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Abstract

The band structure of 2D photonic crystals and their eigaetea@an be efficiently computed with the
finite element method (FEM). For second order elliptic baanydralue problems with piecewise ana-
lytic coefficients it is known that the solution convergesremly fast, i.e. exponentially, when using
p-FEM for smooth andhp-FEM for polygonal interfaces and boundaries. In this &tice discretise the
variational eigenvalue problems for the transverse ete€fiE) and transverse magnetic (TM) modes
in scalar variables with quasi-periodic boundary condgiby means op- andhp-FEM. Our compu-
tations show exponential convergence of the numericahejaes for smooth and polygonal lines of
discontinuity of dielectric material properties.
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1 Introduction

Photonic crystals are refractive materials with a certairqalic structure in one, two or three directions
[1]. The behaviour of light in such media strongly dependstsifirequency. At so called “forbidden
frequencies” lying in thdand gapof a particular photonic crystal no wave propagation is jbs$2].
Such effects allow for applications in photonics and optie manufacturing reasons photonic crystals
with two-dimensional periodicity (see figure 1) are veryaattive.

Many properties of electrons in semiconductors, which az# @xplained by quantum mechanics,
translate to photonic crystals. Hence, models for the d#gmn of photonic crystals are similar to
those in solid state physics. For the prediction of photenjstal properties one relies on a model of an
infinte crystal with perfect periodicity. By the Floquetegh transformation [3] the Maxwell eigenvalue
problem for the propagating frequencies in an infinite domsireformulated into a set of eigenvalue
problems in theelementary cellparameterised by the quasi-momemtkinT he relation between quasi-
momentum and eigen frequencies is the well-kndand structure

Figure 1: A photonic crystal with two-dimensional periatic

There is a wide variety of methods to calculate the band stref photonic crystals [4]. One
of the most popular methods is plane waves expansion (PWa#) €. [5, 6, 1]), which is a fourier
series in the quasi-momentum A pure plane waves approach experiences convergenceprsiibr
high-contrast materials, an additional smoothing of thededitric discontinuitites yields algebraic con-
vergence in the number of expansion coefficients [7]. Otkparsion based approaches are the method
of Kohn, Korringa and Rostocker (KKR) [8, 9], the augmentdane waves expansion [10], which
are both restricted to cylindrical structures, or the npldtimultipole method (MMP) [11]. Separation
of variable approaches are applied for crystals with quadveins [12, 13]. Furthermore, there are
algorithms based on finite differences in time domain (FTH) 15, 16].

Unlike the previously mentioned methods, except FTDT, thiefielement method [17] uses lo-
calised basis functions defined on a mesh. Since the meshecanstructured and even curved, the
FE method is suitable for resolving complicated geometriesits h-version, i.e. the mesh width
is decreased, the numerical solutions of elliptic boundaiye problems converge algebraically in the
number of degrees of freedom), With p-FEM [18], where we enrich the trial space with higher order
basis functionsexponential convergenée N can be obtained, given that boundary and interfaces are
smooth and the material coefficients are piecewise anallftiadditionally, the boundary has corners,
the solution is less regular, and a proper combination ofhinsézeh refinement and element ordpr
enlargment, thép-FEM [18], is needed to retain exponential convergence.

For transmission problems, where there are jumping maté&fficients, one expects similar con-
vergence behaviour, especially exponential convergence

e with p-FEM for smooth interfaces,
¢ with hp-FEM for polygonal interfaces, if the mesh is geometricadifined to the interface corners.

Nevertheless, to the knowledge of the authors, no papensiss those adaptivity results for inter-
face problems, especially not for band structure calautstof photonic crystals. However, we refer to
the recent articles on- andp-FEM for photonic crystals in 2D [19, 20] and 3D [21, 22].

The objective of this article is to study the convergence akiell eigenvalues of two-dimensional
photonic crystals with smooth or polygonal interfacespessively, with the above described refinement



strategies. We present an algorithm that computes the vidamidstructure quickly, because the entries
of the system matrices are computed once and then changeslighitly for differentk values.

In chapter 2 we formulate Maxwell's equations, which dedeupto two scalar problems for the
transverse electric (TE) and transverse magnetic (TM)dielthen the periodicity in the dielectrical
constant will allow us to use the Bloch transform to reforatelthe eigenvalue problem on the infi-
nite plane into a family of eigenvalue problems on the eleamgncell with quasi-periodic boundary
conditions. This family of problems is parametrised by th@gj-momentunk. We establish weak
formulations and discuss the regularity of the resultirgeafunctions. This regularity is a criterion to
choose between different strategies for designing the rmedhdistributing the polynomial order to its
cells.

In the following chapter 3 we describe the discretisatiotheffunction spaces Hypfinite elements
on quadrilateral meshes with curved boundaries and witgingmodes. First, the spaces with periodic
boundaries are built. Then, we cut the basis functions iotw parts, which are defined by the mul-
tiplication factors coming from the essential quasi-paiddoundary conditions. In the next step we
assemble a system matrix for each pair of these parts. The&thmse totally sixteen matrices, each
multiplied by the appropriate factor, gives us the ovengtem matrix for one specific value.

