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Abstract

In this paper an algorithm based on Finite Element Methods is presented to value

American type of swing contracts with multiple exercise rights. Thereby the reduc-

tion of multiple stopping time problems to a cascade of single stopping time problems

is utilized. The numerical results obtained with the proposed algorithm show a smooth

and stable behavior. This allows an interpretation of the swing options’ optimal exer-

cise boundaries and an analysis of the dependence of swing option prices on the initial

spot prices. A comparison of the Finite Element algorithm to Monte Carlo and lattice

methods demonstrates the strengths of the proposed numerical algorithm.
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1 Introduction

Financial instruments enjoy an increasing popularity in risk management in
energy markets by providing a custom-made protection against undesirable price
movements. Especially swing types of derivatives are in favor as they offer
the desired flexibility in delivery with respect to both timing and amount of
energy. Due to different demands of flexibility, swing options are given in various
forms, often including constraints from production processes. Therewith these
derivatives partially mimic a portfolio of real assets, allowing the seller to hedge
himself by owning production facilities.

Although swing options are given in various forms, many of them are mathe-
matically of the same type, namely optimal multiple stopping time problems.
Despite the simple and intuitive formulation, multiple stopping time problems
do not seem to have attracted much attention in probability literature. Indeed,
the first mathematical analysis was only recently proposed by [5] in which the
authors proved the existence of optimal multiple exercise polices for continuous
reward processes. In addition, they characterized the exercise boundary val-
ues for American put options with multiple exercise rights in the Black-Scholes
model. Their work has been extended by [4] to general, linear diffusions and
reward functions. Due to the lack of closed-form solutions for American type
of contingent claims, various numerical schemes for approximating swing option
prices are proposed in the literature.

To include different types of contract constraints, several authors modeled swing
options as stochastic control problems. For numerically solving these problems,
[26] and [15] proposed to use binomial and trinomial lattices, extending ideas of
[11] where valuation of contingent claims with path-dependence was introduced.
Both approaches made use of a special type of payoff function to make the
computation more efficient. In addition, [15] considered the special case of
gas swing contracts using a one factor, seasonal and mean reverting spot price
model.

Regarding numerical pricing of derivatives, Monte Carlo methods are very pop-
ular. Especially, the Least Squares Monte Carlo method proposed by [19] has
attracted much attention. Both, [23] and [25] combined this method with the
dynamic programming principle and applied it to price swing derivatives. In
contrast, [5] utilized an approach based on Malliavin integration by parts in-
troduced in [3] which seems to be convenient for Gaussian spot price processes.
Another method based on Monte Carlo simulation is presented in [12]. Here, the
algorithm proposed by [13] which approximates the optimal exercise boundary
has been extended. The insight of their method is that any point on an optimal
exercise frontier can be computed as a fixed point of a simple algorithm.

Only recently an approach based on Hamilton-Jacobi-Bellman inequalities has
been presented by [9] for the Black-Scholes model using Finite Difference meth-
ods. The work has been extended in [8] where the author has considered a fairly
general setting in which technical constraints as well as different recovery times
between exercise rights have been taken into account. Another approach based
on a continuous time model is studied in [17]. Here, a replication strategy uti-
lizing futures, call and put options has been derived. The problem is that the
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dynamic strategy appears to be difficult to compute and that needed derivatives
are not traded at energy exchanges.

In contrast to the lately proposed numerical methods, we use the fact that mul-
tiple optimal stopping time problems can be reduced to a cascade of ordinary
stopping time problems as proved in [5]. By applying this reduction to swing
options an algorithm based on Finite Element methods is derived. These nu-
merical schemes offer high flexibility with respect to payoff functions and spot
price models as opposed to other numerical procedures where special structure
properties are needed for efficient computation. In addition, the approximation
of swing option prices as well as exercise regions is highly accurate permitting
interpretations of these quantities.

The paper is organized as follows. First, we give an overview of multiple stopping
time problems where the fundamental results needed for the numerical deviation
are summarized. Then, in Section 3 the numerical algorithm for pricing swing
options is described in detail. The derived procedure is applied to different spot
price models as well as different types of swing derivatives in Section 4 and
compared to lattice and Monte Carlo methods. Additionally, we extend the
derived algorithm to Lévy processes and give a numerical example.

2 Multiple stopping time problems

In this section the most fundamental results concerning the no-arbitrage valua-
tion of finite horizon swing options are provided. Let (Ω,F , P ) be a complete,
filtered probability space with natural filtration F = (Ft)t≥0 generated by a
standard Brownian motion (Wt)t≥0 with values in R. The risk neutral spot
price (St)t≥0 is assumed to be the solution of the stochastic differential equa-
tion

dSt = µ(t, St)Stdt+ σ(t, St)StdWt, S0 = s (2.0.1)

where to ensure existence and uniqueness, it is supposed that the functions
µ : R

+ × R
+ → R, σ : R

+ × R
+ → (0,∞) satisfy

|µ(t, x)| + |σ(t, x)| ≤ c1(1 + |x|) ,

|µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ c2|x− y| ,

for all t ≥ 0, x, y ∈ R
+ and some constants c1, c2 > 0. To emphasize the

dependence of the process on the initial condition S0 = s, we write (S0,s
t )t≥0

instead of (St)t≥0. It is assumed that the price of the risk-free asset is given as
the solution of

dBt = rBtdt, B0 = 1 ,

where r ∈ R
+ denotes the risk-free interest rate.

In energy markets the delivery of a commodity is limited by capacity constraints
usually resulting in a pre-specified refracting time for contracts with several
exercise rights. It can be agreed that the refraction period δ which is greater
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than the minimal delivery time is constant. This separation of two exercise
times not only represents an important contract constraint, but also prevents
the case of single optimal stopping time problems where all rights are exercised
at once. The definition of admissible stopping times includes these important
characteristics of commodity markets.

Let us denote by Tt,T the set of all F-stopping times with values in [t, T ] and
by Tt,∞ the set of all F-stopping times with values greater or equal than t. For
stopping time problems with p ∈ N exercise rights, constant refracting period δ
and maturity T the following sets are defined.

