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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

The band structure of 2D photonic crystals and their eigenmodes can be efficiently computed with the
finite element method (FEM). For second order elliptic boundary value problems with piecewise ana-
lytic coefficients it is known that the solution converges extremly fast, i.e. exponentially, when using
p-FEM for smooth andhp-FEM for polygonal interfaces and boundaries. In this article we discretise the
variational eigenvalue problems for the transverse electric (TE) and transverse magnetic (TM) modes
in scalar variables with quasi-periodic boundary conditions by means ofp- andhp-FEM. Our compu-
tations show exponential convergence of the numerical eigenvalues for smooth and polygonal lines of
discontinuity of dielectric material properties.
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1 Introduction

Photonic crystals are refractive materials with a certain periodic structure in one, two or three directions
[1]. The behaviour of light in such media strongly depends onits frequency. At so called “forbidden
frequencies” lying in theband gapof a particular photonic crystal no wave propagation is possible [2].
Such effects allow for applications in photonics and optics. For manufacturing reasons photonic crystals
with two-dimensional periodicity (see figure 1) are very attractive.

Many properties of electrons in semiconductors, which are well explained by quantum mechanics,
translate to photonic crystals. Hence, models for the description of photonic crystals are similar to
those in solid state physics. For the prediction of photoniccrystal properties one relies on a model of an
infinte crystal with perfect periodicity. By the Floquet-Bloch transformation [3] the Maxwell eigenvalue
problem for the propagating frequencies in an infinite domain is reformulated into a set of eigenvalue
problems in theelementary cell, parameterised by the quasi-momemtumk. The relation between quasi-
momentum and eigen frequencies is the well-knownband structure.

Figure 1: A photonic crystal with two-dimensional periodicity.

There is a wide variety of methods to calculate the band structure of photonic crystals [4]. One
of the most popular methods is plane waves expansion (PWM) (see e.g. [5, 6, 1]), which is a fourier
series in the quasi-momentumk. A pure plane waves approach experiences convergence problems for
high-contrast materials, an additional smoothing of the dielectric discontinuitites yields algebraic con-
vergence in the number of expansion coefficients [7]. Other expansion based approaches are the method
of Kohn, Korringa and Rostocker (KKR) [8, 9], the augmented plane waves expansion [10], which
are both restricted to cylindrical structures, or the multiple multipole method (MMP) [11]. Separation
of variable approaches are applied for crystals with quadratic veins [12, 13]. Furthermore, there are
algorithms based on finite differences in time domain (FTDT)[14, 15, 16].

Unlike the previously mentioned methods, except FTDT, the finite element method [17] uses lo-
calised basis functions defined on a mesh. Since the mesh can be unstructured and even curved, the
FE method is suitable for resolving complicated geometries. In its h-version, i.e. the mesh widthh
is decreased, the numerical solutions of elliptic boundaryvalue problems converge algebraically in the
number of degrees of freedom (N). With p-FEM [18], where we enrich the trial space with higher order
basis functions,exponential convergencein N can be obtained, given that boundary and interfaces are
smooth and the material coefficients are piecewise analytic. If, additionally, the boundary has corners,
the solution is less regular, and a proper combination of mesh sizeh refinement and element orderp
enlargment, thehp-FEM [18], is needed to retain exponential convergence.

For transmission problems, where there are jumping material coefficients, one expects similar con-
vergence behaviour, especially exponential convergence

• with p-FEM for smooth interfaces,

• with hp-FEM for polygonal interfaces, if the mesh is geometricallyrefined to the interface corners.

Nevertheless, to the knowledge of the authors, no paper discusses those adaptivity results for inter-
face problems, especially not for band structure calculations of photonic crystals. However, we refer to
the recent articles onh- andp-FEM for photonic crystals in 2D [19, 20] and 3D [21, 22].

The objective of this article is to study the convergence of Maxwell eigenvalues of two-dimensional
photonic crystals with smooth or polygonal interfaces, respectively, with the above described refinement

1



strategies. We present an algorithm that computes the wholebandstructure quickly, because the entries
of the system matrices are computed once and then changed only slightly for differentk values.

In chapter 2 we formulate Maxwell’s equations, which decouple into two scalar problems for the
transverse electric (TE) and transverse magnetic (TM) fields. Then the periodicity in the dielectrical
constant will allow us to use the Bloch transform to reformulate the eigenvalue problem on the infi-
nite plane into a family of eigenvalue problems on the elementary cell with quasi-periodic boundary
conditions. This family of problems is parametrised by the quasi-momentumk. We establish weak
formulations and discuss the regularity of the resulting eigenfunctions. This regularity is a criterion to
choose between different strategies for designing the meshand distributing the polynomial order to its
cells.

In the following chapter 3 we describe the discretisation ofthe function spaces byhpfinite elements
on quadrilateral meshes with curved boundaries and with hanging nodes. First, the spaces with periodic
boundaries are built. Then, we cut the basis functions into four parts, which are defined by the mul-
tiplication factors coming from the essential quasi-periodic boundary conditions. In the next step we
assemble a system matrix for each pair of these parts. The sumof these totally sixteen matrices, each
multiplied by the appropriate factor, gives us the overall system matrix for one specifick value.

We show numerical results in chapter 4. We compute the bandstructures of different geometries with
curved and polygonal interfaces. A comparison to [12] and [13] validates the results produced by our
algorithm. In a convergence analysis we confirm the following expectations:

• The convergence ofp-FEM becomes worse if there are interface corners present.

• p-FEM converges only algebraically for geometries with interface corners, whereashp-FEM re-
covers exponential convergence in the number of degrees of freedom.

