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1 Introduction

In [6] we have studied contractivity of explicit Runge-Kutta methods. A close look at
the proofs shows that these are similar to the ones in [1], [5] concerning BN -stability.
A similar relation between proofs in [2] and [3] can be observed. Here we shall link
some of these results by introducing shifted Runge-Kutta schemes and the corresponding
transplanted differential equation. These transformations are done in such a fashion that
the input/output relation in the transformed situation is the same one as in the original
scheme. This gives us a tool to prove new results by transforming these back to known
theorems. We shall present this proving technique in Section 3. To show how it works
we apply it to prove r-circle contractivity in Section 4. To present these results in their
sharpest version we need the concept of irreducibility. We shall introduce in Section 2
a reducibility concept which has been implicitly suggested by G.J. Cooper [4] and then
give the exact relation to the reducibility concepts of Hundsdorfer and Spijker [11] and of
Dahlquist and Jeltsch [6]. The results in this report have been announced in [7].

2 Irreducible methods

To solve the initial value problem

(2.1) y′(t) = f(t, y(t)), y(0) given, y, f ∈ lRs or Cs

we consider m-stage Runge-Kutta methods. Let yn and yn+1 be the numerical approxi-
mations to the exact solution at tn and tn+1 = tn + h, respectively, where the stepsize h
is always assumed to be positive. Then yn+1 is computed by

(2.2) yn+1 = yn + h
m∑

j=1

bj f(tn + cjh, Yj) ,

where

(2.3) Yi = yn + h
m∑

j=1

aij f(tn + cjh, Yj), i = 1, 2, . . . , m .

We shall always request the consistency condition

(2.4a)

m∑

i=1

bi = 1 ,

and

(2.4b) ci =

m∑

j=1

aij .

While (2.4a) is a necessary condition for convergence, (2.4b) is not [13]. However (2.4b)
ensures that the Runge-Kutta scheme gives the same result, whether it is applied to a
nonautonomous problem or the corresponding autonomous problem obtained by augment-
ing the system of equations by the equation dt/dt = 1. Even so (2.4b) is not necessary for
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the results presented here it is convenient to assume it and practically all known methods
satisfy it. The scheme is called explicit if

(2.5) A := (aij)
m
i,j=1

is a strictly lower triangular matrix. A Runge-Kutta method is called confluent if ci = cj

for some i 6= j and nonconfluent otherwise. For compactness of notations we introduce
the vectors

Y, F (tn em + ch, Y ) ∈ lRms or Cms, and c, em ∈ lRm

are defined by

(2.6)

Y =




Y1

Y2
...

Ym


 , F (tn em + ch, Y ) =




f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + cmh, Ym)




em =




1
1
...
1


 , c = A em =




c1

c2
...

cm


 .

Using the Kronecker-product symbol ⊗, see for example [9], p. 116, or [12] we can simplify
the notation. In order to cut down on the number of parentheses we assume that ⊗ has
higher priority than ordinary matrix multiplication. Let Is be the s × s identity matrix,
and let bT = (b1, b2, . . . , bm). Then (2.2) and (2.3) take the form

(2.7) yn+1 = yn + hbT ⊗ Is F (tn em + ch, Y )

and

(2.8) Y = em ⊗ yn + hA ⊗ Is F (tn em + ch, Y ) .

The aim in research on Runge-Kutta scheme is very often to express a property of the
scheme in terms of properties of the coefficients aij and bj. However one can often, for
example by adding redundant stages, destroy the latter while keeping the former. Thus
one would like to get rid of all possible redundancies in a scheme to get sharpest results.
This lead to the introduction of several notions of reducibility [4], [6], [8], [11], [15]. Before
discussing reducibility we observe that a permutation of the numbering of the stages does
not change the numerical result of the Runge-Kutta scheme. In terms of the coefficients
matrix A and b this is expressed by the obvious

Lemma 2.1. Let Π be a permutation matrix. Then the Runge-Kutta schemes defined by
A, b, c and πAπT , πb, πc give identical results.

In a strict sense one should call a Runge-Kutta scheme reducible, if there is a Runge-
Kutta scheme with fewer stages which gives in all situation identical results as the original
scheme. This reducibility has the drawback of being too stringent and not being expressed
in terms of the coefficients. Four our results we shall use the following reducibility defini-
tion, which has been implicitly suggested by G.J. Cooper [4].

2



Definition 2.2. An m-stage Runge-Kutta scheme A, b is called reducible, if there exists
an mr < m and an mr-stage Runge-Kutta scheme Ar, br which satisfies the following
property. There exists an m×m matrix M with exactly one element 1 in each row and 0
otherwise such that

(2.9) AM = M

(
Ar 0

D

)
, MT b =

(
br

0

)
.

Here D is an (m−mr)×m matrix. The method is called irreducible if it is not reducible.

In [4] M is called reducing matrix. The reduced mr-stage Runge-Kutta method is
given by

(2.10) Z = emr
⊗ yn + hAr ⊗ Is F (tn emr

+ hAr emr
, Z)

and

(2.11) zn+1 = yn + h bT
r ⊗ Is F (tn emr

+ hAr emr
, Z) .