We show numerical results in chapter 4. We compute the baradstes of different geometries with
curved and polygonal interfaces. A comparison to [12] ar8] {&lidates the results produced by our
algorithm. In a convergence analysis we confirm the foll@gérpectations:

e The convergence gf-FEM becomes worse if there are interface corners present.

e p-FEM converges only algebraically for geometries with iféee corners, wheredgp-FEM re-
covers exponential convergence in the number of degreeseddm.

We observe that the discretization error flBFEM decreases faster than fop-FEM up to a certain
number of degrees of freedom. This effect is due to the wellgtimoderate singularities.

2 Problem formulation

2.1 Scalar equations for TE and TM mode

In three dimensional time-harmonic formulation Maxwe#guations for linear, non-magnetic media,
without free charges or free currents, read

divh(x) =0, curle(x) = —%) h(x), (1a)
div(e(x)e(x)) =0, curlh(x) = %) £(x)e(x), (1b)
with e(x) andh(x) being the electric and magnetic field, respectielythe angular frequency, the
vacuum speed of lightg(x) the frequency-independent (relative) dielectrical canst We assume
lossless media, s&(X) is real. The dielectrical constant is bounded from below lapd from above by
a positive constargmay < .

Together with the two constraint equations and a suitabtayleondition forix| — o, decoupling
equations (1) leads to two equivalent eigenvalue problems

curlcurl e (x) = (%))Zs(x) e(x), (2a)
curl (?1)() curlh(x)) - (%’)Zh(x) , (2b)

i.e. they yield the same spectrum.

Since we consideg to be independent of thg-direction, we can split the electromagnetic fields in (2)
into the transverse electric (TE) mode with= h? = € = 0 and the transverse magnetic (TM) mode
with e! = & = h® = 0. Each mode yields a scalar and a vector valued problem uBedmth, scalar and
vector valued formulations, lead to the same spectrumsitfiicient to consider the scalar problems for
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Figure 2: The left picture shows a two dimensional settintip\weriodicity domairQ. On the right side
we see the corresponding Brillouin zoBend the reduced Brillouin zorieq (red triangle).

TE and TM modes, which are Helmholtz like problems

—divgrade(x) = (%))2 e(x)e(x) , (3-TM)
—div <?1X) grad h(x)) - (%’)zh(x). (3-TE)
The eigenfunctions of (3) fulfill the Neumann transmissiondition
1
e = g annea)] =0 @

where[u] denotes the jump over an arbitrary piecewise smooth Lipsattierfacel” ¢ R? with its unit
normal vecton, andd,u(x) := grad u(x) - n.

2.2 The Bloch transformation onto the elementary cell

The photonic crystal is characterised by a periodic digleltconstant
e(x+a)=¢(x),i=12, (5)

where the vectorg; are the directions of periodicity. They span the fundameguggodicity domainQ
— a parallelogramm — which is also callettmentary cefl (see Fig. 2). We regar@ as a torus, i.e.
opposite sides are identified with each other. We call themgidcal sides and corners ©fM; andr,
respectively, with € {1,...,4}, the topological sideg; andy, andthetopological cornert (see Fig.
3).

The so calledeciprocal lattice[23] with periodicity directionb,, b, fulfilling

a-bj =2mng;,i,j=1,2 (6)

is associated to the photonic crystal . The elementary Eéfleoreciprocal lattice is the Brillouin zoRe
B — see Figure 2.
Now, let us define the Floquet-Bloch transform and its ine¢83 by

k) = (FU) o) = &K% 5 ue—an) e,

meZz2
U = (F 10 = /B IRk, ) dk,

INote, that the elementary céll is not uniquely defined by the vectaas

2The fundamental periodicity domain of the reciprocal tattis not uniquely determined Hy, bo, so we impose the further
condition that the Brillouin zon& is the set of all points belonging to a fundamental peridglidomain of the reciprocal lattice,
such thak € B is closer to 0 than to any other point in the reciprocal lattic
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Figure 3: The geometrical sides and corners (left) and theltgical ones (right) of the toru.

wherean, = mpa; +mpap. The Floquet-Bloch transform has the same periodicity asutiderlying
pattern given by (x), i.e. G(k,x+a) = U(k,x), i = 1,2 for all x € R?.

The Floquet-Bloch transform is an isomorphism betweé(R?) andHS(Q x B) (s€ R, ) [3], and
thus the problems (3) can be transformed ddte B, with Neumann transmission condition (4) for the
jump of &x) andh(x) over opposite sides & and modified differential operators. The whole spectrum
of (2) is the union of the spectra for &l B. We can regarlt € B as a parameter, and obtain a family
of eigenvalue problems iQ.

However, we prefer the slightly different formulation feg(x) := €*X(.#e)(x,k) and hy(x) :=
X (Zh)(x,k)

—divgradec(x) = (%))Ze(x)eK(X) , (7-TM)
. 1 w\2
—div <m gradhk(x)) = (E) hg () , (7-TE)
with quasi-periodidooundary conditions
e (x+a) =e*¥e(x), (8a)
hi (x4 &) = €534 hg(x) (8b)
and the transmission conditions
Onex(x+a) = € ¥ drec(x) (9a)
i 1
- - ) — _dkai
£(Ha‘_)(9nhk(x+<’=h) =€ e()()dnhk(x) : (9b)

ondQ (i =1, 2), withn the outer normal vector ofQ.