We observe that the discretization error forp-FEM decreases faster than forhp-FEM up to a certain
number of degrees of freedom. This effect is due to the relatively moderate singularities.

2 Problem formulation

2.1 Scalar equations for TE and TM mode

In three dimensional time-harmonic formulation Maxwell’sequations for linear, non-magnetic media,
without free charges or free currents, read

divh(x) = 0, curle(x) = − iω
c

h(x), (1a)

div(ε(x)e(x)) = 0, curlh(x) =
iω
c

ε(x)e(x), (1b)

with e(x) andh(x) being the electric and magnetic field, respectivly,ω the angular frequency,c the
vacuum speed of light,ε(x) the frequency-independent (relative) dielectrical constant. We assume
lossless media, soε(x) is real. The dielectrical constant is bounded from below by 1and from above by
a positive constantεmax < ∞.

Together with the two constraint equations and a suitable decay condition for|x | → ∞, decoupling
equations (1) leads to two equivalent eigenvalue problems

curlcurl e(x) =
(ω

c

)2
ε(x)e(x) , (2a)

curl
(

1
ε(x)

curlh(x)

)
=

(ω
c

)2
h(x) , (2b)

i.e. they yield the same spectrum.
Since we considerε to be independent of thex3-direction, we can split the electromagnetic fields in (2)
into the transverse electric (TE) mode withh1 = h2 = e3 = 0 and the transverse magnetic (TM) mode
with e1 = e2 = h3 = 0. Each mode yields a scalar and a vector valued problem. Because both, scalar and
vector valued formulations, lead to the same spectrum, it issufficient to consider the scalar problems for
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Figure 2: The left picture shows a two dimensional setting with periodicity domainΩ. On the right side
we see the corresponding Brillouin zoneB and the reduced Brillouin zoneBred (red triangle).

TE and TM modes, which are Helmholtz like problems

−divgrade(x) =
(ω

c

)2
ε(x)e(x) , (3-TM)

−div

(
1

ε(x)
gradh(x)

)
=

(ω
c

)2
h(x) . (3-TE)

The eigenfunctions of (3) fulfill the Neumann transmission condition
[

∂ne(x)

]
=

[
1

ε(x)
∂nh(x)

]
= 0, (4)

where[u] denotes the jump over an arbitrary piecewise smooth Lipschitz interfaceΓ ⊂ R2 with its unit
normal vectorn, and∂nu(x) := gradu(x) ·n.

2.2 The Bloch transformation onto the elementary cell

The photonic crystal is characterised by a periodic dielectrical constant

ε(x+ai) = ε(x) , i = 1,2 , (5)

where the vectorsai are the directions of periodicity. They span the fundamental periodicity domainΩ
– a parallelogramm – which is also calledelementary cell1 (see Fig. 2). We regardΩ as a torus, i.e.
opposite sides are identified with each other. We call the geometrical sides and corners ofΩ Πi andΓi ,
respectively, withi ∈ {1, . . . ,4}, the topological sidesγ1 andγ2 andthe topological cornerπ (see Fig.
3).

The so calledreciprocal lattice[23] with periodicity directionb1, b2 fulfilling

ai ·b j = 2πδi j , i, j = 1,2 (6)

is associated to the photonic crystal . The elementary cell of the reciprocal lattice is the Brillouin zone2

B – see Figure 2.
Now, let us define the Floquet-Bloch transform and its inverse [3] by

ũ(k,x) = (Fu)(k,x) =
1
|B| e−i k ·x ∑

m∈Z2

u(x−am)ei k ·am ,

u(x) = (F−1ũ)(x) =

∫

B
ei k·xũ(k,x) dk,

1Note, that the elementary cellΩ is not uniquely defined by the vectorsai .
2The fundamental periodicity domain of the reciprocal lattice is not uniquely determined byb1,b2, so we impose the further

condition that the Brillouin zoneB is the set of all points belonging to a fundamental periodicity domain of the reciprocal lattice,
such thatk ∈ B is closer to 0 than to any other point in the reciprocal lattice.
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Figure 3: The geometrical sides and corners (left) and the topological ones (right) of the torusΩ.

wheream = m1a1+m2a2. The Floquet-Bloch transform has the same periodicity as the underlying
pattern given byε(x), i.e. ũ(k,x+ai) = ũ(k,x), i = 1,2 for all x ∈ R2.

The Floquet-Bloch transform is an isomorphism betweenHs(R2) andHs(Ω×B) (s∈ R+) [3], and
thus the problems (3) can be transformed ontoΩ×B, with Neumann transmission condition (4) for the
jump of ẽ(x) andh̃(x) over opposite sides ofΩ and modified differential operators. The whole spectrum
of (2) is the union of the spectra for allk ∈ B. We can regardk ∈ B as a parameter, and obtain a family
of eigenvalue problems inΩ.

However, we prefer the slightly different formulation forek(x) := ei k·x(Fe)(x,k) and hk(x) :=
ei k·x(Fh)(x,k)

−divgradek(x) =
(ω

c

)2
ε(x)ek(x) , (7-TM)

−div

(
1

ε(x)
gradhk(x)

)
=

(ω
c

)2
hk(x) , (7-TE)

with quasi-periodicboundary conditions

ek(x+ai) = ei k·ai ek(x) , (8a)

hk(x+ai) = ei k·ai hk(x) , (8b)

and the transmission conditions

∂nek(x+ai) = ei k·ai ∂nek(x) , (9a)

1
ε(x+ai)

∂nhk(x+ai) = −ei k·ai
1

ε(x)
∂nhk(x) , (9b)

on ∂Ω (i =1, 2), withn the outer normal vector on∂Ω.
Furthermore, if the pattern in the elementary cell has additional symmetry, e.g. mirror symmetry

w.r.t. the diagonals, the so called reduced Brillouin zoneBred⊂ B already contains the whole sprectrum
(see Fig. 2). A widely used fact is, that in generic cases the band gaps are located at the boundary of
Bred, therefore thek-values insideBred can be neglected. In general however this is not true and we need
the whole ofBred to determine the band gaps [23]. Also for the computation of other quantities such as
the density of states or the Wannier functions the whole ofBred is needed.