Before relating zn+1, Z of (2.11), (2.10) with yn+1, Y of (2.7), (2.8) we observe the following
simplification.

Lemma 2.3. If the Runge-Kutta scheme A, b is reducible then there exists a permutation
matrix π such that the reducing matrix M of the Runge-Kutta method πAπT , πb has the
product representation

(2.12) M = MS P

where P is a permutation matrix and

(2.13) MS =




Iµ 0

0︸︷︷︸
σ

L 0





where L is an (m − µ)× (µ − σ) matrix with exactly one 1 in each row, at least one 1 in
each column and zeros otherwise.

Proof. First we observe that pre-multiplication (post-multiplication) with a permutation
matrix corresponds to a permutation of the rows (columns) of a matrix. Let M ′ be the
reducing matrix of the scheme. By definition M ′ has columns with no 1, exactly one 1
and more than one 1. Hence there exists a permutation matrix P T such that M ′P T has
in the first σ columns exactly one 1, in the next µ − σ columns more than one 1 and no
ones in the last m−µ columns. Since there is exactly one 1 in each row of M ′ and thus of
M ′P T there exists a permutation matrix π such that MS := πM ′P T has the form (2.13).
Clearly M := πM ′ has the required form (2.12) and we find using (2.9) that

πAπT M = πAM ′ = πM ′

(
Ar 0

D

)
= M

(
Ar 0

D

)

and

MT πb = M ′T b =

(
br

0

)
.
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Due to Lemma 2.1 and Lemma 2.3 we can always assume, without loss of general-
ity, that a reducible Runge-Kutta scheme is in the form such that M has the product
representation (2.12). The two factors are associated with two well-known reducibility
concepts, namely reducibility in the sense of Dahlquist and Jeltsch [6] and reducibility in
the sense of Hundsdorfer and Spijker [11]. To simplify the referencing within this section
we give these two special reducibility concepts the following working names:

Definition 2.4. (Dahlquist/Jeltsch [6])

An m-stage Runge-Kutta A, b method is called DJ-reducible if there exist two sets T
and U such that T 6= φ, U 6= φ, T ∩ U = φ, T ∪ U = S := {1, 2, . . . , m} and

bj = 0 if j ∈ T(2.14)

aij = 0 if i ∈ U and j ∈ T .(2.15)

Clearly, a Runge-Kutta method is DJ-reducible if and only if it is reducible with an M
with is a permutation matrix. The reduced scheme is obtained by deleting all stages Yj

with j ∈ T . Hence, one can reduce the scheme by |T |-stages to an |U |-stage Runge-Kutta
method. DJ-reducible schemes can be thought of schemes where one has artificially added
stages together with zeros at appropriate locations to ensure that the additional stages
have no influence on the old ones. The only influence is on the solvability of the whole
system. One can add the new stags such that the enlarged method has 0, 1, 2, . . . up
to infinitely many solution. However, due to the appropriate zeros one has that if the
enlarged scheme has solutions then the yn+1 value is the same as in the original method.

A different reducibility concept was introduced in [11] (see also [15] for a special case).
Here the idea was that existing stages are duplicated in order to give additional stages,
all providing the same Yj and therefore the same f(tn + cjh, Yj). Hence, wherever an
f(tn + cjh, Yj) occurs in the scheme it can be replaced by a sum over these identical
values. The formal definition is:

Definition 2.5. (Hundsdorfer/Spijker [11])

Let ρ ≥ 1, S1, S2, . . . , Sρ are pairwise disjoint subsets of S := {1, 2, . . . , m} each
containing at least two elements. Let

S0 = S −

ρ⋃

j=1

Sj .

The method is {S1, S2, . . . , Sρ}-reducible, if for k = 1, 2, . . . , ρ one has for i, j ∈ Sk that

(2.16)
∑

ν=S`

aiν =
∑

ν∈S`

ajν , ` = 1, 2, . . . , ρ

and

(2.17) ai` = aj`, ` ∈ S0 .
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Clearly, if a Runge-Kutta A, b is {S ′

1, S
′

2, . . . , S
′

ρ}-reducible then there exists a per-
mutation matrix π such that the scheme πAπT , πb is {S1, S2, . . . , Sρ}-reducible where Si

satisfies the following condition

S0 = {1, 2, . . . , s0}

s0 + i ∈ Si for i = 1, 2, . . . , ρ .
(2.18)

The idea behind this reducibility is that for each fixed i ≥ 1, all stages Yj with j ∈ Si

give identical Yj values. The scheme can then be reduced, assuming that (2.18) holds, to
the scheme A′, b′

a′

ij = aij i = 1, 2, . . . , s0 + ρ; j = 1, 2, . . . , s0

a′

i,s0+k =
∑

`∈Sk

ai` i = 1, 2, . . . , s0 + ρ; k = 1, 2, . . . , ρ
(2.19)

b′i = bi i = 1, 2, . . . , s0

b′s0+k =
∑

`∈Sk

b` k = 1, 2, . . . , ρ .
(2.20)

This scheme has |S0|+ ρ stages. From the idea of this reducibility concept it is clear that
if the reduced scheme has a solution then the unreduced one has a solution too. However,
the large system may have additional solutions where the stages with the indices in the
same Sj are not identical. We give now the final relation between the three reducibility
concepts.

