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Abstract

Extending the general approach for first-order hyperbolic systems developed in [5],

we construct PML equations for the mixed-type system governing propagation of

optical wave packets in both 1D and 2D Bragg resonant photonic waveguides with

a cubic nonlinearity, i.e. the Coupled Mode Equations. We prove that the layer

equations are stable, absorbing, and perfectly matched. A number of numerical

experiments are performed to assess the layer’s performance in both the linear and

nonlinear regimes.
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1. Introduction

Realistic wave propagation problems are ubiquitously dispersive and their nu-

merical simulations have to, therefore, typically treat modes (waves) that, within

the integration time, travel out of the spatial domain of interest. This treatment

needs to be efficient, to automatically and accurately treat all such modes, that is it

should only introduce minimal artificial reflections. Two basic approaches have been

developed for such problems, the Perfectly Matched Layers (PML) and Radiation

Boundary Conditions, of which we use the former one in our model.

In nonlinear optics problems, when modeling the evolution of solitary waves (or

solitons) in the presence of radiation due to, for instance, perturbations or solitary

wave interactions, the radiation propagates at a different group velocity than the

solitary wave. Treatment of radiation leaving the domain is then essential [27, 28].

In the presence of solitons propagating at different velocities one of the solitons

itself may leave the domain within the time of interest and PML has been used

in order to minimize its unphysical reflection from the boundary [12, 27, 14]. (For

information on Radiation Boundary Conditions for the Schrödinger equation see,

e.g., [13, 20, 22].)

This paper derives and tests PML for a wave propagation problem in both 1D and

2D optical nonlinear Bragg resonant grating waveguides. The Bragg grating [25] is a

special periodic structure leading to coupling between forward and backward (along

the periodicity direction) propagating waves, and in combination with the (cubic)

nonlinearity leads to the existence of localized solitary waves with a large range of

velocities [2, 11, 10, 4]. Simulations of slow solitary waves may result in the need for

very large evolution times and thus for good long time behavior of the PML. See,

for example [11, 10], where interactions of 2D solitary waves with spatially localized

defects are simulated (with the help of PML) up to t ≈ 1000.

The PML formulation is typically derived for linear equations with the expectation

of satisfactory performance even in presence of (e.g. polynomial) nonlinear terms

under the condition that the solution remains small inside the absorbing layers.

Although the split-field PML approach for the Maxwell’s equation has been adapted

for the presence of nonlinear terms via an iterative scheme [26], we use the (unsplit

and more rigorous) linear approach for general first order hyperbolic systems [17,

18, 5], which we extend for the governing Coupled Mode Equations. This system is
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hyperbolic in the 1D case and of degenerate Schrödinger type in the 2D case, taking

the form of a first-order hypebolic equation in one of the two spatial dimensions.

The rest of the paper is organized as follows. In Section 2 we present the partial

differential equations governing the physical model at hand and introduce some

necessary notation. In Sections 3,4 and 5 we present a detailed derivation of the

PML equations (for both 1D and 2D) using elementary intuitive arguments to prove

their absorption and perfect matching. Section 6 contains a proof of stability of the

PML equations. Finally, in Section 7 we present a number of numerical tests in both

one and two dimensions showing exponential error convergence with respect to the

width of the absorbing layers.

2. The main equations and notation

We address the propagation of quasi-monochromatic wavepackets of light in two

dimensional optical dielectric waveguides with a Bragg resonant spatially periodic

structure (so called Bragg grating [25]) in the propagation direction and a homoge-

neous structure in the transverse direction. If the underlying medium possesses the

cubic focusing nonlinearity, the wave propagation is modeled by the 2D Coupled

Mode Equations (2D CME) [1, 4, 11, 10], which in their nondimensional form read

i (∂t + cg∂z) E+ + κE− + ∂2
xE+ + Γ

(

|E+|2 + 2|E−|2
)

E+ = 0

i (∂t − cg∂z) E− + κE+ + ∂2
xE− + Γ

(

|E−|2 + 2|E+|2
)

E− = 0,
(1)

where E+ and E− denote the forward and backward (in z) propagating wavepackets

respectively, cg, κ, Γ > 0 are proportional to the group velocity, grating depth and

the cubic susceptibility of the medium respectively and x, z and t correspond to

the coordinate along the transverse direction, the propagation direction and time

respectively. The dynamics in the third spatial direction y are assumed station-

ary due to total internal reflection. The coexistence and coupling of forward and

backward propagating wavepackets is caused by the Bragg resonant structure.

