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Switzerland

1This work was supported by the EEC Human Potential Programme under contract

HPRN-CT-2002-00286, “Breaking Complexity”. Work initiated while HH visited the Semi-
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Abstract

We consider the numerical solution of elliptic boundary value problems in domains

with random boundary perturbations. Assuming normal perturbations with small

amplitude and known mean field and two-point correlation function, we derive, using

a second order shape calculus, deterministic equations for the mean field and the

two-point correlation function of the random solution for a model Dirichlet problem

which are 3rd order accurate in the boundary perturbation size.

Using a variational boundary integral equation formulation on the unperturbed,

“nominal” boundary and a wavelet discretization, we present and analyze an al-

gorithm to approximate the random solution’s mean and its two-point correlation

function at essentially optimal order in essentially O(N) work and memory, where

N denotes the number of unknowns required for consistent discretization of the

boundary of the nominal domain.
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1. Introduction

The rapid development of scientific computing and numerical analysis in recent years

allows the efficient numerical solution of large classes of partial differential equation

models with high accuracy, provided the problem’s input data are known exactly.

Often, however, exact input data for numerical simulation in engineering is not

known. The practical significance of highly accurate numerical solution of differential

equation models in engineering must thus address how to account for uncertain input

data.

If a statistical description of the input data is available, one can mathematically de-

scribe data and solutions as random fields and aim at computation of corresponding

deterministic statistics of the unknown random solution.

In the present paper we consider elliptic boundary value problems on a class of

uncertain domains. For example, one may think of tolerances in the shape of products

fabricated by line production. Since the computational domain and its boundary are

stochastic, the solution of the boundary value problem becomes itself a random field.

Identifying the random domain with its boundary, the problem under consideration

can be formulated as follows: given complete statistical information of the random

boundary perturbation, compute statistics of engineering interest for the random

solution of the boundary value problem.

Knowledge of complete statistical information on the input random fields (e.g. the

joint probability densities of the random boundary perturbation) is hardly available

in practice. Therefore, additional modeling assumptions must be imposed. In the

present paper, we assume small boundary perturbation amplitude and that mean field

and two-point correlation of the boundary perturbation field are known. This would

determine, for example, a Gaussian probability measure on the space of admissible

boundary perturbations ([3], Thm. 2.3.1); we refer to [3, 12] and the references there

for more on probability measures on Banach spaces.

Our goal of computation is thus as follows: given mean and two-point correlation of

the boundary perturbation field, compute, to leading order, the mean and the two-

point correlation of the random solution of the boundary value problem.

Since the Monte Carlo Approach to generate a large number M of ‘sample’ domains

and to solve a deterministic boundary value problem on each sample is very expen-

sive, we aim here at a direct, deterministic computation of the solution statistics in

terms of statistics of boundary variation.
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Since the solution’s nonlinear dependence on the shape of the domain is Fréchet

differentiable [15, 11, 20, 26, 27], we achieve this goal by linearizing around an un-

perturbed, so-called “nominal” domain D. We use the shape gradient and the shape

Hessian derived in [7, 8] to derive deterministic problems for the random solution’s

second order statistics with respect to random perturbations of the domain.

While sensitivity analysis underlies also the so-called “worst case scenario” analysis

in uncertainty quantification (e.g. [1] and the references there for uncertainty in

coefficients and loadings), we derive deterministic problems which yield, to third

order in the boundary perturbation amplitude, for given, nominal boundary and

given two-point correlation function of the boundary perturbation field, approximate

means and variances of the random solution at any interior point x ∈ D.

Naturally, this approach requires smallness assumptions on the boundary pertur-

bation size which must hold with probability 1. Since the second moments of spa-

tially inhomogeneous random fields, their two-point correlations, are functions on

∂D×∂D, the key to computational efficiency of our approach is the efficient, deter-

ministic second moment analysis of the random solution.

We propose the numerical solution of these deterministic problems using a varia-

tional boundary integral equation approach combined with a wavelet discretization.

We provide a numerical analysis which shows that variances of the random solution

at any interior point can be computed in work and memory essentially proportional

to N , the number of degrees of freedom needed to parametrize the unperturbed,

nominal boundary ∂D. Here and throughout the paper, “essentially” means up to

powers of logN resp., in the context of convergence rates, up to powers of | log h|.

While our second moment analysis is asymptotic in the perturbation amplitude, it

has the advantage of being distribution free, i.e. it does not depend on complete

knowledge of all joint probability densities of the boundary perturbation field.

Essential ingredients in our analysis are shape calculus, boundary reduction of the

problem characterizing the shape derivative leading to weakly singular boundary

integral equations and a ‘sparse’ four dimensional representation of the two-point

correlation function of the second moments of the unknown boundary flux developed

in [24, 18].

We consider exemplarily a model Poisson equation with Dirichlet boundary condi-

tions. Employing a Taylor expansion in terms of local shape derivatives, we show

that the mean of the stochastic potential coincides to second order with the solu-

tion of the Poisson equation on the unperturbed domain. Moreover, the two-point

correlation of the stochastic potential can be approximated to third order in the

boundary perturbation amplitude by solving a boundary value problem defined on
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the cartesian product of the nominal domain D with itself. That way, we derive

a deterministic problem for the first and second moment of the potential at any

interior point of the unperturbed nominal domain D.

We choose a wavelet Galerkin discretization of the boundary integral equations

(BIEs) to solve these boundary value problems in an efficient way. The proposed

wavelet Galerkin discretization of the BIEs serves three purposes: a) to obtain a nu-

merically sparse representation of the boundary integral operator reducing the N 2

matrix entries to O(N) many without reducing the convergence rate of the scheme

(e.g. [22, 5]), b) to obtain a bounded condition number for the diagonally precondi-

tioned system and c) to obtain a sparse representation of the two-point correlation

function (resp. the second moment) of the random solution density on ∂D × ∂D

which requires O(N logN) rather than O(N 2) degrees of freedom while essentially

retaining the asymptotic convergence rate of the full tensor product discretization.

While boundary reduction and wavelet discretization thus ideally serves our pur-

pose, we note that similar results can be obtained also with other so-called “fast”

discretizations of the integral operators on unstructured meshes on the boundary as

e.g. in [21]; essential ingredient, however, is a Galerkin discretization of the mean

field problem in a hierarchic basis; such bases on surfaces in R3 can be obtained in

various ways, see, for example, [10, 21, 28] for such bases on structured as well as

on unstructured meshes.

The main result of this paper is a deterministic algorithm to compute, to third or-

der in the boundary perturbation amplitude, the first and second moment of the

stochastic potential at any interior point of D with a complexity that stays essen-

tially asymptotically proportional to the number N of degrees of freedom for the

discretization of the boundary ∂D of the nominal domain D.

The paper is organized as follows. Section 2 recapitulates results from shape calculus.

In Section 3 we specify the stochastic domains under consideration. Then, in Section

4, we derive deterministic boundary value problems for the mean and two-point

correlation of the associated stochastic potential. The reformulation of the boundary

value problems as boundary integral equations is performed in Section 5. Then,

Section 6 is devoted to the full tensor product discretization and corresponding

error estimates. In Section 7 we introduce the fast wavelet based algorithm. Finally,

in Section 8 we present numerical results which demonstrate the capability of the

proposed algorithm.

Throughout this paper, in order to avoid the repeated use of generic but unspecified

constants, by C1 . C2 we mean that C1 can be bounded by a multiple of C2,

independently of parameters which C1 and C2 may depend on. Obviously, C1 & C2

is defined as C2 . C1, and C1 ∼ C2 as C1 . C2 and C1 & C2.
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2. Shape Calculus

In order to assess the impact of random boundary perturbations of a domain D ⊂

Rn, n = 2, 3, on the solution of boundary value problems in D, we use shape calculus

via boundary variations. For a general overview on shape calculus, mainly based on

the perturbation of identity (Murat and Simon) or the speed method (Sokolowski

and Zolesio), we refer the reader for example to Murat and Simon [15, 26], Pironneau

[19], Sokolowski and Zolesio [27], Delfour and Zolesio [6], and the references therein.

We consider the model Dirichlet Problem for the Poisson equation

(2.1) −∆u = f in D, u = g on ∂D,

where D ⊂ Rn, is a given, bounded domain. For the sake of simplicity we assume

f ∈ C∞(Rn) and that g ∈ C∞(∂D) is the restriction of some function ḡ ∈ C∞(Rn).