Proposition 2.6. An m-stage Runge-Kutta method A, b is reducible to an mr-stage
Runge-Kutta Ar, br if and only if it is either DJ-reducible or {S1, . . . , Sρ}-reducible or
both. More precisely:

i) A Runge-Kutta scheme is DJ-reducible if and only if there exists a reducing matrix
M of rank(M) = m.

ii) A Runge-Kutta scheme is {S0, S1, . . . , Sρ}-reducible if and only if µ := rank(M) <
m. It can be reduced to an µ-stage scheme and one has

(2.21) µ = ρ + σ .

In addition, after suitable numbering of the stages one has

(2.22) S0 = {1, 2, . . . , σ}

and

(2.23) Sk = {i|mi,σ+k = 1}, k = 1, 2, . . . , ρ

where
MS = (mij)

m
i,j=1 .
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iii) If we assume that M is chosen such as to minimize mr then after reducing the
scheme to a rank (M)-stage method using {S1, S2, . . . , Sσ}-reducibility the remaining
scheme can be reduced by rank (M) − mr-stages using DJ-reducibility.

Remarks:

1. The reducibility of Definition 2.2 is nothing more than a combination of the two-well
established reducibility concepts.

2. Since in [11], [8], p. 111, an algorithm to determine {S1, . . . , Sρ}-reducibility is given
and it is obvious how to determine DJ-reducibility one just joins the two algorithms
together to get an algorithm for determining reducibility.

Proof of Proposition 2.6. As already observed in [4], part i), is trivial. To show ii) we
first assume hat the scheme is {S1, . . . , Sρ}-reducible. Without loss of generality we can
assume that the stage numbers have been permuted such that the Si are as follows:

(2.24)
S0 = {1, 2, . . . , σ}

σ + i ∈ Si for i = 1, 2, . . . , ρ .

Let M = (mij)
m
i,j=1 be defined by

(2.25) mij =






1 for i ∈ S0, j = i

1 for i ∈ Sk, j = σ + k, for k = 1, 2, . . . , ρ

0 elsewhere .

Clearly, rank (M) = σ + ρ < m and M satisfies (2.23) and with µ := rank(M) (2.21) too.
It remains to show that M is a reducing matrix. Let A′ = AM = (a′

ij)
m
i,j=1. Hence

a′

ij =






aij j ∈ S0

∑

`∈Sk

ai` j = σ + k, k = 1, 2, . . . , ρ

0 j > σ + ρ .

One easily verifies that

MA′ = A′ =

(
A′

11 0

A′

22 0

)

and

b′ := MT b =

(
b′1

0

)

where A′

11 is a µ×µ matrix and b′1 ∈ lRµ. Hence, the Runge-Kutta scheme A, b is reducible.
In fact M has the standard form of MS in (2.13). We now show the converse, namely that
a reducible scheme with the reducing matrix M of rank (M) = µ < m is {S1, . . . , Sρ}-
reducible with (2.21) - (2.23) after suitable renumbering of the stage numbers. We choose
the numbering of the stage numbers such that M has the form (2.12), (2.13). This defines
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σ. We choose ρ and Si according to (2.21) - (2.23). Since there is exactly one 1 in each
row of MS we have

ρ⋃

j=0

Sj = {1, 2, . . . , m}

and the sets Sj are pairwise disjoint. Moreover each Sj with j > 0 has at least two
elements. For brevity we rewrite MS as

MS =

(
Iµ 0

L′ 0

)
, A′ = P

(
Ar 0

D

)
P T

where Iµ is the µ × µ identity matrix and L′ is the (m − µ) × µ matrix

L′ = (0 L) .

With the corresponding partitioning of A and A′ we find from (2.9)

(2.26) AMS =

(
A11 + A12L

′ 0

A21 + A22L
′ 0

)
=

(
A′

11 A′

12

L′A′

11 L′A′

12

)
= MSA′ .

Hence A′

12 = 0 and A′

11 is uniquely determined. Let i ∈ Sj, j > 0 and k ∈ S0. Hence one
finds by (2.26) that the (i, k)th element of AM is aik while the (i, k)th element of MA′ is
a′

σ+j,k. Hence by (2.26) one has

(2.27) aik = a′

σ+j,k .

Since this is true for all i ∈ Sj we have shown (2.17). Let i ∈ Sj, j > 0 and k > 0. As
before one finds by equating the (i, σ + k)th element in (2.26) that

(2.28)
∑

ν∈Sk

aiν = a′

σ+j,σ+k

Since the right-hand side is the same for all i ∈ Sj we have shown (2.16). To show iii)
assume that M is chosen such that it minimizes mr. In addition we can assume by Lemma
2.3 that M is in the standard form M = MSP where MS is given by (2.13). We have
already shown that MS determines the {S1, . . . , Sρ}-reducibility, and

AMS = MSA′

and

(2.29) A′ =

(
A′

11 0

A′

21 A′

22

)
= P

(
Ar 0

D

)
P T .