2.3 Weak formulation

For the weak formulation of (7) we take the quasi-periodic boundary conditions (8) as essential and the
transmission conditions (9) as natural boundary conditions. Thus, we define the function space

H1
k(Ω) :=

{
v∈ H1(Ω) : v(x+ai) = ei k·ai v(x) on ∂Ω, i = 1,2

}
,

and obtain : For allk ∈ Bred seek pairs(hk ,ωTE), (ek ,ωTM) ∈ H1
k (Ω)×C, such that∀e′k ,h

′
k ∈ H1

k (Ω)

aTM(ek ,e′k) =
(ωTM

c

)2
bTM(ek ,e′k), (10-TE)

aTE(hk ,h
′
k) =

(ωTE

c

)2
bTE(hk ,h

′
k), (10-TM)
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with the inner products

aTM(u,v) =

∫

Ω
gradu(x) ·gradv(x)dΩ , (11a)

bTM(u,v) =

∫

Ω
ε(x)u(x)v(x)dΩ , (11b)

aTE(u,v) =

∫

Ω

1
ε(x)

gradu(x) ·gradv(x)dΩ , (11c)

bTE(u,v) =

∫

Ω
u(x)v(x)dΩ , (11d)

wherev is the complex conjugate ofv.
The boundary terms from partial integration vanish due to the boundary conditions and cancellation

of the factors ei k·ai with their complex conjugates.

Lemma 2.1. The eigenvaluesωTM andωTE of (10)are real.

Proof. Out of hermiticity in (11) it follows that all the eigenvalues
(ω

c

)2 ∈ R. By choosingek = e′k and

hk = h′k in equation (10) we also get that
(ω

c

)2 ≥ 0, implyingω ∈ R.

Lemma 2.2. Zero eigenvalues in(10)can only occur ifk = 0

Proof. We introduce the spaceHk,∞ = H1
k (Ω)∩C∞(Ω), which is dense inH1

k (Ω). If ω = 0, then
ak

TE(hk ,hk) = 0, which is the case only ifhk = const. Ifk 6= 0, the only constant function inHk,∞ is 0,
but 0 is not an eigenfunction, which proves the lemma.

2.4 Regularity of eigenfunctions

The regularity of the eigenfunctionsek(x) or hk(x) of (7) determines the accuracy of their representation
in discrete trial spaces and determines which adaptive refinement strategy is optimal.

To analyze this regularity we look at the subdomainsΩi ⊂ Ω, in which the dielectrical constantε(x)
and also 1

ε(x) are analytic.

ε(x)
∣∣
Ωi

∈ A (Ωi)

W.l.o.g. we assume that the elementary cellΩ is composed into two such domainsΩ1 andΩ2, i.e.

Ω = Ω1∪Ω2.

Their interface, assumed to be Lipschitz, is designated byΓ := ∂Ω1∩ ∂Ω2. We consider a piecewise
analytic interfaceΓ. There can be non-analytic points, i.e. there is no parametrisation around such
points, for which arbitraryly high derivatives exist. We call these pointscorners, and the set of interface
cornersC.

2.4.1 Smooth interface

Let the interface be smooth, i.e.C = /0. Then the eigenfunctionsek(x) or hk(x) of (7) are expected to be
analytic in each subdomain up to the interface, i.e.

ek(x)
∣∣
Ωi

∈ A (Ωi), hk(x)
∣∣
Ωi

∈ A (Ωi), i = {1,2}.

Just on the interfaceΓ there is a kink, but no singularity.

2.4.2 Polygonal interface

Now, let the interface contain corners. Then we can expect the eigenfunctionsek(x) or hk(x) to be
analytic in each domain up to the interface cornersC, i.e. for i = {1,2}

ek(x)
∣∣
Ωi\C ∈ A (Ωi\C), hk(x)

∣∣
Ωi\C ∈ A (Ωi\C).
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At the material cornersC there is a singularity, i.e. there is a (higher order) derivative, which is not in
L2(Ω). The strengh of the singularity at a cornerC ∈ C depends on the surrounding dielectrical constant
and on the opening angle.

A technique to determine the singularity atC for the TE mode for straight material edges is to solve
a local boundary value problem3

−div

(
1

ε(x)
gradhk(x)

)
= 0

in polar coordinates in the neighbourhood ofC (see e.g. [24]). This problem has a solution of the form
rλ s(φ). A more sophisticated technique to obtain the singularity functions, based on the Kondrat’ev
method, is described in [25] for the 3D case. There, the techniques used for edge singularities are
applicable for the point singularities in the 2D case.