Finally, we assume that ∂D ∈ C∞ which implies that u ∈ C∞(D).

Consider a smooth, nontangential boundary variation field U : ∂D → Rn with

‖U‖C3,α(∂D) ≤ 1 for some α > 0 and define the perturbed boundary for sufficiently

small ε > 0 by

∂Dε = {x + εU(x) : x ∈ ∂D}.

For sufficiently small ε, the boundary curve ∂Dε uniquely defines a perturbed domain

Dε ∈ C∞. Throughout the paper we restrict ourselves to variations U which are

normal with respect to the domain D: denoting by n(x) the exterior unit normal

vector to the reference domain D at the point x ∈ ∂D, the boundary variation U(x)

is given by

(2.2) U(x) := κ(x)n(x), where κ(x) ∈ R satisfies ‖κ‖C3,α(∂D) ≤ 1.

Let us also remark that each boundary variation can be extended smoothly to a

domain variation field, but for our purpose it suffices to consider only boundary

variations (see, e.g., Section 2.8 of [27]).

The solution u of the model problem (2.1) is known to depend (Fréchet) differen-

tiably on the shape of D (e.g. [19, 27, 15, 26] and the references there). Its first

derivative, the so-called local shape derivative du on the boundary perturbation field

U, denoted by du[U], is given by the Dirichlet problem

(2.3) ∆du = 0 in D, du = 〈∇(g − ū),U〉 = 〈U,n〉
∂(g − ū)

∂n
on ∂D

where ū denotes the solution of (2.1). The shape derivative is formally (see [15, 27]

for a rigorous derivation) obtained by the pointwise limit

du(x) := lim
ε→0

uε(x) − u(x)

ε
, x ∈ D ∩Dε,
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where uε satisfies the boundary value problem (2.1) on the domain Dε, see [7, 8, 20]

for detailed calculations.

For a second order shape calculus we consider a second perturbation field U′ defined

analogously to U in (2.2): U′(x) = κ′(x)n(x), κ′(x) ∈ C∞(∂D). Then the second

order shape derivative, the “shape Hessian”, is a bilinear form on pairs of boundary

perturbation fields (U,U′), denoted by d2u = d2u[U,U′]. It is obtained from the

Dirichlet problem

(2.4)
∆d2u = 0 in D,

d2u = 〈H[g − ū])U′,U〉 − 〈∇du[U],U′〉 − 〈∇du[U′],U〉 on ∂D,

cf. [8, Theorem 1 and Remark 7] and [11], where H[ϕ] denotes the Hessian of ϕ.

With (2.3) and (2.4) at hand, we obtain for sufficiently small ε > 0 the “shape-Taylor

expansion”

(2.5) uε(x) = u(x) + εdu[U](x) +
ε2

2
d2u[U,U](x) + O(ε3), x ∈ K ⊂⊂ D ∩Dε.

3. A Class of Stochastic Domains

We obtain a family of stochastic domains from the preceding shape calculus by

admitting random fields U(x, ω), U′(x, ω) as domain variations.

To this end, we fix an unperturbed reference domain D. We assume it to be a

bounded subdomain of Rn, n = 2, 3 with sufficiently smooth, closed and orientable

(n−1)-dimensional boundary manifold ∂D (∂D ∈ Ck with k > 4 will suffice in what

follows). Denote by n(x) the exterior unit normal vector to ∂D at the boundary

point x ∈ ∂D. Then for sufficiently small ε0 > 0 and for some scalar function κ(x) ∈

Ck(∂D,R) with ‖κ(·)‖L∞(D) ≤ 1, the family of surfaces ∂Dε = {x + εκ(x)n(x)|x ∈

∂D}0≤ε<ε0 belongs to Ck−1. We denote the corresponding interior domains (which

depend, of course, on κ) by Dε.

To specify random domain variations, we assume that κ(·) : ∂D → R is a random

field on ∂D taking values in R. We denote by X a space of admissible boundary per-

turbation functions. The random perturbations of D will be described by a suitable

probability space (Ω,Σ, P ) consisting of a) a set Ω of realizations ω 7→ κ(ω) ∈ X

(i.e., realizations of particular perturbations κ(·)), b) a sigma algebra Σ and c) a

probability measure on the space X.

In what follows, we take for X the space Ck(∂D,R) with k sufficiently large (k > 4

will do) and equip it with the usual norm and Σ as a sub-sigma algebra of the Borel

sets of X. We then choose P : Σ → [0, 1] to be a probability measure on (X,Σ) (see

[3, 12] for more on measures on Banach spaces).
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Example 3.1. An important and widely used example for probability measures on

X are the so-called Gaussian measures (see, e.g. [3], and the references there).

Gaussian random fields u on a Banach space X are essentially specified by their

mean fields Eu =
∫
Ω
u(ω)dP ∈ (X∗)′ and by their covariance kernels Covaru which

are defined by

(3.1) Covaru :=

∫

Ω

((u− Eu) ⊗ (u− Eu)) dP (ω) : (X∗)′ × (X∗)′ → R

where (X∗)′ denotes the algebraic dual of X∗ (see [3], Def. 2.2.7). Under sufficient

regularity, Eu and Covaru can be identified with objects in X resp. in X ⊗X.

In what follows, we let thus (Ω,Σ, P ) be a probability space on the space X of

admissible boundary perturbation fields κ in (2.2).

Then we consider the random domain variation field U(x, ω) = κ(x, ω)n(x), where

κ is a P -measurable mapping κ(x, ω) : Ω → X = Ck(∂D,R), and assume finite

second moments of κ(x, ω) with respect to P . We denote the set of all such κ by

L2
(
Ω, Ck(∂D)

)
.

With the random field κ ∈ L2
(
Ω, Ck(∂D)

)
, and a perturbation parameter ε > 0

which is sufficiently small, we associate boundaries ∂Dε(ω) through the parametric

representation

(3.2) γε : ∂D × Ω → R3, γε(x, ω) := x + εκ(x, ω)n(x)

where

(3.3) ‖κ(·, ω)‖Ck(∂D) ≤ 1 for P- almost all ω ∈ Ω,

which we assume in what follows. A realization of the stochastic domain Dε(ω) is

the interior of the boundary manifold

∂Dε(ω) := {γε(x, ω) : x ∈ ∂D}, ω ∈ Ω.

The assumption (3.3) implies in particular that the domain Dε(ω) does not degen-

erate P − a.s. if 0 ≤ ε < ε0 for sufficiently small ε0 depending only on the curvature

of ∂D. We assume that the mean field

Eκ(x) :=

∫

Ω

κ(x, ω)dP (ω) = E
(
κ(x, ω)

)
, x ∈ ∂D,

and the two-point correlation

Corκ(x,y) :=

∫

Ω

κ(x, ω)κ(y, ω)dP (ω) = E
(
κ(x, ω)κ(y, ω)

)
, x,y ∈ ∂D,
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of the domain variation κ(x, ω) under consideration are pointwise finite and known.

Here, the notation E(·) denotes the expectation or “ensemble average” with respect

to the probability measure P (ω). Then, since

E
(
γε(x, ω)

)
= x + εEκ(x)n(x), x ∈ ∂D,

the reference domain E
(
Dε(ω)

)
is formally described via the reference boundary

(3.4) E
(
∂Dε(ω)

)
= {x + εEκ(x)n(x) : x ∈ ∂D}.

We assume below that the perturbation field κ(x, ω) is centered, i.e. that

(3.5) Eκ(x) = 0.

The assumption (3.5) implies then in (3.4) that E
(
∂Dε(ω)

)
= ∂D and that

(3.6) Covarκ = Corκ.

Next, exploiting once more (3.5), the covariance of the random boundary perturba-

tion field is given by

Corγ(x,y) = E
(
γ(x, ω) ⊗ γ(y, ω)

)

= E
((

x + εκ(x, ω)n(x)
)
⊗
(
y + εκ(y, ω)n(y)

))

= x ⊗ y + ε2 Corκ(x,y)
(
n(x) ⊗ n(y)

)
.

Consequently, the correlation of the random domain variation can be either described

by the two-point correlation kernel Corκ of the perturbation field κ in (3.2), (3.3) or,

equivalently, by the following manifold of dimension 2(n−1) which is a submanifold

of Rn × Rn = R2n, n = 2, 3, given by
{
x ⊗ y + ε2 Corκ(x,y)

(
n(x) ⊗ n(y)

)
: x,y ∈ ∂D

}
⊂ R2n

4. Expectation and Variance of the Random Solution

We are interested in the statistics of the random solution of the Poisson equation

(2.1) defined on the stochastic domain Dε(ω). More precisely, given Dε(ω) and de-

terministic, smooth data f, g ∈ C∞(Rn) as in (2.1), we seek uε(ω) ∈ H1(Dε(ω))

such that

(4.1) −∆uε(ω) = f in Dε(ω), uε(ω) = g on ∂Dε(ω).