Furthermore, if the pattern in the elementary cell has &utht symmetry, e.g. mirror symmetry
w.r.t. the diagonals, the so called reduced Brillouin zBpg C B already contains the whole sprectrum
(see Fig. 2). A widely used fact is, that in generic cases trallgaps are located at the boundary of
Breg, therefore théd-values insidé,eq can be neglected. In general however this is not true and e@ ne
the whole ofB,¢q to determine the band gaps [23]. Also for the computationtleéioquantities such as
the density of states or the Wannier functions the wholB,gfis needed.

2.3 Weak formulation

For the weak formulation of (7) we take the quasi-periodiarmary conditions (8) as essential and the
transmission conditions (9) as natural boundary conditidimus, we define the function space

HY(Q) == {ve HYQ) : v(x+&) = €"%v(x) on9Q, i = 1,2},
and obtain : For alkk € Byeq seek pairghy, wre), (e, wrm) € HX(Q) x C, such that/e,,h, € HX(Q)

atm (&, &) = (%)2 brm (ex, &), (10-TE)
ate(h, ) = (%)2 bre(hk, hi), (10-TM)



with the inner products

am(u.v) = | gradu(x) - gradvix)aQ (11a)
brm(uv) = | £(0uG)VGdQ (11b)
are(u) = [ gradu() - gradv(i)d (110)
bre(uv) = [ uG)vixjde, (11d)

wherev is the complex conjugate of
The boundary terms from partial integration vanish due édtbundary conditions and cancellation
of the factors & with their complex conjugates.

Lemma 2.1. The eigenvalueary and wre of (10)are real.

Proof. Out of hermiticity in (11) it follows that all the eigenvalﬂé%’)2 € R. By choosings = €, and
h = hj_ in equation (10) we also get thé(j;—’)2 >0, implyingw € R. O
Lemma 2.2. Zero eigenvalues i(iL0) can only occur ik = 0

Proof. We introduce the spacl . = H}(Q) NC(Q), which is dense iH}(Q). If w =0, then
a-krE(hk,hk) = 0, which is the case only Hy = const. Ifk # 0, the only constant function iHy « is O,
but 0 is not an eigenfunction, which proves the lemma. O

2.4 Regularity of eigenfunctions

The regularity of the eigenfunctiomg(x) or hi (x) of (7) determines the accuracy of their representation
in discrete trial spaces and determines which adaptivearaf@mt strategy is optimal.

To analyze this regularity we look at the subdomdhs- Q, in which the dielectrical constaatx)
and alsoe(ix) are analytic.

s(x)\Qi €. (Q))
W.l.0.g. we assume that the elementary €els composed into two such domaifis andQs, i.e.
Q=0;UQ,.

Their interface, assumed to be Lipschitz, is designated by 0Q; N dQ,. We consider a piecewise
analytic interfacd™. There can be non-analytic points, i.e. there is no parasaéith around such
points, for which arbitraryly high derivatives exist. Wdlthese point€orners and the set of interface
cornerse.

2.4.1 Smooth interface

Let the interface be smooth, i.€.= 0. Then the eigenfunctioreg (x) or hx(x) of (7) are expected to be
analytic in each subdomain up to the interface, i.e.

& (X)|g € 7 (@), ()| € 7 (Q), i={1,2}.
Just on the interfack there is a kink, but no singularity.

2.4.2 Polygonal interface

Now, let the interface contain corners. Then we can expecetbenfunctiong (x) or hg(x) to be
analytic in each domain up to the interface corng&grse. fori = {1,2}

eK(x)\ﬁi\C € . (Qi\¢), hk(x)\ﬁ\C € . (Qi\2).



At the material corner€ there is a singularity, i.e. there is a (higher order) déirea which is not in
L?(Q). The strengh of the singularity at a corréic ¢ depends on the surrounding dielectrical constant
and on the opening angle.

A technique to determine the singularity@tfor the TE mode for straight material edges is to solve
a local boundary value problém

. 1
—div (m grad hy (x)> =0
in polar coordinates in the neighbourhood@fsee e.g. [24]). This problem has a solution of the form
r's(¢). A more sophisticated technique to obtain the singularityctions, based on the Kondrat'ev

method, is described in [25] for the 3D case. There, the fgcies used for edge singularities are
applicable for the point singularities in the 2D case.

2.5 Mesh design principles

For smooth interfaces the eigenfunctions are piecewistytialn the case where the interface is
exactly resolved by element boundaries, it is well known],[1Bat p-FEM on a fixed mesh shows
expontential convergence of eigenfunctions and eigergdahiN

IA — An| < Cexp(—BNY3). (12)

For polygonal interfaces the eigenfunctions are analygitouthe material corners and the singular
functions are in the class of weighted spaggs(Q) [26, 27]. It is well known fromhp theory [26,
27, 18], that in the case where the interface is exactly vesby element boundaries ahd adaptive
spaces are used, i.e. the mesh is refined towards the matemiedrs¢ and the polynomial degree is
raised linearly away front, the eigenfunctions are approximated with exponentiatemyence (12).

3 Algorithm

The finite elements are based on geometric mes#esn the periodic domai, whose construction
is explained in section 3.1. In section 3.2 the basis funstiovhich span the periodip-adaptive fi-
nite element space aw” are described. Each of these basis functiopg is cut into the four parts
bO(x),...,b3(x). Linear combinations of these parts with phase factors eedim associated quasi-
periodic basis function (Sec. 3.3). The system matricehefdiscrete eigenvalue problem for each
guasi-momenturk are constructed as a linear combination of phase factorsystdm matriced™",
which are built out of combinations of the basis functiontpb(x) andb"(x) (Sec. 3.4).