2.5 Mesh design principles

For smooth interfaces the eigenfunctions are piecewise analytic. In the case where the interface is
exactly resolved by element boundaries, it is well known [18], that p-FEM on a fixed mesh shows
expontential convergence of eigenfunctions and eigenvalues inN

|λ −λN| ≤Cexp(−βN1/3). (12)

For polygonal interfaces the eigenfunctions are analytic up to the material corners and the singular
functions are in the class of weighted spacesB2

β (Ω) [26, 27]. It is well known fromhp theory [26,
27, 18], that in the case where the interface is exactly resolved by element boundaries andhp adaptive
spaces are used, i.e. the mesh is refined towards the materialcornersC and the polynomial degree is
raised linearly away fromC, the eigenfunctions are approximated with exponential convergence (12).

3 Algorithm

The finite elements are based on geometric meshesM on the periodic domainΩ, whose construction
is explained in section 3.1. In section 3.2 the basis functions, which span the periodichp-adaptive fi-
nite element space onM are described. Each of these basis functionsb(x) is cut into the four parts
b0(x), ...,b3(x). Linear combinations of these parts with phase factors define an associated quasi-
periodic basis function (Sec. 3.3). The system matrices of the discrete eigenvalue problem for each
quasi-momentumk are constructed as a linear combination of phase factors andsystem matricesAmn,
which are built out of combinations of the basis function partsbm(x) andbn(x) (Sec. 3.4).

3.1 Geometric meshes

The periodicity cellΩ is covered by a conforming quadrilateral meshM0 with curvilinear quadrilateral
cells, that resolves the material interfaces. Thus, material cornersC are cell nodes and material interfaces
I are represented by curved edges. Each cell is described by anelement mappingFK from the reference
cell [0,1]2 (see Fig. 4).

As written in section 2.2, we regardΩ as a torus, i.e. opposite sides are identified with each other.
To ensure this identification also for the meshM0, opposite sides ofΩ have the same subdivision into
edges and opposite edges are topologically identical, as well as all the corners ofΩ (see Fig. 3).

Thecoarse meshM0 is the root of a family of meshesM = {Mi}, i ∈ N0. New entities, i.e. cells,
edges and vertices, accrue inM1 by refiningM0 geometrically towards the material corners. Thus, we
subdivide those cells which touch a material cornerC ∈ C into four cells4 (see figure 6). The mesh
Mi+1 is constructed by another subdivision of the smaller cells on C in Mi . The meshesM that are
constructed in the described way are calledgeometric meshes[18]. One could refine some cells around
hanging nodes to obtain conforming meshes, however we decide to rather treat FE spaces with the
up-coming non-conforming meshes than to introduce new cells (see mesh in Fig. 6).

3We expect the singularity to be the same for allk.
4Our code is able to refine towards edges by subdivision of neighbouring cells into two cells [28]. Resolving material edges

would be interesting as well, also with anisotropic polynomial degree. This however is beyond the scope of this article.
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Figure 4: Element mapping from reference cellK̂ to physical cellK.

When we constructM1 by refiningM0, we retain the set of cells and edges fromM0 and store the
newly created ones as children of their respective parent cells or parent edges (see Fig. 5). We use the
same procedure to getMi+1 from Mi . Thus, a cell or edge inMi has at mosti ancestors. If cells and
edges inM do not have any children, we say that they are on the lowest level.

Figure 5:Left – topological entities in coarse mesh and their connections(solid arrows).Right– subdi-
vided cells and edges are children of original one (dashed arrows).

This parent-child-relationshippermits use to decide, whether an edge or a node is hanging or not.
An edge is found to be hanging when itself as well as its ancestor are belonging to a lowest level cell. A
node is hanging if it belongs to hanging edges only.

3.2 FE spaces with periodic boundary conditions

The FE space is based on elements, each consisting of a lowestlevel cell and shape functions, which are
defined as tensor-products of polynomials on the reference element and then mapped to the cell.

For a particular adaptively refined meshM we define a distribution of polynomial orders for the
lowest level cells (Sec. 3.2.1). Together mesh and polynomial order distribution determine the basis
functions, i.e. the identification of the basis functions with topological entities (Sec. 3.2.2), their support
(Sec. 3.2.3) and their shape (Sec. 3.2.4). The shapes of the basis functions are defined on the so called
support cells and then represented on the lowest level cells(Sec. 3.2.5).

3.2.1 Polynomial order in the cells

On each lowest level cellc in the meshM we determine the order5 pc ∈N, which will coincide with the
maximal polynomial degree of the basis functions identifiedwith that cell. These orders are collected in
the vectorp. Thus, we obtain a mesh-degree combination(M ,p), on which the periodichp-FE spaces
S

p,1
0 (Ω,M ) ⊂ H1

0(Ω) are based.

The basis functions ofS p,1
0 (Ω,M ) are periodic because the areaΩ is regarded as a torus and the

basis functions are continuous over all cell interfaces. For the quasi-periodic spacesS p,1
k (Ω,M ) ⊂

5In fact we assign to each of these cell a pair of polynomial orderspc ∈ N
2 for the two coordinates in the reference element.

This functionality is here not needed, because we use here isotropic polynomial order in all cells.
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H1
k (Ω) we adopt the concepts of continuity fromS p,1

0 (Ω,M ) and adapt the basis functions afterwards
(see section 3.3), such that they fulfill (8).

Whereas our algorithm works with a general choice of polynomial orderspc, we confine ourselves in
this articles to orders that linearly increase away from thematerial corners [18, 28]. In the coarse mesh
M0 all cells have got the same polynomial order. The linearly increasing polynomial orders appear
since for the following meshes the polynomial order in the non-subdivided cells is raised by one (see
figure 6).

Figure 6: The mesh is refined towards the interface corners, while the polynomial order increases lin-
early away from material corners.