Definition 2.1. The set of admissible stopping time vectors with length p ∈ N

and refracting time δ > 0 is defined by

T
(p)

t := {τ (p) = (τ1, . . . , τp) | τi ∈ Tt,∞ with τ1 ≤ T a.s. and τi+1 − τi ≥ δ

for i = 1, . . . , p− 1}.

Note that the stopping times of a vector τ (p) ∈ T
(p)

t might not all have their
values in the interval [t, T ]. This is essential as it might be desirable not to
exercise all rights of a swing option with maturity T . Then by letting an exercise
right expire, one is not limited by the refraction period and so can fully benefit
from potential better future prices.

According to American contingent claims, see e.g. [24], a continuous reward
function φ : R

+ × R
+ → R

+ which satisfies for all t ∈ R
+ the linear growth

condition |φ(t, s)| ≤ k1+k2s for some constants k1, k2 is considered. In addition,
it is assumed that φ(t, ·) = 0 for t > T . The finite horizon multiple stopping
time problem with maturity T and p ∈ N exercise rights is defined as

V (p)(t, s) := sup
τ (p)∈T

(p)
t

E

[
p∑

i=1

e−r(τi−t)φ(τi, Sτi
) | St = s

]
, (2.0.2)

for all (t, s) ∈ [0, T ]× R
+.

The Theorem below states that the supremum in (2.0.2) is attained for contin-
uous reward functions satisfying the linear growth condition above.

Theorem 2.2. For any p ∈ N there exists τ∗ = (τ∗1 , . . . , τ
∗
p ) ∈ T

(p)
t such that

V (p)(t, s) = E

[
p∑

i=1

e−r(τ∗

i −t)φ(τ∗i , Sτ∗

i
) | St = s

]
.

for all (t, s) ∈ [0, T ]× R
+.

Proof. See [5].

Using this fundamental result, the multiple stopping time problem can be re-
duced to a cascade of single stopping time problems.
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Corollary 2.3. For any p ∈ N, s ∈ R
+ and t ∈ [0, T ]

V (p)(t, s) = sup
τ∈Tt,T

E
[
e−r(τ−t)Φ(p)(τ, Sτ ) | St = s

]
,

with

Φ(p)(t, s) :=

{
φ(t, s) + e−rδE

[
V (p−1)(t+ δ, St+δ) | St = s

]
if t ≤ T − δ

φ(t, s) if t ∈ (T − δ, T ]

V (0)(t, s) := 0 .

Proof. See [5].

For a single stopping time problem, i.e. p = 1, Corollary 2.3 gives the standard
formulation of American contingent claims. Additionally, it allows the intuitive
interpretation of the first optimal stopping time τ∗1 as the time when the sum of
the discounted instantaneous payoff and the value of the stopping time problem
with p − 1 rights is maximal. Due to the constant refracting period, the value
of the stopping time problem with p− 1 exercise rights is given as a discounted
conditional expected value. Moreover, the refraction period limits the number
of exercisable rights until T resulting in the following equation for p ≥ 2

V (p)(t, s) = V (p−1)(t, s) for t ∈ (T − (p− 1)δ, T ], s ∈ R
+. (2.0.3)

which is seen from Corollary 2.3. Next we prove that the only price of a swing
option with finite time horizon which does not create arbitrage is given by
(2.0.2).

Corollary 2.4. The only price of a swing option with p ∈ N exercise rights,
payoff function φ and maturity T which does not create any arbitrage opportu-
nities is given by

V (p)(t, s) = sup
τ (p)∈T

(p)
t

E

[
p∑

i=1

e−r(τi−t)φ(τi, Sτi
) | St = s

]
(2.0.4)

for all (t, s) ∈ [0, T ]× R
+.

Proof. For p = 1 the situation is equivalent to the standard American contingent
claim. The process (e−rtφ(t, St))t∈[0,T ] has continuous paths and φ satisfies
the linear growth condition. Therefore, the only price which does not create
arbitrage is given by (2.0.4) according to Theorem 5.3 in [16].
For p > 1 the proof is obtained from [10] by slight adaptations. To sketch the
main ideas, the set of admissible strategies is defined by

U :=

{
u =

p∑

i=1

1[τi,∞) | τ
(p) = (τ1, . . . , τp) ∈ T

(p)
t

}

with which the multiple optimal stopping time problem can be written as

V (p)(t, s) = sup
u∈U

E

[∫ T

t

e−r(τ−t)φ(τ, Sτ )duτ | St = s

]
.
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We have to prove, that if the initial price of the swing option differs from
V (p)(t, s), there is an arbitrage opportunity.
First suppose that the option is offered at a price V ′ < V (p)(t, s). Then, there
is a long arbitrage which can be seen by the following considerations. The agent
enters a long position at V ′ and exercises the contract by the optimal policy
u∗ ∈ U which according to Theorem 2.2 exists. Simultaneously, he writes a con-
tingent claim promising the cash flow of the strategy u∗. Due to completeness,
the market pays V (p)(t, s) for this claim. Thus, the agent takes the arbitrage
V (p)(t, s) − V ′ > 0.
If the contract is asked at a price V ′ > V (p)(t, s), there is a short arbitrage. The
crucial point shown in [10] is that for each strategy u ∈ U there exists a centered
martingale Mu on [t, T ] for which the mapping u 7→Mu is non-anticipating. In
addition, Mu fulfills for each u ∈ U and all τ ∈ [t, T ] the inequality

∫ τ

t

e−r(q−t)φ(q, St,s
q )duq ≤ V (p)(t, s) +Mu

τ . (2.0.5)

Using this result, an agent entering a short position to receive V ′ is considered.
The part V (p)(t, s) of his capital is used to start a trading strategy π(Mu) whose
discounted wealth equals to the right-hand side of (2.0.5). According to (2.0.5)
the wealth of this strategy covers the agent’s liabilities of the short position for
every u ∈ U . As a result, the agent takes arbitrage V ′ − V (p)(t, s) > 0.

