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Abstract

A scalar, elliptic boundary value problem in divergence form with stochastic diffusion coefficient
a(x, ω) in a bounded domain D ⊂ R

d is reformulated as a deterministic, infinite-dimensional,
parametric problem by separation of deterministic (x ∈ D) and stochastic (ω ∈ Ω) variables
in a(x, ω) via e.g. Karhunen-Loève or Legendre polynomial chaos expansion in the sense of N.
Wiener [Wie38].

Deterministic, approximate solvers are based on projection of this problem into a product
probability space of finite dimension M and sparse discretizations of the resulting M dimen-
sional parametric problem.

Under regularity assumptions on the fluctuation of a(x, ω) in the deterministic variable x,
the convergence rate of the deterministic solution algorithm is analyzed in terms of the chaos
dimension M and of the number N of deterministic problems to be solved as both, dimension
M and the multiresolution level of the sparse discretization resp. the degree of the polynomial
chaos expansion increase simultaneously.

Based on analytic regularity estimates of the solution to the truncated parametric deter-

ministic problem, new sparse FE spaces for the discretization in the parametric variable are

proposed. Optimal convergence rates of the semi-discrete solution to the stochastic problem, in

terms of the number N of deterministic problems to be solved, are proved for these spaces when

the dimension M of the parameter space increases simultaneously with the multiresolution level

in the sparse approximation resp. the spectral order in the polynomial chaos approximation.
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1 Introduction

The numerical solution of elliptic partial differential equations with stochastic input
data by deterministic methods has been employed in engineering for several decades
now (see e.g. [GS97] and the references therein). We distinguish two broad classes of
approaches to the deterministic numerical solution of elliptic stochastic partial differ-
ential equations – the perturbation approach and the spectral approach.

The perturbation approach is widely used in engineering applications (see [KH92]
and references therein). There are several variants, of which the first order second mo-
ment (FOSM) (see e.g. [DW81]) technique became very popular, all based on Neumann
expansion of the stochastic solution around its mean field (see [Kel64]), and succesive
computation of (in general only) low order terms in this expansion.

The spectral approach is based on the Wiener/generalized polynomial chaos (W/gPC)
expansion (see [Wie38], [Sch00], [XK02]) of the input random fields and of the random
solution combined with either Galerkin projection or collocation in the stochastic vari-
ables of the input data. The numerical analysis of this approach has been started
rather recently, see e.g. [BTZ04] and the references there. There, exponential con-
vergence rates have been proved with respect to the spectral order of the stochastic
discretization, at fixed dimension M of the stochastic parametrization. Since, however,
the number M of stochastic variables in Wiener’s gPC parametrization of random
fields is unbounded, gPC type formulations approximate stochasticity of the random
data and of the random solution by a deterministic problem in a finite number M of
these ‘stochastic’ variables. It is essential here that the dimension M of the stochastic
variables is a discretization parameter for the input and output random fields and can
therefore be arbitrarily large.

Hence, exponential convergence with respect to the polynomial degree of tensor prod-
uct type polynomial approximations in these M variables as shown, e.g., in [BTZ04]
does not, for large M , imply low computational complexity of the spectral approach.

More precisely, if tensor product polynomial discretizations are used in the stochas-
tic variables, to ensure consistency the number of stochastic degrees of freedom (and,
hence, the number of deterministic BVPs to be solved) must increase at least expo-
nentially with simultaneously increasing polynomial degree and stochastic dimension,
even with adaptive and anisotropic polynomial degree selection. As a consequence,
exponential convergence in terms of the number of stochastic degrees of freedom and,
hence, in the number of deterministic problems to be solved is lost in space dimension
larger than 1, and only subalgebraic convergence rate can be shown (see [FST05]).

In the present paper, we present new regularity estimates and sparse approximation
error bounds for PDEs with stochastic data. As in other recent works (e.g. [BTZ04]),
we consider as a model problem a diffusion process in a random medium occupying a
bounded domain D ⊂ R

d with Lipschitz boundary Γ = ∂D. For brevity of exposition,
we focus here only on the error analysis of semidiscretization in the stochastic variable.

The uncertainty in the diffusion coefficient a is modelled through the dependence
on a stochastic parameter ω ∈ Ω, where (Ω,Σ, P ) is a probability space.
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Assumption 1.1 We consider a ∈ L∞(D × Ω) to be strictly positive, with lower and
upper bounds a− and a+ respectively,

a− ≤ a(x, ω) ≤ a+ λ× P -a.e. (x, ω) ∈ D × Ω. (1.1)

The stochastic diffusion problem then reads,

{
−div(a(·, ω)∇u(·, ω)) = f(·, ω) in D

u(·, ω) = 0 on ∂D
P -a.e. ω ∈ Ω. (1.2)

The coefficient a(x, ω) as well as the solution u(x, ω) are random fields in D ⊂ R
d ,

i.e. jointly measurable functions from D × Ω to R. Whereas the random field u(x, ω)
is a mathematically well-defined object (see Theorem 1.3 below), the task ‘compute
u(x, ω)’ is less obvious to realize numerically and of limited interest in practice. In
applications only certain statistics and moments of u(x, ω) are of interest, and this is
also our goal of computation, which we formulate as follows.

Problem 1.2 Given statistics (w.r.t. ω ∈ Ω) of the stochastic data a, compute statis-
tics of the random solution u to (1.2), like mean field,

Eu : D → R, Eu(x) :=

∫

Ω
u(x, ω) dP (ω) x ∈ D,

2-point correlation (or higher order moments),

Cu : D ×D → R, Cu(x, x′) :=

∫

Ω
u(x, ω)u(x′, ω) dP (ω) (x, x′) ∈ D ×D,

or probabilistic level sets,

Dα
ε := {x ∈ D : P (|u(x, ·)| > α) < ε}.

As mentioned above, good performance of the perturbation approach has been
demonstrated in practice (at least for small fluctuations, when the perturbation series
could be truncated after the first order terms). The computation of higher order
terms in the perturbation series (needed in the case of relatively large fluctuations)
involves numerical approximation of higher order moments of the random solution.
Using standard discretizations, this results in a loss of linear complexity1.

Using sparse approximation of the higher order moments of the data, perturbation
algorithms of linear complexity have been developed recently (see [Tod05b]). The re-
sults in the present work can be viewed as spectral counterparts of those in [Tod05b]
on the convergence of the perturbation approach.

1Here and throughout the paper, linear complexity is understood as log-linear with respect to N ,
the number of degrees of freedom for a FE discretization of one deterministic version of the stochastic
boundary value problem.
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The parametrization of uncertainty is one of the key points in the numerical treat-
ment of problems with stochastic data. A Karhunen-Loève expansion separating the
deterministic and stochastic variables optimally in the mean-square sense (see e.g.
[Loè77], [Loè78]) is a standard procedure to transform the original stochastic prob-
lem into a parametric deterministic one. The resulting parametrization belongs to a
hypercube of dimension M which is itself a discretization parameter.

The parametric problem is then solved using e.g. a stochastic Galerkin (sG) method
(variationally in both the parameter and the physical variable - note the need for numer-
ical integration schemes in high dimensional domains) or by collocation and interpola-
tion in the parametric variable. Backward substitution finally gives an approximation
to the original stochastic problem and postprocessing is required to obtain statistical
information on the random solution. Just as in the case of a MC simulation, detailed
information on the joint probability densities of the input data is in general needed.
Tensor product discretization/collocation grids in the parametric variable result how-
ever in superalgebraic complexity rates (see e.g. [BTZ04], [FST05], [MK05]). This is
due to the unfavourable scaling of the required computational effort with the parameter
dimension M .

The main result of this paper (Theorem 4.17) is an explicit construction of FE
spaces in the parametric (i.e. stochastic) variable, which are not of tensor product type,
and for which optimal convergence rates for the corresponding approximations of (1.2)
hold (algebraic order p + 1 for the h-FEM based construction, where p denotes the
fixed polynomial degree, and superalgebraic for the p-FEM based polynomial chaos).
Note that the rates are expressed in terms of the number N of deterministic problems
to be solved and are independent of the dimension M of stochastic variable (see e.g.
Theorem 4.17). We emphasize that our result gives in particular a concrete, explicit
selection of basis functions in the chaos expansion.