We choose a fixed point z ∈ D such that

(4.2) dist(z, ∂D) > ε.

Then, due to (3.2), (3.3) it holds P − a.s. that

(4.3) z ∈ Dε :=
⋂

ω∈Ω

Dε(ω).
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Our aim is the deterministic, approximate computation of the expectation Eu(z) :=

E
(
u(z, ω)

)
and of the variance Varu(z) := Var

(
u(z, ω)

)
of the random solution

u(z, ω) of (4.1) in the point z ∈ Dε. Since the random solution’s dependence on

the domain variation κ is nonlinear, we assume small perturbation amplitude ε and

derive next approximations for these deterministic quantities under the assump-

tion of sufficiently small domain perturbations, i.e. provided that ε > 0 in (3.2) is

sufficiently small.

A crucial tool in the derivation will be the Taylor expansion of the random solution

uε(ω) in (4.1) with respect to the perturbation parameter ε. It is the stochastic

analog of the “shape-Taylor expansion” (2.5).

Lemma 4.1. Assume (2.2) and (3.3). Then, for sufficiently small ε > 0, the random

solution uε(ω) of the boundary value problem (4.1) admits the asymptotic expansion

(4.4) uε(z, ω) = ū(z) + εdu(z, ω) +
ε2

2
d2u(z, ω) + O(ε3) for P − a.e. ω ∈ Ω,

where ū ∈ H1(D) denotes the solution of the deterministic Dirichlet problem

(4.5) −∆ū = f in D, ū = g on ∂D,

where we used the abbreviations

(4.6) du(z, ω) := du[κ(·, ω)n](z),

and

(4.7) d2u(z, ω) := d2u[κ(z, ω)n(z), κ(z′, ω)n(z′)]|z′=z.

The remainder term is O(ε3) for P − a.e. ω ∈ Ω.

Proof. Applying the shape-Taylor expansion (2.5) for an arbitrary, fixed realization

κ(·, ω), ω ∈ Ω yields with the assumptions (3.3) and (2.2) its stochastic counterpart

(4.4). �

Based on the Taylor expansion (4.4) of the random solution uε(ω) of (4.1), we

derive next two deterministic expressions for the first and second moment, i.e. the

mean field and the two-point correlation kernel, of the random solution of (4.1). We

emphasize that these expressions are linear in terms of the corresponding first and

second moments of the boundary perturbation field κ(x, ω).

Lemma 4.2. To second order, the expectation Eu(z) is obtained directly from the

Poisson equation (2.1) with respect to the nominal domain D. Specifically, there

holds

(4.8) Eu(z) = ū(z) + O(ε2), z ∈ Dε.
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where ū ∈ H1(D) denotes the solution of the deterministic Dirichlet problem (4.5).

Proof. If ‖U(·, ω)‖C3,α(D) . 1 almost shure, we apply the Taylor expansion (4.4) to

arrive at

u(z, ω) = ū(z) + εdu[κ(·, ω)n](z) + O(ε2) a.e. ω ∈ Ω,

Thus, using the abbreviation (4.6), we conclude that

E
(
u(z, ω)

)
= E

(
u(z) + εdu(z, ω) + O(ε2)

)
= ū(z) + εE

(
du(z, ω)

)
+ O(ε2).

We claim

(4.9) E
(
du(z, ω)

)
= 0.

To see this, we note that (2.3) and (2.2) yield for the shape derivative du in the

direction U = κ(x, ω)n the problem

(4.10) ∆du(·, ω) = 0 in D, du(·, ω) = κ(·, ω)
∂(g − ū)

∂n
on ∂D.

whence Edu(z) := E
(
du(z, ω)

)
is given by (cf. (2.3))

∆ Edu = 0 in D, Edu = Eκ
∂(g − ū)

∂n
on ∂D,

and since, by assumption (3.5), Eκ ≡ 0 on ∂D. �

Lemma 4.3. For ε > 0 sufficiently small, the variance Varu(z) of the random

solution satisfies for all z with (4.2)

(4.11) Varu(z) = ε2 Var
(
du(z, ω)

)
+ O(ε3) = ε2 E(du(z, ω)2) + O(ε3).

Proof. We start by noting that for every fixed z ∈ D, it holds that

(4.12) Var
(
u(z, ω)

)
:= E

(
u(z, ω)2

)
− E2

(
u(z, ω)

)
.

Applying the stochastic Taylor expansion (4.4) yields

u(z, ω) = ū(z) + εdu(z, ω) +
ε2

2
d2u(z, ω) + O(ε3) a.e. in ω ∈ Ω.

We expand both terms on the right hand side of (4.12) with respect to ε. On the

one hand, we get

E
(
u(z, ω)2

)
= E

([
ū(z) + εdu(z, ω) +

ε2

2
d2u(z, ω) + O(ε3)

]2
)

= ū(z)2 + ε2 E
(
du(z, ω)2

)
+ 2εū(z) E

(
du(z, ω)

)
+ ε2ū(z) E

(
d2u(z, ω)

)
+ O(ε3).

On the other hand we find

E2
(
u(z, ω)

)
=

(
ū(z) + εE

(
du(z, ω)

)
+
ε2

2
E
(
d2u(z, ω)

)
+ O(ε3)

)2

= ū(z)2 + ε2 E2
(
du(z, ω)

)
+ 2εū(z) E

(
du(z, ω)

)
+ ε2ū(z) E

(
d2u(z, ω)

)
+ O(ε3).
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Subtracting both equations yields the desired result. �

The following question arises in view of (4.9), (4.11):

how to compute E
(
du(z, ω)2

)
deterministically?

Observing that (4.9) implies

Var
(
du(z, ω)

)
= Cor

(
du(z, ω), du(z′, ω)

)∣∣
z=z′

,

we approximate Var
(
du(z, ω)

)
as trace of the two-point correlation of the shape

gradient, following [24, 18]. The next result shows that the deterministic two-point

correlation function of the local shape derivative in the direction of the random

boundary perturbation U(x, ω) = κ(x, ω)n(x) satisfies, to leading order in pertur-

bation size ε, a deterministic boundary value problem in higher dimension.

Theorem 4.4. Let ū, the solution of (4.5), belong to H2(D). Then the two-point

correlation

Cordu(z, z
′) := Cor

(
du(z, ω), du(z′, ω)

)

is the unique solution in H1,1(D×D) of the following tensor product boundary value

problem on D ×D ⊂ R2n

(4.13)

(∆z ⊗ ∆z′) Cordu(z, z
′) = 0, z, z′ ∈ D,

Cordu(x,y) = Corκ(x,y)

[
∂(g − ū)

∂n
(x) ⊗

∂(g − ū)

∂n
(y)

]
, x,y ∈ ∂D.

Moreover, Cordu ∈ Hs+1/2,s+1/2(D × D) provided that ∂(g − ū)/∂n ∈ Hs(∂D) for

some s ≥ 1/2.

Proof. Observing (2.3) and the identity

〈U(x, ω),n(x)〉 = 〈κ(x, ω)n(x),n(x)〉 = κ(x, ω), x ∈ ∂D,

one infers from (2.3), (4.4) and (4.6) that the local shape derivative du(·, ω) in

the direction U(x) = κ(x, ·)n is the solution of (4.10). Equation (4.13) is now an

immediate consequence of the linearity of the above boundary value problem. If ∂(g−

ū)/∂n ∈ Hs(∂D) for some s ≥ 1/2 and if the perturbation field κ ∈ L2
(
Ω, Ck(∂D)

)
,

it holds that Corκ(x,y) ∈ Ck(∂D)⊗Ck(∂D). Hence the Dirichlet data in (4.13) are

in Hs,s(∂D× ∂D) for 1/2 ≤ s ≤ k. By elliptic regularity, this implies as in [24] that

Cordu ∈ Hs+1/2,s+1/2(D×D) in the range of s specified above. The unique solvability

of the problem (4.13) in the space H1,1(D ×D) ∼ H1(D) ⊗H1(D) was shown e.g.

in [24]. �
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Remark 4.5. Based on Lemma 4.3 and on Theorem 4.4, we obtain a third order

accurate approximation to the variance of the random solution by solving the de-

terministic problems (4.5) and (4.13). On the other hand, based on Lemma 4.2,

we see that the solution ū of the mean field problem (4.5) is only a second order

accurate approximation to E(u). To obtain a third order accurate approximation to

the mean E(u(z, ω)) from (4.4), we need to obtain E(d2u). To derive a deterministic

boundary value problem for this quantity, we exploit the second order shape calcu-

lus. Evaluating the bilinear Hessian in (2.4) on two independent realizations of the

perturbation density κ(x, ω), U(x) = κ(x, ω)n(x) and U′(x) = κ(x, ω′)n(x), and

taking expectations, we obtain the following deterministic problem for the mean of

the shape Hessian E(d2u) in terms of the (known) two-point correlation Corκ(x,y)

of the boundary perturbation field κ(x, ω).