3.2.2 Identification of basis functions

The continuous basis functions ofhp-adaptive FE spaces are classified by their identification with a
topological entity, i.e. a node, an edge or a cell, of the meshM ∈ M. Such a topological entity is called
active, if it is identified with a basis function, i.e. it accomodates at least one degree of freedom.

The active cells are the cells on the lowest level. (At most)(pc−1)2 basis functions, theinternal
basis functions, are identified with them. Furthermore the non-hanging edges, which have no children
or whose children are hanging, are active andpe−1 basis functions are identified with them, wherepe

is the minimum of the polynomial orders of the adjacent cells. Finally there is exactly one related basis
function for all non-hanging nodes.

3.2.3 Support of basis functions

Now, we want to determine the support of the basis functions,that we have just identified with a topo-
logical entity. More precicely that means we determine the cells, within which we are going to define
the shape of the basis functions (see Sec. 3.2.4). We call these cells thesupport cellsof a particular
basis function. They have two properties :

• together they constitute the support of the basis function,and

• they are non-relative, i.e. none of them is the ancestor of another.

We denote byc(e) andc(v) the support cells of basis functions identified to an edgee or vertexv,
respectively. The support cell of an internal basis function is the cellc itself.

For conforming meshes the surrounding cells of an edgee or vertexv on the lowest level constitute
the support of the associated basis function. However, in non-conforming meshes the support cellsc(e)
or c(v) do not have to be on the lowest level.

The basis functions on an active edgee have two support cellsc(e), one on each side of the edge6.
Both of them have no child cell, whichebelongs to. However the support cellsc(e) could have children,
if they were subdivided parallely to the edgee. This is illustrated in the left picture in figure 7.

Now, let us determine the support of the associated basis function for the nodev. On each “side”
of v there can be several cells whichv belongs to. In each of these families7 of cells we choose exactly
one cell as support cell. Each of these support cellsc(v) have a non hanging common edge with two

6Due to the identification of two edges on∂Ω there are no boundary edges.
7A family is a set of cells with parent child relationship.
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adjacent support cells. In general these common edges however do not have to be active (see right
picture in figure 7).8

In the next section we define the shape of the basis functions in the support cells and will represent
it in each of the active cells9 in section 3.2.5.

e v

Figure 7: Support of basis functions on an edgee (left) and on a vertexv (right).

3.2.4 The shape of the basis functions

Now, we will construct thei-th periodic basis functionsΦi(x) of the periodic spaceS p,1
0 (Ω,M ). Their

restrictionΦi(x)|K to a particular cellK in their support is called localshape function. If K is a support
cell the local shape functions are defined as the “pushed back” reference element shape functionsφkl(x̂)
with x̂ ∈ [0,1]2 andk, l ∈ N0, i.e.

Φi(x)|K = ±φk,l (F
−1
K x), (13)

The reference element shape functions are the tensor product

φk,l (x̂) = Nk(x̂1)Nl (x̂2)

of the hierarchical 1D basis [29]

Nk(ξ ) =





1− ξ k = 0

ξ k = 1

ξ (1− ξ )P1,1
k−2(2ξ −1) k > 1

with the Jacobi polynomialsP1,1
k−2(ξ ) [18], which are scaled integrated Legendre polynomials andcan

be computed by a recursion formula for any polynomial order.
If Φi(x) is identified with a node, thenk, l ≤ 1 in (13). For basis functions on an edge, there is either

k > 1 or l > 1, for basis functions in the interior both indices are at least 2.
Let us consider the basis functions identified with an edgee, particularly their traces toe, which are

polynomials. Whereas even polynomials do not change if the direction of the local variableξ along
the edge switches, the odd polynomials change their sign. Ifthe two neighbouring elements ofe have
opposite directions of that local variable, on one side the shape function is multiplied by(−1), i.e. there
is a minus sign in (13).

WhenK is in the support10 of the basis functionΦi(x), then it is represented by a linear combination
of local shape functions, i.e.

Φi(x)|K = ∑
k,l

[TK ]kl,iφkl(F
−1
K x), (14)

where the shape functionsφkl have a tensor product numbering. Note, that (13) is contained in (14).
TheT matrices11, also known as connectivity matrices, relate local to global shape functions and

assure continuity ofΦi(x), as well and especially on non-conforming meshes.

8Of course there could be several choices of the support cells. If the node already exists in the conforming meshM0, then
the neighbouring cells could be support cells in refined meshes as well. Since we are interested in small supports, we takethe
combination with smallest support cells.

9These are the cells on the lowest level.
10It has not to be the support cell.
11For conforming meshes theT matrices consist only of+1, −1 and zeros. If furthermore the maximal polynomial order is

p = 2 there are only ones and zeros.
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K

K’

T̃K TK′

Figure 8: Basis functions for whichK is support cell (left) contribute toT̃K , whereas those for which
the parent cellK′ is support cell (right) contribute toT̃K . TheT matrixTK results from (17).

3.2.5 Representation on lowest level cells

Since the system matrices will be computed as integrals overthe cells at the lowest level, the basis
functions have to be represented on these cells, therefore the T matrices are needed there. Thei-th
column of the matrixTK is the representation of thei-th basis function by all local shape functions of
K, wheneverK lies fully in the support of the basis function. Otherwise the column contains only zeros.
For a support cellK we already defined thei-th column of the matrixTK by (13), whereas for their
successors we will do that in the following.