3.1 Geometric meshes

The periodicity cellQ is covered by a conforming quadrilateral megfy with curvilinear quadrilateral
cells, that resolves the material interfaces. Thus, nadtesinersC are cell nodes and material interfaces
I are represented by curved edges. Each cell is describedddgment mappingx from the reference
cell [0,1]? (see Fig. 4).

As written in section 2.2, we regafd as a torus, i.e. opposite sides are identified with each.other
To ensure this identification also for the megt, opposite sides dR have the same subdivision into
edges and opposite edges are topologically identical, seall the corners of2 (see Fig. 3).

Thecoarse mesh# is the root of a family of meshedl = {.#},i € No. New entities, i.e. cells,
edges and vertices, accrue i by refining.#y geometrically towards the material corners. Thus, we
subdivide those cells which touch a material corfee C into four cell$ (see figure 6). The mesh
11 is constructed by another subdivision of the smaller cell€dn .#;. The meshed/ that are
constructed in the described way are catjedmetric meshdg48]. One could refine some cells around
hanging nodes to obtain conforming meshes, however we el¢cidather treat FE spaces with the
up-coming non-conforming meshes than to introduce new ¢efle mesh in Fig. 6).

3We expect the singularity to be the same forkall
40ur code is able to refine towards edges by subdivision othheigring cells into two cells [28]. Resolving material eslge
would be interesting as well, also with anisotropic polym@degree. This however is beyond the scope of this article.
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Figure 4: Element mapping from reference d¢€lio physical celK.

When we construc#; by refining.#p, we retain the set of cells and edges frofy and store the
newly created ones as children of their respective pardist@eparent edges (see Fig. 5). We use the
same procedure to ge¥; 1 from .#;. Thus, a cell or edge i/ has at most ancestors. If cells and
edges in# do not have any children, we say that they are on the lowest lev

Figure 5:Left— topological entities in coarse mesh and their conneciigolfd arrows).Right— subdi-
vided cells and edges are children of original one (dasheavaj.

This parent-child-relationshigpermits use to decide, whether an edge or a node is hangirg.or n
An edge is found to be hanging when itself as well as its ancese belonging to a lowest level cell. A
node is hanging if it belongs to hanging edges only.

3.2 FE spaces with periodic boundary conditions

The FE space is based on elements, each consisting of a lewelstell and shape functions, which are
defined as tensor-products of polynomials on the refereleceemt and then mapped to the cell.

For a particular adaptively refined mes# we define a distribution of polynomial orders for the
lowest level cells (Sec. 3.2.1). Together mesh and polyabarder distribution determine the basis
functions, i.e. the identification of the basis functionghwopological entities (Sec. 3.2.2), their support
(Sec. 3.2.3) and their shape (Sec. 3.2.4). The shapes oé#iieflanctions are defined on the so called
support cells and then represented on the lowest level(@#is. 3.2.5).

3.2.1 Polynomial order in the cells

On each lowest level cetlin the mesh# we determine the ordep® € N, which will coincide with the
maximal polynomial degree of the basis functions identifiéth that cell. These orders are collected in
the vectop. Thus, we obtain a mesh-degree combinatiefi,p), on which the periodibp-FE spaces
FPNQ,.#) C HY(Q) are based.

The basis functions OVOp’l(Q,///) are periodic because the ar@ds regarded as a torus and the
basis functions are continuous over all cell interfacest the quasi-periodic spacwkp’l(fz,///) C

5n fact we assign to each of these cell a pair of polynomiakmd, € N for the two coordinates in the reference element.
This functionality is here not needed, because we use hatrejisc polynomial order in all cells.



HL(Q) we adopt the concepts of continuity fraﬁ%p’l(fz,///) and adapt the basis functions afterwards
(see section 3.3), such that they fulfill (8).

Whereas our algorithm works with a general choice of polyiaborderspc, we confine ourselvesin
this articles to orders that linearly increase away fromrtfagerial corners [18, 28]. In the coarse mesh
M all cells have got the same polynomial order. The linearbréasing polynomial orders appear
since for the following meshes the polynomial order in the+sabdivided cells is raised by one (see
figure 6).

JT

Figure 6: The mesh is refined towards the interface corndrite the polynomial order increases lin-
early away from material corners.

3.2.2 Identification of basis functions

The continuous basis functions bf-adaptive FE spaces are classified by their identificatich ai
topological entity, i.e. a node, an edge or a cell, of the m#sk M. Such a topological entity is called
active if it is identified with a basis function, i.e. it accomodsitd least one degree of freedom.

The active cells are the cells on the lowest level. (At m¢pt)— 1) basis functions, thternal
basis functionsare identified with them. Furthermore the non-hanging edgich have no children
or whose children are hanging, are active gad- 1 basis functions are identified with them, whexe
is the minimum of the polynomial orders of the adjacent célisally there is exactly one related basis
function for all non-hanging nodes.