From the existence of multiple optimal stopping times it follows that the only
swing option price which does not create arbitrage is determined by a series of
single stopping time problems. This reduction forms the basis of the numerical
algorithm presented below.

Remark 2.5. In [5] a result similar to Corollary 2.3 is also derived for the
perpetual multiple stopping time problem.

3 Finite Element pricing algorithm

In the previous section it is shown that the value of a swing derivative is given
by a multiple stopping time problem which can be reduced to a cascade of single
stopping time problems. The fair price of a swing option is thus given as an
American contingent claim with reward function equal to the discounted instan-
taneous payoff plus a European option value. The latter represents the swing
option price with one exercise right less after the refracting period δ. Therefore,
a numerical algorithm which inductively calculates prices of swing derivatives
can be constructed in the following way. First, the pth reward function Φ(p)

including the price of a European contingent claim is calculated. Next, an
American contingent claim is evaluated using Φ(p) as payoff function. Accord-
ing to Corollary 2.3, the obtained results are the fair prices of a swing option
with p exercise rights.

Any algorithm could be used for approximating the involved standard European
and American contingent claim prices. However, since the option price curves
are reused for the pth reward function it is essential for these to be highly
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accurate. Using Finite Element methods the whole price curve is obtained fast
and precise.

Before presenting the algorithm for swing type of derivatives, the Finite Element
method for pricing European and American options is briefly reviewed (for more
details see [1] and the references therein). To simplify the notation the Black-
Scholes framework is considered where the risk neutral spot price process (St)t≥0

has the dynamics
dSt = St(rdt + σdWt), S0 = s ,

with positive, constant interest rate r and volatility σ. Note that this assump-
tion is not necessary for the numerical procedure and is just done for illustrating
purposes. For Ω ⊂ R we denote with L2(Ω), H1(Ω) the usual Lebesgue, respec-
tively Sobolev space on Ω and with (·, ·) the L2 inner product.

3.1 European options

The price of a European contingent claim with payoff φ is defined as

h(t, s) := E
[
e−r(T−t)φ(ST )|St = s

]
∀(t, s) ∈ [0, T ]× R

+.

According to the Feynman-Kac formula (see e.g. [24]) the function h satisfies
for t ∈ (0, T ) and s ∈ R

+ the partial differential equation

∂h

∂t
+
σ2

2
s2
∂2h

∂s2
+ rs

∂h

∂s
− rh = 0 ,

with terminal condition

h(T, s) = φ(s) ∀s ∈ R
+ .

To remove the degeneracy at s = 0, we change to logarithmic price x := log(s) ∈
R and denote u(t, x) := h(t, ex), ψ(x) := φ(ex) for all t ∈ [0, T ], x ∈ R. Further-
more, by changing to time to maturity τ := T − t ∈ [0, T ] the partial differential
equation can be written as

∂u

∂τ
+ABS[u] = 0 in (0, T ) × R , (3.1.1)

u(0, ·) = ψ in R ,

where ABS is the Black-Scholes operator

ABS := −
σ2

2

∂2

∂x2
+

(
σ2

2
− r

)
∂

∂x
+ r . (3.1.2)

For the numerical implementation the unbounded domain of the variable x needs
to be truncated to a bounded domain ΩR = [−R,R]. Using the excess to payoff
function

U(τ, x) := u(τ, x) − e−rτψ(x + rτ) ∀(τ, x) ∈ [0, T ]× R .

and weighted Sobolev spaces, it is shown in [22] that the localization error decays
exponentially with R. This is illustrated in Figure 1 for a European put option
(T = 1, K = 1, σ = 0.5, r = 0.05).
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Figure 1: European put option price u (left) and the corresponding excess to
payoff function U (right) in logarithmic spot price.

Therefore, zero Dirichlet boundary conditions can be imposed on the function

UR(τ, x) := u(τ, x) − e−rτψ(x+ rτ) ∀(τ, x) ∈ [0, T ] × ΩR ,

which only defined on the bounded domain. The problem is to determine for
all τ ∈ (0, T ) the function UR(τ, ·) ∈ H1

0 (ΩR) with

H1
0 (ΩR) :=

{
ϕ ∈ H1(ΩR) | ϕ(R) = ϕ(−R) = 0

}
.

Note that since only continuous spot price models of the form (2.0.1) are con-
sidered u could be calculated directly by imposing artificial time-dependent
non-zero boundary conditions. This time dependence would make the algo-
rithm more technical. Furthermore, for an extension to Lévy models the excess
to payoff is important.

Proposition 3.1. The excess to payoff function UR(τ, ·) is the variational so-
lution in H1

0 (ΩR) of

∂UR

∂τ
+ABS[UR] = g in (0, T ) × ΩR , (3.1.3)

UR(0, ·) = 0 in ΩR ,

with

g(τ, ·) := −
∂ (e−rτψ(· + rτ))

∂τ
−ABS[e−rτψ(· + rτ)] , (3.1.4)

or in variational form
(
∂UR

∂τ
, v

)
+ aBS (UR, v) = 〈g, v〉 ∀v ∈ H1

0 (ΩR) , (3.1.5)

UR(0, ·) = 0 in ΩR ,

where 〈·, ·〉 denotes the
(
H1(ΩR)

)∗
×H1(ΩR) duality pairing and

aBS (ϕ, η) :=
σ2

2

(
∂ϕ

∂x
,
∂η

∂x

)
+

(
σ2

2
− r

)(
∂ϕ

∂x
, η

)
+ r (ϕ, η) (3.1.6)

for ϕ, η ∈ H1(ΩR).
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Proof. See [22].

Example 3.2. For the standard European put option with ψ(x) = (K − ex)+

the function g in (3.1.4) is

g(τ, ·) = e−rτ σ
2

2
Kδlog(K)−rτ . (3.1.7)

The partial differential equation (3.1.3) cannot be discretized using Finite Dif-
ferences due to the presence of the Dirac functional on the right hand side.
Nevertheless, using the variational formulation (3.1.5) gives the framework for
Finite Element discretizations. Before discretizing the variational form we need
to show that (3.1.5) has a unique solution.

