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Abstract

For MinRes and SymmLQ it is essential to compute the QR decompositions
of tridiagonal coefficient matrices gained in the Lanczos process. Likewise, for
GMRes one has to find those of Hessenberg matrices. These QR decomposi-
tions are computed by an update scheme where in every step a single Givens
rotation is constructed.

Generalizing this approach we introduce a block-wise update scheme for the
QR decomposition of the block tridiagonal and block Hessenberg matrices
that come up in generalizations of MinRes, SymmLQ, GMRes, and QMR
to block methods for systems with multiple right-hand sides. Using (in gen-
eral, complex) Householder reflections instead of Givens rotations is seen to be
much more efficient in the block case. Some implementation details and numer-
ical experiments on accuracy and timing are given. In particular, we compare
our method with the one based on Givens rotations that has been used in a
version of block QMR. Our treatment includes the option of deflation, that
is, the successive reduction of the block size due to linear dependencies.
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1 Introduction

In 1975 Paige and Saunders [1] proposed two Krylov (sub)space methods called
MinRes and SymmLQ for solving sparse Hermitian indefinite linear systems

Ax = b (1)

with A = AH ∈ CN×N , x ∈ CN and b ∈ CN . In contrast to the conjugate
gradient (CG) and conjugate residual (CR) methods that had been introduced
more than 20 years earlier by Hestenes and Stiefel [2] [3] and are mostly limited
to Hermitian positive definite systems (there is a version of CR that can cope
with indefinite systems), the new methods made use of a different approach:
during the recursive construction of orthonormal bases {y0,y1, . . . ,yn−1} for
the Krylov subspaces

Kn (A, r0) := span
{
r0,Ar0, . . . ,A

n−1r0

}
, (2)

for each n, the system Ax = b is projected into the Krylov space Kn (A, r0)
and its projection is solved in terms of the coordinates. So, basically, for each
n, a projection of the system is solved in coordinate space. The approach relies
on the fact that this can be done very efficiently in a recursive way by updating
the LQ or the QR decomposition of a tridiagonal matrix. Despite the different
approach, whenever CR and CG do not break down due to the indefiniteness
of A, Paige and Saunders’ methods produce the same solutions (in exact
arithmetic). Their wider applicability is due to the guaranteed existence of
a nested set of orthonormal bases, while the collinear orthogonal bases of
residual vectors constructed implicitly by CG may not exist due to an infinite
scaling factor.

The extension of MinRes to nonsymmetric systems Ax = b is straightfor-
ward, yet it took another ten years till the GMRes algorithm was introduced
by Saad and Schultz [4]. Here a QR decomposition of a Hessenberg matrix
needs to get updated in each step. Another generalization to the nonsym-
metric case is the QMR method of Freund and Nachtigal [5], which is based
on the nonsymmetric Lanczos process and makes again just use of the QR
decomposition of a tridiagonal matrix as long as no look-ahead [6] is needed.

The same approach also works (with a number of additional difficulties to cope
with), for systems with multiple right-hand sides, which we will also write as
(1), but with

A = AH ∈ C
N×N , x ∈ C

N×s, b ∈ C
N×s. (3)

The block GMRes method for the nonsymmetric case was introduced by
Vital [7], the block versions of MinRes and SymmLQ were investigated in
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detail in [8], and block versions of QMR were introduced by various authors
[9], [10], [11], [12]. In the first method one has to QR-decompose a block
Hessenberg matrix with upper triangular (or upper trapezoidal) subdiagonal
blocks, in the other methods the matrix is block triangular and has the same
type of subdiagonal blocks (if we assume no look-ahead in QMR). In this
paper we describe the updating of the QR decomposition of matrices with
these structures. While in the case of a single system constructing one Givens
rotation per step yields an extremely efficient update algorithm, the block
case requires O(s2) rotations per block step. We will show that in practice
it is much more efficient to apply Householder reflections instead. The major
portion of the computing time reduction comes from the usage of BLAS2-type
block operations and is hardware dependent.