We conclude this introductory part by noting that the problem (1.2) is well-posed.
This follows trivially from (1.1) and the well-posedness of the deterministic diffusion
problem (see also e.g. [Tod05b]).

Theorem 1.3 If Assumption 1.1 holds and p ≥ 0, then for any f ∈ Lp(Ω,H−1(D)),
there exists a unique u ∈ Lp(Ω,H1

0 (D)) solution to (1.2) (here p = 0 corresponds to
measurability). Moreover, for p ≥ 1 it holds

‖u‖Lp(Ω,H1
0 (D)) ≤ ca‖f‖Lp(Ω,H−1(D)).

2 Separation of Deterministic and Stochastic Variables

To reduce (1.2) to a high-dimensional deterministic problem, we separate the deter-
ministic and stochastic variables in the coeffcient a(x, ω) using an expansion in a de-
terministic basis, with random coefficients. Several choices are possible here, of which
we mention and discuss the Legendre and the Karhunen-Loève (KL) expansion. We
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consider a splitting of the diffusion coefficient into a deterministic expectation e and a
random fluctuation r and extend the positivity Assumption 1.1.

Assumption 2.1 The random field a ∈ L∞(D×Ω) satisfying (1.1) can be represented
as

a(x, ω) = e(x) + r(x, ω) ∀(x, ω) ∈ D × Ω (2.1)

with a positive e ∈ L∞(D) (not necessarily equal to the mean field Ea),

0 < e− ≤ e(x) ≤ e+ <∞ ∀x ∈ D. (2.2)

It follows from (2.2) that r ∈ L∞(D × Ω) too, and we require that the fluctuation be
pointwise smaller than the expectation.

Assumption 2.2 For the representation (2.1) it holds

0 ≤ σ := esssupx∈D

‖r(x, ·)‖L∞(Ω)

e(x)
< 1. (2.3)

Remark 2.3 The constant expectation choice

e(x) := (a− + a+)/2 ∀x ∈ D

satisfies Assumption 2.2 with σ ≤ (a+ − a−)/(a+ + a−) < 1.
The more natural (from a statistical point of view) choice e = Ea satisfies (2.3) if
the density function of r(x, ·) is even for any x ∈ D, that is, if positive and negative
fluctuations occur with equal probabilities.

Concerning the fluctuation term r we formulate also a modelling assumption as well as
a condition of regularity in the physical variable.

Assumption 2.4 The random fluctuation r can be represented in L∞(D × Ω) as a
convergent series

r =
∞∑

m=1

ψm ⊗Xm (2.4)

with known deterministic ψm ∈ L∞(D) and stochastic Xm ∈ L∞(Ω). W.l.o.g. we also
assume that ψm, Xm 6= 0 for all m ∈ N+.

The representation formula (2.4) describes the tensor product nature of the random
field r, and achieves the separation of the deterministic and stochastic variables, x ∈ D
and ω ∈ Ω respectively. Note also that we require uniform convergence of (2.4) in order
to allow control of the error in the solution to (1.2) via Strang Lemma, after truncation
of (2.4). The regularity of the random field r is quantified by the convergence rate of
the series (2.4).

Assumption 2.5 The random fluctuation r admits a representation (2.4) for which
there exist constants cr, c1,r, κ > 0 such that

‖ψm ⊗Xm‖L∞(D×Ω) ≤ cr exp(−c1,rm
κ) ∀m ∈ N+. (2.5)

4



In the following two sections Assumption 2.5 will be shown to hold with κ = 1/d if the
fluctuation r is piecewise analytic in the physical variable x ∈ D ⊂ R

d. Two examples
of separating expansions (2.4) will be presented and discussed in detail, the Legendre
and the Karhunen-Loève expansion respectively.

We further assume that complete probabilistic information on the stochastic part
of the separating expansion (2.4) is available, as follows.

Assumption 2.6 The joint probability density functions of the family X := (Xm)m∈N+

are known.

In fact, this will be only needed later for the postprocessing of the chaos solution to
our stochastic problem (1.2).

2.1 Legendre Expansion

The validity of Assumption 2.5 with κ = 1/d and the Legendre expansion as (2.4)
follows from standard approximation theory of analytic functions (see e.g. [Dav63]), if
the random fluctuation r is piecewise analytic in the physical variable, with values in
L∞(Ω) (r ∈ Apw(D,L∞(Ω))).

Example 2.7 If D ⊂ [−1, 1]d and r ∈ A([−1, 1]d, L∞(Ω)), then a representation (2.4)
exists with (ψm)m∈N+ the Legendre polynomials in [−1, 1]d (tensor products of standard
Legendre polynomials in [−1, 1], scaled to have L2-norm equal to 1) and

Xm(ω) :=

∫

[−1,1]d
r(x, ω)ψm(x) dx P -a.e. ω ∈ Ω,∀m ∈ N+.

Moreover, Assumption 2.5 holds with κ := 1/d and c1,r depending on the size of the
analyticity domain of r in a complex neighbourhood of [−1, 1]d.

2.2 Karhunen-Loève Expansion

An alternative to the Legendre expansion is the Karhunen-Loève series, which is known
to be the L2(D ×Ω) optimal representation satisfying the separation ansatz (2.4) (see
also [ST05]). For analytic fluctuations r, the convergence rate of the Karhunen-Loève
series is also exponential, that is, qualitatively similar to that of the Legendre expansion.
However, determining it requires an additional eigenpair computation for the compact
integral operator Cr with kernel Cr given by the two-point correlation of r,

Cr : D ×D → R, Cr(x, x
′) :=

∫

Ω
r(x, ω)r(x′, ω) dP (ω) (x, x′) ∈ D ×D

We start by noting that Cr : L2(D) → L2(D) given by

(Cru)(x) :=

∫

D
Cr(x, x

′)u(x′)dx′ λ-a.e. x ∈ D, ∀u ∈ L2(D) (2.6)
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is a symmetric, nonnegative definite and compact integral operator. It possesses there-
fore a countable sequence (λm, φm)m∈N+ of eigenpairs with

R 3 λm ↘ 0, as m↗ ∞.,

where the KL eigenvalues are enumerated in decreasing order of magnitude, with mul-
tiplicity counted. It then holds (see [Loè77]),

Theorem 2.8 Under Assumption 2.1, there exists a sequence X := (Xm)m∈N+ of
uncorrelated (and centered at 0 if e = Ea) random variables,

∫

Ω
Xn(ω)Xm(ω) dP (ω) = δnm ∀n,m ∈ N+, (2.7)

such that the random field r can be expanded in L2(D × Ω) as

r(x, ω) = a(x, ω) − e(x) =
∑

m∈N+

√

λmφm(x)Xm(ω). (2.8)

Note that the L2(D × Ω) convergence of the KL expansion is due to the trace-class
condition

∞∑

m=1

λm = Tr(Cr) =

∫

D

∫

Ω
r(x, ω)2 <∞. (2.9)

Remark 2.9 The convergence rate of the KL series in L2(D × Ω) is equal to the one
of the eigenvalue sum in (2.9).

Note that the L2(D×Ω) convergence of the Karhunen-Loève expansion (2.8) is not
strong enough to allow control of the error in the solution of (1.2) via Strang Lemma,
after truncation of (2.8). However, analytic regularity of r in the physical variable plus
uniform boundedness of the family X = (Xm)m∈N+ ⊂ L∞(Ω) will be next shown to
ensure the uniform convergence of the Karhunen-Lòeve expansion (2.8).

Assumption 2.10 The family X = (Xm)m∈N+ of random variables is uniformly bounded
in L∞(Ω), i.e. there exists cX > 0 such that

‖Xm‖L∞(Ω,dP ) ≤ cX ∈ R ∀m ∈ N+. (2.10)

Eigenvalue and eigenfunction decay estimates derived in Propositions 2.13 and 2.16
of the following two sections immediately imply the desired strong convergence result.

