω),
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and

(2.7) ‖vj‖Ht(Ω) . hs−t
j ‖vj‖Hs(Ω), vj ∈ Vj,

uniformly in j, where we set hj := 2−j. Notice that the parameter d > 0 refers to

the maximal degree of polynomials which are locally contained in Vj while

γ := sup
{
t ∈ R : Vj ⊂ H t(Ω)

}
> 0

indicates the regularity or smoothness of the functions contained in the spaces Vj.

The quantity hj corresponds to the mesh width of the mesh associated with the

subspace Vj on Ω. Note that for ansatz functions based on cardinal B-splines there

holds γ = d − 1/2 and for the standard, piecewise polynomial, continuous Finite

Element shape functions γ = 3/2.

We observe that the L2-orthogonal projection Pj : L2(Ω) → Vj is the Galerkin

approximation of the equation Ix = y. Applying an Aubin-Nitsche duality argument

to the corresponding Galerkin equation, the above assumptions imply for −d ≤ t ≤
γ, t ≤ q, 0 ≤ q ≤ d

‖(I − Pj)v‖Ht(Ω) . hq−t
j ‖v‖Hq(Ω), v ∈ Hq(Ω).

We shall also introduce projectors on the “detail” or “increment” spaces:

Qj := Pj − Pj−1, j ∈ N, Q0 := P0.

There holds the following lemma.

Lemma 4. The operators Qj are L2(Ω)-orthogonal projectors which satisfy

QjP` =





0, j > `,

Qj, j ≤ `.

Proof. For ` ≤ j it follows from V` ⊂ Vj that P`Pj = P` and likewise PjP` = P`.

Therefore, we find

Q2
j = (Pj − Pj−1)(Pj − Pj−1)

= P 2
j − PjPj−1 − Pj−1Pj + P 2

j−1

= Pj − Pj−1

= Qj .

Since the projectors Pj are orthogonal, it follows

Q?
j = P ?

j − P ?
j−1 = Pj − Pj−1 = Qj ,

i.e., Qj is the L2(Ω)-orthogonal projector onto Wj = Vj

⊥
	 Vj−1.
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Using once more that V` ⊂ Vj implies P`Pj = P` and PjP` = P`, we conclude the

second part of the assertion from

QjP` = (Pj − Pj−1)P` =




P` − P`, j > `,

Pj − Pj−1, j ≤ `.

�

Property (2.5) implies for all f ∈ L2(Ω) the identity

(2.8) f =
∑

j∈N0

Qjf,

while (2.6) and (2.7) yield the multilevel norm equivalence

(2.9) ‖f‖2
Hs(Ω) ∼

∑

j∈N0

22sj‖Qjf‖L2(Ω), −γ ≤ s ≤ γ.

In the sequel the space Hq(Ω), 0 < q ≤ γ, will be considered as energy space V of an

elliptic operator equation to be solved by the Galerkin method. Hence, we suppose

that the basis Φj = {ϕj,k : k ∈ ∆j} is normalized with respect to this space:

‖ϕj,k‖Hq(Ω) ∼ 1.

For the efficient discretization it is important that the basis functions are compactly

supported in terms of

diamϕj,k ∼ 2−j .

Finally, the basis is assumed to be stable, i.e., there holds the following Riesz-

property

(2.10)
∑

k∈∆j

|〈f, ϕj,k〉|2 ∼ 2−2qj‖Pjf‖2
L2(Ω).

For example, one might think of the energy space H1(Ω) and properly scaled contin-

uous nodal basis functions defined on a multigrid hierarchy resulting from uniform

refinement of a given coarse grid.

2.3. Multilevel frames for Hq(Ω). We show next that the collection

Φ = {ϕj,k : k ∈ ∆j , j ∈ N0}

defines a frame for H = Hq(Ω). Notice that this frame underlies the construction of

the so-called BPX preconditioner, see e.g. [4, 11, 27].

Theorem 5. The collection of functions Φ = {ϕj,k : k ∈ ∆j , j ∈ N0} defines a

frame for the energy space Hq(Ω).
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Proof. We have to show that
∑

j∈N0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼ ‖f‖2
H−q(Ω) ∀f ∈ H−q(Ω).

Using (2.10) we find
∑

j∈N0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

j∈N0

2−2qj‖Pjf‖2
L2(Ω).