While in a standard Krylov space method the approximants xn of the solution
x⋆ of a single system are chosen such that xn − x0 ∈ Kn (A, r0), where r0 :≡
b − Ax0 is the initial residual, in block Krylov space methods each of the s
nth approximations x(i)

n of the s solutions of Ax(i)
n = b(i) (i = 1, . . . , s) are

chosen so that
x(i)

n − x
(i)
0 ∈ Bn (A, r0) ,

where

Bn (A, r0) :≡ block span
{
r0,Ar0, . . . ,A

n−1r0

}

:≡

{
n−1∑

k=0

Akr0γk ; γk ∈ C
s (k = 0, . . . , n − 1)

}

= Kn

(
A, r

(1)
0

)
+ · · · + Kn

(
A, r

(s)
0

)
⊆ C

N

is the sum of the s individual nth Krylov subspaces. But, in general, this is
not a direct sum.

In exact arithmetic the block Arnoldi process (in the non-Hermitian case)
or the block Lanczos process (in the Hermitian case) create block vectors
y0,y1, . . . ,yn−1 ∈ C

N×s whose orthonormal columns are a basis for Bn (A, r0):

Bn (A, r0) = block span {y0,y1, . . . ,yn−1} .

Deflation is crucial for the stability of block Lanczos, and it saves memory
space and computing time in block Arnoldi. It is accounted for, but not in-
vestigated in detail in this paper. It means to delete those columns of yn that
are already contained in Bn (A, r0). As a consequence, the block vector yi has
si columns, where s ≥ s0 ≥ si ≥ si+1, i = 1, 2, . . ..

We denote by tn (A, r0) the dimension of Bn (A, r0), which implies that

tn (A,v0) =
∑n−1

i=0
si.
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Since in the theory of ordinary Krylov spaces the grade of A with respect
to r0 is an important notion 1 , we introduce a corresponding one for the block
case:

Definition 1 The smallest index n with

tn (A, r0) = tn+1 (A, r0)

is called the block grade of A with respect to r0 and denoted by ν̄ (A, r0).

In this paper we start with a brief review of the block Arnoldi and the sym-
metric block Lanczos processes. The nonsymmetric block Lanczos process is
only referred to briefly. Then we turn to the main subject of recursive QR
decomposition of the corresponding block tridiagonal and block Hessenberg
matrices. A block update procedure using, in general, complex Householder
reflections is proposed and described in full detail. Accuracy and timing ex-
periments that confirm its superiority are also given.

2 A block Arnoldi process

There are various block Arnoldi algorithms. Here we just cite our favorite
one, where new columns are added block-wise, sn at step n, and where or-
thogonalization is done with the modified block Gram-Schmidt (MBlGS) al-
gorithm. Deflation relies on testing the numerical rank of a block vector by
some rank-revealing QR factorization. When we write rank ỹ we actually mean
this numerical rank of ỹ determined by such a factorization.

Algorithm 1 (Block Arnoldi algorithm based on MBlGS)

Let a non-Hermitian matrix A and an orthonormal block vector y0 ∈ CN×s be
given. For constructing a nested set of orthonormal block bases {y0, . . . ,ym−1}
for the nested Krylov subspaces Bm(A,y0) (m = 1, 2, · · · ≤ ν̄ (A,y0)) proceed,
for n = 1, 2, . . . , as follows:

(1) Compute Ayn−1 by evaluating sn−1 matrix-vector products (mvs) in par-
allel:

ỹ := Ayn−1. (4)

(2) Subtract the projections of ỹ on the earlier computed basis vectors, that
is, for k = 0, . . . , n − 1 compute

1 Wilkinson [13] called it the grade of r0 with respect to A, but like Ilić and Turner
[14] we think that grade of A with respect to r0 is the more natural phrase, since
this grade is the degree of the minimal polynomial of the restriction of A to the
Krylov space generated by A from r0.
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ηk,n−1 := 〈yk, ỹ〉 , (5)

ỹ := ỹ − yk ηk,n−1 . (6)

(3) Compute the QR factorization of ỹ ⊥ B�
n (A,y0) and thereby determine

rank ỹ = sn ≤ sn−1:

ỹ =:
(

yn y∆
n

)



ρn ρ2

n

0 ρ∆
n


 πT

n =:
(

yn y∆
n

)