Proposition 2.11 If D ⊂ [−1, 1]d, r ∈ A([−1, 1]d, L∞(Ω)) with the associated Karhunen-
Loève expansion given by (2.8), and Assumption 2.10 holds, then Assumption 2.5 holds
too, with κ := 1/d and ψm :=

√
λmφm for all m ∈ N+.
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2.2.1 Eigenvalue Decay

We state next decay rates for the KL eigenvalues in terms of regularity of the correlation
kernel Cr. The results we present in this section are standard (see e.g. [Kön86], [Pie87]),
following from the abstract theory of Weyl/approximation/entropy numbers via ap-
proximation of K by discrete, finite rank (separable w.r.t. (x, x′)) kernels. Roughly
speaking, the smoother the kernel the faster the eigenvalue decay, with finite Sobolev
regularity implying algebraic decay and analyticity giving rise to quasi-exponential
decay.

All these results hold for piecewise regular kernels on product subdomains of D,
in the sense of Definition 2.12 below. Note that general piecewise regularity allowing
singularities on the diagonal set of D × D ensure in general only a slower eigenvalue
decay (see e.g. [Kön86] and [GS97] for examples with known exact eigenelements). We
focus on the case of an analytic correlation kernel Cr, and refer the reader to [Tod05a]
for a discussion of less regular kernels.

Definition 2.12 If D is a bounded domain in Rd a measurable function Cr : D×D →
R is said to be piecewise analytic on D×D if there exists a finite family D = (Dj)j∈J
of subdomains of D such that

i. Dj ∩Dj′ = ∅ ∀j, j′ ∈ J with j 6= j ′

ii. D \⋃j∈J Dj is a null set in R
d

iii. D ⊂ ⋃j∈J Dj

iv. Cr |Dj×Dj′
is analytic on Dj ×Dj′ ∀j, j′ ∈ J .

We denote by AD(D2) the space of piecewise analytic functions on D×D in the sense
given above.
Moreover, if there exists also a finite family G = (Gj)j∈J of open sets in R

d such that

v. Dj ⊂ Gj ∀j ∈ J

vi. Cr |Dj×Dj′
has an analytic continuation to Gj ×Gj′ ∀j, j′ ∈ J ,

then we say that K is piecewise analytic on a covering of D ×D and we denote
by AD,G(D2) the corresponding space.
Similarly we introduce spaces of piecewise analytic functions defined on D, which we
denote by AD(D), AD,G(D) etc.

Proposition 2.13 If Cr ∈ AD,G(D2) and (λm)m∈N+ is the eigenvalue sequence of its
associated integral operator (2.6), then there exist constants c1, c2 > 0 such that

0 ≤ λm ≤ c1 exp(−c2m1/d) ∀m ∈ N+. (2.11)
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Example 2.14 One is often interested in Gaussian kernels of the form

Cr(x, x
′) := σ2 exp(−|x− x′|2/(γ2Λ2)) ∀(x, x′) ∈ D ×D, (2.12)

where σ, γ > 0 are real parameters (standard deviation and correlation length, respec-
tively) and Λ is the diameter of the domain D. Cr given by (2.12) has an entire
continuation to C

d and defines a nonnegative compact operator via (2.6).

Since Cr given by (2.12) admits an analytic continuation to the whole complex space
C

d, the eigenvalue decay is in this case even faster than in (2.11).

Proposition 2.15 If Cr is given by (2.12), then for the eigenvalue sequence (λm)m∈N+

of the corresponding integral operator Cr defined by (2.6) it holds

0 ≤ λm ≤ cσ,γ
(1/γ)m1/d

Γ(m1/d/2)
∀m ∈ N+. (2.13)

Note that the decay estimate (2.13) is subexponential in dimension d > 1, and this is
essentially due to the higher multiplicity of the eigenvalues in dimension larger than 1
(this can be explicity seen e.g. for the separable kernel (2.12) on a product domain D).

2.2.2 Eigenfunction Estimates

The smoothness assumption on the correlation kernel Cr allows also a good control of
the eigenfunctions in terms of corresponding eigenvalues via the Gagliardo-Nirenberg
inequalities. For a proof of the following result we refer the reader to [Tod05a], [ST05].

Proposition 2.16 Let Cr ∈ L2(D × D) be piecewise analytic on D × D, such that
all subdomains Dj in Definition 2.12 satisfy the uniform cone property. Denote by
(λm, φm)m∈N+ the sequence of eigenpairs of the associated integral operator via (2.6),
such that ‖φm‖L2(D) = 1 for all m ∈ N+. Then for any s > 0 and any multiindex

α ∈ N
d there exists cr,α,s > 0 such that

‖∂αφm‖L∞(D) ≤ cr,α,s |λm|−s ∀m ∈ N+. (2.14)

3 Uncertainty Parametrization

Throughout this section we suppose that the separating expansion (2.4) of the random
fluctuation r satisfies the decay Assumption 2.5. As shown before, this is the case if r
is piecewise analytic in the physical variable x ∈ D (κ = 1/d then).

3.1 Truncation of Fluctuation Expansion

Since computations can handle only finite data sets, we truncate the fluctuation expan-
sion (2.4) and introduce for any M ∈ N the truncated stochastic diffusion coefficient

aM (x, ω) = e(x) +

M∑

m=1

ψm(x)Xm(ω), (3.1)
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for which the following pointwise error estimate holds due to Assumption 2.5.

Proposition 3.1 If Assumption 2.5 holds, then

‖a− aM‖L∞(D×Ω) ≤ cr exp(−c1,rM
κ) ∀M ∈ N. (3.2)

The diffusion problem with truncated coefficient aM is therefore well-posed for M large
enough (depending on a). This follows immediately from the Strang Lemma, which
allows also explicit control of the error in the solution u to (1.2).

Corollary 3.2 If the stochastic diffusion coefficient a satisfies Assumptions 2.1 and
2.5, then there exists a truncation order Ma,r ∈ N of the expansion (2.4) such that (3.4)
below is well-posed in L∞(Ω,H1

0 (D)) for any M ≥ Ma,r. Moreover, if u and uM are
the unique solutions in L∞(Ω,H1

0 (D)) of

−div(a(·, ω)∇u(·, ω)) = f(·) in H−1(D), P -a.e. in Ω (3.3)

and
−div(aM (·, ω)∇uM (·, ω)) = f(·) in H−1(D), P -a.e. in Ω (3.4)

respectively, then

‖u− uM‖L∞(Ω,H1
0 (D)) ≤ ca,r exp(−c1,rM

κ) · ‖u‖L∞(Ω,H1
0 (D)) (3.5)

for all M ≥Ma,r.

Remark 3.3 If the expectation e is chosen to be equal to the meanfield Ea and the
family X = (Xm)m∈N+ is assumed to be independent, then (3.4) is well-posed for any
M ≥ 0, that is, Ma,r can be chosen equal to 0 in Corollary 3.2. The possible loss of
ellipticity in (3.4) - due to Gibbs’ effect - is therefore not possible in the presence of an
independent family X = (Xm)m∈N+, even in the case of slow, non-uniform convergence
of the separating expansion (2.4). The typical example here is the Karhunen-Loève
expansion of a fluctuation r with low regularity of its two-point correlation Cr, which
exhibits only slow convergence in L2(D × Ω).

Under the assumptions in Remark 3.3, the well-posedness of (3.4) can be seen for
instance for the Karhunen-Loève expansion as follows. For any N ∈ N+ denote by
ΣN ⊂ Σ the σ-algebra generated by the random variables X1, X2, . . . , XN . For any
M > N , from (3.1) it follows (conditional expectations)

E[aM | ΣN ] = aN , (3.6)

since (Xm)m∈N+ are assumed to be independent and, by construction of the KL expan-
sion, centered at 0.
For any ΩN ∈ ΣN , we use (3.6) and the defining property of the conditional expectation
to write

∫

D

(∫

ΩN

(aN − a) dP (ω)

)2

dx =

∫

D

(∫

ΩN

(aM − a) dP (ω)

)2

dx

≤
∫

D

∫

ΩN

(aM − a)2 dP (ω)dx
M→∞→ 0, (3.7)
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due to aM → a in L2(D × Ω) as M ↗ ∞. Since ΩN ∈ ΣN was arbitrary, we conclude
from (3.7) that

aN = E[a | ΣN ].

The positivity of the conditional expectation ensures then that the lower and upper
bounds of a hold for aN too.