On each childK′ of the support cellK the shape function is represented by shape functions inK′,

φkl(F
−1
K′ x)|K′ = ∑

k′,l ′
[SKK′ ]k′ l ′,kl φk′ l ′(F

−1
K′ x), (15)

where the matricesSKK′ – the so calledS matrices – are the tensor products of 1DS matrices [28].
Thus, with (15) and (14) thei-th T column of the child cellK′ follows as

[TK′ ]i = [SKK′ ][TK ]i . (16)

Some columns of theT matrix of the elementK′ are received from the parentK – whereK′ is not
support cell of the considered basis function –, wheneverK′ is support cell the corresponding columns
are assembled onK′ directly. Finally, theT matrix is defined by

TK′ = SKK′TK + T̃K′ , (17)

whereT̃K′ contains nonzero columns for basis functions for whichK′ is support cell (see Fig. 8). These
columns are defined by the support cell relation (13).

By applying (17) for the grandchildren ofK we compute theirT matrices by repeatedly applying
(17) for all the successors. Finally we can representΦi(x) by shape functions on the cells at the lowest
level.

3.3 FE spaces with quasi-periodic boundary conditions

Until now we have constructed the periodichp-adaptives spacesS p,1
0 (Ω,M ). The basis function,

identified with the cornerπ of Ω and these identified with a vertex or an edge on the sidesγ1 or γ2,
will be changed to fulfill the quasi-periodic boundary conditions (8). In other words, to each periodic
basis functionb(x) we assign an appropiate quasi-periodic onebk(x) for eachk. For basis functions in
the interior ofΩ, wherebk |∂Ω = 0, quasi-periodic boundary conditions are trivially fulfilled, and they
coincide for allk with the periodic counterpart.

In the following we derive the quasi-periodic functionsbk(x). For this we additionally have to
distinguish between the geometrically different corners and sides. For notations we refer to Fig. 3.

First, we decompose the set of support cellsK(b) for each basis functionb(x) in the periodic space

10



= + + +

= + + +

= + + +

Figure 9: In thetop line we see the basis function identified with the cornerπ and its representation
by functions belonging to one factor area. A basis function on the sideγ2 is shown in themiddle line.
These basis functions are cut into two parts, whereas basis functions in the interiorΩ (bottom line) fully
belong to one factor area.

S
p,1
0 (Ω,M ) into the four subsets12

K3(b) := {K ∈ K(b) : b(K∩Π2) > 0},
K2(b) := {K ∈ K(b) : ∃x ∈ K ∩Γ2 : b(x) > 0},
K1(b) := {K ∈ K(b) : ∃x ∈ K ∩Γ1 : b(x) > 0},
K0(b) := K(b)\(K1(b)∪K2(b)∪K3(b)) ,

andb(x) itself into the functionsb0(x), . . . ,b3(x) (see Fig. 9) with

bi(x) :=

{
b(x) in Ki(b)
0 otherwise.

In Figure 9 this decomposition is shown. A basis function identified with the (topological) cornerπ of
Ω has got four support cells, each adjacent to a cornerΠi , and coincides withKi(b). Thus, the four
functionsbi(x) represent the parts ofb(x) belonging to one of the four support cells, respectively. A
basis function identified with a (topological) side, let it be γ1, has support cells13 on Γ1 andΓ3, b0(x)
andb1(x) are the parts ofb(x) in these cells, respectively, the other functionsb2(x) andb3(x) are zero.
A basis function in the interior ofΩ is cut into only one piece, namelyb0(x). The other functions
b1(x), . . . ,b3(x) are zero.

Now, the functions

bk(x) := b0(x)+ei k·a1b1(x)+ei k·a2b2(x)+ei k·(a1+a2)b3(x)

meet the quasi-periodicity conditions. The span of these functions defines the spaceS
p,1
k (Ω,M ).

With the definition of the following factors

φ0
k := 1, φ1

k := ei k·a1, φ2
k := ei k·a2, φ3

k := ei k·(a1+a2),

we can write the quasi-periodic basis functions conveniently as

bk(x) := ∑
n

φn
k bn(x). (18)

3.4 Assembly of the system matrices

For simplicity reasons we do not distinguish between TM and TE modes in this section. With the basis
functions of the spacesS p,1

k (Ω,M ) defined just above, we find the matrix eigenvalue problems of (10)

Ak~xk = λ kMk~xk

12This is possible if the mesh has at least two cells in each direction, which we “trivially” assume from now on.
13One on each side for basis functions identified with an edge, and two for those identified with a vertex.
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with the system matrices

Ak =
(
a(bk

j ,b
k
j )

)N

i, j=1
, Mk =

(
b(bk

j ,b
k
j )

)N

i, j=1
, (19)

wherea andb stand for the appropiate inner product for the TM or TE mode, respectively. The eigen-
values areλ k =

(ω
c

)2. After inserting (18) into (19) we get

Ak =
3

∑
m,n=0

φm
k φn

k
(
a(bm

j ,bn
j )

)N
i, j=1

,

and with the definition of the matrices

Amn :=
(
a(bm

j ,bn
j )

)N
i, j=1

,

we write

Ak =
3

∑
m,n=0

φm
k φn

k Amn.

Due to the cutting procedure, the computation of the sixteenmatricesAmn is exactly as expensive
as the direct computation ofA0. The multiplication with the phase factors is neglegible compared to
the overall cost. Thus, the assembly of an arbitrary number of the system matricesAk for different
quasi-momentak ∈ Bred has about the same cost as the assembly of the single matrixA0. As basis
functions in the interior ofΩ are not affected by quasi-periodicity, only a small part ofAk is affected
when changingk.

The integrals in (11) are computed by numerical Gauss quadrature on each element. The number of
quadrature points is adapted to the maximal polynomial degreep = p(c). We use sum factorisation [28]
to reduce the integration costs fromO(p6) to O(p5).