Proposition 3.3. The bilinear form (3.1.6) is continuous and satisfies a G̊arding
inequality, i.e. there exist constants c0, c1, c2 > 0 such that

|aBS (ϕ, η)| ≤ c0 ‖ϕ‖H1(ΩR) ‖η‖H1(ΩR)

|aBS (ϕ,ϕ)| ≥ c1 ‖ϕ‖
2
H1(ΩR) − c2 ‖ϕ‖

2
L2(ΩR)

for ϕ, η ∈ H1(ΩR). This implies existence and uniqueness of the solution of
(3.1.5).

Proof. See [22].

To approximate the unique solution UR(τ, ·) ∈ H1
0 (ΩR), τ ∈ (0, T ) of (3.1.5) we

next discretize the problem by Finite Elements in ΩR and by the θ-scheme in
time.

Discretization. The truncated domain ΩR is partitioned into an equidistant
mesh of size h = 2R

N+1 for which a finite dimensional subspace Vq
h ⊂ H1

0 (ΩR) is
defined as

Vq
h :=

{
vh ∈ C0(ΩR) : vh|[xi−1, xi] ∈ Pq for i = 1, . . . , N + 1

and vh(−R) = vh(R) = 0}

where Pq is the space of polynomials with degree q ∈ N. Let {ϕi, i = 1, . . . , N}
be the Lagrange basis of Vq

h. Using the Galerkin method, the function UR(τ, ·) ∈
H1

0 (ΩR) is approximated by

UR(τ, ·) ≈ Uh(τ, ·) =

N∑

i=1

U i
h(τ)ϕi(·) .

Substituting Uh into the variational form (3.1.5) we obtain for all τ ∈ (0, T )

N∑

i=1

(ϕi, ϕj)
∂U i

h

∂τ
+

N∑

i=1

aBS (ϕi, ϕj)U
i
h = 〈g, ϕj〉 for j = 1, . . . , N , (3.1.8)

U i
h(0) = 0 for i = 1, . . . , N .
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Next, let Uh := (U1
h , . . . , U

N
h )T , U ′

h := (
∂U1

h

∂τ
, . . . ,

∂UN
h

∂τ
)T and define the mass

matrix M, the stiffness matrix A and the load vector g as

Mj,i := (ϕi, ϕj) , Aj,i := aBS (ϕi, ϕj) i, j = 1, . . . , N, (3.1.9)

gj := 〈g, ϕj〉 j = 1, . . . , N .

With these definitions (3.1.8) can be rewritten in a matrix-vector notation as

MU ′
h(τ) + AUh(τ) = g(τ) ∀τ ∈ (0, T ) (3.1.10)

Uh(0) = 0 .

Finally, the time interval [0, T ] is partitioned in an uniform fashion τ0 = 0 <
τ1 < . . . < τM = T with ∆t = τ1. Applying the θ-time stepping scheme we find

(M + θ∆tA)Uh(τm) = ∆tgθ(τm) + (M − (1 − θ)∆tA)Uh(τm−1) m = 1, . . . ,M

Uh(τ0) = 0 , (3.1.11)

with gθ(τm) = θg(τm) + (1 − θ)g(τm−1). Hence, computing the value of a
European contingent claim at time t = 0, i.e. calculating Uh(τM ), the linear
system (3.1.11) has to be solved at each time step.

3.2 American options

The price of an American contingent claim with time-dependent reward function
φ is given by

h(t, s) := sup
τ∈Tt,T

E
[
e−r(τ−t)φ(τ, Sτ ) | St = s

]
∀(t, s) ∈ [0, T ]× R

+ .

The value h satisfies (see e.g. [16]) the variational inequality

∂h

∂t
+
σ2

2
s2
∂2h

∂s2
+ rs

∂h

∂s
− rh ≤ 0 in (0, T )× R

+

h ≥ φ in (0, T )× R
+

(h− φ)

(
∂h

∂t
+
σ2

2
s2
∂2h

∂s2
+ rs

∂h

∂s
− rh

)
= 0 in (0, T )× R

+

h(T, ·) = φ(T, ·) in R
+ .

Like in the case of European options, we first change to logarithmic prices
x := log(s) ∈ R and to time to maturity τ := T − t ∈ [0, T ] for which the
functions u(τ, x) := h(T − τ, ex), ψ(τ, x) := φ(T − τ, ex) are defined. Then, the
function u satisfies

∂u

∂τ
+ABS[u] ≥ 0 in (0, T ) × R

u ≥ ψ in (0, T ) × R (3.2.1)

(u− ψ)

(
∂u

∂τ
+ABS[u]

)
= 0 in (0, T ) × R

u(0, ·) = ψ(0, ·) in R ,
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with the Black-Scholes operator ABS[·] defined in (3.1.2). Next, we consider as
proposed in [21] the excess to payoff function

U(τ, x) := u(τ, x) − ψ(τ, x) ∀(τ, x) ∈ [0, T ]× R .

Like for the European option the excess to payoff function decays exponentially
as illustrated in Figure 2 for an American put (T = 1, K = 1, σ = 0.5, r = 0.05).
Note that U = 0 in the exercise region. Zero Dirichlet boundary conditions can
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Figure 2: American put option price u (left) and the corresponding excess to
payoff function U (right) in logarithmic spot price.

be imposed and we look for a solution UR(τ, ·) ∈ K0 where the convex cone K0

is defined by
K0 := {v ∈ H1

0 (ΩR) | v ≥ 0 a.e. x} .

Proposition 3.4. For all τ ∈ (0, T ) the excess to payoff UR(τ, ·) is the solution
in K0 of
(
∂UR

∂τ
, v − UR

)
+ aBS (UR, v − UR) ≥ 〈f, v − UR〉 ∀v ∈ K0 , (3.2.2)

UR(0, ·) = 0 in ΩR

where 〈·, ·〉 denotes the
(
H1(ΩR)

)∗
×H1(ΩR) duality pairing, the bilinear form

aBS(·, ·) is given by (3.1.6) and the function f is

f(τ, ·) := −
∂ψ

∂τ
(τ, ·) −ABS[ψ(τ, ·)] in ΩR . (3.2.3)

Proof. See [21].