By (2.8) and Lemma 4 we conclude

Pjf =
∑

`∈N0

Q`Pjf =

j∑

`=0

Q`f.

This yields together with (2.9)

∑

j∈N0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

j∈N0

2−2qj

∥∥∥∥
j∑

`=0

Q`f

∥∥∥∥
2

L2(Ω)

∼
∑

j∈N0

2−2qj

j∑

`=0

‖Q`f‖2
L2(Ω).

Since there further holds

(2.11) {(j, `) : 0 ≤ j <∞, 0 ≤ ` ≤ j} = {(j, `) : 0 ≤ ` <∞, ` ≤ j <∞},

we obtain finally

∑

j∈N0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

`∈N0

∞∑

j=`

2−2qj‖Q`f‖2
L2(Ω)

∼
∑

`∈N0

2−2q`‖Q`f‖2
L2(Ω)

∼ ‖f‖2
H−q(Ω),

where the last step follows again by the norm equivalence (2.9). �

Remark 6. As one readily verifies the collection {ϕj,k : k ∈ ∆j, j ≤ J} is a subframe

of the frame Φ.

2.4. Multilevel frames for tensor product spaces. We are now going to con-

sider the discretization of functions defined on the product domain Ωm = Ω×· · ·×Ω.

To this end, we first introduce some notation. For multi-indices s = (s1, s2, . . . , sm), t =

(t1, t2, . . . , tm) ∈ R
m we will write

s ≤ t :⇐⇒ s1 ≤ t1, s2 ≤ t2, . . . , sm ≤ tm.

Obviously, for s ≥ 0 there holds

‖s‖`1 =

m∑

i=1

si, ‖s‖`∞ =
m

max
i=1

si.
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We define the tensor product Sobolev spaces

Hs(Ωm) := Hs(Ω) ⊗Hs(Ω) ⊗ · · · ⊗Hs(Ω) ⊂ L2(Ωm), s ≥ 0.

Their duals with respect to the “pivot” space L2(Ω) satisfy

H−s(Ωm) =
(
Hs(Ωm)

)′
= H−s(Ω) ⊗ · · · ⊗H−s(Ω).

For a multiindex j ∈ N
m
0 we set

∆j := ∆j1 × ∆j2 × · · · × ∆jm
.

Then, tensor products of the basis functions

ϕj,k(x) := ϕj1,k1(x1)ϕj2,k2(x2) · · ·ϕjn,kn
(xn), j ∈ N

m
0 , k ∈ ∆j, x ∈ Ωm,

generate the tensor product spaces

Vj := Vj1 ⊗ Vj2 ⊗ · · · ⊗ Vjm
= span{ϕj,k : k ∈ ∆j}.

We denote the L2-orthogonal projection onto Vj by Pj = Pj1 ⊗ Pj2 ⊗ · · · ⊗ Pjm
and

we define Qj := Qj1 ⊗ Qj2 ⊗ · · · ⊗ Qjm
. Obviously, in view of (2.10), the collection

{ϕj,k}k∈∆j
is a stable basis of Vj in the energy space Hq(Ωm):

(2.12)
∑

k∈∆j

|〈f, ϕj,k〉|2 ∼ 2−2qj‖Pjf‖2
L2(Ωm).

Moreover, we get from (2.8) that

(2.13) f =
∑

j∈Nm
0

Qjf.

Equation (2.9) and standard tensor product arguments imply

(2.14) ‖f‖2
Hs(Ωm) ∼

∑

j∈Nm
0

22sj‖Qjf‖2
L2(Ωm), −γ ≤ s ≤ γ.

Theorem 7. The collection of functions Φm := {ϕj,k : k ∈ ∆j, j ∈ N
m
0 } defines a

frame for the energy space Hq(Ωm), that is, there holds
∑

j∈Nm
0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼ ‖f‖2
H−q(Ωm) ∀f ∈ H−q(Ωm).

Proof. We just have to extend the proof of Theorem 5: Due to (2.12) there holds
∑

j∈Nm
0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

j∈Nm
0

2−2qj‖Pjf‖2
L2(Ωm).

Since Vj ⊃ V` for ` ≤ j we have P`Pj = P` and likewise PjP` = P`. Hence, we find

Pjf =
∑

`∈Nm
0

Q`Pjf =
∑

0≤`≤j

Q`f.
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This identity leads because of (2.14) to
∑

j∈Nm
0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

j∈Nm
0

∑

0≤`≤j

2−2qj‖Q`f‖2
L2(Ωm).