The corresponding one-dimensional model is the system of 1D Coupled Mode

Equations (equations (1) without the ∂2
x terms). It describes the same situation

in the fiber grating, where total internal reflection confines the dynamics in all

transverse directions. Much more research has been historically devoted to this 1D

model [7, 2, 6, 15, 25, 23] but to our knowledge systematic treatment of radiation

in numerical simulations appears in the literature neither for 1D nor for 2D.
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As they stand, equations (1) are defined on the whole plane (x, z) ∈ R
2. For

computational purposes we consider a finite domain (x, z) ∈ [0, Lx]×[0, Lz] appended

with absorbing layers in the x−direction [−δx, 0]× [0, Lz] and [Lx, Lx + δx]× [0, Lz],

in the z−direction [0, Lx] × [−δz, 0] and [0, Lx] × [Lz, Lz + δz] and in the corners

[−δx, 0]× [−δz, 0], [−δx, 0]× [Lz, Lz + δz], [Lx, Lx + δx]× [−δz, 0] and [Lx, Lx + δx]×
[Lz, Lz + δz], see Fig. 1. Note that the initial data are assumed to be supported

only on the physical domain [0, Lx] × [0, Lz].

physical
domain

Lx + δx

Lx

−δx

x

−δz Lz Lz + δz

z

Fig. 1. The physical

domain and the absorb-

ing layers.

We use the linear case of equations (1), i.e. Γ = 0, to derive the layer equations.

The resulting system is then used even in the nonlinear case Γ > 0 under the

condition that inside the layers the solution remains small in magnitude so that the

dynamics are essentially linear. We also show one example when an O(1) disturbance

propagates into the layer in the nonlinear case; this results in a largely increased

error and decreased convergence rate.

In the following calculations the negative real semiaxis is chosen as the branch

cut of the square root function and for ξ = reiθ, θ ∈ [−π, π), r > 0 we use ξ1/2 or
√

ξ

to denote
√

reθ/2 and −ξ1/2 or −
√

ξ to denote
√

reθ/2+π.

3. z−layer equations

To derive equations in the z−layers [0, Lx] × [−δz, 0] and [0, Lx] × [Lz, Lz + δz],

see Fig. 2, we first perform the Laplace transform in t over [0,∞) and Fourier

transform in x over (−∞,∞) on the linear case of (1). For z outside the physical

domain [0, Lz] we obtain

icg∂zÊ+ + (is − k2
x)Ê+ + κÊ− = 0

−icg∂zÊ− + (is − k2
x)Ê− + κÊ+ = 0,

(2)
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where we have used the fact that E±(t = 0) ≡ 0 in the layers z < 0 and z > Lz. (2)

has solution modes (Ê+, Ê−) = (c1, c2)e
λz, where λ = λ1,2 = ± 1

cg
[κ2 + (s + ik2

x)
2]1/2.

In this section (Ê+, Ê−)T denotes the solution of (2), i.e. the Fourier(x)+Laplace(t)

transform of the solution of (1) (Γ = 0) for z ∈ {[−δz, 0] ∪ [Lz, Lz + δz]} and
(

Êpml
+ , Êpml

−

)

stands for the transform of the solution of the to-be-determined PML

equipped system on this domain.

physical
domain

Lx + δx

Lx

−δx

x

−δz Lz Lz + δz

z

Fig. 2. Layers in the z−direction

The desired absorption in the z−layers will be satisfied if the following damping

property in z holds when −δz ≤ z < 0 or Lz < z ≤ Lz + δz:

∂zÊ
pml
± = λ̃Êpml

± with

• <λ̃ < 0 for right travelling modes and

• <λ̃ > 0 for left travelling modes,

(3)

where right and left means in the positive and negative z−direction respectively.

As λ can be seen to satisfy the above conditions with ≤ and ≥ respectively, we

simply need to ensure the strict nature of the inequalities. In order to also ensure

that at the interfaces z = 0, Lz (Êpml
+ , Êpml

− ) perfectly matches the solution in the

physical domain, we need

lim
z→0−

(Êpml
+ , Êpml

− ) = lim
z→0−

(Ê+, Ê−) (4)

and similarly for z → Lz+. Because of continuity of (E+, E−) across the interfaces

this then gives continuity of the overall profile composed of (Epml
+ , Epml

− ) inside the

layers and (E+, E−) in the physical domain.

Using the general approach of [16, 18, 5] for first order hyperbolic systems we give

the following
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Proposition 1. Replacing λ by λ̃ = λ
s+ik2

x+α
with α > 0 in (Ê+, Ê−) yields (Êpml

+ , Êpml
− ),

that satisfies the damping property (3).