ηn,n−1

η∆
n,n−1


 , (7)

where:
πn is an sn−1 × sn−1 permutation matrix,
yn is an N × sn block vector with full numerical column rank, which
goes into the basis,
y∆

n is an N × (sn−1 − sn) matrix that will be deflated (deleted),
ρn is an sn × sn upper triangular, nonsingular matrix,
ρ�

n is an sn × (sn−1 − sn) matrix,
ρ∆

n is an upper triangular (sn−1 − sn)×(sn−1 − sn) matrix with ‖ρ∆
n ‖F =

O(σsn+1), where σsn+1 is the largest singular value of ỹ smaller or equal
to tol.

The permutations are encapsulated in the block coefficients ηn,n−1. Let

Pn :≡ block diag (π1, . . . , πn)

be the permutation matrix that describes all these permutations. Note that
PT

n = P−1
n . If tol = 0 we speak of exact deflation. Assuming exact deflation

only, it is easy to show that the tn−1 columns of

Yn :≡
(

y0 y1 . . . yn−1

)
∈ C

N×tn

form indeed an orthonormal basis of Bn (A,y0) and that for n < ν̄� (A,y0)
the fundamental Arnoldi relation

AYn = Yn+1Hn, (8)

still holds, where

Hn :≡




Hn

0 . . . 0 ηn,n−1




:≡




η0,0 η0,1 · · · η0,n−1

η1,0 η1,1 · · · η1,n−1

η2,1
. . .

...
. . . ηn−1,n−1

ηn,n−1




∈ C
tn+1×tn . (9)
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Alternative block Arnoldi algorithms apply classical (block) Gram-Schmidt
(CBlGS) or compute one new column after another using classical or modified
Gram-Schmidt or Householder reflections. The column-wise versions have the
major disadvantage that only one mv is computed at once.

3 A symmetric block Lanczos process

If A is Hermitian and either none or only exact deflation occurs, all the blocks
ηk,m with k < m − 1 in Hn are zero blocks, and the square part Hn of Hn

turns out to be Hermitian too. So, Hn is a Hermitian block tridiagonal matrix
now called Tn, and Hn becomes Tn. This reduces the cost of generating the
basis dramatically, but it also causes a strong propagation of roundoff errors.
To take the changes into account we have to replace the formulas in step (2)
of the block Arnoldi algorithm (Algorithm 1) and make a small change of
notation in step (3).

If inexact deflation occurs, there are two options. The first consists in explicitly
orthogonalizing against any block vector yk whose “child” ỹ, the projection

of Ayk onto a subspace orthogonal to span

(
yk yk−1

)
, has components that

were deflated (in analogy to what has been done in [12]). This means that Tn

is no longer block tridiagonal. The second is to accept a loss of orthogonality
linked to avoiding this explicit orthogonalization. We will stick to the second
option in this section. The other case is later covered by treating the QR
decomposition of a block Hessenberg matrix.

Algorithm 2 (Symmetric block Lanczos algorithm)

Let a Hermitian matrix A and an orthonormal block vector y0 ∈ CN×s be
given. For constructing a nested set of orthonormal block bases {y0, . . . ,ym−1}
for the nested Krylov subspaces Bm(A,y0) (m = 1, 2, · · · ≤ ν̄ (A,y0)) proceed,
for n = 1, 2, . . . , as follows:

(1) Compute Ayn−1 by applying sn−1 mvs in parallel:

ỹ := Ayn−1. (10)

(2) Subtract the projections of ỹ on the two last computed block vectors, that
is compute

ỹ := ỹ − yn−2β
H

n−2 if n > 1, (11)

αn−1 := 〈yn−1, ỹ〉 , (12)

ỹ := ỹ − yn−1αn−1 . (13)
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(3) Compute the QR factorization of ỹ⊥B�
n (A,y0) with rank ỹ = sn ≤ sn−1:

ỹ =:
(

yn y∆
n

)



ρn ρ2

n

0 ρ∆
n


 πT

n =:
(

yn y∆
n

)



βn−1

β∆
n−1


 , (14)

where πn, yn, y∆
n , ρn, ρ�

n , and ρ∆
n are defined as in Algorithm 1.