Example 3.5. For the standard American put option with ψ(τ, x) = (K−ex)+

the function f in (3.2.3) is

f(τ, ·) =
σ2

2
Kδlog(K) − rK1(−∞,log K]. (3.2.4)

The continuity and coercivity of the bilinear form aBS(·, ·) imply according to
[14] existence and uniqueness of the solution of the variational form (3.2.2). We
next discretize the problem (3.2.2) by Finite Elements.
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Discretization. Space and time are discretized as presented in Section 3.1 and
to ensure vh ∈ Vq

h ∩K0 a.e. on ΩR only linear basis functions are considered.
By defining

K0 := {vh ∈ R
N | vi

h ≥ 0 for i = 1, . . . , N} ,

and using the mass matrix M, the stiffness matrix A and the load vector f as
defined in (3.1.9), a sequence of linear complementarity problems is obtained
for (3.2.2). The solutions Uh(τm) ∈ K0 are for m = 1, . . . ,M determined by

(M + θ∆tA)Uh(τm) ≥ ∆tfθ(τm) + (M − (1 − θ)∆tA)Uh(τm−1)

Uh(τm)T
(
(M + ∆tA)Uh(τm) − ∆tfθ(τm) − (M − (1 − θ)∆tA)Uh(τm−1)

)
= 0

Uh(τ0) = 0 , (3.2.5)

with fθ(τm) = θf(τm) + (1 − θ)f(τm−1). There are different methods available
for solving linear complementarity problems. Most of these need additional
requirements since A is in general not symmetric. For PSOR the matrix M +
θ∆tA needs to be diagonal dominant [1] and in [2] conditions on the time and
space discretization are imposed. We use the algorithm proposed in [21] which
transforms (3.2.5) into a contracting fix-point problem where in each iteration
a symmetric linear complementarity problem is solved.

3.3 Swing options

Now both described approaches are brought together and functions similar to
excess to payoff functions for swing options are determined. Denote by ψ(τ, x)
the payoff function and by u(p)(τ, x) the swing option price with p ∈ N exer-
cise rights in time to maturity τ ∈ [0, T ] and logarithmic spot price x ∈ R.
According to Corollary 2.3 swing option prices can be determined as prices of
American contingent claims. Using (3.2.1), the function u(p) is the solution of
the variational inequality

∂u(p)

∂τ
+ABS[u(p)] ≥ 0 in (0, T )× R

u(p) ≥ Ψ(p) in (0, T )× R

(
u(p) − Ψ(p)

)(∂u(p)

∂τ
+ABS[u(p)]

)
= 0 in (0, T )× R

u(p)(0, ·) = Ψ(p)(0, ·) in R ,

with pth reward function

Ψ(p)(τ, x) :=

{
ψ(τ, x) + u

(p)
τ (δ, x) for τ ∈ [δ, T )

ψ(τ, x) for τ ∈ [0, δ) .
(3.3.1)

This reward function involves a European option price u
(p)
τ which according to

Corollary 2.3 and (3.1.1) satisfies the partial differential equation

∂u
(p)
τ

∂t
+ABS[u(p)

τ ] = 0 in (0, δ) × R ,

u(p)
τ (0, ·) = u(p−1)(τ − δ, ·) in R .

11



To impose zero boundary conditions an excess to payoff function U (p) for swing
options has to be introduced. In contrast to American and European options,
the pth reward function Ψ(p) in (3.3.1) is computed iteratively and so its exact
values are not known in advance. This makes the construction of an excess
to payoff function using Ψ(p) difficult. Therefore, another function ψ(p) which
is in general not the pth reward function, but shares the same asymptotics
limx→±∞ ψ(p)(τ, x) = limx→±∞ Ψ(p)(τ, x) is used. A natural choice for ψ(p) is
obtained by using iteratively the shifted payoff function of the European option

instead of its price u
(p)
τ . This results in the following iterative definition

ψ(p)(τ, x) :=

{
ψ(τ, x) + e−rδψ(p−1)(τ, x+ rδ) for τ ≥ (p− 1)δ

ψ(p−1)(τ, x) for τ ∈ [0, (p− 1)δ)

with ψ(0)(τ, x) = 0. Using property (2.0.3), it is easily seen that the function
ψ(p) has the same asymptotics as the pth reward function Ψ(p). The excess to
payoff function is defined as

U (p)(τ, x) := u(p)(τ, x) − ψ(p)(τ, x) ∀(τ, x) ∈ [0, T ]× R .

Using weighted Sobolev spaces and similar arguments like in [22], it can be
easily shown that U (p) decays exponentially. Therefore, zero Dirichlet boundary

conditions on U
(p)
R are imposed on the truncated domain ΩR. Before stating

the variational formulation we define according to (3.2.3)

f (p)(τ, x) := −
∂
(
ψ(p)(τ, x)

)

∂τ
−ABS

[
ψ(p)(τ, x)

]

=

{
f (1)(τ, x) + e−rδf (p−1)(τ − δ, x+ rδ) for τ ≥ (p− 1)δ

f (p−1)(τ, x) for τ ∈ [0, (p− 1)δ),

with f (0)(τ, x) := 0 for (τ, x) ∈ (−δ, T )× R and according to (3.1.4)

g(p)
τ (t, x) := −

∂
(
e−rtψ(p)(τ − δ, x+ rt)

)

∂t
−ABS

[
e−rtψ(p)(τ − δ, x+ rt)

]

=

{
g
(1)
τ (t, x) + e−rδg

(p−1)
τ (t, x+ rδ) for τ ≥ (p− 1)δ

g
(p−1)
τ (t, x) for τ ∈ [0, (p− 1)δ),

with g
(0)
τ (t, x) := 0 for (t, x) ∈ (0, δ) × R, τ ∈ [δ, T ).

Remark 3.6. For swing put options with ψ(τ, x) = (K − ex)+ the functions

g
(1)
τ and f (1) are given by (3.1.7) and (3.2.4), respectively.