Proof. Let us study the two solution modes corresponding to λ1,2 = ± 1
cg

[κ2 + (s +

ik2
x)

2]1/2 separately.

1) Because <s ≥ 0, kx ∈ R and cg, κ > 0, it is easy to see that with the above

described definition of the square root function Range(λ1) is the right half of the

complex plane excluding the upper half of the imaginary axis, i.e. Range(λ1) =

{reiθ|r ≥ 0,−π/2 ≤ θ < π/2}. Therefore, λ1 corresponds to left propagating

modes.

To determine Range(λ̃1), i.e. the image of Range(λ1) under the map λ → λ̃, we

first study the image of the lower half of the imaginary axis. Consider β ≥ 0. At

λ = −iβ it is s + ik2
x + α = (−c2

gβ
2 − κ2)1/2 + α = α − i

√

c2
gβ

2 + κ2 and, therefore,

division by s + ik2
x + α in the map λ → λ̃ involves a rotation by the positive

angle −φ = arctan

(√
c2gβ2+κ2

α

)

∈ (0, π/2) which increases with β and attains the

minimum value −φ∗ = arctan
(

κ
α

)

at β = 0.

Similarly, as λ approaches the upper half of the imaginary axis, i.e. for λ1 = ξ+iβ

with β > 0 and ξ → 0+, one gets s + ik2
x + α → α + i

√

c2
gβ

2 + κ2 and the rotation

is by the negative angle φ ∈ (−π/2, 0). Fig. 3 illustrates the rotation and shows a

superset of Range(λ̃1).

φ*

ℜ 

ℑ 

−φ* 

Fig. 3. A superset of Range(λ̃1)

−φ* 

φ* 

ℜ 

ℑ 

Fig. 4. A superset of Range(λ̃2)
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2) Analogously, λ2 = − 1
cg

[κ2 + (s + ik2
x)

2]1/2 has Range(λ2) = {reiθ|r ≥ 0, π/2 ≤
θ < 3π/2} and corresponds to right propagating modes. The rotations involved in

the mapping λ → λ̃ are exactly opposite to those for λ1, see Fig. 4.

Using these facts one can easily check that the strict inequalities required in (3)

are satisfied. Note that the origin, λ = 0, where s = −ik2
x± iκ, corresponds to waves

propagating in the x−direction (so called glancing waves), which are not required

to be damped. �

The function (Êpml
+ , Êpml

− ) = (c1, c2)e
λ̃z does not, however, satisfy the perfect

matching condition (4). This can be easily remedied by replacing λ̃z by λz +

λ̃
∫ z

z0
σz(ξ)dξ with σz(ξ) ≥ 0 and

∫ z

z0
σz(ξ)dξ > 0, where z0 = 0 for z < 0 and

z0 = Lz for z > Lz. The solution mode now becomes

(

Êpml
+ , Êpml

−

)

= (c1, c2)e
λ

„

z+

R z
z0

σz(ξ)dξ

s+ik2
x+α

«

. (5)

In addition to the automatically satisfied perfect matching (4) the n−th derivative

in z is also matched if the (n − 1)−th derivative of σz converges to 0 at z0. The

constant in the damping property (3) is now λ
(

1 + σz(z)
s+ik2

x+α

)

and one can easily

check that its real part still satisfies the strict sign conditions, i.e. the direction of

the rotation in Figs. 3 - 4 is preserved. For illustration, in Fig. 5 we show the

mapping of λ1 → λ1

(

1 + σz(z)
s+ik2

x+α

)

for λ1 that lies on the negative imaginary axis.

−φ

λ1

(

1 + σz(z)
s+ik2

x+α

)

λ1σz(z)
s+ik2

x+α
λ1

<
=

�

�

�

Fig. 5. Mapping

of λ1 = −iβ as in

the solution (5)

In order to now derive the layer equations we study the relation between Ê± and

Êpml
± :

Ê± = Êpml
± e

−λ
R z
z0

σz(ξ)dξ

s+ik2
x+α , ∂zÊ± =

(

∂zÊ
pml
± − λσz

s + ik2
x + α

Êpml
±

)

e
−λ

R z
z0

σz(ξ)dξ

s+ik2
x+α .