(4.14) ∆ E(d2u) = 0 in D,

which is completed by the Dirichlet condition at x ∈ ∂D

(4.15)

E(d2u)|∂D(x) = Corκ(x,x)
∂2(g − ū)(x)

∂n2
x

−

{
(Ix ⊗ PSy)

(
Corκ(x,y)

∂(g − ū)(y)

∂ny

)} ∣∣∣
y=x

−

{
(PSx ⊗ Iy)

(
Corκ(x,y)

∂(g − ū)(x)

∂nx

)} ∣∣∣
y=x

where PS denotes the Dirichlet-to-Neumann or Poincaré-Steklov Operator for the

Laplacean in D. Equation (4.14) is once again a potential problem of the type

(4.5), with homogeneous right hand side since f was assumed to be deterministic.

The Dirichlet boundary condition (4.15), however, requires sufficient regularity of

Corκ(x,x) and also of the mean field ū, the solution of (4.5) and of g, to ensure

regularity of the second normal derivative of ū − g to render (4.14), (4.15) well

posed.

5. Boundary Reduction

To obtain a deterministic algorithm for the numerical computation of the second

moments, we reformulate boundary value problems (2.1) and (4.13) as weakly sin-

gular boundary integral equations of the first kind over ∂D resp. ∂D × ∂D. To this

end, consider a Newton potential Nf satisfying the equation

(5.1) −∆Nf = f in D.

Then, via the ansatz ū = v+Nf , we are seeking a function v that solves the Laplace

equation

(5.2) ∆v = 0 in D, v = g −Nf on ∂D.
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We next introduce the single layer potential S and the double layer potential D,

(Sρ)(x) =
1

4π

∫

∂D

ρ(y)

‖x − y‖
dσy,

(Dρ)(x) =
1

4π

∫

∂D

〈x − y,n(y)〉

‖x − y‖3
ρ(y)dσy,





x ∈ Rn\∂D

and their traces on the boundary, the single layer operator V and double layer op-

erator K,

V = γ0S, K = γ0D

where γ0 : H1(D) → H1/2(∂D) denotes the trace operator on the nominal domain

D. Then, we employ the Dirichlet-to-Neumann map

(5.3) V
∂v

∂n
= (1/2 + K)(g −Nf) on ∂D

to derive the solution of (2.1) via the potential evaluation

(5.4) u = S
∂v

∂n
+ D(g −Nf) +Nf in D.

In first instance we shall consider the solution of the boundary value problem (4.10)

for fixed ω ∈ Ω before we derive the boundary integral formulation of (4.13). Pro-

vided that we are only interested in the solution in a few points x ∈ D∩Dε, we can

employ the indirect method to compute du(·, ω), namely the single layer potential

ansatz

(5.5) du(·, ω) = Sσ in D

where the unknown density σ(·, ω) solves the first kind boundary integral equation

(5.6) Vσ = κ(·, ω)
∂(g − ū)

∂n
on ∂D.

Notice that in the context of (5.3), (5.6) the single and double layer operators are

operators of order −1 and 0, respectively, acting on ∂D,

V : H−1/2(∂D) → H1/2(∂D), 1/2 + K : H1/2(∂D) → H1/2(∂D),

while the single and double layer potentials satisfy (e.g. [14])

S : H−1/2(∂D) → H1(D), D : H1/2(∂D) → H1(D).

We are now in the position to derive the indirect method to solve the boundary

value problem (4.13) by straightforward modification of (5.6) and (5.5). We find the

tensor product first kind boundary integral equation

(5.7) (V ⊗ V)Σ = Corκ

[
∂(g − ū)

∂n
⊗
∂(g − ū)

∂n

]
on ∂D × ∂D,

where the boundary integral operator

V ⊗ V :
(
H1/2,1/2(∂D × ∂D)

)′
→ H1/2,1/2(∂D × ∂D)
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is bounded and coercive in the space
(
H1/2,1/2(∂D × ∂D)

)′
' H−1/2,−1/2(∂D × ∂D) ' H−1/2(∂D) ⊗H−1/2(∂D),

i.e. there is a constant c > 0 such that

(5.8) ∀Σ ∈ H−1/2,−1/2(∂D × ∂D) : 〈Σ, (V ⊗ V)Σ〉 ≥ c‖Σ‖2
H−1/2,−1/2(∂D×∂D).

This follows from the positivity of V in H−1/2(∂D) (cf. [16]) and a tensor product

argument (cf. [18]).

Hence, V ⊗ V is boundedly invertible, and (5.7) admits a unique solution Σ ∈

H−1/2,−1/2(∂D × ∂D). Then Cordu admits in D ×D the representation

(5.9) Cordu = (S ⊗ S)Σ in D ×D,

where the potential evaluation

S ⊗ S :
(
H1/2,1/2(∂D × ∂D)

)′
→ H1,1(D ×D) ∼ H1(D) ⊗H1(D)

is bounded.

We close with a remark on the reformulation of (4.14), (4.15) as boundary integral

equations. Due to the right hand side in (4.14) being zero, subtraction of a Newton

potential is not necessary here and the potential ansatz (5.5) may be used here

as well. A key issue in the boundary reduction of (4.14), (4.15), however, is the

computation of the Dirichlet data in (4.15). It must be obtained directly from a

Galerkin approximation of the boundary integral equation formulation for the mean

field problem (5.2). Since it involves the second normal derivative of the mean field

on ∂D, it must be computed by a so-called extraction technique (see [25] for details).

6. Tensor Product Galerkin Discretization

The numerical solution of the integral equation (5.7) on the 2(n − 1)-dimensional

manifold ∂D × ∂D will be based on tensor product Galerkin discretization. Here,

we consider so-called full tensor products of finite element spaces on ∂D. We give

an error analysis of these discretizations leading to convergence rates of variances

of the potentials at interior points x ∈ D in terms of the meshwidth h on ∂D. The

number of degrees of freedom in this discretization scales as O(h−2(n−1)).

For the feasibility of second moment computation, however, we will show in the next

section that the maximal convergence rates we will in the next section show that

essentially the same convergence rates can be achieved with so-called sparse tensor

product subspaces with merely O(h−(n−1)| log h|) degrees of freedom.

We consider a sequence of nested spaces

(6.1) V0 ⊂ V1 ⊂ . . . ⊂ VJ . . . ⊂ L2(∂D),
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consisting of piecewise polynomial ansatz functions VJ = span{ϕJ,k : k ∈ ∆J}, such

that dimVj ∼ 2J(n−1) and

L2(∂D) =
⋃

J≥0

VJ .

Since we are going to use the spaces VJ as trial spaces for the approximate solution

of (5.3) and (5.7), we shall assume that the following Jackson and Bernstein type

estimates hold for s ≤ t < γ, t ≤ q ≤ d,

(6.2) inf
vJ∈VJ

‖u− vJ‖Ht(∂D) . hq−tJ ‖u‖Hq(∂D), u ∈ Hq(∂D),

and

(6.3) ‖vJ‖Ht(∂D) . hs−tJ ‖vJ‖Hs(∂D), vJ ∈ VJ ,

uniformly in J , where we set hJ := 2−J . The parameter d refers to the maximal

degree of polynomials which are locally contained in VJ while

γ := sup
{
t ∈ R : VJ ⊂ H t(∂D)

}
> 0

indicates the regularity or smoothness of the functions in the spaces VJ . The quan-

tity hJ corresponds to the mesh width of the mesh on ∂D. Notice that for ansatz

functions based on cardinal B-splines there holds γ = d− 1/2.