The following Proposition results from the variational forms (3.1.5), (3.2.2) and
the iterative construction above.

Proposition 3.7. For all τ ∈ (0, T ) the excess to payoff function U
(p)
R

(τ, ·)
solves

(
∂U

(p)
R

∂τ
, v − U

(p)
R

)
+ aBS

(
U

(p)
R
, v − U

(p)
R

)
≥ 〈f (p), v − U

(p)
R

〉 , (3.3.2)

U
(p)
R

(0, ·) = 0 ,
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for l = 1 : p

for τ = (l − 1)δ : ∆t : T

if l > 1

calculate U
(l)
τ (δ, ·) using (3.3.3)

else

U
(l)
τ (δ, ·) = 0

endif

calculate U (l)(τ, ·) using (3.3.2)

end

end

Set u(p)(0, ·) = U (p)(0, ·) + ψ(p)(0, ·)

Table 1: Pseudo code for swing option prices

for all v ∈ K
(p)
0 (τ) where the cone K

(1)
0 (τ) := K0 and for p > 1

K
(p)
0 (τ) :=

{
v ∈ H1

0 (ΩR) | v ≥

{
U

(p)
τ (δ, ·) for τ ≥ δ

0 for τ ∈ [0, δ)

}
a.e. x

}
,

with the function U
(p)
τ (t, ·) satisfying for all t ∈ (0, δ)

(
∂U

(p)
τ

∂t
, w

)
+ aBS

(
U (p)

τ , w
)

= 〈g(p−1)
τ , w〉 , ∀w ∈ H1

0 (ΩR) (3.3.3)

U (p)
τ (0, ·) = U

(p−1)
R

(τ − δ, ·) in ΩR .

Combining the variational formulations of European and American options a
variational form for swing option prices in excess to payoff has been derived.
With the performed transformations artificial time-dependent non-zero bound-
ary conditions are avoided. The derived algorithm is illustrated as pseudo code
in Table 1.

Remark 3.8. Assuming a general spot price model (2.0.1), the only difference
in the variational formulations (3.3.2), (3.3.3) is the bilinear form aBS and the
resulting f (1), g(1).

Discretization. The space is discretized as presented in Sections 3.2 with linear
basis functions. To obtain the initial condition for (3.3.3) the time discretization
has to be chosen such that δ/∆t ∈ N. Then, the variational inequality (3.3.2)
transforms to a system of linear complementarity problems similar to (3.2.5) and
for the variational form (3.3.3) a system of linear equations similar to (3.1.11)
is obtained.
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4 Numerical results

In this section the derived algorithm is applied in the Black-Scholes model as
well as for a mean reverting, seasonal spot price. The obtained numerical results
show a smooth and stable behavior allowing to interpret the optimal exercise
boundary and to analyze prices of additional rights in swing contracts. Ad-
ditionally, the proposed Finite Element procedure is compared to lattice and
Monte Carlo methods. Finally, we extend the algorithm to Lévy models and
give a numerical example.

4.1 Valuation in a Black-Scholes market

Let (Wt)t≥0 denote a Brownian motion on the probability space (Ω,F , P ) with
associated, complete filtration F = (Ft)t≥0. The spot price process (St)t≥0 is
assumed to have the following risk neutral dynamics

dSt = Strdt + StσdWt, S0 = s, (4.1.1)

where r and σ are positive constants, representing the interest rate and the
volatility.

It is well known that in the case of no dividends, the American call option
price is equal to the price of a European call option as there is never any value
in exercising early. Thus the optimal exercise strategy of a swing call option
starting at time t with p exercise rights and maturity T is given by

τ∗ = (T − (p− 1)δ, . . . , T − δ, T ) ∈ T
(p)

t for t ≤ T − (p− 1)δ.

Consequently, swing derivatives with multiple American put rights and payoff
functions

φ(t, s) = (K − s)+ for (t, s) ∈ [0, T ]× R
+, K > 0 (4.1.2)

are examined in the sequel. The exercise regions of such derivatives are accord-
ing to Corollary 2.3 characterized by

V (p)(t, s) = Φ(p)(t, s) ⇐⇒ 0 < s ≤ s∗p(t) .

It is optimal to exercise the pth right at time t, if the current spot price s is
equal or below the boundary value s∗p(t). The influence of the refraction period
on option prices (see (2.0.3)) also affects the exercise boundary values for which
the following equation holds

s∗p(t) = s∗p−1(t) for t ∈ (T − (p− 1)δ, T ] , (4.1.3)

for all p ≥ 2. Exercise regions coincide as soon as the number of exercisable
rights is limited.

For the numerical results the following parameter values and discretizations

T = 1, K = 100, σ = 0.3, r = 0.05, δ = 0.1 (4.1.4)

∆t = 10−3, N = 4000, ΩR = [−3, 3] · lnK.
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Figure 3: Finite horizon swing put option prices at time t = 0 for up to 5
exercise rights using the Black-Scholes model.

are used. The finite element approximation of fair swing put option prices with
up to 5 exercise rights are presented in Figure 3. It is not surprising that swing
and American put option values are similar in appearance. The influence of the
refraction period is not visually observable on swing prices for up to 5 rights. In
contrast, the impact of the refraction period on exercise regions characterized
in (4.1.3) can be seen in Figure 4 where the calculated exercise boundary values
are presented. Moreover, it is observed that for p, p′ ∈ N with p ≥ p′
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Figure 4: Exercise boundary values of a finite horizon swing put option for up
to 5 exercise rights using the Black-Scholes model.

s∗p(t) ≥ s∗p′(t) ∀ t ∈ [0, T ]

This monotonicity, which has been proved by [5] for the perpetual case, yet
remains open for finite horizon swing put options. Another property of the
exercise boundary functions s∗p(·) is that they are strictly increasing on the time
interval [0, T − (p− 1)δ].
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4.2 Valuation in electricity markets