3.2.3 Support of basis functions

Now, we want to determine the support of the basis functithva,we have just identified with a topo-
logical entity. More precicely that means we determine teléscwithin which we are going to define
the shape of the basis functions (see Sec. 3.2.4). We cak tbells thesupport cellsof a particular
basis function. They have two properties :

e together they constitute the support of the basis funcéad,
o they are non-relative, i.e. none of them is the ancestor offem.

We denote byc(e) andc(v) the support cells of basis functions identified to an eelge vertexv,
respectively. The support cell of an internal basis functiothe cellc itself.

For conforming meshes the surrounding cells of an edgevertexv on the lowest level constitute
the support of the associated basis function. However, inaomforming meshes the support cei(s)
or c(v) do not have to be on the lowest level.

The basis functions on an active edglave two support cells(e), one on each side of the edge
Both of them have no child cell, whiaghbelongs to. However the support ced(g) could have children,
if they were subdivided parallely to the edgeThis is illustrated in the left picture in figure 7.

Now, let us determine the support of the associated basaifumfor the nodes. On each “side”
of v there can be several cells whigtbelongs to. In each of these famillesf cells we choose exactly
one cell as support cell. Each of these support @l have a non hanging common edge with two

5Due to the identification of two edges @@ there are no boundary edges.
A family is a set of cells with parent child relationship.



adjacent support cells. In general these common edges kowevnot have to be active (see right
picture in figure 7§

In the next section we define the shape of the basis functiotieisupport cells and will represent
it in each of the active ceflsn section 3.2.5.

e oV

Figure 7: Support of basis functions on an eéqkeft) and on a vertex (right).

3.2.4 The shape of the basis functions

Now, we will construct thé-th periodic basis function®;(x) of the periodic spacé”op’l(Q,%). Their
restriction®;(x)|k to a particular celK in their support is called locahape functionlf K is a support
cell the local shape functions are defined as the “pushed bafeitence element shape functiopg(X)
with X € [0,1]2 andk, | € Ny, i.e.

i (X)|k = £ (Ftx), (13)
The reference element shape functions are the tensor groduc

B (X) = Ne(%2) Ny (%2)
of the hierarchical 1D basis [29]

1-¢& k=0
Ne(§) =1 ¢& k=1
E1-&PRL2E-1) k>1

with the Jacobi polynomial@&;lz(f) [18], which are scaled integrated Legendre polynomialscard
be computed by a recursion formula for any polynomial order.

If ®;(x) is identified with a node, thek | < 1 in (13). For basis functions on an edge, there is either
k> 1orl > 1, for basis functions in the interior both indices are asi€a

Let us consider the basis functions identified with an eglgarticularly their traces te, which are
polynomials. Whereas even polynomials do not change if trextion of the local variabl€ along
the edge switches, the odd polynomials change their sigielfwo neighbouring elements ehave
opposite directions of that local variable, on one side Hagps function is multiplied by—1), i.e. there
is a minus sign in (13).

WhenK is in the suppoff of the basis functio®; (x), then it is represented by a linear combination
of local shape functions, i.e.

i (x)|k = Z[TK]kl,i(P&I(FIZlX)v (14)
where the shape functiog have a tensor product numbering. Note, that (13) is conddimél4).
The T matrices?, also known as connectivity matrices, relate local to glebape functions and
assure continuity of;(x), as well and especially on non-conforming meshes.

80f course there could be several choices of the support déllee node already exists in the conforming mesh, then
the neighbouring cells could be support cells in refined reests well. Since we are interested in small supports, wetleke
combination with smallest support cells.

9These are the cells on the lowest level.

101t has not to be the support cell.

11For conforming meshes tHE matrices consist only of-1, —1 and zeros. If furthermore the maximal polynomial order is
p = 2 there are only ones and zeros.
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Figure 8: Basis functions for whick is support cell left) contribute toT k, whereas those for which
the parent celK’ is support cell ight) contribute toT . TheT matrix Tk results from (17).

3.2.5 Representation on lowest level cells

Since the system matrices will be computed as integrals theecells at the lowest level, the basis
functions have to be represented on these cells, therdieré matrices are needed there. Tihth
column of the matrixTk is the representation of theh basis function by all local shape functions of
K, wheneveK lies fully in the support of the basis function. Otherwise ttolumn contains only zeros.
For a support celk we already defined thieth column of the matrixTk by (13), whereas for their
successors we will do that in the following.

On each chil&k’ of the support celK the shape function is represented by shape functioks,in

@ (F ") ks = Z Sk Jier 1 Ger (Fr %), (15)
ral

where the matriceSkk — the so called matrices — are the tensor products of $hatrices [28].
Thus, with (15) and (14) thieth T column of the child celK’ follows as

[Trli = [Skkr][Tk]i- (16)

Some columns of th& matrix of the elemenK’ are received from the parekt— whereK’ is not
support cell of the considered basis function —, when&Ves support cell the corresponding columns
are assembled df’ directly. Finally, theT matrix is defined by

Tw =Sk Tk + Tk, (17)

whereT/ contains nonzero columns for basis functions for whiélis support cell (see Fig. 8). These
columns are defined by the support cell relation (13).

By applying (17) for the grandchildren && we compute theill matrices by repeatedly applying
(17) for all the successors. Finally we can represiix) by shape functions on the cells at the lowest
level.