Here A′

11 is a µ × µ matrix. Let

(2.30) b′ = MT
S b = P T

(
br

0

)
.
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From the form of MS we see that the Runge-Kutta method A′, b′ is DJ-reducible to an
µ-stage scheme. In addition one sees from (2.29), (2.30) that the scheme A′, b′ is also
DJ-reducible to an mr-stage scheme. Since mr is minimal the scheme A′

11, b
′

1, where b′1 is
the vector in lRµ consisting of the first µ components of b′ is DJ-reducible by µ−mr-stages
to the scheme Ar, br. One verifies easily that the scheme A′

11, b
′

1 is the one obtained by
the {S1, . . . , Sσ}-reduction.

Part iii) of Proposition 2.6 gives the best insight in the relation between the solvability
of (2.10) of the completely reduced scheme Ar, br and (2.8) of the original scheme A, b
and the relation between yn+1 in (2.7) and zn+1 in (2.11). First let νr, ν be the number
of solutions of (2.10) and (2.8) respectively. It is illuminating to consider also the scheme
A′

11, b
′

1 which is obtained from A, b by using {S1, . . . , Sσ}-reducibility. This intermediate
method has the form

(2.31) W = eµ ⊗ yn + h A′

11 ⊗ Is F (tn eµ + h A′

11 eµ, W )

and

(2.32) wn+1 = yn + h b′
T

⊗ Is F (tn eµ + h A′

11 eµ, W ) .

Let ν ′ be the number of solutions of (2.31). Clearly, there is no relation what-so-ever
between νr and ν ′ since the system (2.31) can be thought of being created from the
smaller system (2.10) by adding a system of redundant stages which may have no or any
number of solutions, i.e. all three possibilities νr < ν ′, νr = ν ′ and νr > ν ′ can occur.
However one always has ν ′ ≤ ν since from each solution of (2.31) one can construct a
solution of (2.8) by duplication of the appropriate stages. It νr ·ν

′ > 0 then one always has
wn+1 = zn+1. However since (2.8) admits sometimes solutions which did not arise from
duplication of stages in (2.31) one may have that yn+1 6= wn+1. Therefore it is possible
that the system (2.8) of the original scheme has a unique solution and the system of the
completely reduced scheme (2.10) has a unique solution but yn+1 6= zn+1. To demonstrate
this we give the following example.

Example: The scalar initial value problem is the following

y′ = f(t, y) =

{
y2 if y ≥ 0

0 if y < 0

y(0) = 1 .

The reducible scheme is given by

A =




0 0 0

0 1 −
1

2

0
1

2
0




bT =
(
1 b2 − b2

)
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and the completely reduced scheme is Euler’s method

Ar = (0)

bT
r = (1) .

One easily verifies that for y0 = 1, h = 2 the implicit equation (2.8) with A has the unique
solution

Y =




1

0

1




and hence
y1 = 3 − 2b2

Since the reduced scheme is Euler’s scheme it has a unique solution and z1 = 3.

3 Shifted Runge-Kutta methods and the transplanted

differential equation

In this section we transform the Runge-Kutta method and the differential equation such
that the input/output relation in the transformed situation is the same one as in the
original scheme if one uses the same stepsize h in both cases. The transformed scheme is
called shifted Runge-Kutta method.

Definition 3.1.

Let A, b, c represent an m-stage Runge-Kutta scheme with c = Aem. Then the Runge-
Kutta scheme A∗, b∗, c∗ shifted by σ is defined as follows

A∗ = A + σIm(3.1)

b∗ = b

c∗ = c + σem .(3.2)

Clearly, the shifted Runge-Kutta scheme satisfies (2.4b). We shall now “transplant” the
differential equation. To do this we introduce the non-linear map Tσ : lRs+1 → lRs+1 given
by

(3.3)

(
t∗

y∗

)
= Tσ

(
t

y

)
=

(
t + σh

y + σh f(t, y)

)
.

In order not to overload the notations we do not indicate the dependance of Tσ on h and
f explicitly.

Definition 3.2. The function f ∗(t∗y∗) defined by

(3.4) f ∗(t∗, y∗) := f(t, y)
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where t, y are given by (
t

y

)
= T [−1]

σ

(
t∗

y∗

)

is called the transplant of fff under the map TσTσTσ.

Thus the value of f ∗ at t∗, y∗ is equal to the value of f at the pre-image of t∗, y∗ under
the map Tσ.

Proposition 3.3. Let A, b be an m-stage Runge-Kutta scheme with c = Aem and A∗, b∗

the scheme shifted by σ. Let f ∗ be the transplant of f under the map Tσ. Then one
integration step to solve the initial value problem

y′(t) = f
(
t, y(t)

)
, y(tn) = yn

using the Runge-Kutta scheme A, b yields the same result as one step to solve the “trans-
planted” initial value problem

z′(t) = f ∗
(
t, z(t)

)
, z(tn) = yn

using the shifted Runge-Kutta method A∗, b∗, c∗.