In what follows the basis ΦJ = {ϕJ,k : k ∈ ∆J} will be viewed as a row vector,

such that, for v = [vk]k∈∆J
∈ `2(∆J), the function vJ = ΦJv is defined as vJ =∑

k∈∆J
vkϕJ,k.

For sake of simplicity, we shall assume that the Newton potential (5.1) is given an-

alytically since we do not want to consider additional approximation errors induced

by a numerical computation of Nf . However, let us remark that the Newton po-

tential can be computed on a fairly simple domain G, containing D, with arbitrary

boundary conditions, using finite elements or the dual reciprocity method.

We introduce the system matrices

(6.4) VJ = (VΦJ ,ΦJ)L2(∂D), KJ = (KΦJ ,ΦJ)L2(∂D),

the load vector gJ = (g,ΦJ)L2(∂D) and the mass matrix GJ = (ΦJ ,ΦJ)L2(∂D). Then,

making the ansatz ρJ = ΦJρJ for the Neumann data ρ := ∂v/∂n leads to the

discrete Dirichlet-to-Neumann map (cf. (5.3))

(6.5) VJρJ = gJ/2 + KJG
−1
J gJ .

Note that gJ = ΦJG
−1
J gJ denotes the L2-orthogonal projection of the Dirichlet data

g onto the space VJ .
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Lemma 6.1. The Galerkin solution ρJ defined in (6.5) satisfies the error estimate

(6.6) ‖ρ− ρJ‖H−d(∂D) . h2d
J ‖ρ‖Hd(∂D)

provided that ρ ∈ Hd(∂D). The discrete potential evaluation (see (5.4)) in a fixed

point x ∈ D satisfies

(6.7) |u(x) − uJ(x)| ≤ C(x)h2d
J ‖ρ‖Hd(∂D).

Proof. Let ΠJ denote the L2-orthogonal projection onto VJ . Since for any v ∈

L2(∂D) the function ΠJv is the Galerkin solution of the equation Ix = v with

respect to VJ , we arrive at the error estimate

(6.8) ‖v − ΠJv‖Ht(∂D) . hd−tJ ‖v‖Hd(∂D), −d ≤ t ≤ 0,

provided that v ∈ Hd(∂D).

We will abbreviate f := (1/2 + K)g and fJ = (1/2 + KΠJ)g. Thus, we get the

estimate

‖f − fJ‖H1+t(∂D) = ‖Kg −KΠJg‖H1+t(∂D) . ‖g − ΠJg‖Ht(∂D), −d ≤ t ≤ 0,

since K : H t(∂D) → H t+1(∂D) is continuous if ∂D is sufficiently smooth. Hence,

using (6.8), we arrive at

(6.9) ‖f − fJ‖H1+t(∂D) . hd−tJ ‖g‖Hd(∂D) . hd−tJ ‖ρ‖Hd−1(∂D), −d ≤ t ≤ 0,

where the last estimate follows from the fact that the Dirichlet-to-Neumann map is

a continuous operator of order 1.

For any a ∈ H1/2(∂D) let φa denote the solution of the following adjoint problem

(6.10) (Vµ, φa)L2(∂D) = (a, µ)L2(∂D) for all µ ∈ H−1/2(∂D).

Then, we obtain

‖ρ− ρJ‖H−d = sup
‖a‖

Hd(∂D)
=1

∣∣(a, ρ− ρJ)L2(∂D)

∣∣ = sup
‖a‖

Hd(∂D)
=1

∣∣(V(ρ− ρJ), φ
a)L2(∂D)

∣∣

≤ sup
‖a‖

Hd(∂D)
=1

{∣∣(V(ρ− ρJ), φ
a − ΠJφ

a)L2(∂D)

∣∣+
∣∣(V(ρ− ρJ),ΠJφ

a)L2(∂D)

∣∣}

. sup
‖a‖

Hd(∂D)
=1

{
‖ρ− ρJ‖H−1/2(∂D)‖φ

a − ΠJφ
a‖H−1/2(∂D) +

∣∣(f − fJ ,ΠJφ
a)L2(∂D)

∣∣}.

We now estimate the terms on the right hand side of this inequality separately. By

the First Strang Lemma we have

‖ρ− ρJ‖H−1/2(∂D) . h
d+1/2
J ‖ρ‖Hd(∂D)

while from (6.8) we get

(6.11) ‖φa − ΠJφ
a‖H−1/2(∂D) . h

d−1/2
J ‖φa‖Hd−1(∂D) . h

d−1/2
J ‖a‖Hd(∂D).
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Here, the latter inequality follows from the fact that V = V? : Hd−1(∂D) → Hd(∂D)

is bounded and boundedly invertible. Finally, invoking (6.8) and (6.9), the last term

can be estimated by
∣∣(f − fJ ,ΠJφ

a)L2(∂D)

∣∣ ≤
∣∣(f − fJ , φ

a − ΠJφ
a)L2(∂D)

∣∣+
∣∣(f − fJ , φ

a)L2(∂D)

∣∣

≤ ‖f − fJ‖L2(∂D)‖φ
a − ΠJφ

a‖L2(∂D) + ‖f − fJ‖H1−d(∂D)‖φ
a‖Hd−1(∂D)

. h2d
J ‖ρ‖Hd−1(∂D)‖a‖Hd(∂D).

Putting the last four inequalities together, we arrive at (6.6).

Finally, in view of (5.4), (6.7) follows now immediately from

|u(x) − uJ(x)| =

∣∣∣∣
∫

∂D

(ρ− ρJ)(y)

‖x − y‖
dσy

∣∣∣∣

. ‖ρ− ρJ‖H−d(∂D)

∥∥∥∥
1

‖x − · ‖

∥∥∥∥
Hd(∂D)

. h2d
J ‖ρ‖Hd(∂D).

�

Next, we shall consider the discretization of (5.7), (5.9) in VJ ⊗ VJ . Concerning the

boundary integral equation (5.7) for the unknown density Σ ∈ (H1/2,1/2(∂D×∂D))′,

the ansatz ΣJ = (ΦJ ⊗ ΦJ)ΣJ ∈ VJ ⊗ VJ leads to the linear system of equations

(6.12) (VJ ⊗ VJ)ΣJ = QJ ,

where the data vector QJ is given by

(6.13)

QJ =

(
Corκ

{[
∂(g −Nf)

∂n
− ρJ

]
⊗

[
∂(g −Nf)

∂n
− ρJ

]}
,ΦJ ⊗ ΦJ

)

L2(∂D×∂D)

.

Lemma 6.2. The approximate solution ΣJ = (ΦJ ⊗ΦJ)ΣJ ∈ VJ ⊗VJ , derived from

the tensor product equation (6.12) satisfies the estimate

‖Σ − ΣJ‖(Hd+1,d+1(∂D×∂D))′ . h2d
J

{
‖Σ‖Hd−1,d−1(∂D×∂D) + A

}

provided that Σ ∈ Hd−1,d−1(∂D × ∂D) and ρ ∈ Hd(∂D), where

A := ‖Corκ‖Cd−1,1(∂D)⊗Cd−1,1(∂D) · ‖ρ‖Hd(∂D) ·

{∥∥∥∥
∂(g −Nf )

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}
.

Moreover, for x,y ∈ D we have

(6.14) |Cordu(x,y) − Cordu,J(x,y)| . h2d
J

{
‖Σ‖Hd−1,d−1(∂D×∂D) + A

}
.

Proof. During this proof we shall abbreviate

q :=
∂(g − ū)

∂n
⊗
∂(g − ū)

∂n
, qJ :=

[
∂(g −Nf)

∂n
− ρJ

]
⊗

[
∂(g −Nf)

∂n
− ρJ

]
.
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We insert the numerically approximated Neumann data on ∂D into (6.13) and dis-

tinguish between the exact and the Galerkin approximated right hand side of (5.7)

Q := Corκq, QJ := CorκqJ .

From the well known estimate ‖uv‖Hd(∂D) . ‖u‖Cd−1,1(∂D)‖v‖Hd(∂D) (see eg. [13, 29])

we conclude by duality ‖uv‖H−d(∂D) . ‖u‖Cd−1,1(∂D)‖v‖H−d(∂D). Hence, by standard

tensor product arguments, we find for all 0 ≤ t ≤ d

‖Q−QJ‖(Ht,t(∂D))′ . ‖Corκ‖Cd−1,1(∂D)⊗Cd−1,1(∂D)‖q − qJ‖(Ht,t(∂D))′ .