3.3 FE spaces with quasi-periodic boundary conditions

Until now we have constructed the periodip-adaptives space?op’l(fz,///). The basis function,
identified with the cornert of Q and these identified with a vertex or an edge on the sjges y,
will be changed to fulfill the quasi-periodic boundary cdiatis (8). In other words, to each periodic
basis functiorb(x) we assign an appropiate quasi-periodic bh) for eachk. For basis functions in
the interior ofQ, whereb¥|;q = 0, quasi-periodic boundary conditions are trivially fuéfd, and they
coincide for allk with the periodic counterpart.

In the following we derive the quasi-periodic functiobs(x). For this we additionally have to
distinguish between the geometrically different cornerd sides. For notations we refer to Fig. 3.

First, we decompose the set of support cEl(®) for each basis functiob(x) in the periodic space

10



Figure 9: In thetop line we see the basis function identified with the cormeaind its representation
by functions belonging to one factor area. A basis functinrite sidey, is shown in themiddle line
These basis functions are cut into two parts, whereas hasisiéns in the interiof2 (bottom ling fully
belong to one factor area.

FEHQ,.#) into the four subsetd

Ks(b) := {K € K(b) : b(K N,) > 0},

Ka(b) :={K € K(b) : I3x e KNI : b(x) > 0},
Ky (b) :={K € K(b) : I3x e KNIy :b(x) >0},
Ko(b) := K(b)\ (K1(b) UK2(b) UK3(b)) ,

andb(x) itself into the functiond®(x), ...,b3(x) (see Fig. 9) with
iov . J b(x) inKi(b)
b'(x) := { 0 otherwise

In Figure 9 this decomposition is shown. A basis functiomitfeed with the (topological) corner of
Q has got four support cells, each adjacent to a cofheand coincides witlK;(b). Thus, the four
functionsb' (x) represent the parts &fx) belonging to one of the four support cells, respectively. A
basis function identified with a (topological) side, let & fa, has support cefld on 'y andT 3, b%(x)
andb!(x) are the parts ab(x) in these cells, respectively, the other functibAéx) andb3(x) are zero.
A basis function in the interior o is cut into only one piece, namely(x). The other functions
bl(x),...,b%(x) are zero.

Now, the functions

b*(x) :=0°(x) + €*a1b? (x) + € @2b?(x) + k(@ T2)p3(x)

meet the quasi-periodicity conditions. The span of theeetfans defines the spaﬁé(p’l(fz,///).
With the definition of the following factors

=1, @t =k @ =k @ = eklata)
we can write the quasi-periodic basis functions convehjest

b (x) == 5 @b"(x). (18)

3.4 Assembly of the system matrices

For simplicity reasons we do not distinguish between TM aRdhTodes in this section. With the basis
functions of the space?kp’l(Q,///) defined just above, we find the matrix eigenvalue problem&@j (

AKRK = A kpkgK

L2This is possible if the mesh has at least two cells in eaclutitirg which we “trivially” assume from now on.
130ne on each side for basis functions identified with an edugpao for those identified with a vertex.
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with the system matrices

N N
Al = (a(blj(7bl1'<))i,j:1’ MK = (b(blj(7bl1'<))i,j:1’ (19)

wherea andb stand for the appropiate inner product for the TM or TE modspectively. The eigen-
values are\ kK = (%))2 After inserting (18) into (19) we get

A= S @R (a0l b)),

and with the definition of the matrices

N

A™ = (a(b] b)) .

177

we write

3
Ak _ mghAMn
mﬂzzocaK )

Due to the cutting procedure, the computation of the sixteatricesA™" is exactly as expensive
as the direct computation @°. The multiplication with the phase factors is neglegiblenpared to
the overall cost. Thus, the assembly of an arbitrary numbéne system matricedk for different
quasi-moment& € Byeq has about the same cost as the assembly of the single m&tris basis
functions in the interior of2 are not affected by quasi-periodicity, only a small parpbfis affected
when changingy.

The integrals in (11) are computed by numerical Gauss qua@ran each element. The number of
quadrature points is adapted to the maximal polynomialeige p(c). We use sum factorisation [28]
to reduce the integration costs fradfp®) to O(p°).

4 Numerical Results

The bandstructure algorithm is implemented in our objerded software packagencepts [30, 31],
written in C++. The meshes use an exact representation gédwdges, which is needed foiFEM
andhp-FEM. In order to reduce the number of degrees of freedom, seeautruncated spae For
finding the smallest eigenvalues of the generalized maigerealue problems we use ARPACK [32],
for the LU decomposition SuperLU [33].

4.1 Band structures and eigenfunctions

We calculated the band structure of four photonic crystefidd by the pattern of their elementary cells,
the cylindrical holes, the dielectric veins (both in Fig.) lihe inversely curved dielectric cylinders and
a 9x 9 structure of dielectric veins with a periodic defect (bitfrig. 10).

In all cases the elementary cell is the squ@re [0,a]2, which is scaled t&® = [0, 1]?, for which the
Brillouin zone isB = [0,2r12. Then, the angular frequenay scales withl/a. Hence, it is convenient

to look at the non-dimensional quantitp/2me = \/7/271, where) is the eigenvalue of the eigenvalue
problem onQ.

The computed band structures of the four photonic crystashown in Figures 11 and 12. We
want to emphasize that our algorithm is well suited for diie patterns with

e discontinuous dielectric constants,

e smooth, curved interfaces,

straight and curved interfaces with corners,

structures with small local geometry features.