3.2 Parametric Deterministic Problem

In this section we connect the equation (3.4) obtained by truncation at level M ∈ N

of the separating expansion (2.4) of the random fluctuation r to an auxiliary, purely
deterministic parametric problem. Without loss of generality, we suppose in the fol-
lowing that for (Xm)m∈N+ in (2.4) it holds (this can be achieved by a rescaling of ψm

and Xm),
‖Xm‖L∞(Ω) = 1/2 ∀m ∈ N+, (3.8)

so that
Ran Xm ⊆ I := [−1/2, 1/2] ∀m ∈ N+.

To aM we associate the function ãM : D × IM → R, defined by

ãM (x, y1, y2, . . . , yM ) := e(x) +
M∑

m=1

ψm(x)ym (3.9)

for all y = (y1, y2, . . . , yM ) ∈ IM and x ∈ D.
We now consider the purely deterministic, parametric elliptic problem of finding

ũM : IM → H1
0 (D) such that

−div(ãM (·, y)∇ũM (·, y)) = f(·) in H−1(D) ∀y ∈ IM . (3.10)

The uniform ellipticity of all truncates aM for M ≥Ma,r, following from Corollary 3.2,
ensures the well-posedness of (3.10). The solution of (3.4) can be obtained from the
solution of (3.10) by backward substitution, as follows.

Proposition 3.4 If ũM is the solution of (3.10) and uM solves (3.4), then

uM (x, ω) = ũM (x,X1(ω), X2(ω), . . . , XM (ω)), (3.11)

(λ× P )-a.e. (x, ω) ∈ D × Ω.

The proof is immediate, observing that both the l.h.s. and the r.h.s. of (3.11) solve
the well-posed problem (3.4).

Assuming that enough statistical information on the family X = (Xm)m∈N+ is
available to allow the postprocessing (i.e. the computation of various statistics of
uM , see Assumption 2.6) via (3.11), Proposition 3.4 reduces the elliptic problem with
stochastic data (1.2) to a question in approximation theory for the parametric (in y ∈
IM ) solution to (3.10), which we formulate as follows.
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Problem 3.5 For any M , compute the solution ũM to (3.10) in L∞(IM ,H1
0 (D)) up

to an error of exp(−c2,rM
κ).

Note that the truncation order M of the separating expansion (2.4) is the dimension of
the parameter space IM and, in fact, a discretization parameter. In the following section
the aim will be therefore to solve Problem 3.5, by developing efficient approximations
for ũM as a function of y ∈ IM . The keypoint of our analysis will be the regularity of
ũM with respect to the “stochastic parameter” y, to which we shall refer as “stochastic
regularity”. While it is easy to see that the solution ũM ’s dependence on y is analytic,
we shall prove that the domain of analyticity of ũM as a function of coordinate ym

increases in size as m ↗ ∞. Our estimates indicate in particular that ũM as function
of ym ∈ I becomes ‘flat’ as m increases at a rate which is governed by the convergence
rate of the separating expansion (2.4).

To see this, we note that the decay rate of the expansion (2.4) of the random
fluctuation r shows the decreasing sensitivity of ãM w.r.t. ym as m↗ M . Intuitively,
ũM is then expected to exhibit a similar behaviour.

Note that we are not interested in approximating ũM with arbitrarily high accuracy,
but only up to an error which matches the truncation error O(exp(−c1,rM

κ)) in the
separating expansion (2.4). The needed accuracy depends thus in fact on the dimension
M of the domain IM on which the function ũM to be approximated is defined.

4 Sparse Approximation Results

For the solution of the approximation Problem 3.5 we propose non-linear, adapted
approach. To describe it, let (φM,α)α∈Λ ⊂ L∞(IM ) be a family of real-valued functions
defined on the hypercube IM such that ũM admits the expansion

ũM =
∑

α∈Λ

φM,α ⊗ cM,α in L∞(IM ,H1
0 (D)), (4.1)

with cM,α ∈ H1
0 (D) for all α ∈ Λ.

Definition 4.1 If (4.1) holds, we call the series on the r.h.s. of (4.1) chaos expansion
of dimension M of u solution to (1.2).

For a finite index set Σ ⊂ Λ we define the corresponding truncation of (4.1),

ũM,Σ :=
∑

α∈Σ

φM,α ⊗ cM,α ∈ L∞(IM ,H1
0 (D)). (4.2)

In the spirit of the theory of adaptive/best N -term approximation, we consider the
most economical chaos truncate (4.2) which achieves an accuracy comparable with
that obtained after truncation of the separating expansion of r (see Corollary 3.2).

Definition 4.2 If (4.1) holds, we define

ΣM := argmin{|Σ| : ‖ũM − ũM,Σ‖L∞(IM ,H1
0 (D)) ≤ ‖u− uM‖L∞(Ω,H1

0 (D))} (4.3)
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and call the truncate ũM,ΣM
the adapted chaos expansion of dimension M of u solution

to (1.2).

Due to explicit control of the truncation error in the case of a diffusion coefficient with
known decay rate of the fluctuation expansion (2.4), it is more convenient to work with
the following more explicit version of Definition 4.2.

Definition 4.3 If Assumption 2.5 and (4.1) hold, we set

ΣM := argmin{|Σ| : ‖ũM − ũM,Σ‖L∞(IM ,H1
0 (D)) ≤ exp(−c1,rM

κ)} (4.4)

and call the truncate ũM,ΣM
the adapted chaos expansion of dimension M of u solution

to (1.2).

The aim of the following sections is the (approximate) identification of the index
set ΣM , based on the regularity properties of ũM w.r.t. y (analyticity and explicit
bounds for all derivatives), if the family (φM,α)α∈Λ ⊂ L∞(IM ) is chosen to generate
the standard finite element spaces (piecewise polynomials of fixed degree on regular
meshes), corresponding to h and p FEM in IM respectively.

4.1 Stochastic Regularity

We start by observing that Assumption 2.5 and (3.8) trivially ensure the following
norm estimates

0 ≤ ρm := ‖ψm‖L∞(D) ≤ cr exp(−c1,rm
κ) ∀m ∈ N+. (4.5)

Explicit bounds of all derivatives of ũM are then obtained either using equations
(3.10), (3.9) (as shown below) or by Cauchy formula (see e.g. [Tod05b]).

Proposition 4.4 If ũM solves (3.10), then

‖∂α
y ũM (y, ·)‖H1

0 (D) ≤ c|α|a,r · |α|! ·
M∏

m=1

ραm
m · ‖ũM (y, ·)‖H1

0 (D), (4.6)

∀y ∈ IM ,∀α ∈ N
M ,∀M ∈ N,M ≥Ma,r.

Proof. We prove the estimate (4.6) by induction on |α|. Since (4.6) is clear for |α| = 0,
we assume it to hold also for all α ∈ N

M such that |α| ≤ k, for some k ∈ N. We
consider a multiindex α such that |α| = k + 1 and we apply ∂α

y to (3.10). We obtain

−div(ãM (·, y)∇∂α
y ũM (·, y)) =

M∑

m=1

αmdiv(ψm(·)∇∂α−em
y ũM (·, y))

from which it follows

ca,r‖∂α
y ũM (·, y)‖H1

0 (D) ≤
M∑

m=1

αmρm‖∂α−em
y ũM (·, y)‖H1

0 (D) (4.7)

The desired estimate follows then by using (4.6) in (4.7) for all multiindices α − em,
1 ≤ m ≤M , whose length equals k. �
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4.2 Sparse Chaos Approximations

Using Proposition 4.4 we investigate next convergence rates of adapted chaos approxi-
mations for ũM : IM → H1

0 (D), if tensor product families (φM,α)α∈Λ ⊂ L∞(IM ,H1
0 (D))

corresponding to standard h or p FEM in IM are chosen in (4.1) to expand ũM .