In accordance with Lemma 6.1 we can further estimate

(6.15) ‖Q−QJ‖(Ht,t(∂D×∂D)))′ . hd+tJ A, 0 ≤ t ≤ d.

Next, we a duality argument as in the proof of Lemma 6.1. We denote the solution

of the adjoint equation by φa and the L2-orthogonal projection onto VJ ⊗VJ by Π2
J .

Thus, we get

‖Σ − ΣJ‖(Hd−1,d−1(∂D×∂D))′ = sup
‖a‖

Hd+1,d+1(∂D×∂D)
=1

∣∣(a,Σ − ΣJ)L2(∂D×∂D)

∣∣

. sup
‖a‖

Hd+1,d+1(∂D×∂D)
=1

{
‖Σ − ΣJ‖(H1/2,1/2(∂D×∂D))′‖φ

a − Π2
Jφ

a‖(H1/2,1/2(∂D×∂D))′

+
∣∣(Q−QJ ,Π

2
Jφ

a)L2(∂D×∂D)

∣∣}.
(6.16)

In view of (6.15) the First Strang Lemma gives

‖Σ − ΣJ‖(H1/2,1/2(∂D×∂D))′ . h
d−1/2
J ‖Σ‖Hd−1,d−1(∂D×∂D)

while, likewise to (6.11), we deduce

‖φa − Π2
Jφ

a‖H1/2,1/2(∂D×∂D) . h
d+1/2
J ‖a‖Hd+1,d+1(∂D×∂D).

Finally, the last term in (6.16) can be estimated in complete analogy to the corre-

sponding expression in Lemma 6.1 by using (6.15)
∣∣(Q−QJ ,Π

2
Jφ

a)L2(∂D×∂D)

∣∣ . h2d
J A‖a‖Hd+1,d+1(∂D×∂D).

The estimate (6.14) is derived similarly to estimate (6.7). �

7. Fast Second Moment Analysis

Using the traditional single-scale bases ΦJ to set up the system matrices (6.4) yields

densely populated and ill conditioned system matrices. Then, we end up with at

least complexity O(N 2) (in the number N of unknowns needed to approximate

the unperturbed boundary surface) for solving the discretized boundary integral

equations (6.5) and complexity O(N 4) for the second moment equation (6.12).
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We shall introduce a wavelet basis associated with the multiscale hierarchy (6.1).

The wavelets Ψj = {ψj,k : k ∈ ∇j}, where ∇j := ∆j \ ∆j−1, are the bases of

complementary spaces Wj of Vj−1 in Vj, i.e.,

Vj = Vj−1 ⊕Wj, Vj−1 ∩Wj = {0}, Wj = span{ψj,k : k ∈ ∇j}.

Recursively we obtain

VJ =
J⊕

j=0

Wj, W0 := V0,

and thus a wavelet basis in VJ

ΨJ :=
J⋃

j=0

Ψj, Ψ0 := Φ0.

We assume that the wavelets are locally and isotropically supported with diam(suppψj,k) ∼

2−j and that they provide a cancellation property of order d̃ > d+ 1, that is

|(v, ψj,k)L2(∂D)| . 2j((1−n)/2−ed)|v|
W ed,∞(suppψj,k)

.

A final requirement is that the infinite collection Ψ :=
⋃
j≥0 Ψj forms a Riesz-basis

of L2(Γ). Then, there exists also a biorthogonal, or dual, wavelet basis, see e.g. [4] for

further details. Note that wavelet bases which satisfy the above properties have been

constructed in several papers, see for example [10, 28] and the references therein.

Employing the wavelet basis ΨJ in the Galerkin discretization, the system matrices

in (6.4) become quasi-sparse, having only O(NJ) (NJ := dimVJ) relevant matrix

coefficients. Moreover, if the regularity γ̃ of the dual wavelets fulfills γ̃ > 1/2, the di-

agonally scaled system matrix arising from the single layer operator has a uniformly

bounded condition number. Applying the matrix compression strategy developed in

[5, 22] combined with an exponentially convergent hp-quadrature method [9], the

wavelet Galerkin scheme produces the approximate solution of (6.5) and, as we will

show, also of (6.12), with essentially the optimal convergence rates in work and

memory which grows only log-linearly in N .

The main idea to achieve this is to solve (5.7) and (5.9) using instead of the full

tensor product grid space

V 2
J = VJ ⊗ VJ =

⊕

0≤j,j′≤J

Wj ⊗Wj′.

with N2
J degrees of freedom the sparse tensor product space defined by

V̂ 2
J =

⊕

0≤j+j′≤J

Wj ⊗Wj′ ⊂ V 2
J ,

with dim V̂ 2
J ∼ NJ logNJ degrees of freedom. The basis of V̂ 2

J will be indicated by

Ψ̂J .
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This leads to a restriction of (6.12),

(7.1) ̂(VJ ⊗ VJ)Σ̂J = Q̂J ,

to all indices related to wavelet basis functions in the sparse tensor product space.

Provided that stiffness matrix VJ for the Galerkin discretization of the mean field

problem with the hierarchic wavelet basis is stored blockwise, we can use Algo-

rithm 7.1 to compute the matrix-vector product of the sparse tensor product dis-

cretization (7.1) in an iterative solver without forming the stiffness matrix for the

sparse tensor product discretization ̂(VJ ⊗ VJ) explicitly.

Combined with the above mentioned diagonal preconditioner we obtain an algorithm

which solves (5.7) in complexity O(dim V̂ 2
J ) = O(NJ logNJ), see [18, 24] for the

details.

Algorithm 7.1 (Sparse tensor product matrix-vector multiplication).

input: blockwise stored sparse matrix VJ = [VJ
j,j′]0≤j,j′≤J and

vector x̂J = [x̂Jj,j′]0≤j+j′≤J
output: blockwise stored vector ŷJ = [ŷJj,j′]0≤j+j′≤J

for all 0 ≤ j1 + j2 ≤ J do begin

initialize ŷJj1,j2 := 0

for all 0 ≤ j ′1 + j ′2 ≤ J do begin

if (j1 + j ′2 ≤ j ′1 + j2) then

ŷJj1,j2 := ŷJj1,j2 + (Idj1,j1 ⊗ Vj2,j′2
)
(
Vj1,j′1

⊗ Idj′2,j′2)x̂
J
j′1,j

′

2

else

ŷJj1,j2 := ŷJj1,j2 + (Vj1,j′1
⊗ Idj2,j2)

(
Idj′1,j′1 ⊗ Vj2,j′2

)x̂Jj′1,j′2

end

end

end

However, since the right hand side Q̂J of (7.1) involves the nonsmooth approximate

function ρJ (cf. (6.13)) a naive calculation will not lead to a (nearly) optimal over-

all algorithm. One option is to expand the function ρJ into smooth basis functions

like e.g. Legendre polynomials. However, we do not further pursue this option since

optimal complexity is only achieved if ρ is piecewise analytic. So we decided to insert

the L2-orthogonal projection onto V̂ 2
J into the right hand side. Thus, we get

(7.2) Q̂J ≈ ̂(MJ ⊗ MJ) ̂(GJ ⊗ GJ)
−1

ĈJ ,
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where GJ = (ΨJ ,ΨJ)L2(∂D) is the mass matrix,

MJ =

([
∂(g −Nf )

∂n
− ρJ

]
ΨJ ,ΨJ

)

L2(∂D)

is a multiplication operator, and ĈJ indicates the sparse tensor product approxima-

tion of

CJ = (Corκ,ΨJ ⊗ ΨJ)L2(∂D×∂D).

Since the matrices GJ , MJ , and the vector Q̂J can be assembled within nearly

optimal complexity, the right hand side Q̂J becomes now computable within nearly

optimal complexity.

At least in the case of continuous ansatz functions of order d > 1 it is reasonably

simple to prove that essentially no accuracy is lost by projecting the correlation onto

V̂ 2
L . To derive this result, we shall first address the L2-orthogonal projection onto

the sparse tensor product space V̂ 2
J .