Proof. From (3.4) follows that

(3.5) F ∗(tn em + c∗h, Y ∗) = F (tn em + c∗h − σhem, Y )

if

(3.6) Y ∗ = Y + σh F (tn em + c∗h − σhem, Y ) .

Substitution of (3.5) and (3.6) in

Y ∗ = em ⊗ yn + hA∗ ⊗ Is F ∗(tn em + c∗h, Y ∗)

gives using (3.1), (3.2)

Y + σh F (tn em + ch, Y ) = em ⊗ yn + h(A + σIm) ⊗ Is F (tn em + ch, Y ) .

Thus Y satisfies (2.8). Hence

zn+1 = yn + hb∗
T

⊗ Is F ∗(tn em + c∗h, Y ∗)

= yn + hbT ⊗ Is F (tn em + ch, y) = yn+1 .

Since the input/output relation of the original and the transformed situation are iden-
tical a boundedness result

(3.7) ‖yn+1‖ ≤ k‖yn‖

or a result of the form

(3.8) ‖yn+1 − ỹn+1‖ ≤ k ‖yn − ỹn‖
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for the transformed situation must imply the corresponding result in the original situation
and vice versa. Before exploiting this fact by giving examples in the next section, we collect
here some basic properties on the transformation.

Clearly, the order of a Runge-Kutta scheme can vary under a shift by σ as one easily
sees from the example of the one stage Gauss-Legendre method A = ( 1

2
), b = (1). This

method has order 2 while the scheme shifted by − 1
2

is Euler’s method which has order
one. However, from Definition 3.1 the following lemma is obvious.

Lemma 3.4. A shifted Runge-Kutta scheme is consistent if and only if the original scheme
is consistent.

Lemma 3.5. A shifted Runge-Kutta scheme is reducible if and only if the original scheme
is reducible.

Proof. Assume the scheme A, b is reducible; i.e. (2.9) holds with the reducing matrix M .
Let A∗, b∗ be the Runge-Kutta scheme shifted by σ. Hence

A∗M = AM + σM = MA′ + σM

= M(A′ + σIm) .
(3.9)

Since A′ + σIm has the same structure A′ and b∗ = b we find by (3.9) that the shifted
method is reducible too. Since the sign of σ is arbitrary we have that the shifted scheme
is reducible if and only if the original method is reducible.

In the next sections we shall impose some conditions on the differential equations.
Let 〈·, ·〉 be a semi-innerproduct and ‖u‖ := 〈u, u〉

1

2 be a semi-norm on lRs or Cs. One
imposes on the differential equation either the condition

(3.10) Re〈αu + βf(u), γu + δf(u)〉 ≤ 0 for all u ∈ lRs or Cs

or

(3.11)
Re〈α(u − v) + β

(
f(t, u) − f(t, v)

)
, γ(u − v) + δ

(
f(t, u) − f(t, v)

)
〉 ≤ 0

for all u, v ∈ lRs or Cs .

Here, α, β, γ, δ are real numbers.

Since we always want that these conditions involve f we can without loss of generality
assume δ = 1. Condition (3.10) is very often used with

α = δ = 1, β = γ = 0

to prove monotonicity, i.e.

(3.12) ‖yn+1‖ ≤ ‖yn‖ ,

see for example [2], [14]. For proving contractivity, i.e.

(3.13) ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖

one usually request (3.11) with either α = δ = 1, β = 0 see e.g. [1] or α = δ = 1, γ = 0
see e.g. [6].
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Lemma 3.6. Assume that f satisfies either (3.10) or (3.11) respectively with δ = 1. If
1 − γσh > 0 then the transplant f ∗ of f under Tσ satisfies (3.10) or (3.11) respectively
with α, β, γ, δ replaced by

(3.14) α∗ :=
α

1 − γσh
, β∗ :=

β − ασh

1 − γσh
, γ∗ :=

γ

1 − γσh
, δ∗ := 1 .

Proof. The map Tσ is given by

u∗ = Tσ(u) = u + σh f(u)

and the transplant f ∗ of f under Tσ is given by

f ∗(u∗) := f(u) .

If (3.10) holds one easily finds

0 ≥ Re
〈
αu + β f(u), γu + f(u)

〉

= Re
〈
(u + σh f(u) + (β − ασh) f(u), γ

(
u + σh f(u)

)
+ (1 − γσh) f(u)

〉

= Re
〈 α

1 − γσh
u∗ +

β − ασh

1 − γσh
f ∗(u∗),

γ

1 − γσh
u∗ + f ∗(u∗)

〉
.

Here we have used in the last step that 1 − γσh > 0. The result for (3.11) is proved in
the same way.

In order to get a feeling for the conditions (3.10) and (3.11) we observe that for the
linear equation y′ = λy the conditions become, provided that ‖y‖ 6= 0,

(3.15) Re
α + βλ

γ + λ
≤ 0 .

Since w(λ) = (α + βλ)/(y + λ) is a Möbius transformation the set {λ |Re w(λ) ≤ 0} is
either a circle or a halfplane.