4 Numerical Results

The bandstructure algorithm is implemented in our object-oriented software packageConcepts [30, 31],
written in C++. The meshes use an exact representation of curved edges, which is needed forp-FEM
andhp-FEM. In order to reduce the number of degrees of freedom, we use a truncated space14. For
finding the smallest eigenvalues of the generalized matrix eigenvalue problems we use ARPACK [32],
for the LU decomposition SuperLU [33].

4.1 Band structures and eigenfunctions

We calculated the band structure of four photonic crystals defined by the pattern of their elementary cells,
the cylindrical holes, the dielectric veins (both in Fig. 10), the inversely curved dielectric cylinders and
a 9×9 structure of dielectric veins with a periodic defect (bothin Fig. 10).

In all cases the elementary cell is the squareΩ = [0,a]2, which is scaled tôΩ = [0,1]2, for which the
Brillouin zone isB̂ = [0,2π ]2. Then, the angular frequencyω scales with1/a. Hence, it is convenient

to look at the non-dimensional quantityωa/2πc =
√

λ̂/2π, whereλ̂ is the eigenvalue of the eigenvalue
problem onΩ̂.

The computed band structures of the four photonic crystals are shown in Figures 11 and 12. We
want to emphasize that our algorithm is well suited for dielectric patterns with

• discontinuous dielectric constants,

• smooth, curved interfaces,

• straight and curved interfaces with corners,

• structures with small local geometry features.

14Only internal basis functions whose sum of the polynomial degree in the two coordinate directions is at mostp, are included
in the discrete space.
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Figure 10: The elementary cell with cylindrical holes (left), that with dielectric veins (inner left), that
with inversely curved dielectric rods (inner right) and that with a 9×9 structure of dielectric veins with
a periodic defect in the middle (right). The white region is air (ε = 1), the blue region is a dielectric
medium (ε > 1).
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Figure 11: Bandstructure of the crystal with cylindrical holes of diameter 0.95a (left), of the crystal
with dielectric veins of thickness 0.1a (0.05a on both sides,middle) and of the crystal with inversely
curved dielectric rods with radius 0.8a and distance between corners of 0.9a. The dielectric medium
hasε = 20. Solid lines denote TM modes, dashed lines denote the TE modes.

The refinement strategies will be discussed in section 4.2.
Although the band structure is shown for the symmetry lines of the reduced Brillouin zone only, the

whole reduced Brillouin zone can be sampled conveniently, since the assembly of the matrices is done
only once.

In addition to the eigenvalues thehp-adaptive FE algorithm also computes the eigenfunctions accu-
rately. In Figure 12 we see the squared amplitude15 of the TM and the TE mode of the first band at the
M point for the crystal with the pertubated 9×9 dielectric vein structure (see Fig 10).

We have chosen the geometric and dielectric parameters for the crystal with dielectric veins (Fig.
10) the same as in [12, 13, 19]. In [12, 13] separation of variables approaches are applied, whereas
in [19] first order FE are used. The comparison of these results to ours computed withp-FEM (see
Tab. 1) validates our approach and our implementation. Notice the higher accuracy for the TM mode

15The squared amplitude corresponds to the concept of probability density in quantum electrodynamics.
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Figure 12: Bandstructure (left) of the crystal with a 9×9 structure of dielectric veins of thickness0.1a/9

and dielectric constantε = 20, and the squared amplitude of the first TM eigenfunction|ek(x)|2 (middle)
and TE eigenfunction|hk(x)|2 (right) at theM point. As the TE eigenvalue is twofold, there is another
eigenfunction, which results from an interchange ofx1 andx2.
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for the same refinement level due to weaker singularities at the interface corners. We present further
convergence results in section 4.2.

TM spectrum TE spectrum

Band No. lower bound upper bound lower bound upper bound

1
0
0
0
0

2.22
2.31
2.312
2.30429(73)

0
0
0
0

3.73
3.73
3.743
3.719(34)

from [12]
from [13]
from [19]
p-FEM

2
2.64
2.64
2.650
2.642854(92)

5.09
5.09
5.099
5.0873131(35)

8.42
8.43
8.440
8.40(47)

13.73
13.76
13.704
13.678(20)

from [12]
from [13]
from [19]
p-FEM

3
3.44
3.43
3.454
3.4379333(62)

5.65
5.91
5.904
5.888(50)

11.01
11.04
11.027
10.972(25)

16.77
16.77
16.785
16.741(72)

from [12]
from [13]
from [19]
p-FEM

Table 1: The table shows our results for the relative eigenvalues λ̂ = ω2a2/c2 at the lower and upper
bound of the first three bands for the dielectric veins (Fig. 10) in comparison to [12], [13], [19]. We
use a polynomial refinement strategy with 9 cells and uniformpolynomial orderp = 15 (963 degrees of
freedom). The results of [19] are converted with their givenaccuracy.
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Figure 13: The convergence of the relative error for the smallest TM (left) and TE eigenvalue (right) at
the midpoint ofΓ andX for the crystals with cylindrical holes, with dielectric veins and with inversely
curved rods (Fig. 10, same geometric and dielectric parameters as in Fig. 11). The computations were
done withp-FEM.

4.2 Convergence of eigenvalues

Now, we investigate the convergence of the eigenvalues for different refinement strategies, starting with
p-refinement. We choose the midpoint betweenΓ andX, which is not a particular “good” one.