7

To account for the second term in ∂zÊ±, we define auxiliary variables

F̂± := ∓cg
λσz(z)

s + ik2
x + α

Êpml
± . (6)

The layer equations, i.e. equations satisfied by
(

Epml
+ , F+, Epml

− , F−

)T

, then read

i(∂tE+ + cg∂zE+ + F+) + κE− + ∂2
xE+ = 0

∂tF+ + cgσz∂zE+ − i∂2
xF+ + (α + σz)F+ = 0

i(∂tE− − cg∂zE− + F−) + κE+ + ∂2
xE− = 0

∂tF− − cgσz∂zE− − i∂2
xF− + (α + σz)F− = 0

(7)

with F±(t = 0) ≡ 0.

The second and fourth equations in (7) are obtained by relating F̂± with ∂zÊ
pml
± .

From (5) one has

Êpml
± =

s + ik2
x + α

λ(s + ik2
x + α + σz)

∂zÊ
pml
± .

Thus, using (6),

(s + ik2
x + α + σz)F̂± = ∓cgσz∂zÊ

pml
± ,

which is equivalent to the second and fourth equation in (7) respectively.

For the 1D Coupled Mode Equations the derivation of layer equations is

completely analogous to the previous discussion (with kx = 0) and leads to

i(∂tE+ + cg∂zE+ + F+) + κE− = 0

∂tF+ + cgσz∂zE+ + (α + σz)F+ = 0

i(∂tE− − cg∂zE− + F−) + κE+ = 0

∂tF− − cgσz∂zE− + (α + σz)F− = 0

(8)

with E± = E±(z, t) and F± = F±(z, t).

4. x−layer equations

The dynamics of the linear part of (1) (Γ = 0) in the x−direction are similar to

those of the linear Schrödinger equation (LSE) and, therefore, the layer equations

in the x−layers [−δx, 0] × [0, Lz] and [Lx, Lx + δx] × [0, Lz], see Fig. 6, turn out to

be analogous to those of the LSE [18, 12]. After the Laplace-Fourier transform in
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physical
domain

Lx + δx

Lx

−δx

x

−δz Lz Lz + δz

z

Fig. 6. Layers in the x−direction

(t, z) the linear part of (1) becomes for x < 0 or x > Lx

(is − cgkz)Ê+ + κÊ− + ∂2
xÊ+ = 0

(is + cgkz)Ê− + κÊ+ + ∂2
xÊ− = 0

(9)

with solution modes (Ê+, Ê−) = (c1, c2)e
λx, where λ = λ1,2 = ±

[

−is ±
√

c2
gk

2
z + κ2

]1/2
.

Analogously to (3) we seek a solution (Êpml
+ , Êpml

− ) such that when −δx ≤ x < 0 or

Lx < x ≤ Lx + δx,

∂xÊ
pml
± = λ̃Êpml

± with

• <λ̃ < 0 for up travelling modes and

• <λ̃ > 0 for down travelling modes,

(10)

where up and down means in the positive and negative x−direction respectively.

Similarly to Sec. 3 (Ê+, Ê−) is the Fourier(x)+Laplace(t) transform of the solution

of (1) (Γ = 0) for x ∈ {[−δx, 0] ∪ [Lx, Lx + δx]} and
(

Êpml
+ , Êpml

−

)

is the transform

of the PML equipped system.

Since <s ≥ 0, it is easy to see that Range(λ1) = {reiθ|r ≥ 0,−π/2 ≤ θ ≤ 0},
see Fig. 7. λ1,2 correspond to up and down propagating modes respectively since

otherwise the modes would not be bounded. Because their ranges are only quadrants

(as opposed to the half planes in the z−layer case), a simple rotation λ̃ = eiρλ, ρ ∈
(0, π/2) would ensure the strict inequalities in (10). In order to also achieve perfect

matching, we let
(

Êpml
+ , Êpml

−

)

= (c1, c2)e
λ

“

x+eiρ
R x

x0
σx(ξ)dξ

”

(11)

with x0 = 0 for x < 0 and x0 = Lx for x > Lx, ρ ∈ (0, π/2) and σx defined

analogously to σz. We note, however, that due to the presence of second x-derivatives
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ℜ 

ℑ 

Range(λ
2
) 

Range(λ
1
) 

Fig. 7. Range(λ1,2)

perfect matching also requires besides the condition (4) continuity of the first x-

derivatives. This is accomplished by imposing the additional condition

σx(x0) = 0. (12)

Since

E± = Epml
± e

−λeiρ
R x

x0
σx(ξ)dξ

and ∂xE± =
1

1 + σxeiρ
∂xE

pml
± e

−λeiρ
R x

x0
σx(ξ)dξ

,

the layer equations become

i(∂tE± ± cg∂zE±) + κE∓ +
1

1 + σxeiρ
∂x

(

1

1 + σxeiρ
∂xE±

)