4 r-circle contractivity

In this section we show on the example of contractivity how Proposition 3.3 can be used
to prove new results. We talk of numerical contractivity if any two numerical solutions

{yn}n=0,1,...,, {ỹ}n=0,1,...,

which are computed with the same h satisfy

(4.1) ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖, n = 0, 1, . . . , .

Here we assume that ‖u‖ is an innerproduct norm as introduced in the Section 3. In
order that one has numerical contractivity one has to impose conditions on the differential
equations and on the methods. For the differential equation we request that (3.10) holds
with α = δ = 1, y = 0, i.e.

(4.2) Re 〈u − v, f(t, u) − f(t, v)〉 ≤ −β‖f(t, u) − f(t, v)‖2 for all u, v ∈ lRs or Cs .
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For brevity let us introduce the generalized disks

(4.3) D(r) :=





{λ ∈ C
∣∣ |λ + r| ≤ r} if r > 0

{λ ∈ C
∣∣Re λ ≤ 0} if r = ∞

{λ ∈ C
∣∣ |λ + r| ≥ −r} if r < 0 .

Hence (4.2) corresponds for y′ = λy to the condition λ ∈ D(1/(2β)).

To motivate the condition on the Runge-Kutta scheme we consider the scalar test
equation

(4.4) y′ = λ(t) y(t) λ(t) ∈ C .

If one applies (2.7),(2.8) to (4.3) the numbers

(4.5) ζi = hλ(tn + ci h), i = 1, 2, . . . , m

and ζ = (ζ1, ζ2, . . . , ζm)T are needed. Assume that (4.4) satisfies (4.2) then ζi ∈ D(r) with
r = h/(2β). If the ci are distinct then one can choose any m complex numbers ζi ∈ D(r)
and find a smooth λ(t) such that (4.5) holds. Applying (2.7), (2.8) to (4.4) leads to

(4.6) yn+1 = K(ζ) yn

where

(4.7) K(ζ) = 1 + bT Z(Im − AZ)−1 em

with

(4.8) Z = diag(ζ1, ζ2, . . . , ζm) ,

see [1]. Clearly we have numerical contractivity if |K(ζ)| ≤ 1. This leads to the

Definition 4.1. A Runge-Kutta method is called rrr-circle contractive if D(r) is the
largest generalized disk with r 6= 0 and

(4.9) |K(ζ)| ≤ 1 for all ζ ∈ D(r)m .

A method is called circle contractive if (4.9) holds for some r 6= 0.

With largest generalized disk we mean largest in the sense of the natural ordering by
set inclusion. Note that this is equivalent to the ordering of − 1

r
in the reals. Note that

for a confluent method applied to (4.4) one never has ζi 6= ζj if ci = cj. Nevertheless we
request (4.9). One reason for this is, that with the present definition 1

r
is a continuous

function of the coefficients aij and bj if the method is irreducible as one easily sees from
the next theorem below. Another is that Theorem 4.2 will hold. Clearly D(r) ⊂ S, where
S is the stability region of the method, given by

S = {µ ∈ C
∣∣ |K(µIm)| ≤ 1} .

Following Burrage and Butcher [1] we introduce the matrix,

(4.10) Q = BA + AT B − bbT

where

(4.11) B = diag(b1, b2, . . . , bm) .
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Theorem 4.2. Assume that the Runge-Kutta scheme is irreducible. Then the following
conditions are equivalent:

i) The method is r-circle contractive

ii) bi > 0 for i = 1, 2, . . . , m and

(4.12) −
1

r
= inf

w∈lRm

w 6=0

wT Qw

wT Bw
= min

i=1,2,...,m
νi

where νi are the eigenvalues B−
1

2 QB−
1

2 .

iii) 1
r

is the smallest number such that the following holds. If two numerical solutions
{yn}, {ỹn} of a differential equation with (4.2) are computed with the same stepsize
h satisfying

(4.13)
h

2r
≤ β

then one has

(4.14) ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .

From this theorem one easily notes that r-circle contractivity is equivalent to (1, 0, 1
2
)

algebraic stability of G.J. Cooper [3]. Instead of proving the theorem directly we show
how one can use the transformation described in Section 3 to make use of existing theorems
concerning the “half plane” situation. Hence, let us first recall these results.

Definition 4.3. A Runge-Kutta scheme is called algebraically stable if bi ≥ 0 for
i = 1, . . . , m and Q is nonnegative definite.

It is easy to show that, if the method is irreducible then one has in fact bi > 0 [6], [8],
p. 114.

Definition 4.4. A Runge-Kutta method is called BN-stable if for all f satisfying (4.2)
with β = 0, all yn, ỹn and all h > 0 inequality (4.14) holds.

Theorem 4.5. [10]

A Runge-Kutta scheme is algebraically stable if and only if

(4.15) |K(ζ)| ≤ 1 for all ζ ∈ (C−)m .

Theorem 4.6. [1], [5], [11]

An irreducible Runge-Kutta scheme is BN-stable if and only if it is algebraically stable.