As swing options are widely used in commodity and especially electricity mar-
kets, we now turn to the mean reverting seasonal spot price model proposed in
[20]. Here, the risk neutral spot price (St)t≥0 is assumed to be the solution to
the stochastic differential equation

dSt = κ(b(t) − log(St))Stdt+ σStdWt, S0 = s , (4.2.1)

where b(t) is defined as

b(t) :=
1

κ

(
σ2

2
+
df

dt
(t)

)
+ f(t) −

λκ

σ
,

for a deterministic, continuously differentiable function f(t). Remark, that the
mean reversion level is a time-dependent function which captures the seasonal
patterns observed in electrical spot prices. In [20] the authors suggest

f(t) := δ + γ cos

(
(t+ ω)

2π

365

)
, (4.2.2)

for weekdays and report the following parameter estimates

κ = 0.016, σ = 0.086, λ = 0.036, δ = 4.867, γ = 0.306, ω = 0.836.
(4.2.3)

These are obtained from daily electrical spot and futures price observations
from 01/01/1993 to 31/12/1999 at the Nordic Power Exchange, Nord Pool ASA.
For illustration one path of this model using the above parameter estimates is
displayed in Figure 5. The large influence of the seasonal mean reversion level
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Figure 5: Spot price scenario of the model (4.2.1), (4.2.2), (4.2.3).

on the risk neutral price process (St)t≥0 is clearly visible.

Due to different demands and the non-storable nature of electrical power, swing
call options are of special interest in electricity markets. One type of swing call
option is the so-called virtual hydro storage. This derivative gives the contract
holder a fixed number of exercise rights for virtually or physically producing
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electrical power at almost no production costs, like it is done by running a
hydro power plant. Assuming production costs K ≥ 0 and a finite time horizon
[0, T ] its payoff function is given by

φ(t, s) = (s−K)+ for (t, s) ∈ [0, T ]× R
+ . (4.2.4)

For the numerical valuation the electrical spot price model (4.2.1) with estimates
(4.2.3) as well as the following parameter values and discretizations

T = 1, δ = 0.1, r = 0.05, K = 10,

∆t = 10−3, N = 4000, ΩR = [−9, 9].

are considered. The finite element approximation of virtual hydro storage prices
at time t = 0 for up to 7 exercise rights are presented in Figure 6. Remark that
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Figure 6: Virtual hydro storage prices at time t = 0 for up to 7 exercise rights
using the mean reverting, seasonal spot price model (4.2.1).

option prices seem to increase linearly with initial spot prices. Moreover, the
value of an additional right seems to depend on the already available number of
exercise rights in a contract but not on the initial spot price. This might results
from the high volatility and the mean reverting property of the chosen spot
price model. However, the impact of the seasonality on the exercise boundary
values presented in Figure 7 is non negligible. By comparing the form of the
function s∗1(·) plotted in time to maturity with the simulated spot price scenario
in Figure 5, we observe that both inherit the structure of the time-dependent
mean reversion level.

4.3 Comparison to other methods

Next, the derived algorithm is compared to lattice and Monte Carlo methods
with respect to accuracy and computational time. Note that the algorithms
considered for the comparison need to be able to handle swing options of the
form (2.0.2). This is the case for the Monte Carlo approach presented in [5].
For lattice methods, to the best of our knowledge there is no specific algorithm
in the literature that considers this type of swing options. Thus, we apply for
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Figure 7: Exercise boundary values of virtual hydro storages in time to maturity
for up to 7 exercise rights using the mean reverting, seasonal spot price model
(4.2.1).

the lattice approach Corollary 2.3 and standard binomial tree methods. All
computations are performed on a Dual-Core AMD Opteron(tm) Processor 2218
with 2.61GHz using MATLAB 7.4.

For the comparison a swing put option with up to five exercise rights and initial
spot price s = 100 is considered. The other parameters used for the computation
are

T = 1, K = 100, σ = 0.3, r = 0.05, δ = 0.1 .

As a benchmark solution we take the results of the Finite Element algorithm
with 4000 mesh points, 103 time steps and θ = 0.5. These swing option
prices are V (1)(0, 100) = 9.8700, V (2)(0, 100) = 19.2550, V (3)(0, 100) =
28.1265, V (4)(0, 100) = 36.4505, V (5)(0, 100) = 44.1843.

For the computations with the Monte Carlo method we use 20 time points
and M number of simulations. The swing option prices are calculated with 20
different seeds and compared to the above benchmark solutions. The absolute
errors, [standard deviation] and the elapsed time (of one run) in seconds are
presented in Table 2.

M1 = 2000 M2 = 4000 M3 = 8000 M4 = 16000

Error Time Error Time Error Time Error Time

p = 1 3.3e-01 [0.15] 6.53 1.8e-01 [0.11] 25.51 6.1e-02 [0.07] 100.61 1.1e-02 [0.04] 468.28

p = 2 8.9e-01 [0.41] 18.79 4.5e-01 [0.35] 73.40 8.6e-02 [0.21] 289.58 8.1e-02 [0.12] 1349.56

p = 3 1.8e+00 [0.78] 31.06 9.0e-01 [0.67] 121.29 2.1e-01 [0.38] 478.55 1.3e-01 [0.21] 2230.34

p = 4 2.8e+00 [1.20] 43.33 1.5e+00 [1.04] 169.18 3.8e-01 [0.59] 667.58 1.5e-01 [0.31] 3111.24

p = 5 3.7e+00 [1.68] 55.59 2.0e+00 [1.44] 217.07 5.6e-01 [0.80] 856.62 1.8e-01 [0.44] 3991.97

Table 2: Absolute errors and elapsed time using the Monte Carlo method for a
swing option with up to five exercise rights.

For the binomial tree method we use M time points and compare the results
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with the benchmark solutions. The absolute errors and the elapsed time in
seconds are presented in Table 3.

M1 = 200 M2 = 400 M3 = 800 M4 = 1600

Error Time Error Time Error Time Error Time

p = 1 6.9e-03 0.02 3.4e-03 0.05 1.6e-03 0.19 8.0e-04 0.69

p = 2 1.5e-02 0.06 7.3e-03 0.23 3.7e-03 1.10 2.0e-03 5.85

p = 3 2.3e-02 0.10 1.2e-02 0.39 6.0e-03 1.86 3.3e-03 10.11

p = 4 3.2e-02 0.13 1.6e-02 0.53 8.1e-03 2.49 4.4e-03 13.54

p = 5 4.1e-02 0.16 2.0e-02 0.64 1.0e-02 2.99 5.1e-03 16.21

Table 3: Absolute errors and elapsed time using the binomial tree method for
a swing option with five exercise rights.