= 0. (13)

5. Equations in the corner layers

physical
domain

Lx + δx

Lx

−δx

x

−δz Lz Lz + δz

z

Fig. 8. Corner layers

The most natural treatment of the corner layers [−δx, 0] × [−δz, 0], [−δx, 0] ×
[Lz, Lz + δz], [Lx, Lx + δx]× [−δz, 0] and [Lx, Lx + δx]× [Lz, Lz + δz] is, of course, to
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extend and combine equations (7) and (13) to these regions. This results in

i(∂tE+ + cg∂zE+ + F+) + κE− +
1

1 + σxeiρ
∂x

(

1

1 + σxeiρ
∂xE+

)

= 0

∂tF+ + cgσz∂zE+ − i
1

1 + σxeiρ
∂x

(

1

1 + σxeiρ
∂xF+

)

+ (α + σz)F+ = 0

i(∂tE− − cg∂zE− + F−) + κE+ +
1

1 + σxeiρ
∂x

(

1

1 + σxeiρ
∂xE−

)

= 0

∂tF− − cgσz∂zE− − i
1

1 + σxeiρ
∂x

(

1

1 + σxeiρ
∂xF−

)

+ (α + σz)F− = 0.

(14)

Replacing ∂2
x by 1

1+σxeiρ ∂x

(

1
1+σxeiρ ∂x

)

in the equations for the auxiliary functions

F± ensures consistency of the PML formulation, i.e. the rotation involved in λ →
λ̃ is now the same throughout each of the z−layers [−δx, Lx + δx] × [−δz, 0] and

[−δx, Lx + δx] × [Lz, Lz + δz]. The same analysis as in Sec. 3 can be used (with

constant σx) to show that the z−damping property is satisfied for equations (14).

It is not obvious how to analytically prove the damping in x but the numerical tests

presented below suggest this to be satisfied also.

6. Stability of the layer equations

We now follow the analysis in [5] to establish the stability of the corner layer

system (14) assuming constant layer parameters. The analysis, which is based on

the Sturm sequence method for bounding the roots of polynomial equations, also

can be used to derive energy estimates; see [19] for details.

Performing a Fourier transformation in (x, z) and solving for time derivatives leads

to a system:

dŴ

dt
= −i

k2
x

(1 + σxeiρ)2
Ŵ + P̂ Ŵ , (15)

where Ŵ =
(

Ê+ F̂+ Ê− F̂−

)T

. We will prove that if σz > 0 and α > 0, then the

eigenvalues of the 4 × 4 matrix P̂ have negative real part (unless kz = 0). Since

<
(

−i
k2

x

(1 + σxeiρ)2

)

= − σxk
2
x

(1 + σ2
x)

2
(2 sin ρ + σx sin 2ρ), (16)

we have proven stability under the additional assumptions σx > 0, 0 < ρ < π
2
.
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To establish the result concerning the eigenvalues of P̂ , we compute its charac-

teristic polynomial:

λ4 + aλ3 + bλ2 + cλ + d, (17)

a = 2(α + σz),

b = (α + σz)
2 + c2

gk
2
z + κ2,

c = 2(αc2
gk

2
z + (α + σz)κ

2), (18)

d = α2c2
gk

2
z + (α + σz)

2κ2.

Application of the Sturm sequence technique yields that the roots have negative real

parts if and only if

a > 0,

ab − c > 0, (19)

c(ab − c) − a2d > 0,

d > 0.

Carrying through the algebra one easily checks that these inequalities hold so long

as α > 0, σz > 0, and cgkz 6= 0.

Stability of the layer equations (7) and (13) follows from the above result.

7. Numerical experiments

We perform numerical finite difference (FD) time domain simulations of the 1D

and 2D CME in both linear (Γ = 0) and nonlinear (Γ > 0) regimes and study the

performance of the PML. It can be shown that taking the absorbing layer of a finite

width generates reflections from the boundary z = −δz, Lz +δz (or x = −δx, Lx+δx),

which decrease exponentially as the layer width is increased, i.e. like e−pδz (or e−pδx)

with p > 0 [16, 24, 8, 9]. We show this exponential error convergence to be

true for the above constructed PML for 1D and 2D linear CME and show that a

decreased exponential rate can be obtained even in the nonlinear case. The

convergence rate is decreased most dramatically when, in the nonlinear regime, a

disturbance with a relatively large amplitude (so that |E±|2E± is non-negligible)

enters a PML layer. In such cases one should, actually, expect even a failure of the

absorption and lack of error convergence. In the cases presented here this is not,

however, the case. It is, nevertheless, the satisfactory behavior in situations when
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the solution is only weakly nonlinear in the layers (main pulse stays in the physical

domain) that is more important in typical nonlinear optics simulations, see Sec. 1.