The Arnoldi relation (8) is now replaced by the Lanczos relation

AYn = Yn+1Tn , (15)

where

Tn :≡




Tn

0 . . . 0 βn−1




:≡




α0 βH

0

β0 α1
. . .

. . .
. . .

. . .

. . .
. . . βH

n−2

βn−2 αn−1

βn−1




∈ C
tn+1×tn (16)

and αi = αH

i for all i = 1, 2, . . . n − 1, so that Tn is Hermitian.

The alternative versions of the block Arnoldi algorithm that we mentioned are
also available for block Lanczos, except that the difference between CBlGS and
MBlGS is a smaller one since we have just a three-term block recurrence.

Nonsymmetric block Lanczos algorithms generate two sets of biorthogonal (or,
dual) bases for the block Krylov subspaces Bm(A,y0) and their dual spaces
Bm(AH, z0), where z0 may differ from y0. The block Lanczos relation (15)
holds again (along with an analogue one for the dual space), but the square
part of the block tridiagonal matrix Tm is no longer Hermitian. Nevertheless
the QR updating scheme developed in the following section would apply also
to this case, since, as we will see, the symmetry is not capitalized upon.

The symmetric block Lanczos algorithm was the first block Krylov space
method that was introduced [15], [16], [17], [18]. The aim was to compute
multiple eigenvalues and corresponding eigenspaces. The nonsymmetric block
version was defined in [19] and has since been addressed in a number papers,
e.g., [20]. For the symmetric case the column-wise version was proposed by
Ruhe [21], for the nonsymmetric block Lanczos method it was advocated in
various papers in the 1990ies, in particular [22], [10], [12]. The column-wise
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“Ruhe version” of block Arnoldi was stated in [23] 2 .

4 An update scheme for the QR decomposition of block tridiagonal
matrices

From (8) and (15) it follows that the subdiagonal blocks of HnPn and TnPn

are upper trapezoidal. This will be capitalized upon in our update scheme
for the QR decomposition of these matrices. We treat the block tridiagonal
matrices generated by the symmetric Lanczos process first since their structure
is more special. The generalization to block Hessenberg matrices will be easy.

Let TnPn = Qn+1Rn be the QR decomposition of TnPn so that Qn+1 is a
unitary tn+1×tn+1 matrix and Rn is an upper triangular tn+1×tn matrix with
full column rank. Recall that

TnPn =




α0π1 βH

0 π2

β0π1 α1π2
. . .

β1π2
. . .

. . .

. . .
. . . βH

n−2πn

. . . αn−1πn

βn−1πn




∈ C
tn+1×tn , (17)

where

αiπi+1 is an si × si block and

βiπi+1 is an si+1 × si upper trapezoidal block, βiπi+1 =
(

ρi+1 ρ2

i+1

)
.

Rn has the form

Rn :≡




α̃0 β̃0 γ̃0

α̃1 β̃1
. . .

. . .
. . . γ̃n−3

. . . β̃n−2

α̃n−1

0sn×tn




∈ C
tn+1×tn , (18)

2 But note that the upper bound in the for-loop over j on line 2 of Algorithm 6.23
in [23] should be mp + p − 1 instead of m.
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where

α̃i is an si × si upper triangular block with full rank,
β̃i is an si × si+1 block, and
γ̃i is an si × si+2 lower trapezoidal block.

Examples are depicted in Figs. 1 and 2. Note that the matrix TnPn is, in
general, not even structurally symmetric, but all subdiagonal blocks are upper
trapezoidal. When some permutations πi differ from the identity, the upper
edge of the band needs not decrease monotonously.

0 5 10 15 20

0

5

10

15

20

Fig. 1. The block tridiagonal
structure of a matrix TnPn.

0 5 10 15 20

0

5

10

15

20

Fig. 2. The corresponding block
structure of the matrix Rn.