140nly internal basis functions whose sum of the polynomigirde in the two coordinate directions is at mpsare included
in the discrete space.
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Figure 10: The elementary cell with cylindrical holdsf{), that with dielectric veinsigner lef), that
with inversely curved dielectric rodiber right) and that with a 9 9 structure of dielectric veins with
a periodic defect in the middlgight). The white region is aird = 1), the blue region is a dielectric
medium € > 1).
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0~ 0L
Figure 11: Bandstructure of the crystal with cylindricalésof diameter ®5a (left), of the crystal
with dielectric veins of thickness.Da (0.05a on both sidesmiddlg) and of the crystal with inversely
curved dielectric rods with radius®a and distance between corners 088 The dielectric medium
hase = 20. Solid lines denote TM modes, dashed lines denote the Tdeso

The refinement strategies will be discussed in section 4.2.

Although the band structure is shown for the symmetry lifdh@reduced Brillouin zone only, the
whole reduced Brillouin zone can be sampled convenieritigesthe assembly of the matrices is done
only once.

In addition to the eigenvalues ting-adaptive FE algorithm also computes the eigenfunctioos-ac
rately. In Figure 12 we see the squared amplitdaé the TM and the TE mode of the first band at the
M point for the crystal with the pertubated<® dielectric vein structure (see Fig 10).

We have chosen the geometric and dielectric parameterbdorriystal with dielectric veins (Fig.
10) the same as in [12, 13, 19]. In [12, 13] separation of wemapproaches are applied, whereas
in [19] first order FE are used. The comparison of these resalburs computed witp-FEM (see
Tab. 1) validates our approach and our implementation.dddtie higher accuracy for the TM mode

15The squared amplitude corresponds to the concept of piibatgnsity in quantum electrodynamics.

Figure 12: Bandstructurdeft) of the crystal with a & 9 structure of dielectric veins of thickne&sa/g
and dielectric constamt= 20, and the squared amplitude of the first TM eigenfundtp(x)| (middle
and TE eigenfunctioihy (x)|? (right) at theM point. As the TE eigenvalue is twofold, there is another
eigenfunction, which results from an interchangepdndxs.
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relative errors

for the same refinement level due to weaker singularitiehafrterface corners
convergence results in section 4.2.

. We present further

TM spectrum TE spectrum
Band No. || lower bound | upperbound || lower bound | upperbound
0 2.22 0 3.73 from [12]
1 0 2.31 0 3.73 from [13]
0 2.312 0 3.743 from [19]
0 2.30429(73) || O 3.719(34) p-FEM
2.64 5.09 8.42 13.73 from [12]
2 2.64 5.09 8.43 13.76 from [13]
2.650 5.099 8.440 13.704 from [19]
2.642854(92) | 5.0873131(35) 8.40(47) 13.678(20) p-FEM
3.44 5.65 11.01 16.77 from [12]
3 3.43 5.91 11.04 16.77 from [13]
3.454 5.904 11.027 16.785 from [19]
3.4379333(62) 5.888(50) 10.972(25) 16.741(72) p-FEM

Table 1: The table shows our results for the relative eiglemm\A = w?@®/2 at the lower and upper
bound of the first three bands for the dielectric veins (Fi@) ih comparison to [12], [13], [19]. We
use a polynomial refinement strategy with 9 cells and unifpofgnomial ordemp = 15 (963 degrees of
freedom). The results of [19] are converted with their gimeouracy.

TM mode TE mode
10 ™ ‘ 10° ‘
N +o
S Reb—+_
10°2¢ N ~
R e 10721 T
NI =0 “ R "
104+ *\\+\;\+ * +\+\*++ ++++\+
T ° 104 N e T,
10°8¢ BTN o \ +
4\ % \+\+\ % K
10-8f N, 3 10° \
st *
1010} P -8 h
— gylilndri(_:al holes * 0 8y|i|nd{i(;a| holes \
-+ dielectric veins, -+ dielectric veins.
10-12}  —-curved dielectric rods —+-curved dielectric rods
. . . . . . 1@10 L L I . . .
0 2 4 6° 8 100 12 0 28 4 6° g 160 12
N N

Figure 13: The convergence of the relative error for the el M (eft) and TE eigenvalueight) at
the midpoint ofl andX for the crystals with cylindrical holes, with dielectricime and with inversely
curved rods (Fig. 10, same geometric and dielectric parenmes in Fig. 11). The computations were
done withp-FEM.

4.2 Convergence of eigenvalues

Now, we investigate the convergence of the eigenvaluedfferent refinement strategies, starting with
p-refinement. We choose the midpoint betw&eandX, which is not a particular “good” one.

In Figure 13 the convergence of the smallest eigenvaluedwistior the crystals with cylindrical
holes, with dielectric veins and with inversely curved r¢Bgy. 10) — for the TM and the TE mode,
computed withp-FEM. For the cylindrical holes with only smooth materialdrfaces we observe ex-
ponential convergence in the number of degrees of freelams exg—BN"3) as we expected from
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relative errors
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Figure 14: Convergence of the relative error for the TM-m(idp) and TE modelfotton) of the crystal
with dielectric veins £ = 8.9, vein thickness @ at each side). We ugeFEM andhp-FEM, the latter
with different initial polynomial degree.

hp-theory [26, 27, 18]. For the crystals with dielectric vearsd with inversely curved rods corner in-
terfaces are present and the slope is less steep than forytalavith cylindrical holes. Due to the
smaller inward angle of the dielectric medium at the integfaorners the singularity for the inversely
curved rods is larger than for the dielectric veins [24],Istltat we observe a weaker convergence of
the eigenvalues.