Lemma 7.2. Let Π̂2
J denote the L2-orthogonal projection onto the sparse tensor

product space V̂ 2
J . Then, for 0 ≤ s, t ≤ d there holds

‖u− Π̂2
Ju‖(Hs,s(∂D×∂D))′

.





h
(t−s)
J ‖u‖Ht,t(∂D×∂D), for 0 < s < t < d

hd−sJ

√
| log hJ |‖u‖Hd,d(∂D×∂D), if 0 ≤ s < d and t = d,

hdJ | log hJ |‖u‖Hd,d(∂D×∂D), if s = 0 and t = d,

Proof. Using the fact that Π̂2
Ju is the Galerkin solution of Ix = u with respect to

V̂ 2
J we can use the Galerkin orthogonality to arrive at

‖u− Π̂2
Ju‖(Hs,s(∂D×∂D))′ = sup

‖g‖Hs,s(∂D×∂D)=1

(u− Π̂2
Ju, g)L2(∂D×∂D)

= sup
‖g‖Hs,s(∂D×∂D)=1

(u− Π̂2
Ju, g − v̂J)L2(∂D×∂D)(7.3)

. sup
‖g‖Hs,s(∂D×∂D)=1

‖u− Π̂2
Ju‖L2(∂D×∂D)‖g − v̂J‖L2(∂D×∂D)

for all v̂J ∈ V̂ 2
J . Next, we need that for a given function

u =
∑

j,j′≥0

∑

k∈∇j

∑

k′∈∇j′

u(j,k),(j′,k′)(ψj,k ⊗ ψj′,k′) ∈ L2(∂D × ∂D)

the projection that truncates the wavelet expansion to the sparse tensor product

space

PJu :=
∑

0≤j+j′≤J

∑

k∈∇j

∑

k′∈∇j′

u(j,k),(j′,k′)(ψj,k ⊗ ψj′,k′) ∈ V̂ 2
J ,



21

leads to the following estimate (cf. [17])

‖u− PJu‖L2(∂D×∂D) .




hdJ
√

| log hJ |‖u‖Hd,d(∂D×∂D), if t = d,

htJ‖u‖Ht,t(∂D×∂D), otherwise.

Thus, choosing v̂J := PJg and using ‖u− Π̂2
Ju‖L2(∂D×∂D) ≤ ‖u−PJu‖L2(∂D×∂D), one

can estimate (7.3) further to derive the assertion. �

We are now in the position to give the rate of convergence in negative norms of the

the sparse approximation Σ̂J of the two-point correlation of the boundary flux Σ.

Theorem 7.3. Assume that VJ is exact of order d > 1 consisting of contiuous

ansatz functions (i.e. γ > 1) and assume that the Neumann data of (2.1) satisfy

∂(g − ū)/∂n ∈ Cd−1,1(∂D). Then, the Galerkin solution Σ̂J ∈ V̂ 2
J derived from the

sparse tensor product equation (7.1), using the right hand side approximation (7.2),

satisfies the estimate

‖Σ − Σ̂J‖(Hd,d(∂D×∂D))′ . h2d
J | log hJ |

{
‖Σ‖Hd−1,d−1(∂D×∂D) +B

}

provided that Σ ∈ Hd−1,d−1(∂D × ∂D) and ρ ∈ Hd(∂D). The discrete potential

satisfies for x,y ∈ D the pointwise estimate

|Cordu(x,y) − Ĉordu,J(x,y)| . h2d
J | log hJ |

{
‖Σ‖Hd−1,d−1(∂D×∂D) +B

}
.

The constant B is defined as

B := ‖Corκ‖Cd−1,1(∂D)⊗Cd−1,1(∂D)

·

[∥∥∥∥
∂(g − ū)

∂n

∥∥∥∥
2

Cd−1,1(∂D)

+ ‖ρ‖Hd(∂D)

{∥∥∥∥
∂(g −Nf)

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}]
.

Proof. We denote the exact and approximate right hand sides by

Q := q Corκ =

([
∂(g −Nf)

∂n
− ρ

]
⊗

[
∂(g −Nf)

∂n
− ρ

])
Corκ,

QJ := qJΠ̂
2
J Corκ =

([
∂(g −Nf)

∂n
− ρJ

]
⊗

[
∂(g −Nf )

∂n
− ρJ

])
Π̂2
J Corκ.

Similarly to the proof of Lemma 6.2, we find for all 0 ≤ t ≤ d

‖Q−QJ‖(Ht,t(∂D×∂D)′ ≤ ‖(q − qJ) Corκ‖(Ht,t(∂D×∂D))′

+ ‖qJ(I − Π̂2
J) Corκ‖(Ht,t(∂D×∂D))′

. ‖q − qJ‖(Ht,t(∂D×∂D))′‖Corκ‖Cd−1,1(∂D)⊗Cd−1,1(∂D)(7.4)

+ sup
‖a‖Ht,t(∂D×∂D)=1

(
qJ(I − Π̂2

J) Corκ, a
)
L2(∂D×∂D)

.
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The first term might be estimated by using

‖q − qJ‖(Ht,t(∂D×∂D))′(7.5)

. hd+tJ ‖ρ‖Hd(∂D)

{∥∥∥∥
∂(g −Nf )

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}
, 0 ≤ t ≤ d.

The second term is estimated as follows. Assume t = d, i.e. a ∈ Hd,d(∂D × ∂D) ⊂

L∞(∂D × ∂D). Then, employing Galerkin orthogonality, we find
(
qJ(I − Π̂2

J) Corκ, a
)
L2(∂D×∂D)

=
(
(qJ − q)(I − Π̂2

J) Corκ, a
)
L2(∂D×∂D)

+
(
(I − Π̂2

J) Corκ, qa
)
L2(∂D×∂D)

≤ ‖(q − qJ)(I − Π̂2
J) Corκ‖L1(∂D×∂D)‖a‖L∞(∂D×∂D)

+
(
(I − Π̂2

J) Corκ, (I − Π̂2
J)(qa)

)
L2(∂D×∂D)

. ‖q − qJ‖L2(∂D×∂D)‖(I − Π̂2
J) Corκ‖L2(∂D×∂D)‖a‖Hd,d(∂D×∂D)

+ ‖(I − Π̂2
J) Corκ‖L2(∂D×∂D)‖(I − Π̂2

J)(qa)‖L2(∂D×∂D).

In view of (7.5) and Lemma 7.2 we derive the estimate
(
qJ(I − Π̂2

J) Corκ, a
)
L2(∂D×∂D)

. h2d
J | loghJ |‖Corκ‖Hd,d(∂D×∂D)‖a‖Hd,d(∂D×∂D)

·

[∥∥∥∥
∂(g − ū)

∂n

∥∥∥∥
2

Cd−1,1(∂D)

+ ‖ρ‖Hd(∂D)

{∥∥∥∥
∂(g −Nf)

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}]
,

and thus

(7.6) ‖Q−QJ‖(Hd,d(∂D×∂D))′ . h2d
J | log hJ |B.

Next, in the case t = 0, we can estimate
(
qJ(I − Π̂2

J) Corκ, a
)
L2(∂D×∂D)

≤ ‖qJ‖L∞(∂D×∂D)‖(I − Π̂2
J) Corκ‖L2(∂D×∂D)‖a‖L2(∂D×∂D)

. hdJ
√

| log hJ |‖Corκ‖Hd,d(∂D×∂D)‖a‖L2(∂D×∂D)

·

[∥∥∥∥
∂(g − ū)

∂n

∥∥∥∥
2

Hd(∂D)

+ ‖ρ‖Hd(∂D)

{∥∥∥∥
∂(g −Nf)

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}]

since for all ε > 0 one has

‖qJ‖L∞(∂D×∂D) . (‖q‖H(n−1)/2+ε,(n−1)/2+ε(∂D×∂D) + ‖qJ − q‖H(n−1)/2+ε,(n−1)/2+ε(∂D×∂D))

.

[∥∥∥∥
∂(g − ū)

∂n

∥∥∥∥
2

Hd(∂D)

+ ‖ρ‖Hd(∂D)

{∥∥∥∥
∂(g −Nf)

∂n

∥∥∥∥
Hd(∂D)

+ ‖ρ‖Hd(∂D)

}]
.

Consequently, we have

(7.7) ‖Q−QJ‖L2(∂D×∂D) . hdJ
√

| log hJ |B.
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Figure 1. The domain D and the potential evaluation points.

Using (7.6) and (7.7) together with Lemma 7.2 one can finish now the proof in

complete analogy to the proof of Lemma 6.2. �

8. Numerical Results

We shall first check the predicted orders of convergence. Let D be the smoothened

cube presented in Fig. 1. We will choose the data f and g such that the solution of

the Poisson equation (2.1) is known. That way we can measure the predicted rates

of convergence in case of the mean field equation. Choosing the source term f = 1

and the Dirichlet data g(x, y, z) = −x2/2, one readily infers that u(x, y, z) = −x2/2

satisfies the Poisson equation. The Newton potential employed by our algorithm is

analytically defined as Nf (x, y, z) := −(x2 + y2 + z2)/6. We discretize the boundary

integral operators by piecewise constant wavelets, that is the case d = 1.