We shall need the following two lemmata. The first one corresponds to Proposition
3.3 and relates K(ζ) to K∗(ζ∗).
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Lemma 4.7. Let K(ζ) belong to the Runge-Kutta method A, b and K∗(·) belong to the
Runge-Kutta scheme shifted by 1

2r
. Moreover let

ζ∗ = (ζ∗

1 , ζ
2
2 , . . . , ζ

∗

m)T

where

(4.16) ζ∗

i =
ζi

1 + 1
2r

ζi

.

Then

(4.17) K∗(ζ∗) = K(ζ) .

Moreover

(4.18) |K(ζ)| ≤ 1 for all ζ ∈ D(r)m

if and only if

(4.19) |K∗(ζ∗)| ≤ 1 for all ζ ∈ (C−)m .

Proof. Clearly

Z∗ = diag(ζ∗

1 , . . . , ζ
∗

m) = Z
(
Im +

1

2r
Z
)
−1

.

Hence

K∗(ζ∗) = 1 + bT Z
(
Im +

1

2r
Z
)
−1 (

Im −
(
A +

1

2r
Im

)
Z
(
Im +

1

2r
Z
)
−1)−1

em

= 1 + bT Z
(
Im +

1

2r
Z −

(
A +

1

2r
Im

)
Z
)
−1

em = K(ζ)

and thus (4.17) holds. The equivalence of (4.18) and (4.19) is trivial since the map
ζ → ζ/(1 − 1

2r
ζ) is a Möbius transformation which maps D(r) one-to-one onto C−.

Lemma 4.8. Let Q belong to the Runge-Kutta method A, b. Then

(4.20) inf
w∈lRm

w 6=0

wT Qw

wT Bw
≥ −

1

r

if and only if the Runge-Kutta method A∗, b∗ shifted by 1
2r

is algebraically stable.

Proof. The proof follows immediately from b∗ = b and the relation

Q∗ = BA∗ + A∗T B − bbT

= B
(
A +

1

2r
Im

)
+
(
A +

1

2r
Im

)T

B − bbT

= Q +
1

r
B .
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Proof of Theorem 4.2. To prove the equivalence of i) and ii) it is enough to show that one
has

|K(ζ)| ≤ 1 for all ζ ∈ D(r)m

if and only if

(4.21) inf
w∈lRm

w 6=0

wTQw

wTBw
≥ −

1

r
.

This follows however immediately from the Lemma 4.7, 4.8 and Theorem 4.5. To show
the equivalence of ii) and iii) it is enough to show that (4.21) is equivalent to the following
statement: If two numerical solutions {yn}, {ỹn} of a differential equation with (4.2) are
computed with the same stepsize satisfying

(4.22)
h

2r
≤ β

then one has

(4.23) ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .

However this last statement is equivalent to the statement that the Runge-Kutta method
shifted by 1

2r
is BN -stable since by Proposition 3.3 the input/output relation is invariant

under the transformation and by Lemma 3.6 and (4.22) the β∗ of the transformed differ-
ential equation is nonnegative. By Theorem 4.6 the transformed method is algebraically
stable and hence by Lemma 4.8 we have (4.21). �

In similar ways one can use the presented technique to generalize other known results.
We mention, just as an example results by M.N. Spijker [14] on monotonicity which could
be extended most easily.

Acknowledgement. We would like to thank the German and Swedish government who
made the visit of the first author to Aachen possible through their exchange program for
scientists. In addition we would like to thank Gene Golub for providing the excellent
working conditions during our stay at Stanford University.

16



References

[1] K. Burrage and J.C. Butcher. Stability criteria for implicit Runge-Kutta methods.
SIAM J. Numer. Anal., 16(1):46-57, 1979.

[2] K. Burrage and J.C. Butcher. Nonlinear stability of a general class of differential
equation methods. BIT 20(2):185-203, 1980.

[3] G.J. Cooper. A generalization of algebraic stability for Runge-Kutta methods. IMA
J. Numer. Anal., 4(4):427-440, 1984.

[4] G.J. Cooper. Reducible Runge-Kutta methods. BIT, 25(4):675-680, 1985.
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A Appendix 1

Rolf Jeltsch, ETH, Zürich, Switzerland

One of the referees made the following correct remark:

Begin quote:

In section 3 the authors fail to require (in Definition 3.2, in Proposition 3.3, in Lemma
3.6) that the map Tσ is a bijection, so as to ensure that f ∗ = f ◦ (Tσ)−1 actually exists.
Partly due to this omission, their proof of Theorem 4.2 on p. 15 seems to be incomplete.
To be more specific, let Fβ denote the class of all f satisfying (4.2) for some inner product
and some s ≥ 1. On p. 15 the authors claim the following statement (a) and (b) to be
equivalent.

(a) ... There is contractivity for A whenever f ∈ Fβ, h
2r

≤ β,

(b) ... There is contractivity for A∗ = (A + 1
2r

) whenever f ∈ F0, h < ∞.

However, their proof of this equivalence seems to require that the dubious
statement (c), (d) are true.

(c) ... f ∗, with σ = 1
2r

, actually exists whenever f ∈ Fβ, h
2r

≤ β,

(d) ... There is an f ∈ Fβ with β ≥ h
2r

, f ∗ = g, σ = 1
2r

, whenever g ∈ F0 is given.