4.2.1 h-FEM Based Adapted Approximation

For p ∈ N+ and l ∈ N, let V l,p be the space of piecewise polynomials of degree at most
p− 1 on a regular mesh of width 2−l in I. We set V −1,p := {0}, and by

W l,p := V l,p ∩ (V l−1,p)⊥

we define the hierarchical excess of the scale (V l,p)l∈N, where the orthogonal com-
plement is taken in the sense of L2(I). In this way we obtain an L2(I) orthogonal
decomposition

L2(I) =

∞⊕

l=0

W l,p. (4.8)

If H is an arbitrary Hilbert space and PV denotes the L2(I,H) ' L2(I)⊗H projection
onto the closed subspace V ⊗H of L2(I), the standard (vector-valued) approximation
property of the scale (V l,p)l∈N reads

‖v − PV l,pv‖L2(I,H) ≤ cp2
−lp ‖∂pv‖L2(I,H) ∀v ∈ Hp(I,H), (4.9)

with some constant cp > 0.

Remark 4.5 Note that an estimate similar to (4.9) holds also in the L∞(I,H) norm,
for v ∈W p,∞(I,H).

Using the FE spaces V l,p in I we build FE spaces in IM as tensor products. More
precisely, for any multiindex l = (l1, l2, . . . , lM ) ∈ N

M we define

W l,p :=
M⊗

m=1

W lm,p,

which enables us via (4.8) to decompose L2(IM ) as

L2(IM ) =
⊕

l∈NM

W l,p. (4.10)

In L2(IM ,H) we then have,

v =
∑

l∈NM

vl, vl := PW l,p⊗Hv ∀v ∈ L2(IM ,H). (4.11)
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For ũM ∈ L∞(IM ,H1
0 (D)) ⊂ L2(IM ,H1

0 (D)) solution to (3.10) we estimate next the
size of the general term (detail of ũM at level l) in the corresponding orthogonal de-
composition (4.11) with H := H1

0 (D). To this end we introduce first several notations.
We define the length |l| of a multiindex l = (l1, l2, . . . , lM ) ∈ N

M by

|l| := l1 + l2 + · · · + lM . (4.12)

Further, the support of l will be denoted by

Jl := supp(l) = {m : 1 ≤ m ≤M, lm > 0}, (4.13)

and its length by jl := |Jl|, so that Jl = {m1,m2, . . . ,mjl}.

Proposition 4.6 If ũM solves (3.10) and Assumption 2.5 holds, then

‖ũl

M‖L2(IM ,H1
0 (D)) ≤ cjla,p · 2−|l|p · (pjl)! ·

jl∏

j=1

ρp
mj

· ‖ũM‖L2(IM ,H1
0 (D)), (4.14)

where ũl

M := PW l,p⊗H1
0 (D)ũM for all l ∈ N

M .

Proof. For a fixed multiindex l ∈ N
M we define its support multiindex e := (e1, e2, . . . , eM ) ∈

N
M (depending on l) by

em :=

{
1 if lm > 0
0 if lm = 0

∀1 ≤ m ≤M,

and write

ũl

M = PW l,pũM =

M⊗

m=1

(PV lm,p − PV lm−1,p)ũM .

Replacing PV lm,p − PV lm−1,p by PV lm,p − I + I − PV lm−1,p for all m in the support of l

and expanding the resulting product we obtain

ũl

M =
∑

f∈NM , f≤e

(−1)M−|f |

(
M⊗

m=1

Qlm,fm

)

ũM , (4.15)

where

Qlm,fm :=

{
PV 0,p if lm = 0
I − PV lm−fm,p if lm > 0

.

Using the approximation property (4.9) and noting that the sum in (4.15) consists of
2jl terms, we deduce

‖ũl

M‖L2(IM ,H1
0 (D)) ≤

∑

f∈NM , f≤e

cjlp 2−(|l|−|f |)p · ‖∂p·e
y ũM‖L2(IM ,H1

0 (D))

≤
∑

f∈NM , f≤e

(2pcp)
jl2−|l|p · ‖∂p·e

y ũM‖L2(IM ,H1
0 (D))

≤ (2p+1cp)
jl2−|l|p · ‖∂p·e

y ũM‖L2(IM ,H1
0 (D)). (4.16)

Proposition 4.4 coupled with (4.16) leads now to the desired estimate (4.14). �
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Remark 4.7 Based on Remark 4.5, an estimate similar to (4.14) can be shown also
in the L∞(IM ,H1

0 (D)) norm.

We next define a scale of sparse FE spaces in IM which will be shown to achieve an
almost optimal convergence rate of the corresponding approximations of ũM . We in
fact prescribe an index set in N

M corresponding intuitively to the largest details in the
orthogonal decomposition (4.11) of ũM . To this end we introduce for µ, ν ∈ N the set
of all multiindices l ∈ N

M not exceeding µ in length and having at most ν nontrivial
entries,

Σµ,ν ⊂ N
M , Σµ,ν := {l ∈ N

M : |l| ≤ µ, jl ≤ ν}. (4.17)

Correspondingly we define, in view of (4.10), the following finite dimensional subspace
of L2(IM ),

V̂ µ,ν :=
⊕

l∈Σµ,ν

W l,p.

Using V̂ µ,ν ⊗H1
0 (D) ⊂ L2(I,H1

0 (D)) as semidiscretization space to approximate ũM ,
we now prove the main approximation result of this section. Here and in the following
PV̂ µ,ν denotes the L2(I,H1

0 (D)) projection onto V̂ µ,ν ⊗H1
0 (D).

Proposition 4.8 If µ, ν ∈ N and Assumption 2.5 holds, then for ũM solution to (3.10)
we have

‖ũM − PV̂ µ,ν ũM‖L2(IM ,H1
0 (D)) ≤ ca,r,p,θ(e

−ν1+κc1,rp/2(1+κ)+

+ 2−p(µ+1) · eν log(M+1)+ν log(µ+2)) · ‖ũM‖L2(IM ,H1
0 (D)). (4.18)

Besides,
dim V̂ µ,ν ≤ p(M + 1)ν(µ+ 1)ν+12µ. (4.19)

Proof. For notational ease and since in the following arguments all functions are eval-
uated in the standard norm of L2(IM ,H1

0 (D)), we drop the corresponding subscript
from all estimates. For arbitrary µ, ν ∈ N we write

‖ũM − PV̂ µ,ν ũM‖ ≤
∑

l∈NM\Λµ,ν

‖ũl

M‖ =
∑

l∈NM

j
l
>ν

‖ũl

M‖ +
∑

l∈NM
jl≤ν

|l|>µ

‖ũl

M‖ (4.20)

and estimate next the two sums S1, S2 on the r.h.s. of (4.20) separately. In both cases
we use Proposition 4.6 and the notations (4.12), (4.13). We start with S1 and write

S1 =

M∑

j=ν+1

∑

l∈NM

|jl|=j

‖ũl

M‖
(4.14)

≤
M∑

j=ν+1

cja,p · (pj)! ·
∑

l∈NM

|jl|=j

2−|l|p ·
j
∏

k=1

ρp
mk

· ‖ũM‖. (4.21)

15



Indexing the multiindices in the second sum on the r.h.s. of (4.21) over their support,
we have that

∑

l∈NM

|j
l
|=j

2−|l|p ·
j
∏

k=1

ρp
mk

(4.5)

≤ cjr ·
∑

1≤m1<···<mj≤M

j
∏

k=1

e−c1,rmκ
kp ·

∞∑

lm1 ,...,lmj =1

2−p(lm1+···+lmj )

≤
M∑

j=ν+1

cjr ·
∑

1≤m1<···<mj≤M

j
∏

k=1

e−c1,rmκ
kp (4.22)

We then use Lemma A.2 (with y = c1,rp and z = (1 + κ)θp) in (4.22) to obtain from
(4.21),

S1 ≤ cr,p,θ

M∑

j=ν+1

cja,r,p · (pj)! · e−j1+κθp · ‖ũM‖, (4.23)

for any θ ∈]0, c1,r/(1 + κ)[. The fast, supergeometrical decay of the third factor on the
r.h.s. of (4.23) as j ↗ ∞ (due to κ > 0), allows absorbtion of the first two (exponential
and factorial). We conclude

S1 ≤ ca,r,p,θe
−ν1+κθp · ‖ũM‖ ∀θ ∈]0, c1,r/(1 + κ)[. (4.24)

We turn now to the second sum S2 in (4.20). Using again Proposition 4.6 and Lemma
A.2 we similarly deduce