First, we consider the mean field equation. The Neumann data of the solution u

should converge in the L2(∂D)-norm with order hJ ∼ N
−1/2
J , cf. (6.1). Moreover,

due to (6.6), the error |u(x) − uJ(x)| in a single point x ∈ D should behave like

O(h2
J). However, the errors in a single point might oscillate extremely due to round-

off errors. To be on save ground we compute the `∞-norm of the measurements in

all points {xi}i∈I specified in Fig. 1. The results are recorded in Table 1 and plotted

in the double logarithmic plot in Fig. 1. The measured rates of convergence with

respect to the potential are even slightly higher than predicted. A least squares fit

yields ‖u − uJ‖`∞ = O(h2.5
J ), where u := [u(xi)]i∈I and uJ := [uJ(xi)]i∈I.

Next, we consider the numerical solution of (4.13) by the sparse tensor product ap-

proximation (7.1). For comparison reasons we choose the correlation of κ such that
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J NJ ‖ρ− ρJ‖L2(∂D) ‖u − uJ‖∞ cpu-time

1 24 2.9e-1 5.6e-1 1

2 96 3.5e-1 (0.8) 5.1e-2 (11) 1

3 384 1.7e-1 (2.1) 2.0e-2 (2.5) 2

4 1536 8.4e-2 (2.0) 3.4e-3 (5.9) 9

5 6144 4.2e-2 (2.0) 4.4e-4 (7.9) 47

6 24576 2.1e-2 (2.0) 9.1e-5 (4.8) 413

7 98304 1.0e-2 (2.0) 1.6e-5 (5.6) 2002

8 393216 1.3e-2 (2.0) 3.7e-6 (4.3) 13097
Table 1. Numerical results with respect to the mean field equation.
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Figure 2. Asymptotic behaviour of the errors for the mean field equation.

Corκ(x,y) = F (x) · G(y). Consequently, (4.13) decouples into two boundary value

problems depending only on x or y. Therefore, the solution of the full tensor prod-

uct space can be computed and compared to the sparse grid solution. Particularly,

we choose F (x, y, z) = e−x
2−y2−z2 and G(x, y, z) = xyz. For a full tensor product

discretization in L2(∂D × ∂D) we would expect the rate of convergence O(hJ) for

the approximate right hand side QJ and the rate O(1) for the approximate density

ΣJ . The discrete variance CJ := [Vardu,J(xi)]i∈I should be approximated by the rate

O(h2
J), cf. Lemma 6.2.
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To measure the rates of convergence that are realized by the sparse tensor product

approximation, we use the solutions QJ , ΣJ , and CJ associated with the full tensor

product spaces as reference values since the exact solution is unknown. The errors

of Q̂J , Σ̂J , and ĈJ := [V̂ardu,J(xi)]i∈I with respect to the sparse tensor product

spaces are tabulated in Table 2. In Fig. 3 these errors are plotted in a corresponding

log-log-diagram. Since the convergence bebaviour exhibits oscillations we performed

least squares fits (indicated by the dashed/dash-dotted/dotted lines) to estimate

the orders of convergence. Even though the present discretization is not covered

by Theorem 7.3, we observe essentially the rates of convergence of the full tensor

product space.

J N̂J ‖QJ − Q̂J‖L2(∂D×∂D) ‖ΣJ − Σ̂J‖L2(∂D×∂D) ‖CJ − ĈJ‖∞ cpu-time

1 252 1.2e-1 1.3e-1 1.6 1

2 1440 3.4e-1 (0.4) 7.3e-1 (0.2) 2.0e-1 (7.8) 1

3 7488 2.5e-1 (1.4) 7.2e-1 (1.0) 1.7e-1 (1.2) 3

4 36864 9.6e-2 (2.6) 5.2e-1 (1.4) 2.5e-2 (6.6) 14

5 175104 2.8e-2 (3.5) 4.2e-1 (1.2) 8.5e-3 (3.0) 124

6 811008 8.8e-3 (3.1) 3.7e-1 (1.1) 1.0e-3 (8.6) 1210

7 3.7 mio 4.2e-3 (2.1) 3.1e-1 (1.2) 1.6e-4 (6.4) 3 hrs

8 16.5 mio 2.1e-3 (2.0) 3.3e-1 (0.9) 9.4e-5 (1.6) 24 hrs
Table 2. Errors in the covariance approximation by the sparse tensor

product approach.

The last column of Table 2 refers to the cpu-time consumed for computing the

right hand side of (7.1) and solving the associated linear system of equations by

Algorithm 7.1. Although we observe strong logarithmical factors, we are able to

solve (7.1) on level 8 within 24 hours using 2.5 Gigabyte main memory and one

processor of a Sun Fire V20z Server with two 2.2 MHz AMD Opteron processors

and 4 GB main memory per processor. Notice that the full tensor product space on

level J = 8 would contain about 15 · 1010 unknowns.

Finally, we shall present results for realistic data. We consider the Poisson equa-

tion (2.1) for the source term f = 1 and homogeneous Dirichlet data. We choose

Gaussian correlation, i.e., Corκ(x,y) = e−‖x−y‖2
. We compute the expectation and

the variance of the solution on the two dimensional plane shown in Fig. 4. The ap-

proximate expectation and variation are presented on the left and right hand side

of Fig. 5. One observes that the variance is small in the middle of the plane while it

becomes larger if one tends to the edges. However, near the corners of the plane the
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Figure 3. Asymptotic behaviour of the errors of the sparse tensor

product approach.

variance keeps small. We like to mention that the approximate variance depends lin-

early on Corκ(x,y). Therefore, a scaling of Corκ(x,y) does not affect the qualitative

behaviour of the approximate variance.

Figure 4. Sectional plane for evaluating expectation and variance.
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Figure 5. Expectation (left) and variance (right) of the solution.

9. Conclusions and Generalizations

We developed and analyzed a fast deterministic method for the second moment

analysis of random solutions to the Dirichlet problem (2.1) in smooth, bounded

nominal domains D ⊂ Rd subject to a class of random boundary perturbations in a

space X.

Under the assumption of small perturbation amplitude ε > 0, almost shure with

respect to a probability measure P on the space X of admissible perturbations, we

showed using a domain sensitivity analysis how second order statistics of the random

solution and functionals of it can be expressed, to third order in the perturbation size

ε, through solutions of deterministic boundary value problems in D resp., for second

moments, in D ×D, which are related to the nominal problem’s shape gradient

Using boundary reduction of these problems to first kind, strongly elliptic boundary

integral equations and wavelet Galerkin discretization of these integral equations on

sparse tensor product spaces we obtained a deterministic algorithm for the compu-

tation of approximate mean field and second moments of the random solution and

functionals of it whose work and memory scale log-linearly in N , the number of de-

grees of freedom on ∂D while converging at the optimal rates afforded by Galerkin

BEM (e.g. [23]). The development in the present paper was performed for the model

Poisson equation (2.1). It is, however, by no means limited to this model equation

– our fast deterministic computation of the second order statistics of the random

solution and functionals of it can be applied to any elliptic boundary value problem

for which boundary reduction to integral equations (e.g. [14, 23]) and, at least, a

first order shape calculus are available; we refer to [18] for the numerical analysis of

sparse tensor product approximation schemes for the second (and higher) moment
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problems. For shape gradients of Dirichlet and Neumann problems for the Helmholtz

and Maxwell equations, we refer to [20], Chapter 5.

In the present paper, we used classical shape calculus in D from [11, 15, 27] for the

derivation of the Fréchet derivative of the solution with respect to perturbations of

∂D and obtained an integral equation formulation by boundary reduction of the

shape gradients. A direct derivation of these integral equations consists of differen-

tiating boundary integral operators with respect to ∂D. Details are available, also

for time harmonic electromagnetic scattering, in [20].

We used the wavelet implementation of [9, 10] which use structured mesh hierarchies

on ∂D to allow matrix compression, preconditioning and sparse second moment

analysis in a unified fashion. We emphasize, however, that our approach could also

be realized on unstructured surface meshes with the hierarchic bases of [28], in

conjunction with a Fast Multipole Method for matrix-vector multiplication, as, e.g.

in [21].
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