7.1. 1D CME tests. 1D CME with PML are given by (8), where F± are only

defined inside the layers [−δz, 0], [Lz, Lz +δz]. We use the following 3rd order upwind

FD formula for ∂z, ∂zu(zi) ≈ (−3ui−1 − 10ui + 18ui+1 − 6ui+2 +ui+3)/(12dz), where

ui = u(zi). This formula is used ‘verbatim’ in the E− equation while the direction

of upwinding is reversed for the E+ equation. The layers are terminated via the

zero Dirichlet boundary condition E±(−δz, t) = E±(Lz + δz, t) = F±(−δz, t) =

F±(Lz + δz, t) = 0.

The PML parameter α is chosen α = 2 and we take a smooth profile of the

function σz(z), namely

σz(z) = hz[1 + tanh(az(δz)(z − Lz − δz/2))] if Lz ≤ z ≤ Lz + δz

= hz[1 − tanh(az(δz)(z + δz/2))] if − δz ≤ z < 0
(20)

with az, hz > 0. The slope parameter az = az(δz) is taken inversely proportional to

δz so that σz ‘stretches’ with increasing δz. As our tests have shown, this results in

higher convergence rates of the error as a function of δz than if the shape of σz does

not change with δz. Finally, the PDE coefficients cg and κ are fixed at cg, κ = 1.

7.1.1. Linear evolution (Γ = 0). In this test we take Γ = 0, Lz = 8, dz = 0.001 and

the Gaussian initial data E+(z, 0) = E−(z, 0) = e−(z−Lz/2)2 . Setting the amplitude

parameter of σz to hz = 100 and the slope parameter to az = 24/δz, we study the

error convergence with respect to δz, taking δz = 0.6, 0.9, 1.2 and 1.5.

The linear dynamics always lead to E+ and E− propagating in opposite directions

according to the linear advection part of the equations. We present results for three

different points in time; t = 4 (Figs. 9,10) when only radiation but not the main

pulses in E+ and E− have reached the layers, t = 6 (Figs. 11,12) when a large

part of the pulses has entered the PML layers and, in order to also check long

time properties of the PML, t = 20 (Figs. 13,14) when almost all energy has left

the physical domain. The error is computed with respect to the exact solution

obtained by applying the solution operator of the linear PDE in Fourier space on

a physical domain that is large enough so that the solution remains well decayed

at the boundary, namely on [−2Lz, 3Lz − dz]. The resulting convergence and error

values in the L2 norm are shown. Figures 9,11 and 13 show that the obtained
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and (b) error at t = 6 for δz =

1.5.

error convergence is exponential with approximate rates 5.8, 4.6 and 3.6. (Note

that a decrease in the exponent with increasing time is predicted by the analysis in

[16, 8, 9].) Figures 10,12 and 14 show the modulus of both components E+ and E−

on the whole domain including the PML layers for the case of the widest layer and

the corresponding error inside the physical domain. The error plots clearly show
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and (b) error at t = 20 for δz =

1.5.

that the error is concentrated near the physical domain boundaries, which is due to

the reflections induced by truncating the layers to a finite width.

7.1.2. Nonlinear evolution. When Γ > 0, the 1D model without PML (equation

(1) with ∂2
x = 0) has a family of closed form solitary wave solutions, so called gap

solitons [7, 2]. These are localized pulses parameterized by the velocity v ∈ (−cg, cg)

and a detuning parameter δ ∈ (0, π):

E± = ±αeiη

√

κ

2Γ
sin(δ)∆∓1eiσ sech(θ ∓ iδ/2), (21)

where

α =
√

2(1−v2)
3−v2 , ∆ =

(

1−v
1+v

)1/4
,

θ = γκ sin(δ)
(

z−z0

cg
− vt

)

, σ = γκ cos(δ)
(

v
cg

(z − z0) − t
)

,

γ = (1 − v2)−1/2, eiη =
(

− e2θ+e−iδ

e2θ+eiδ

)
2v

3−v2

= e
i 4v

3−v2 arctan

„

e2θ+cos(δ)
sin(δ)

«

.