We reorder the index sets analogously to (2.11) and conclude by (2.14)
∑

j∈Nm
0

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

`∈Nm
0

∑

j≥`

2−2qj‖Q`f‖2
L2(Ωm)

∼
∑

`∈Nm
0

2−2q`‖Q`f‖2
L2(Ωm)

∼ ‖f‖2
H−q(Ωm).

�

2.5. Sparse tensor product spaces. Instead of the full tensor product space

VJ,J,...,J = VJ ⊗ VJ ⊗ · · · ⊗ VJ =
∑

‖j‖`∞=J

Vj ⊂ Hq(Ωm)

we shall consider the sparse tensor product space

V̂J,J,...,J =
∑

‖j‖
`1=J

Vj ⊂ Hq(Ωm).

Abbreviating NJ := dimVJ there holds N̂J = dim V̂J,J,...,J ∼ NJ logm−1NJ , cf. [7],

which is substantially smaller than the dimension Nm
j of the full tensor product

space VJ,J,...,J .

The following lemma, proven in [28, 32], tells us that the approximation power in the

sparse tensor product spaces is nearly as good as in the full tensor product spaces,

provided that the given function has bounded mixed derivatives of order d.

Lemma 8. We denote the L2-orthogonal projection onto the sparse tensor product

space V̂J,J,...,J by

P̂J,J,...,J =
∑

‖j‖
`1≤J

Qj.

Then, for 0 ≤ s < γ, s ≤ t ≤ d there holds

∥∥u− P̂J,J,...,Ju
∥∥

Hs(Ωm)
.





2J(s−d)J (m−1)/2‖u‖Hd(Ωm), if t = d,

2J(s−t)‖u‖Ht(Ωm), otherwise.

In the sparse tensor product spaces we like to represent functions by the collection

Φ̂m := {ϕj,k : k ∈ ∆j, ‖j‖`1 ≤ J}.

Theorem 9. The collection Φ̂m = {ϕj,k : k ∈ ∆j, ‖j‖`1 ≤ J} defines a subframe of

Φm.
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Proof. Analogously to the proof of Theorem 7 we get
∑

‖j‖
`1≤J

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

‖j‖
`1≤J

∑

0≤`≤j

2−2qj‖Q`f‖2
L2(Ωm)

for all f ∈ V̂J,J,...,J . Next, from the identity

{‖j‖`1 ≤ J, 0 ≤ ` ≤ j} = {‖j‖`1 , ‖`‖`1 ≤ J, ` ≤ j}

we conclude by (2.14)
∑

‖j‖
`1≤J

∑

k∈∆j

|〈f, ϕj,k〉|2 ∼
∑

‖`‖
`1≤J

∑

‖j‖
`1≤J

`≤j

2−2qj‖Q`f‖2
L2(Ωm)

∼
∑

‖`‖
`1≤J

2−2q`‖Q`f‖2
L2(Ωm)

∼ ‖f‖2
H−q(Ωm).

�

Concerning the cardinality of the subframe Φ̂m we have the following statement.

Theorem 10. With NJ := dimVJ there holds

card
(
{ϕj,k : k ∈ ∆j, ‖j‖`1 ≤ J}

)
. NJ logm−1NJ .

Proof. Since card(∆j) ∼ 2n‖j‖
`1 we conclude

card
(
{ϕj,k : k ∈ ∆j, ‖j‖`1 ≤ J}

)
∼

J∑

`=0

∑

‖j‖
`1=`

2n‖j‖
`1 ∼

J∑

`=0

2n` logm−1(2n`)

. logm−1(2nJ)
J∑

`=0

2n` ∼ 2nJ logm−1(2nJ).

This finishes the proof due to NJ ∼ 2nJ . �

By using Lemma 8 and applying an Aubin-Nitsche duality argument one deduces the

following approximation result for the Galerkin discretization of operator equations

in Hq(Ωm).

Proposition 11. Let Ω be sufficiently smooth and consider the operator equation

(2.15) A(m)u = f,

where

A(m) := A⊗ ...⊗ A : Hq(Ωm) → H−q(Ωm)
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is a linear elliptic operator and f ∈ Hd−2q(Ωm). Then, the discrete solution

ûJ =
∑

‖j‖
`1≤J

∑

k∈∆j

[ûJ ]j,kϕj,k

of the Galerkin approximation ÂJ ûJ = f̂J , where

ÂJ = [〈Aϕj,k, ϕj′,k′〉]‖j‖
`1 ,‖j′‖

`1≤j,k∈∆j,k′∈∆′

j
, f̂J = [〈f, ϕj,k〉]‖j‖

`1≤j,k∈∆j

satisfies the error estimate

‖u− ûJ‖Hs(Ωm) .