In Figure 13 the convergence of the smallest eigenvalue is shown for the crystals with cylindrical
holes, with dielectric veins and with inversely curved rods(Fig. 10) – for the TM and the TE mode,
computed withp-FEM. For the cylindrical holes with only smooth material interfaces we observe ex-
ponential convergence in the number of degrees of freedomN as exp(−βN1/3) as we expected from
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Figure 14: Convergence of the relative error for the TM-mode(top) and TE mode (bottom) of the crystal
with dielectric veins (ε = 8.9, vein thickness 0.2 at each side). We usep-FEM andhp-FEM, the latter
with different initial polynomial degree.

hp-theory [26, 27, 18]. For the crystals with dielectric veinsand with inversely curved rods corner in-
terfaces are present and the slope is less steep than for the crystal with cylindrical holes. Due to the
smaller inward angle of the dielectric medium at the interface corners the singularity for the inversely
curved rods is larger than for the dielectric veins [24], such that we observe a weaker convergence of
the eigenvalues.

In Figure 13 the eigenvalues of the crystal with the dielectric veins and the inversely curved rods
seem to converge exponentially forp-FEM, although interface corners are present. Nevertheless, if
we continue with thep refinement (in Fig. 14 for dielectric veins up top = 38), merely algebraic
convergence emerges16.

In the following we investigate the convergence of the eigenvalues for geometric refinement – de-
scribed in section 2.5 – in comparison top-FEM. In Figure 14 the relative error of the smallest eigenvalue
for the crystal with dielectric veins (Fig. 10) with thickness 0.4a andε = 8.9 is shown. Starting with a
coarse mesh with nine cells andp = 1 in all cells,hp-FEM shows exponential convergence in contrast
to p-FEM, both for the TE and the TM mode. However, in the beginning the polynomial refinement
performs better (up toN ∼ 4000 for the TM mode, up toN ∼ 2000 for the TE mode). Therefore we
investigated the influence of the polynomial order in the coarse mesh forhp-FEM. The results in Figure
14 show, that an initial polynomial order ofp = 2 performs better than one of orderp = 1 for all N, and
that p = 4 performs even better in the beginning, but converges with flatter slope. This behaviour is due
to the weak singularities for the used material parameters.Note that the strategy reduces the relative
error at about 8000 dof for the TM mode to the order of 10−14, but for the TE mode only to the order of
10−6.

Table 2 shows the numerical TE eigenvalues for the setting just described (as in the left diagramme
in Fig. 14) forhp-FEM with initial polynomial order17 p= 2, forp-FEM, and pureh-refinement (p= 1).
h-FEM also converges algebraically, but more slowly thanp-FEM. At h-FEM-level 6 (N = 9216) only
three digits of the eigenvalue are exact, while withp-FEM atN = 6345 five digits are exact and with the
describedhp-FEM-strategy atN = 6764 (level 11) there are already six exact digits. With extrapolation
of thehp-FEM-values we get 0.4914752, which we take for exact up to 7 digits (one more).

5 Conclusion

We introduced an algorithm based onhpfinite elements with hanging nodes for computing the photonic
crystal bandstructure. We showed that the eigenvalues converge exponentially for smooth and polygonal
interfaces. In examples with polygonal interfaces we observed faster convergence with pure polynomial
enrichment (p-FEM) for the first refinement levels than withhp-FEM – both for the TM and the TE

16With large convergence rate.
17More exactly, geometric refinement starts after a firstp-refinement step.
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h-FEM p-FEM hp-FEM

level #dof
ωTE,0a

2πc #dof
ωTE,0a

2πc #dof
ωTE,0a

2πc

1 9 0.521302619112 9 0.521302619112 9 0.521302619112
2 36 0.501735291198 27 0.497095810781 27 0.497095810781
3 144 0.494952283861 45 0.495570239622 108 0.493365508380
4 576 0.492664756896 72 0.493837964737 268 0.492231220419
5 2304 0.491885702189 108 0.492751880410 512 0.491725406461
6 9216 0.491618020101 153 0.492340949399 904 0.491563775139
7 207 0.491998065356 1492 0.491506786403
8 270 0.491855851430 2324 0.491486485296
9 342 0.491735848233 3448 0.491479231178
10 423 0.491681227299 4912 0.491476634000
11 513 0.491624540578 6764 0.491475702552
12 612 0.491597555930 9052 0.491475368251
13 720 0.491568698587 11824 0.491475248235
14 837 0.491554083965
15 963 0.491537578751
18 1395 0.491513511149
23 2295 0.491493587640
28 3420 0.491485836966
33 4770 0.491481669113
38 6345 0.491479554612

Table 2: Convergence of the first eigenvalue for the TE mode for the crystal with dielectric veins (see
Fig. 10,ε = 8.9, vein thickness 0.2 at each side) atk = (1/2a,0) for pure mesh refinement (h-FEM),
pure polynomial order enlargment (p-FEM) and adaptivehp-FEM. Forp-FEM andhp-FEM the level
corresponds to the maximal polynomial degree in the discrete space. Withhp-FEM we first refine only
the polynomial degree and start then with geometric mesh refinement towards the four interface corners.
With extrapolation (exponential ansatz) we expectωTE,0a/2πc≈ 0.4914752.

mode. This is due to the relatively weak singularities. The discretisation error of pure cell refinement
(h-FEM) shows much slower convergence. These results meet theexpectations from thehp-FEM theory.

The presented algorithm is able to compute the bandstructure for polygonal shaped elementary cells
to a high accuracy at low computational costs. This is due to the exponential convergence ofhp-FEM
and because the system matrices are assembled only once for the whole Brillouin zone.

In further research possible improvements of the eigenvalue solver could be investigated, e.g. the
reuse of eigenvectors as start vectors at slightly different k points.
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