Both |E+| and |E−| are the hyperbolic secant function and they propagate in the

same direction. We use these special solutions for the following test. Since the

gap solitons are not true solitons in the sense of the Inverse Scattering Transform,

they do not interact elastically with each other. Collisions of two gap solitons result

in large amounts of radiation. We simulate such a collision of two relatively slow

(|v| = 0.3) gap solitons and study radiation absorption by the PML, see Fig. 15. The

radiation travels at the group velocity cg, i.e. much faster than the gap solitons.
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Because of the small speed of the gap solitons we can study relatively long time

dynamics (t = 30) with only small amplitude waves reaching the PML layers. We

also investigate the PML performance at an even larger time (t = 40) when one of

the gap solitons has itself entered the layer.

The chosen parameters are Γ = 1, Lz = 24 and dz = 0.03 and the initial data are
(

E+(z, 0)

E−(z, 0)

)

= GSA(z) + GSB(z),

where GSA is the gap soliton (21) with t = 0, v = 0.3, δ = π/2 and z0 = Lz/4 and

GSB is (21) with t = 0, v = −0.3, δ = π/2 and z0 = 3Lz/4, see Fig. 15a. Four
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Fig. 15. (a) modulus of initial data and (b) after interaction at t = 24

different layer widths are considered: δz = 0.6, 0.9, 1.2 and 1.5 . The amplitude

parameter of the function σz is hz = 60 and the slope parameter is az(δz) = 18/δz.

Figs. 16,17 present the results at t = 30, when both pulses are still inside the

physical domain but have already collided and Figs. 18, 19 are for t = 40, when one

of the pulses has completely entered the layer.

The error (L2) convergence appears to be still exponential with the rate p ≈ 0.8

at t = 30 and p ≈ 0.1 at t = 40. Of course, the error is greatly increased in

the latter case near the layer which the large disturbance has reached. This is

not unexpected as the PML is designed to work only for linear dynamics. The

satisfactory performance for radiation absorption (t = 30) is, nevertheless, very

encouraging as that is the main purpose of PML in nonlinear optics simulations.
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7.2. 2D CME tests. We now turn to the full 2D system (14) on the physical

domain (x, z) ∈ [0, Lx]× [0, Lz] appended with the PML layers of width δx and δz in

x and z respectively, see Fig. 1. Recall that F+ and F− need to be defined only inside

the z−layers [−δx, Lx + δx]× [−δz, 0] and [−δx, Lx + δx]× [Lz, Lz + δz], which is what

we also do in our FD implementation. The FD approximation of ∂z is done using

the same upwind formulas as in Sec. 7.1 and ∂2
x is approximated via the 3rd order

central difference formula ∂2
xu(xi, zj) ≈ (−3ui−2,j + 16ui−1,j − 30ui,j + 16ui+1,j −
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ui+2,j)/(12dx2), where ui,j = u(xi, zj). As in the 1D case, we use zero Dirichlet

boundary conditions on E± as well as F± at the layer ends z = −δz, Lz + δz and

x = −δx, Lx + δx. Time evolution is treated by a 4th order additive Runge Kutta

scheme of the ESDIRK type [21] which allows us to treat the second derivative

(stiff) terms implicitly and the remaining terms explicitly leading to a first order

CFL condition. We only need to solve 2(Nz + 2Nzpml) (1) linear systems of size

Nx × Nx at each stage of the Runge Kutta method because the implicitly treated

part has only x−derivative terms and no coupling between E+ and E−.

The PML parameters are chosen α = 1, ρ = π/4, the function σz is given in (20),

σx is completely analogous (replace all z by x) and we fix hz = hx = 40. Also, once

again, the PDE coefficients are κ = cg = 1.

7.2.1. Linear evolution. We take Γ = 0, Lz = 1, Lx = 2, dz = 0.01, dx = 0.02 and

dt = 0.001 and the Gaussian initial data E+(x, z, 0) = E−(x, z, 0) =

e−30(x−Lx/2)2−40(z−Lz/2)2 . Setting the slope parameters of σz and σx to az = 8/δz

and ax = 12/δx, we study the error convergence with respect to δx and δz, taking

δx = 2δz = 0.4, 0.5, 0.6, 0.7 and 0.8.

Similarly to the 1D case the linear dynamics lead to transport of energy in both

the positive and negative z−directions but more dominant is the diffraction (spread-

ing) in the x−direction. We present results of simulations at t = 0.6 shortly after the

main pulses have entered the z−layers. At this time, however, the fast x−diffraction

has already resulted in a very wide (in x) solution causing a large portion of the

initial energy to be absorbed by the x−layers. This also forces us to use a wide do-

main, namely (x, z) ∈ [−70Lx, 71Lx]× [−Lz, 2Lz] for the application of the solution

operator in Fourier space in order to find the ‘exact’ solution for error computations.