2J(s−t)‖u‖Ht(Ωm), 2q − d < s ≤ q ≤ t < d,

2J(s−t)J (m−1)/2‖u‖Ht(Ωm), 2q − d < s ≤ q, t = d,

2J(s−t)J (m−1)/2‖u‖Ht(Ωm), 2q − d = s, q ≤ t < d,

2J(s−t)Jm−1‖u‖Ht(Ωm), 2q − d = s, t = d.

Proof. Due to Galerkin orthogonality we find

‖u− ûJ‖2
Hq(Ωm) . |〈A(u− ûJ), u− v̂J〉| . ‖u− ûJ‖Hq(Ωm)‖u− v̂J‖Hq(Ωm)

for all v̂J ∈ V̂J,J,...,J , i.e,

‖u− ûJ‖Hq(Ωm) . inf
bvJ∈bVJ,J,...,J

‖u− v̂J‖Hq(Ωm).

Consequently, by Lemma 8 we obtain

(2.16) ‖u− ûJ‖Hq(Ωm) .





2J(q−t)J (m−1)/2‖u‖Hd(Ωm), t = d,

2J(q−t)‖u‖Ht(Ωm), t < d.

Next, denoting the solution of the adjoint equation by ψg = (A(m))−?g ∈ Hd(Ωm),

an Aubin-Nitsche duality argument gives

‖u− ûJ‖Hs(Ωm) = sup
‖g‖

H−s(Ωm)=1

〈u− ûJ , g〉

= sup
‖g‖

H−s(Ωm)=1

〈A(u− ûJ), ψg〉

= sup
‖g‖

H−s(Ωm)=1

〈A(u− ûJ), ψg − v̂J〉

. sup
‖v‖

H−s(Ωm)=1

‖u− ûJ‖Hq(Ωm)‖ψg − v̂J‖Hq(Ωm).

By virtue of Lemma 8 we conclude

‖ψg − v̂J‖Hq(Ωm) .





2J(s−q)J (m−1)/2‖ψg‖H2q−s(Ωm), s = 2q − d,

2J(s−q)‖ψg‖H2q−s(Ωm), s > 2q − d.

Due to ‖g‖H−s(Ωm) ∼ ‖ψg‖H2q−s(Ωm), the combination of this estimate with (2.16)

yields the assertion. �
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3. Application of tensor product operators

3.1. Prolongations and restrictions. Let A : Hq(Ω) → H−q(Ω) be a given linear

elliptic partial differential operator of order 2q, where 0 < q < γ, and {ϕj,k : k ∈
∆j , 0 ≤ j ≤ J} a frame for Hq(Ω) in accordance with the previous section.

The system matrix with respect to the frame {ϕj,k : k ∈ ∆j , 0 ≤ j ≤ J} has a block

structure corresponding to the hierarchy (2.4) of subspaces. If we denote the blocks

corresponding to trial and test spaces at scales j and j′, respectively, by Aj,j′, we

have A = [Aj,j′]0≤j,j′≤J , where

Aj,j′ := 〈AΦj′ ,Φj〉 = [〈Aϕj′,k′, ϕj,k〉]k∈∆j ,k′∈∆j′
.

Standard finite element tools provide only the system matrices Aj,j′ for j = j′.

However, this information is sufficient when using restrictions and prolongations.

We denote the restriction of the function

fj =
∑

k∈∆j

fj,kϕj,k = Φjfj ∈ Vj

to the space V`, ` < j, by I`
j . The corresponding discrete operator will be denoted

by I`
j, that is

I`
jfj = Φ`I

`
jfj ∈ V`.

Conversely, Ij
` resp. I

j
` denotes the prolongation of f` = Φ`f` ∈ V` onto Vj . Both, the

application of the restriction I
j
` and the prolongation I`

j, to a vector is of complexity

O(2nj) = O(Nj).

Invoking restriction and prolongation we obviously have

(3.1) Aj,j′ =





I
j
j′Aj′,j′, j ≤ j′,

Aj,jI
j
j′, j > j′.