End quote.

This remark by the referee is correct. We show this with the following example:

Let σh = 1 and f(t, y) = −y then by (3.3) in Definition 3.1 we have

Tσ

(
t

y

)
=

(
t + 1

0

)
.

Clearly T
[−1]
σ does not exist.

This problem can be removed by making the changes suggested by the referee. Hence
we replace Definition 3.2 by

Definition A.1. (new version of Definition 3.2)

Assume the map Tσ: lRs+1 → lRs+1 given by (3.3) is a bijection. Then the function
f ∗(t∗, y∗) defined by

(A.1) f ∗(t∗, y∗) := f(t, y)
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where t, y are given by (
t

y

)
= T [−1]

σ

(
t∗

y∗

)

is called the transplant of fff under the map TσTσTσ .

Replace Proposition 3.3 by

Proposition A.2. (new version of Proposition 3.3)

Let A, b be an m-stage Runge-Kutta scheme with c = Aem and A∗, b∗ the scheme
shifted by σ. Assume hat the map Tσ defined by σ and f(t, y) is a bijection. Let f ∗ be
the transplant of f under the map Tσ. Then one integration step to solve the initial value
problem

y′(t) = f(t, y(t)), y(tn) = yn

using the Runge-Kutta scheme A, b yields the same result as one step to solve the “trans-
planted” initial value problem

z′(t) = f ∗(t, y(t)), z(tn) = zn

using the shifted Runge-Kutta method A∗, b∗, c∗.

Further we replace Lemma 3.6 by

Lemma A.3. (new version of Lemma 3.6)

Assume that f satisfies either (3.10) or (3.11) respectively with δ = 1. Assume that
the map Tσ defined by σ and f(t, y) is a bijection. If 1 − γσh > 0 then the transplant f ∗

of f under Tσ satisfies (3.10) or (3.11) respectively with α, β, γ, δ replaced by

(A.2) α∗ :=
α

1 − γσh
, β∗ :=

β − ασh

1 − γσh
, γ∗ :=

γ

1 − γσh
, δ∗ := 1 .

At this point we should note that for the differential equation

(A.3) y′ = λ(t) y λ ∈ C

satisfying (4.2) one has λ ∈ D( 1
2β

). If we transplant (A.3) with σ = 1
2β

one has for hσ ≤ β

that 1 + σhλ 6= 0 except in the case λ = − 1
β

and hσ = β. Hence except for the particular

case of λ = − 1
β

the transformation Tσ is a bijection. Applying a Runge-Kutta method to

(A.3) yields

(A.4) yn+1 = K(ζ) yn .

Note that if ζi = −2r this corresponds by (4.16) to ζ∗

i = ∞. However −2r is a boundary
point of D(r) and ∞ is a boundary point of C−. As K(ζ) is a rational function (4.9) and
(4.15) are true independently whether this boundary points are included or not. Hence
Lemma 4.7 remains valid. The same is true for Lemma 4.8., We modify Theorem 4.2 as
follows:
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Theorem A.4. (new version of Theorem 4.2)
Assume the Runge-Kutta scheme is irreducible. Then the following conditions are

equivalent

i) (as in Theorem 4.2)

ii) (as in theorem 4.2)

iii) (new) 1
r

is the smallest number such that the following holds.

Let two numerical solutions {yn}, {ỹn} of a differential equation satisfying (4.2) be
computed with the same stepsize h satisfying

(A.5)
h

2r
≤ β

and assume that the transformation Tσ with σ = 1
2r

is bijective then one has

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .

.

The proof of Theorem A.4 can now be done exactly the same way as in the original report.
However we have now requested in statement iii) that the transformation Tσ with σ = 1

2r

is bijective.

Appendix 2 1

Rolf Jeltsch, ETH, Zürich, Switzerland

This article appeared first as a report by the Institute for Geometry and Practical Math-
ematics, RWTH Aachen, May 1987. It is reprinted here for historic reasons. The image
of the front page of the report is given as Pict. 1. G. Dahlquist worked on report while
visiting the second author in Aachen in June of 1983. When leaving on June 10, he left a
note to the second author, see Pict. 2. On his way home G. Dahlquist bought a postcard
in transit in Brussels which he posted while being in Kobenhagen on June 13. The image
of this postcard is given here, Pict. 3 and Pict. 4, because the main idea of the second
half of the article, Sections 3 and 4, namely the transformation Tσ is described on the
back of the postcard. The report was submitted to BIT in summer of 1987. The referee
reports had been sent to G. Dahlquist who forwarded these with a letter to the second
author on August 28, 1987, see Pict. 5.

In the present article minor corrections, such as typographical mistakes, simple omis-
sions and errors in the use of the language have been corrected. However the principle
comment by one of the referees has not been corrected. This is done in Appendix 1. Of
course the Tex style of BIT has been used, rather than the original typewriter fonts.

1The pictures mentioned in Appendix 2 are only available as hardcopy. This paper can be ordered at
”reports@sam.math.ethz.ch” (free of charge).
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