We also present results at t = 6 to study ‘long’ time performance of the PML.

The results at t = 0.6 for the widest layers are presented in Figs. 20, 21 and

22. The convergence is exponential with an approximate rate p ≈ 7.3 and one can

clearly see in Fig. 22 that the error is concentrated near z = Lz for E+ and near

z = 0 for E−, which is due to the artificial reflections caused by layer truncation.

x−symmetric error due to reflections from the x−layer boundaries is, however, also

apparent.

1Nzpml = δz/dz is the number of computational points across the z−width of each PML z−layer.
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For the long time behavior the solution modulus at t = 6 is shown in Fig. 23.

Using differences of solutions computed with different layer widths we estimate the

convergence rate. For exponential rate, when error = ce−pδx, one has

‖ ~E(1) − ~E(2)‖
‖ ~E(1) − ~E(3)‖

=
1 − e−p(δ

(2)
x −δ

(1)
x )

1 − e−p(δ
(3)
x −δ

(1)
x )

. (22)

We choose ~E(1), ~E(2) and ~E(3) to be the solutions (E+, E−)T corresponding to the

three widest layers δ
(1)
x = 2δ

(1)
z = 0.6, δ

(2)
x = 2δ

(2)
z = 0.7 and δ

(3)
x = 2δ

(3)
z = 0.8

respectively. The norms on the left hand side of (22) are L2 norms over the physical

domain [0, Lx]× [0, Lz]. Solving (22) in p via Newton’s iteration results in p ≈ 6.9.

7.2.2. Nonlinear evolution. Unlike for the 1D case, in the 2D nonlinear regime closed

form solitary wave solutions of the CME are not known. Although a limited set

of such solutions has been found numerically [11, 10], here we use a heuristically

selected initial condition that is close to a solitary wave and results in a much slower

diffraction than in the linear regime as well as in co-propagation of energy carried

by E+ and E− in the same z−direction. Of course, radiation waves are present as
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Fig. 22. Error at t = 0.6 for δx = 2δz = 0.8

the solution is not a true solitary wave. The initial data we use are
(

E+(x, z, 0)

E−(x, z, 0)

)

=
√

2 GS(z, 0; v = 0.92, δ = π/2, z0 = Lz/2) sech(b(x − Lx/2)),

where b = 2κ/δ(sin(δ − δ cos(δ))) and GS is the gap soliton (21) centered at z =

Lz/2, with velocity v = 0.92 and detuning δ = π/2, see Fig. 24. We use Γ =

1, Lz = 6, Lx = 12, dz = 0.04, dx = 0.08 and dt = 0.004. The PML parameters are

az = 9.6/δz, ax = 16/δx and δx = 2δx = 1.6, 2, 2.4, 2.8 and 3.2.

Figures 25 and 26 show the solution modulus at t = 2 and t = 4 respectively.

At t = 2 the main pulse is still within the physical domain and at t = 4 it has

entered the z−layer as well as slightly diffracted into the x−layers. The approximate

error convergence rates found by using the relation (22) with δ
(1)
x = 2δ

(1)
z = 2.4,

δ
(2)
x = 2δ

(2)
z = 2.8 and δ

(3)
x = 2δ

(3)
z = 3.2 are p ≈ 3.1 at t = 2 and p ≈ 1.4 at t = 4.

The fact that the decrease in the rate as the pulse enters the layer is not as dramatic

as in the 1D case (Figs. 16, 18) is attributed to the relatively small amplitude of

the pulse as it enters the layer.
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Fig. 23. Solution modulus at t = 6 for δx = 2δz = 0.8.

Fig. 24. Initial data
Fig. 25. Solution modulus

at t = 2 for δx = 2δz = 3.2.

8. Conclusion

We have constructed PML equations for the mixed-type system governing prop-

agation of optical wave packets in both 1D and 2D Bragg resonant photonic waveg-

uides with a cubic nonlinearity, i.e. the Coupled Mode Equations. The construction



21

Fig. 26. Solution modulus at t = 4 for δx = 2δz = 3.2.

builds on an existing approach for general first order hyperbolic systems. The given

analysis proves the desired absorption of the layers, their perfect matching as well

as stability. Via performing a number of numerical FDTD simulations we verify the

analytical results and show that the error due to layer truncation converges expo-

nentially with respect to the layer width even in the nonlinear regime although at a

decreased rate compared to the linear regime. An important topic for continuation

of this work is construction of PML equations for other types of Coupled Mode

Equations in 2D photonic crystals, as classified in [3].
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