Since the operator A is a local operator the system matrices Aj,j have only O(1)

nonzero coefficients per column and row, independently of the level j. Thus, employ-

ing (3.1), the matrix-vector multiplication Aj,j′x can be performed in O(2nmax{j,j′})

operations, which is order-optimal.

3.2. Fast two-factor matrix-vector multiplication. We first focus on second

moments, i.e. the case m = 2 in (2.15) and address the case m > 2 below.

Consider the numerical solution of the operator equation

(3.2) (A⊗ A)u = f
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with the two-factor tensor product operator A ⊗ A : Hq(Ω) → H−q(Ω). Equation

(3.2) can efficiently be discretized in the sparse tensor product spaces V̂J , see e.g. [20,

28, 32]. But at first glance it is not clear how to solve the corresponding system

(3.3) ÂJ x̂J = f̂J , ÂJ = [Aj ⊗ Aj′]0≤‖j‖
`1 ,‖j′‖

`1≤J , f̂J = [〈f, ϕj,k〉]‖j‖
`1≤J,k∈∆j

where j = (j1, j2) and j′ = (j′1, j
′
2) in an efficient way since the system matrix is not

sparse.

Even though the system matrix ÂJ has a possibly large kernel it is well conditioned

in terms of

min
{
λ ∈ σ

(
Â?

JÂJ

)
: λ > 0

}
∼ max{σ

(
Â?

JÂJ

)}
∼ 1

according to Lemma 2. Thus, iterative solvers like Krylov subspace methods, for

example the conjugate gradient method or GMRES, will converge with a convergence

rate that is independent of the discretization level J (e.g. [10, 16, 17, 25]).

We fix some notation. For a matrix

A =
[

a1 a2 · · · an

]
∈ R

m×n, ai ∈ R
m

we define vec(A) as the column vector

vec(A) =




a1

a2

...

an



∈ R

m·n.

Then, for given matrices B ∈ R
k×`, X ∈ R

`×m, A ∈ R
n×m, and Y ∈ R

k×n, there

holds the identity

(3.4) vec(Y) = (A ⊗ B) vec(X). ⇐⇒ BXA> = Y

We will use the equivalence (3.4) to develop a fast matrix-vector multiplication.

To this end, we assume that the vector x̂J = [x̂j1,j2]0≤j1+j2≤J that consists of the

coefficients associated with the sparse tensor product basis {ϕj,k : k ∈ ∆j, ‖j‖`1 ≤ J}
is blockwise stored in matrix form, i.e. x̂j1,j2 ∈ R

j1×j2. Then, for the matrix-vector

multiplication (3.4) we compute products of the form

vec(z) = (Aj1,j′1
⊗ Aj2,j′2

) vec(x̂j′1,j′2
).

Using (3.4), this means that

z = Aj2,j′2
x̂>

j′1,j′2
A>

j1,j′1
j1 + j2 ≤ J, j′1 + j′2 ≤ J.
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To minimize the logN -powers in the complexity bound, we have to be careful with

the order in which we perform the multiplications. We perform the matrix-vector

multiplication according to

z =





Aj2,j′2

(x̂>
j′1,j′2

A>
j1,j′1

), j1 + j′2 ≤ j′1 + j2,

(Aj2,j′2
x̂>

j′1,j′2
)A>

j1,j′1
, j1 + j′2 > j′1 + j2.

Observing (3.1), in case of j1 + j′2 ≤ j′1 + j2 we compute

y := Aj1,j′1
x̂j′1,j′2

=





I
j1
j′1
Aj′1,j′1

x̂j′1,j′2
, j1 ≤ j′1,

Aj1,j1I
j1
j′1
x̂j′1,j′2

, j1 > j′1,
(3.5)

z := Aj2,j′2
y> =





I
j2
j′2
Aj′2,j′2

y>, j2 ≤ j′2,

Aj2,j2I
j2
j′2
y>, j2 > j′2.

(3.6)

Therein, one needs O(2max{j1,j′1}n+j′2n) operations to get y by (3.5) and additional

O(2max{j2,j′2}n+j1n) operations to derive z by (3.6). We abbreviate j := j1 + j2 and

and j′ = j′1 + j′2. Then, we see that the complexity is bounded by O(2max{j,j′,j1+j′2}n).