S2

(4.14)

≤
∑

l∈NM
jl≤ν

|l|>µ

cjla,p · 2−|l|p · (pjl)! ·
jl∏

j=1

ρp
mj

· ‖ũM‖

≤ ca,r,p,θ

∑

l∈NM
jl≤ν

|l|>µ

e−j1+κ
l

θp · 2−|l|p · ‖ũM‖, (4.25)

for any θ ∈]0, c1,r/(1 + κ)[. Using now a counting argument on the r.h.s. of (4.25) and
then Lemma A.1 with t = 2−p, we obtain

S2 ≤ ca,r,p,θ

ν∑

j=1

(
M

j

)

e−j1+κθp ·
∞∑

l=µ+1

(
l

j

)

2−pl · ‖ũM‖

≤ ca,r,p,θ2
−p(µ+1) ·

ν∑

j=1

(
M

j

)

e−j1+κθp · (1 − 2−p)−j−1 · (µ+ 2)j · ‖ũM‖

≤ ca,r,p,θ2
−p(µ+1) · (M + 1)ν · (µ+ 2)ν · ‖ũM‖, (4.26)

since
(M

j

)
≤ (M + 1)j . (4.18) follows now from (4.24) and (4.26) by choosing θ =

c1,r/2(1 + κ).
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It remains to estimate the dimension of V̂ µ,ν . Taking into account that the dimension
of the detail space W l,p equals p2l, we have

dim V̂ µ,ν = p

ν∑

q=0

µ
∑

l=0

(
M

q

)(
l

q

)

2l ≤ p(M + 1)ν
ν∑

q=0

µ
∑

l=0

(
l

q

)

2l

≤ p(M + 1)ν
µ
∑

l=0

(l + 1)ν2l ≤ p(M + 1)ν(µ+ 1)ν+12µ,

which concludes the proof. �

Corollary 4.9 Under Assumption 2.5, there exist positive constants c1, c2 such that
by choosing

µ := dc1Mκe, ν := dc2Mκ/(κ+1)e, (4.27)

for ũM solution to (3.10) we have

‖ũM − PV̂ µ,ν ũM‖L2(IM ,H1
0 (D)) ≤ ca,r,p exp(−c1,rM

κ + o(Mκ)) (4.28)

with
Nace := dim V̂ µ,ν ≤ cκ,p exp(

c1,r

p
Mκ + o(Mκ)), (4.29)

as M ↗ ∞, and with the same constant c1,r as in (3.5). Here the subscript ’ace’
abbreviates ’adapted chaos expansion’.

Proof. We simply choose in Proposition 4.8

µ = d(2(1 + κ)/p)1/(1+κ)Mκ/(κ+1)e, ν = dc1,rM
κ/p log 2e, (4.30)

so that (4.28), (4.29) follow directly from (4.18) and (4.19) respectively. �

Remark 4.10 The proof of Corollary 4.9 offers (see (4.30)) also explicit values for
the constants c1, c2 in (4.27). Note that c1 depends only on κ, p and never exceeds 3,
whereas c2 scales linearly with c1,r.

Combining (4.28) and (4.29), we reformulate the main approximation result of this
section (optimality of the adapted chaos expansion) as follows.

Theorem 4.11 If Assumption 2.5 holds, then

inf
v∈V̂ µ,ν⊗H1

0 (D)
‖ũM − v‖L2(IM ,H1

0 (D)) ≤ ca,r,pN
−p+o(1)
ace as M ↗ ∞, (4.31)

and for the parameter choice (4.27), where Nace = dim V̂ µ,ν is the number of determin-
istic diffusion problems in D to be solved.

Remark 4.12 The convergence rate (4.31) of the h-FEM based adapted chaos expan-
sion is, already for p = 1 (corresponding to piecewise constant elements), faster than
the Monte Carlo (O(N−1/2)) or quasi-Monte Carlo (O(N−1(logN)cM )) rates, where
N denotes here the number of samples.
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4.2.2 p-FEM Based Adapted Approximation

The analyticity of ũM in y ∈ IM following e.g. from Proposition 4.4 suggests the use
of polynomial approximation (sometimes called polynomial chaos, corresponding to a
polynomial basis (φM,α)α∈Λ in (4.1), see e.g. [Wie38]) in the stochastic variable y. In
this section we give, for any M ∈ N+, the construction of a polynomial space of low
dimension in y, and in which ũM : IM → H1

0 (D) can be approximated with the desired
accuracy, that is, up to an error of O(e−c1,rMκ

). The construction is based, just as
in the case of h FEM discussed in the previous section, on a-priori estimation of the
coefficients cM,α in (4.1) using a tensor product basis in IM . Selection of the largest
estimated coefficients leads then to an upper estimate of the optimal index set ΣM in
Definition 4.3.
The tensor product basis we use to represent ũM is given by the monomials in y1, . . . , yM ,

Λ := N
M , φM,α(y1, y2, . . . , yM ) := yα1

1 yα2
2 · · · yαM

M ∀α ∈ Λ.

The chaos expansion (4.1) holds then as the Taylor expansion of ũM around y = 0, due
to Proposition 4.4. Moreover, it can be shown (see also [Tod05b]) that ũM as function
of y admits a complex analytic extension to a cylinder complex neighbourhood UM ×iR
of IM , where I ⊂ U ⊂ R.

In analogy with the construction of the FE space V̂ µ,ν in Section 4.2.1 we consider,
for M,M ′, η, µ, ν ∈ N with M ′ ≤M and in the context of the p FEM, the polynomial
space PM ′,η,µ,ν in the M variables y1, y2, . . . , yM spanned by all monomials satisfying
three additional properties, as follows. First, we require that the monomials have degree
at most η in each of the first M ′ variables y1, y2, . . . , yM ′ . Second, their total degree in
yM ′+1, yM ′+2, . . . , yM is at most µ. Finally, each monomial is nonconstant in at most
ν variables taken from yM ′+1, yM ′+2, . . . , yM . Formally we have,

Definition 4.13 For M,M ′, η, µ, ν ∈ N with M ′ ≤M and ν ≤M ′′ := M −M ′ we set

PM ′,η,µ,ν := span{φM,α : α ∈ ΣM ′,η,µ,ν}, (4.32)

where the index set ΣM ′,η,µ,ν ⊂ N
M is given by

ΣM ′,η,µ,ν := {α = (α′, α′′) ∈ N
M ′ ×N

M ′′
: |α′|∞ ≤ η, |α′′| ≤ µ, |supp(α′′)| ≤ ν}. (4.33)

In order to prove an approximation property for the polynomial space PM ′,η,µ,ν⊗H1
0(D)

similar to the one derived in Proposition 4.8 in the context of the h FEM, we first
recall that the solution ũM of (3.10) satisfies the estimate (4.6), which we reformulate
as follows.

Proposition 4.14 If ũM solves (3.10), then

‖∂α
y ũM‖L∞(IM ,H1

0 (D)) ≤ c
|α|
a,r,f |α|! ρα ∀α ∈ N

M , (4.34)

where ρα :=
∏M

m=1 ρ
αm
m .
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Based on (4.34) we prove next the main approximation result for ũM in the space
PM ′,η,µ,ν .

Proposition 4.15 If ũM solves (3.10), then there exist M ′ ∈ N and constants c1, c2, c3
depending only on the data a, r, f , such that (recall notation (4.2))

‖ũM − ũM,ΣM′,η,µ,ν
‖L∞(IM ,H1

0 (D)) ≤ c1(e
−c3η + ec2η−c3µ + ec2η−c3ν1+κ

) (4.35)

for any M,η, µ, ν ∈ N with ν ≤M ′′ = M −M ′. Besides,

dimPM ′,η,µ,ν ≤ (η + 1)M ′
(M ′′ + 1)ν(µ+ 2)ν+1(ν + 1). (4.36)

Proof. Let us introduce the notation y = (y ′, y′′) corresponding to the following splitting
of the stochastic variable y,

y′ = (y1, y2, . . . , yM ′) ∈ IM ′
y′′ = (yM ′+1, yM ′+2, . . . , yM ) ∈ IM ′′

,

where M ′ will be chosen later. We consider the Taylor expansion of ũM w.r.t. y around
y = 0,

ũM (y′, y′′) =
∑

α′∈NM′

α′′∈NM′′

∂α′

y′ ∂α′′

y′′ ũM (0)

α!
y′α

′
y′′α

′′
, (4.37)

which converges absolutely for y in a neighbourhood of IM .