In Figure 13 the eigenvalues of the crystal with the dieleateins and the inversely curved rods
seem to converge exponentially fpfFEM, although interface corners are present. Neverthelés
we continue with thep refinement (in Fig. 14 for dielectric veins up o= 38), merely algebraic
convergence emergés

In the following we investigate the convergence of the eigares for geometric refinement — de-
scribed in section 2.5 —in comparisorpk@-EM. In Figure 14 the relative error of the smallest eigémea
for the crystal with dielectric veins (Fig. 10) with thickseeQ4a ande = 8.9 is shown. Starting with a
coarse mesh with nine cells apd= 1 in all cells,hp-FEM shows exponential convergence in contrast
to p-FEM, both for the TE and the TM mode. However, in the begigrime polynomial refinement
performs better (up tdl ~ 4000 for the TM mode, up td ~ 2000 for the TE mode). Therefore we
investigated the influence of the polynomial order in therseanesh fohp-FEM. The results in Figure
14 show, that an initial polynomial order pf= 2 performs better than one of order= 1 for all N, and
thatp = 4 performs even better in the beginning, but converges vattefl slope. This behaviour is due
to the weak singularities for the used material parametdte that the strategy reduces the relative
error at about 8000 dof for the TM mode to the order of ¥ but for the TE mode only to the order of
1076

Table 2 shows the numerical TE eigenvalues for the settistodi@scribed (as in the left diagramme
in Fig. 14) forhp-FEM with initial polynomial ordet’ p= 2, forp-FEM, and purdr-refinementp = 1).
h-FEM also converges algebraically, but more slowly thafEM. At h-FEM-level 6 (N = 9216) only
three digits of the eigenvalue are exact, while igtREM atN = 6345 five digits are exact and with the
describechp-FEM-strategy aN = 6764 (level 11) there are already six exact digits. Withapiation
of thehp-FEM-values we get.@914752, which we take for exact up to 7 digits (one more).

5 Conclusion

We introduced an algorithm based lopfinite elements with hanging nodes for computing the phatoni
crystal bandstructure. We showed that the eigenvaluescgeexponentially for smooth and polygonal
interfaces. In examples with polygonal interfaces we oletfaster convergence with pure polynomial
enrichment -FEM) for the first refinement levels than witip-FEM — both for the TM and the TE

16\ith large convergence rate.
"More exactly, geometric refinement starts after a firgtéfinement step.
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h-FEM p-FEM hp-FEM
level || #dof = #dof e #dof =
1 9 | 0521302619112 9 | 0.521302619112 9 | 0.521302619112
2 36 | 0.501735291198 27 | 0.497095810781 27 | 0.497095810781
3 | 144 0.494952283861| 45 | 0.4%570239622| 108 | 0.49336550838(
4 | 576 0.42664756896| 72 | 0.498837964737| 268 | 0.42231220419
5 | 2304| 0.491885702189| 108 | 0.42751880410| 512 | 0.4917725406461
6 | 9216| 0.491618020101| 153 | 0.42340949399 904 | 0.491563775139
7 207 | 0.491998065356| 1492 | 0.491506786403
8 270 | 0.491855851430| 2324 | 0.49186485296
9 342 | 0491735848233 3448 | 0.4914D231178
10 423 | 0.491681227299| 4912 | 0.49147634000
11 513 | 0.491624540578 6764 | 0.49147502552
12 612 | 0.491597555930| 9052 | 0.49147368251
13 720 | 0.491568698587|| 11824 | 0.49147528235
14 837 | 0.491554083965
15 963 | 0.491537578751
18 1395 | 0.491513511149
23 2295 | 0.4914€3587640
28 3420 | 0.49185836966
33 4770 | 0.49181669113
38 6345 | 0.4914B554612

Table 2: Convergence of the first eigenvalue for the TE modéhte crystal with dielectric veins (see
Fig. 10,& = 8.9, vein thickness @ at each side) & = (1/2a,0) for pure mesh refinemenbFEM),
pure polynomial order enlargmemi-FEM) and adaptivénp-FEM. Forp-FEM andhp-FEM the level
corresponds to the maximal polynomial degree in the dis@eace. Witlhp-FEM we first refine only
the polynomial degree and start then with geometric mesheefent towards the four interface corners.

With extrapolation (exponential ansatz) we expeeba/2m ~ 0.4914752.

mode. This is due to the relatively weak singularities. Tisemtisation error of pure cell refinement
(h-FEM) shows much slower convergence. These results meexpeetations from thiep-FEM theory.

The presented algorithm is able to compute the bandsteifdupolygonal shaped elementary cells
to a high accuracy at low computational costs. This is dudécekponential convergence lyf-FEM

and because the system matrices are assembled only onbe fehole Brillouin zone.

In further research possible improvements of the eigervaddver could be investigated, e.g. the

reuse of eigenvectors as start vectors at slightly diffekgroints.
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