Since j1 + j′2 ≤ j′1 + j2 implies

j1 + j′2 ≤ j′ − j′2 + j − j1

we conclude j1+j
′
2 ≤ max{j, j′}. Consequently, the computation of z is of complexity

O(2max{j1+j2,j′1+j′2}n) if j1 + j′2 ≤ j′1 + j2.

In case of j1 + j′2 > j′1 + j2 we compute

y := Aj2,j′2
x̂>

j′1,j′2
=





I
j2
j′2
Aj′2,j′2

x̂>
j′1,j′2

, j2 ≤ j′2,

Aj2,j2I
j2
j′2
x̂>

j′1,j′2
, j2 > j′2,

(3.7)

z> := Aj1,j′1
y> =





I
j1
j′1
Aj′1,j′1

y>, j1 ≤ j′1,

Aj1,j1I
j1
j′1
y>, j1 > j′1,

.(3.8)

Using the same argument as above we find that z is also computed in complexity

O(2max{j1+j2,j′1+j′2}n) if j1 + j′2 > j′1 + j2.

With the above preparations at hand we can formulate the following algorithm which

performs the matrix-vector multiplication ŷJ = ÂJ x̂J :
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Algorithm 12 (Sparse tensor product matrix-vector multiplication).

input: finite element matrices Aj,j (0 ≤ j ≤ J)

vector x̂J = [x̂j,j′]0≤j+j′≤J

output: blockwise stored vector ŷ = [ŷj,j′]0≤j+j′≤J

for all 0 ≤ j1 + j2 ≤ J do begin

initialize ŷj1,j2 := 0

for all 0 ≤ j′1 + j′2 ≤ J do begin

if (j1 + j′2 ≤ j′1 + j2) then

update ŷj1,j2 := ŷj1,j2 + z with z from (3.5), (3.6)

else

update ŷj1,j2 := ŷj1,j2 + z with z from (3.7), (3.8)

end

end

end

Theorem 13. Algorithm 12 computes the matrix-vector product ŷJ = ÂJ x̂J for the

second moments in O(NJ log3NJ) operations.

Proof. As we have seen both block matrix-vector products (3.5), (3.6) and (3.7),(3.8)

have complexity O(2max{j1+j2,j′1+j′2}n). We abbreviate j = j1 + j2, j
′ = j′1 + j′2 and

estimate the work W(NJ ) (NJ ∼ 2Jn) required by Algorithm 12:

W(NJ ) .
∑

j1+j2≤J

∑

j′1+j′2≤J

2max{j1+j2,j′1+j′2}n

=

J∑

j=0

J∑

j′=0

(j + 1)(j′ + 1)2max{j,j′}n

=
J∑

j=0

(j + 1)

{ j−1∑

j′=0

(j′ + 1)2jn +
J∑

j′=j

(j′ + 1)2j′n

}

.

J∑

j=0

(j + 1){2jnj2 + J2Jn}

. J32Jn.

This is the desired assertion due to J ∼ logNJ . �

Together with the well-posedness of the Galerkin system ÂJ ûJ = f̂J we can realize

an algorithm which solves the given operator equations in essentially the complexity

required for discretizing the domain Ω.
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3.3. Moments Mmu, m ≥ 3. If moments of order m ≥ 3 are to be computed, we

can proceed in a similar way. Instead of the tensor pde (3.2), we now have to solve

the m-factor tensor pde

(3.9) (A⊗ · · · ⊗A)Mmu = Mmf.

As in the case of second moments, we obtain the matrix equation (3.3), where,

however, now j = (j1, . . . , jm) and likewise for j′.

We shall obtain a matrix-vector multiplication of log-linear complexity by recursive

reduction of the case m > 2 to the previous one. Specifically, writing

A⊗ · · · ⊗ A = A⊗ (A⊗ · · · ⊗A︸ ︷︷ ︸
(m − 1)-times

) = A⊗B,

we may use Algorithm 12 with

B = A⊗ · · · ⊗ A︸ ︷︷ ︸
(m − 1)-times

,

and obtain from Theorem 13 a matrix-vector multiplication in log-linear complexity,

provided that a matrix-vector multiplication of the matrix B with a vector is available.

Recursively applying Algorithm 12 (m−2)-times to the matrix-vector product A⊗B,

we obtain a corresponding matrix-vector multiplication for m-fold tensor operators.

Backward induction of the work bound in Theorem 13 over m,m− 1, . . . , 3, 2 yields

the log-linear complexity bound for the work of this recursion.