We next estimate using Proposition 4.14 the size of that part of the expansion (4.37)
which corresponds to the complement of the index set Ση,µ,ν ⊂ N

M given by

Ση,µ,ν := Σ′
η × (Σ′′

µ ∩ Σ′′
ν) (4.38)

with

Σ′
η := {α′ ∈ N

M ′
: |α′| ≤ η} ⊂ N

M ′

Σ′′
µ := {α′′ ∈ N

M ′′
: |α′′| ≤ µ} ⊂ N

M ′′

Σ′′
ν := {α′′ ∈ N

M ′′
: |supp(α′′)| ≤ ν} ⊂ N

M ′′
.

Note that, due to (4.38),

N
M \ Ση,µ,ν = ((NM ′ \ Σ′

η) × N
M ′′

) ∪ (Σ′
η × (NM ′′ \ Σ′′

µ)) ∪ (Σ′
η × (NM ′′ \ Σ′′

ν)). (4.39)

Let us denote by T1, T2, T3 those parts of the Taylor expansion (4.37) corresponding to
the three disjoint index sets in (4.39) respectively.
An upper bound for T1 (corresponding to the index set (NM ′ \ Σ′

η) × N
M ′′

) follows by
standard p FEM estimate (or using Cauchy formula), due to the analyticity of ũM (·, y′′)
in a neighbourhood UM ′ × iR of IM ′

in C
M ′

, uniformly in y′′ ∈ IM ′′
,

‖
∑

α′∈NM′
\Σ′

η

α′′∈NM′′

∂α′

y′ ∂α′′

y′′ ũM (0)

α!
y′α

′
y′′α

′′‖L∞(IM ,H1
0 (D)) ≤ ca,f,M ′e−c1,a,f,M′η. (4.40)
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Concerning T2 (corresponding to the index set Σ′
η × (NM ′′ \Σ′′

µ)) we have, by (4.34)
and the multinomial formula, with ρ′ := (ρ1, ρ2, . . . , ρM ′), ρ′′ := (ρM ′+1, ρM ′+2, . . . , ρM ),

‖
∑

α′∈Σ′
η

α′′∈NM′′
\Σ′′

µ

∂α′

y′ ∂α′′

y′′ ũM (0)

α!
y′α

′
y′′α

′′‖L∞(IM ,H1
0 (D)) ≤

∑

α′∈NM′
,α′′∈NM′′

|α′|≤η,|α′′|≥µ+1

c
|α|
a,f

|α|!
α!

ρα. (4.41)

Using the inequality |α|! ≤ |α′|! · |α′′|! · 2|α| we separate the variables α′, α′′ in the
summation on the r.h.s. of (4.41) and obtain

‖T2‖L∞(IM ,H1
0 (D)) ≤

∑

α′∈NM′

|α′|≤η

c
|α′|
a,f

|α′|!
α′!

ρ′α
′ ·

∞∑

l=µ+1

∑

α′′∈NM′′

|α′′|=l

cla,f

l!

α′′!
ρ′′α

′′

=

η
∑

n=0

(ca,f |ρ′|)n ·
∞∑

l=µ+1

(ca,f |ρ′′|)l

≤ cη+1
a,r,f (ca,f |ρ′′|)µ+1 ≤ ca,r,fe

c2,a,r,f η−c3,a,f µ, (4.42)

where the last two estimates hold if M ′ is chosen in such a way that

ca,f (ρM ′+1 + ρM ′+2 + · · · ) < 1/2.

Note that such a choice is always possible due to the decay condition (4.5), and that
this is how we determine M ′, depending therefore only on the data a, r, f . In turn, the
dependence on M ′ of the two constants in the upper bound (4.40) can be replaced by
dependence on r.

Next we estimate T3, corresponding to the index set Σ′
η × (NM ′′ \Σ′′

ν). From (4.34)
we deduce,

‖T3‖L∞(IM ,H1
0 (D)) ≤

∑

α′∈NM′
,α′′∈NM′′

|α′|≤η,|supp(α′′)|≥ν+1

c
|α|
a,f

|α|!
α!

ρα

≤
∑

α′∈NM′

|α′|≤η

c
|α′|
a,f

|α′|!
α′!

ρ′α
′ ·

∞∑

l=0

∑

α′′∈NM′′

|supp(α′′)|≥ν+1,|α′′|=l

cla,f

l!

α!
ρ′′α

′′
(4.43)

The first sum (over α′) on the r.h.s. of (4.43) can be evaluated just as in (4.42), so
we only analyze the second one (over l and α′′), which we denote in the following by
S. To this end, we parametrize the indices α′′ through their support (consisting of at
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least ν + 1 integers between 1 and M ′′), and obtain

S =
∞∑

l=0

M ′′
∑

j=ν+1

∑

1≤m1<···<mj≤M ′′

∑

α′′∈NM′′
,|α′′|=l

supp(α′′)={m1,...,mj}

cla,f l!

j
∏

k=1

ρ
α′′

mk
M ′+mk

α′′
mk

!

=
∞∑

l=0

M ′′
∑

j=ν+1

∑

1≤m1<···<mj≤M ′′

∑

α′′∈NM′′
,|α′′|=l

suppα′′={m1,...,mj}

cα′′cla,f l!

j
∏

k=1

ρ
α′′

mk
−1

M ′+mk

(α′′
mk

− 1)!

with

cα′′ :=

j
∏

k=1

ρM ′+mk

α′′
mk

≤
j
∏

k=1

ρM ′+mk
. (4.44)

Using (4.44) and the multinomial formula we obtain

S ≤
∞∑

l=0

M ′′
∑

j=ν+1

l!

(l − j)!

∑

1≤m1<···<mj≤M ′′

cla,f |ρ′′|l−j
j
∏

k=1

ρM ′+mk

≤
∞∑

l=0

M ′′
∑

j=ν+1

j! cja,f

(
l

j

)

εl−j
∑

1≤m1<···<mj≤M ′′

ρM ′+m1 · · · ρM ′+mj
(4.45)

where
ε := ca,f (ρM ′+1 + ρM ′+2 + · · · + ρM ).

Note that, by increasing M ′ if necessary (still depending only on the data a, r, f), we
can assume w.l.o.g. ε < 1/2.
From the decay estimate (4.5) and Lemma A.2 we use here to bound the last sum in
(4.45) we obtain

S ≤
∞∑

l=0

M ′′
∑

j=ν+1

j! cja,r,f

(
l

j

)

εl−je−crj1+κ
.

Performing first the sum over l via (A.3) in Lemma A.1 and absorbing then the factorial
and the exponential functions of j in the last factor we arrive at (ε < 1/2)

S ≤
M ′′
∑

j=ν+1

j! cja,r,f

1

(1 − ε)j+1
e−crj1+κ ≤ ca,r,fe

−c4,a,r,f ν1+κ
, (4.46)

which ensures via (4.43),

‖T3‖L∞(IM ,H1
0 (D)) ≤ ca,r,fe

c2,a,r,f η−c4,a,r,f ν1+κ
. (4.47)

(4.35) follows now from (4.40), (4.42) and (4.47).
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Finally, the dimension estimate (4.36) follows by a counting argument, based on
the combinatorial fact that the equation x1 +x2 + · · ·+xq = l has exactly

(l
q

)
solutions

(x1, x2, . . . , xq) ∈ N
q
+, which ensures,

|Σ′′
µ ∩ Σ′′

ν | =

µ
∑

l=0

ν∑

q=0

(
M ′′

q

)(
l

q

)

≤ (M ′′ + 1)ν
µ
∑

l=0

ν∑

q=0

(
l

q

)

= (M ′′ + 1)ν
ν∑

q=0

(
µ+ 1

q + 1

)

≤ (M ′′ + 1)ν(µ+ 2)ν+1(ν + 1),

and the proof is concluded. �

We recall that we do not ask for an arbitrarily high accuracy in the computation of
ũM , since the truncation of the diffusion coefficient expansion (2.4) already resulted in
an error between u and uM of order O(e−c1,rMκ

) (see Problem 3.5). Making therefore
an appropriate choice for the parameters η, µ, ν in order to match this accuracy, we
arrive at superalgebraic (though subexponential) convergence rate of the semidiscrete
solution of (3.10) w.r.t. y.