We determine the unitary matrix Qn+1 in its factored form. Starting from
Q1 = Is0

we apply the recurrence relation

Qn+1 :=




Qn 0tn×sn

0sn×tn Isn


 Un , (19)

where

Un :≡




Itn−1
0tn−1×(sn−1+sn)

0(sn−1+sn)×tn−1
Ûn


 . (20)

Here Ûn is a unitary (sn−1 + sn) × (sn−1 + sn) matrix, which still needs to
be determined. Once the sequence of unitary transformations Û1, . . . , Ûn will
be known, it will be possible to compute Qn+1 with a simple scheme. Assume
that the tn × tn matrix Qn has the form

Qn ≡:
(

q0 q1 . . . qn−2 q̃n−1

)
,
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where qi ∈ Ctn×si, and that

Ûn :≡




Ûn,u

Ûn,d


 :≡




Ûn,u,l Ûn,u,r

Ûn,d,l Ûn,d,r


 , (21)

where

Ûn,u is an si−1 × (si−1 + si) matrix,

Ûn,d is an si × (si−1 + si) matrix,

Ûn,u,l is an si−1 × si−1 matrix,

Ûn,u,r is an si−1 × si matrix,

Ûn,d,l is an si × si−1 matrix,

Ûn,d,r is an si × si matrix,

then

Qn+1 =




q0 . . . qn−2 q̃n−1Ûn,u,l q̃n−1Ûn,u,r

0 . . . 0 Ûn,d,l Ûn,d,r


 . (22)

In particular, the matrix Qn+1 has a trapezoidal structure. The last equa-
tion yields the following update algorithm, which we describe using Matlab
notation:

Algorithm 3 (Construction of Qn+1)

Let Û1, . . . , Ûn be the sequence of unitary matrices appearing in (20), and let
Qn+1 := Itn+1

. For recursively constructing Qn+1 apply, for i = 1, . . . , n,

• the upper part of Ûi:

Qn+1 (1 : ti, ti−1 + 1 : ti+1) := Qn+1 (1 : ti, ti−1 + 1 : ti) Ûi,u , (23)

• the lower part of Ûi:

Qn+1 (ti + 1 : ti+1, ti−1 + 1 : ti+1) := Ûi,d . (24)

In practice, whenever Qn+1 has to be applied to a vector or a block vector we
can apply it in the factored form defined by this algorithm.

In view of (19) and (20) the multiplication of TnPn by block diag (QH

n , Isn
)

annihilates all subdiagonal elements except those below the diagonal of the
last sn−1 columns; or if we regard TnPn as a matrix with n block columns, it
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does not annihilate the subdiagonal elements in the last block column, i.e.,




QH

n 0

0 Isn


 TnPn = UnRn =




α̃0 β̃0 γ̃0

α̃1 β̃1
. . .

. . .
. . .

. . .

. . .
. . . γ̃n−3

α̃n−2 β̃n−2

µn

βn−1πn




. (25)

For the entries in the last block column or the entries in the last sn−1 columns,
respectively, we have in particular




γ̃n−3

β̃n−2

µn

βn−1πn




=




Isn−3
0 0

0 ÛH

n−1 0

0 0 Isn







ÛH

n−2 0 0

0 Isn−1
0

0 0 Isn







0sn−3×sn−1

βH

n−2πn

αn−1πn

βn−1πn




. (26)

For annihilating all subdiagonal elements we have to construct a unitary ma-
trix Ûn of order sn−1 + sn such that




µn

νn


 :≡




µn

βn−1πn


 = Ûn




α̃n−1

0sn×sn−1


 , (27)

where α̃n−1 is an upper triangular nonsingular sn−1 × sn−1 block. This is
just another QR decomposition. Potentially the left-hand side of (27) could
be rank-deficient. For βn−1πn this is true in case of deflation, but for the
whole left-hand side this can be seen to be impossible, see [8]. Altogether, the
relations (26) and (27) yield the following algorithm.

Algorithm 4 (Block update scheme for the QR decomposition)

By applying a sequence of unitary matrices Û1, . . . , Ûm to the block tridiagonal
matrix TmPm of (17) the upper triangular matrix Rm of (18) is recursively
constructed as follows. For n = 1, . . . , m:

(1) Let α̃ := αn−1πn, and let β̃ := βH

n−2πn if n > 1.
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If n > 2, apply ŨH

n−2 to two blocks of the new last block column of Tn:




γ̃n−3

β̃


 := ÛH

n−2




0sn−3×sn−1

β̃


 ;

if n > 1, apply ŨH

n−1 to two blocks of the last block column of UH

n−2Tn:




β̃n−2

µn


 := ÛH

n−1




β̃

α̃


 .