Finally, the option prices are computed with the derived Finite Element algo-
rithm. We consider 103 time points, θ = 0.5 and N number of mesh points in
the interval ΩR = [−3, 3] · lnK. The absolute errors and the elapsed time in
seconds are presented in Table 4.

N1 = 100 N2 = 200 N3 = 400 N4 = 800

Error Time Error Time Error Time Error Time

p = 1 2.5e-03 0.08 3.0e-04 0.12 2.4e-04 0.19 1.1e-04 0.47

p = 2 3.7e-03 2.03 4.2e-03 2.85 1.6e-03 4.49 2.3e-04 7.84

p = 3 1.5e-02 3.75 1.1e-02 5.33 3.4e-03 8.26 7.1e-04 14.41

p = 4 4.0e-02 5.27 1.9e-02 7.43 3.8e-03 11.57 9.9e-04 20.16

p = 5 7.4e-02 6.57 2.6e-02 9.23 6.5e-03 14.40 3.4e-03 25.10

Table 4: Absolute errors and elapsed time using the Finite Element method for
a swing option with five exercise rights.

In addition to the absolute error, we analyze the experimental convergence rate
of our algorithm rNi

=
(
ln errorNi+1 − ln errorNi

)
/ (lnNi+1 − lnNi) with i =

1, 2, 3. For the swing option with five exercise rights (last row in Table 4) the
rates are rN1 = 1.5, rN2 = 2.0, rN3 = 1.8 and match the expected rate O( 1

N2 )
well. Similarly for the lattice method we obtain the rates rM1 = 1.0, rM2 =
1.0, rM3 = 1.0.

Looking at the computational results, it is observed that the accuracy of the
Finite Element and binomial tree methods are very high even though the com-
putational times are low. The computation time is higher for the Monte Carlo
method, but the results’ accuracy is lower in comparison to the other procedures.

Apart from the computational results, some remarks about the differences of
the methods should be made. It is important to note that by using Monte Carlo
simulations or lattice methods the swing option price for only one initial spot
price is found. In contrast, the whole swing option price curve is obtained by
applying a Finite Element method. The knowledge of the option curve allows
to interpret values of additional rights in swing contracts and to observe the
dependence on initial spot prices. Another aspect is the computation of the
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exercise boundary values. In the Finite Element approach, exercise boundary
values are obtained simultaneous and so no additional computational time is
needed. Using Monte Carlo simulations or lattice methods, swing option prices
for several initial spot prices would have to be computed to obtain reasonable
information about the exercise regions.

4.4 Extension to valuation in a multiperiod Lévy market

For the theoretical results in Section 2 we only considered spot prices of the
form (2.0.1). Because the proof of Corollary 2.3 in [5] is only given for these
continuous processes. Nevertheless, the Algorithm 1 can easily be adapted to
Lévy processes.

Let X be a Lévy process with Lévy measure ν. We consider the spot price
process

dSt = Strdt +

∫

R

St−(ez − 1)J̃(dt, dz) S0 = s, (4.4.1)

where J̃ is the compensated jump measure of X (see [7]). The corresponding
bilinear form, derived in [22] is given by

ajump(ϕ, η) = −

∫

R

∫

R

(
ϕ(x+ z) − ϕ(x) − (ez − 1)

∂ϕ

∂x
(x)

)
η(x)ν(dz) dx ,

for ϕ, η ∈ H1
0 (ΩR). With this bilinear form, European and American options

can be priced similarly as described in Section 3.1 and 3.2. We here are not
going further into details, but refer the reader to the papers [22, 21]. Rather we
present an example to illustrate the differences to continuous processes.

For the numerical example a so-called CGMY [6] process is considered where
the Lévy density k(z) is given by

k(z) = C

(
eGz

|z|1+Y
1{z<0} +

e−Mz

|z|1+Y
1{z>0}

)
. (4.4.2)

with C = 1, G = 10, M = 10 and Y = 0.5. All the other parameter are like in
the Black-Scholes model.

T = 1, K = 100, r = 0.05, δ = 0.1

∆t = 10−3, N = 4000, ΩR = [−3, 3] · lnK.

The computed swing put option prices with up to five exercise rights look sim-
ilarly to the prices calculated in the Black-Scholes model (Figure 3) and are
thus not presented here. Only the exercise boundary of the swing put option
is illustrated in Figure 8. In contrast to the result in the Black-Scholes model
(see Figure 4), the exercise boundary values in a Lévy model never reach the
option’s strike price which is well known for American options [18, 21].

We would like to emphasize again that Theorem 2.2 and Corollary 2.3 are not
proven in the literature for Lévy models (4.4.1). Therefore, it is not known if the
multiple stopping time problem can be reduced to a cascade of single stopping
time problems also for Lévy processes. This is a topic for further research.
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Figure 8: Exercise boundary values of a finite horizon swing put option for up
to 5 exercise rights using Lévy model (4.4.1), (4.4.2).

5 Conclusions

The transformation of multiple stopping time problems to series of single stop-
ping time problems allows to apply Finite Element methods for pricing swing
options. The proposed procedure is highly flexible with respect to different spot
price models and payoff functions. In particular, the presented numerical results
show a smooth and stable behavior, allowing to interpret the exercise boundary
values and to analyze prices of addition exercise rights in swing contracts. More-
over, computational speed and accuracy are superior to Monte Carlo simulations
and similar to binomial tree methods. The algorithm is based on a very general
setting for European and American option prices and can thus be adapted to
Lévy models under the assumption that swing contracts in these markets can
be reduced to optimal stopping time problems with multiple periods.
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[18] S. Z. Levendorskĭı. Early exercise boundary and option prices in Lévy
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