4. Numerical Examples

4.1. First example. In our first example we consider Ω = [0, 1] and A = −∆.

In other words, we are looking for the solution u ∈ H1
0 ([0, 1]) ⊗ H1

0 ([0, 1]) of the

equation

∂4u(x, y)

∂x2∂y2
= f(x, y), (x, y) ∈ [0, 1]2

where f ∈ (H1
0 ([0, 1]) ⊗H1

0 ([0, 1]))′ is a given load. We choose

f(x, y) = 9π4 sin(πx) sin(3πy)

which yields the solution

u(x, y) = sin(πx) sin(3πy).

We compute the solution numerically with respect to the sparse tensor product

frame based on tensor products of piecewise linear hat functions on the interval,
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Figure 1. Discretization error the sparse tensor product approximation.

Level 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations 8 13 16 20 23 26 28 30 32 33 35 36 37 37

Table 1. Number of iterations of the conjugate gradient method.

that is

ϕj,k(x) :=





2−j/2(2jx− k + 1), 2−j(k − 1) ≤ x < 2−jk,

2−j/2(k + 1 − 2jx), 2−jk ≤ x < 2−j(k + 1),

0, otherwise.

Notice that ‖ϕj,k‖H1
0 ([0,1]) = 8/3 independently of j. We monitored the L2-error of the

approximate sparse tensor product solution in Figure 1. The dashed line corresponds

to the expected rate of convergence O(hj | log hj |) (hj = 2−j), see Proposition 11.

Figure 2 shows the over-all computing time, i.e., the time consumed to assemble the

load vector and the finite element system matrices, and to solve the linear system of

equations iteratively by the conjugate gradient method up to 10−6 accuracy, using

Algorithm 12. The dashed line indicates the asymptotics O(Nj log3Nj) (Nj ∼ 2j),

see Theorem 13. The number of iteration steps required by the conjugate gradient

method is listed in Table 1. In fact, the required number of iterations is bounded by

some constant.

4.2. Second example. In our second example we do consider the polygonal do-

main Ω ∈ R
2 shown in Figure 3 and again the Laplace operator A = −∆ with



19

2 4 6 8 10 12 14 16
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

cpu−time

Figure 2. Over-all computing times.

homogeneous boundary conditions:

(∆x ⊗ ∆y)u(x,y) = f(x,y), (x,y) ∈ Ω × Ω,

u(x,y) = 0, (x,y) ∈ ∂Ω × ∂Ω.

The multigrid hierarchy is defined via standard uniform subdivision of a triangle

into four sons. The coarse triangulation (level j = 0) and the triangulation after

three subdivision steps (level j = 3) are depicted in Figure 3. We use canonical

piecewise linear finite elements (they are H1(Ω)-normalized), defined on the given

sequence of meshes.

Figure 3. The domain Ω with coarse grid triangulation (left) and

the mesh on level 3 (right).
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We choose f = 1 and compute the approximate solution by the sparse tensor product

ansatz. Since we do not know the problem’s solution analytically, we compare the

sparse tensor product approximation with the full tensor product approximation

which is computable since u(x,y) = v(x) · v(y) with v = A−11. Notice that the

`2-difference of the discrete coefficients corresponds to the norm in the energy space

H1,1(Ω × Ω) since the frame is for this space.

level unknowns H1-error iterations cpu-time

1 847 1.2 · 10−1 (—) 10 0 s

2 4422 9.4 · 10−2 (1.3) 14 0 s

3 21054 6.4 · 10−2 (1.5) 18 1 s

4 96567 4.2 · 10−2 (1.5) 21 13 s

5 434481 2.7 · 10−2 (1.6) 24 110 s

6 1930540 1.6 · 10−2 (1.6) 26 896 s

7 8.5 Mio 9.4 · 10−3 (1.7) 29 2 h

8 37 Mio 5.4 · 10−3 (1.7) 31 15 h

Table 2. Number of iterations of the conjugate gradient method.

In Table 2 we tabulate the numerical results. Notice that on level 8 we have 400

000 finite elements per domain Ω. This corresponds to 16 · 1010 unknowns in the

full tensor product space. We still observe the logarithmical factors in the growth

of the number of unkowns (and thus in the cpu-times) as well as in the rate of

convergence. Nevertheless, the present approach is obviously suitable to treat such

large problems.
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