Corollary 4.16 If Assumption 2.5 is satisfied and ũM solves (3.10), then there exist
M ′ ∈ N and positive constants c4, c5, c6 depending only on a, r, f , such that for

η := dc4Mκe, µ := dc5Mκe, ν := dc6Mκ/(κ+1)e (4.48)

we have
‖ũM − ũM,ΣM,η,µ,ν

‖L∞(IM ,H1
0 (D)) ≤ ca,r,f exp(−c1,rM

κ) (4.49)

for all M ∈ N,M ≥Ma,r, with

Nace := dimPM ′,η,µ,ν ≤ exp(ca,r,fM
κ/(κ+1) log(M + 2)). (4.50)

Here the subscript ‘ace’ abbreviates ‘adapted chaos expansion’.

Proof. We first choose c4 so that the first term in the upper bound (4.35) matches
(4.49). Then we choose also c5, c6 (depending on c2, c3 in (4.35) and c4) so that the
other two error terms on the r.h.s. of (4.35) match (4.49). The dimension estimate
(4.50) follows then from (4.36). �

Combining (4.49) and (4.50), we reformulate the main approximation result of this
section as follows.

Theorem 4.17 If Assumption 2.5 holds, then

inf
v∈PM′ ,η,µ,ν⊗H1

0 (D)
‖ũM − v‖L∞(IM ,H1

0 (D)) ≤ c1,a,r,f exp(−c2,a,r,f (logNace)
1+κ−o(1))

(4.51)
as M ↗ ∞ and for the parameter choice (4.48), where Nace = dimPM ′,η,µ,ν is the
number of deterministic diffusion problems in D to be solved.
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Note that the estimated convergence rate (4.51) is asymptotically superalgebraic
in the number of deterministic problems Nace to be solved (due to κ > 0), but not
asymptotically exponential, as M ↗ ∞ (or, equivalently, Nace ↗ ∞).

Remark 4.18 Our proof of Theorem 4.17 is based on the Taylor expansion of ũM

around y = 0 (expansion in the standard monomial basis). A similar result can be ob-
tained for the Legendre expansion, by explicitly estimating its coefficients using Propo-
sition 4.4.

5 Postprocessing

For brevity of exposition, we only consider here the p-FEM based adapted approxi-
mation discussed in Section 4.2.2. Analogous results hold for the h-FEM based chaos
approximation of Section 4.2.1.
We show that Theorem 4.17 allows control of the chaos expansion error in the solution
to the initial problem (1.2) w.r.t. a strong (L∞) topology in the stochastic variable ω.

Theorem 5.1 Under Assumption 2.5, for

uM,ΣM,η,µ,ν
(·, ω) := ũM,ΣM,η,µ,ν

(·, X1(ω), . . . , XM (ω)) ∈ H1
0 (D) P -a.e. ω ∈ Ω

it holds

‖u− uM,ΣM,η,µ,ν
‖L∞(Ω,H1

0 (D)) ≤ c1,a,r,f exp(−c2,a,r,f (logNace)
1+κ−o(1)) (5.1)

as M ↗ ∞ and for the parameter choice (4.48).

Proof. The claim follows immediately from (4.51) (adapted chaos error estimate) and
(3.5) (fluctuation truncation error estimate), taking into account the relationship be-
tween M and Nace given by (4.50). �

Remark 5.2 The boundedness of the k-th moment operator between L∞(Ω,H1
0 (D))

and H1
0 (D) ⊗ · · · ⊗H1

0 (D)
︸ ︷︷ ︸

k times

ensures an upper bound similar to (5.1) also for the y-

semidiscretization error in these moments.

A Appendix

Lemma A.1 For any t ∈ [0, 1) and j, L ∈ N with j ≤ L it holds

∞∑

n=0

(
L+ n

j

)

tn ≤ (L+ 1)j(1 − t)−j−1. (A.1)
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Proof. Using the factorial representation of the binomial coefficients it is easy to see
that (

L+ n

j

)

≤ (L+ 1)j

(
j + n

j

)

∀n ∈ N,

which ensures
∞∑

n=0

(
L+ n

j

)

tn ≤ (L+ 1)j
∞∑

n=0

(
j + n

j

)

tn. (A.2)

Denoting by Sj the sum on the r.h.s. of (A.2), the binomial identity

(
j + n

j

)

=

(
j + n− 1

j

)

+

(
j + n− 1

j − 1

)

leads to the recursive formula Sj = tSj + Sj−1, which shows that (S0 = (1 − t)−1)

Sj = (1 − t)−j−1. (A.3)

(A.1) follows then from (A.2) and (A.3). �

We now prove that, if y, κ > 0 and j ∈ N+, the sum of the series with general term
exp(−y∑j

i=1m
κ
i ) indexed over 1 ≤ m1 < · · · < mj <∞ is, qualitatively and uniformly

in j ∈ N+, just as large as the leading term, corresponding to mi = i for all 1 ≤ i ≤ j.
More precisely, it holds

Lemma A.2 If κ > 0 and x > y > z > 0, then there exist cκ,x,y, cκ,y,z > 0 such that

cκ,x,y exp(−x 1

1 + κ
j1+κ) ≤

∑

1≤m1<···<mj<∞

j
∏

i=1

exp(−ymκ
i ) ≤ cκ,y,z exp(−z 1

1 + κ
j1+κ)

(A.4)
for all j ∈ N+.

Proof. For y > 0 and j ∈ N+, J ∈ N+ ∪ {∞} with j ≤ J we set

Sj,J :=
∑

1≤m1<···<mj≤J

j
∏

i=1

exp(−ymκ
i ). (A.5)

The lower bound in (A.4) follows by observing that the sum in (A.5) contains the term
corresponding to mi = i for all 1 ≤ i ≤ j, so that

Sj,J ≥ exp(−y
j
∑

i=1

iκ),

where
j
∑

i=1

iκ ≤ (j + 1)1+κ

∫ 1

0
xκ dx =

1

1 + κ
(j + 1)1+κ.
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It remains to prove the upper bound of the sum in (A.4). From (A.5) it follows that
the sequence (Sj,j)j∈N+ is rapidly decaying, that is

Sj,j ≤ cκ,y,ββ
j ∀j ∈ N+,∀β > 0. (A.6)

From (A.5) we also derive the recursive formula

Sj,J+1 = Sj,J + exp(−y(J + 1)κ)
∑

1≤m1<...<mj−1≤J

j−1
∏

k=1

exp(−ymκ
k)

= Sj,J + exp(−y(J + 1)κ)Sj−1,J (A.7)

By induction on on j in (A.7) we immediately see that

Sj,J < Sj,∞ = lim
J↗∞

Sj,J <∞ ∀j ∈ N+,

and that

Sj,∞ ≤ Sj,j +
∞∑

i=j+1

exp(−yiκ) · Sj−1,∞. (A.8)

Now, for an arbitrary γ ∈]0, 1[ we have, for j large enough (j ≥ j0, with j0 depending
on y, κ, γ),

∞∑

i=j+1

exp(−yiκ) ≤ γ,

which ensures via (A.8)

Sj,∞ ≤ Sj,j + γSj−1,∞ ∀j ≥ j0. (A.9)

From (A.6) and (A.9) we deduce that

Sj,∞ ≤ cκ,y,β(γ + β)j + γj−j0+1Sj0−1,∞,

which shows that Sj,∞ → 0 as j ↗ ∞, by choosing β such that γ+β < 1. The sequence
(Sj,∞)j∈N+ is in particular bounded, that is

Sj,∞ ≤ cκ,y ∀j ∈ N+. (A.10)

Since this inequality holds for any y > 0, the conclusion follows then from (A.10) upon
replacing y by y − z and noting that

j
∑

i=1

iκ ≥ j1+κ

∫ 1

0
xκ dx =

1

1 + κ
j1+κ.

�
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