(2) Compute Ûn and α̃n−1 by the QR decomposition (27) (as described in
Section 6).

(3) If needed, construct Qn+1 according to Algorithm 3.

There are various ways to construct the QR decomposition (27). Assuming
sn−1 = sn = s and a parallel computer, Vital [7, pp. 115-116] suggests to
distribute the necessary s2 Givens rotations in such a way on s processors
that at most 2s − 1 are done on a single processor; but results need to be
broadcast after each rotation, so for today’s parallel computers the tasks are
much too small, that is, the parallelism is much too fine grain to be effective.
Freund and Malhotra [10] apply Givens rotations column by column since they
construct Tn column by column, and since they want to solve a problem with
a single right-hand side as a special case of the general block problem [24]. As
mentioned above, in the case of a single right-hand side it is enough to apply
one Givens rotation per iteration. However, as we show next, when several (or
even many) right-hand sides are treated, it is more efficient to use a product
of possibly complex Householder reflections.

5 Complex Householder reflections

In this section, following Wilkinson [13, pp. 49-50], we summarize the basic
formulas for complex Householder reflections and mention some of the imple-
mentation options.

For any nonzero v ∈ Cn the matrix

H
v

:≡ In − 2
v vH

〈v,v〉
= In + β v vH (28)

with β = −2/ 〈v,v〉 ∈ R, is called a Householder reflection. It describes a
reflection at the complimentary subspace orthogonal to v. We note that H

v
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is Hermitian and unitary, i.e. HH

v
= H

v
and H

v
HH

v
= In. A vector y ∈ Cn is

mapped to
H

v
y = y + βv 〈v,y〉 . (29)

Householder’s goal — extended to the complex case — was to choose v de-
pending on y such that

H
v
y = αe1 (30)

for some α ∈ C. As H
v

is unitary, |α| = ‖y‖2. We can exclude that y is a
multiple of e1, since the choice v := 0, H

v
:= I would suffice in this case.

Inserting (29) yields
y − αe1 = −β 〈v,y〉v. (31)

In particular v ∈ span {y − αe1}. As H
v

= Hλv
for all λ ∈ C\ {0} we can

choose v = y − αe1 without loss of generality. By (31) this choice implies

〈v,y〉 = −β−1 ∈ R.

What remains is to determine the argument of α. Assume y1 6= 0 first, and let
y1 = |y1|e

iθ and α = ‖y‖2e
iθα. Then

〈v,y〉 = 〈y − αe1,y〉 = ‖y‖2
2 − ‖y‖2e

−iθαeiθ|y1|.

So either α = +‖y‖2e
iθ or α = −‖y‖2e

iθ. With the first choice cancellation
may occur in the first component of v. The second choice is better and yields

−β−1 = 〈v,y〉 = ‖y‖2 (‖y‖2 + |y1|) .

If y1 = 0, then αe1 ⊥ y and the value of α has no effect on 〈v,y〉 = ‖y‖2
2. So

choosing, e.g., eiθ = 1 is fine.

Algorithm 5 (Implicit construction of H
v
)

Given y =
(

y1 . . . yn

)T

∈ Cn\{0} that is not a multiple of e1, a Householder

reflection H
v

satisfying H
v
y = αe1 is constructed as follows:

• If y1 6= 0, let eiθ := y1/|y1|; otherwise let eiθ := 1.
• Compute α and β according to

α := −‖y‖2e
iθ, β :=

−1

‖y‖2 (‖y‖2 + |y1|)
. (32)

• Compute v := y − αe1.

For evaluating H
v
y for some y it is not necessary to compute the actual ma-

trix H
v
. It is much more economical and accurate to store only v, to compute

β according to (32), and to apply (29). Parlett [25] presents a thorough dis-
cussion of the choice of the sign of α when computing Householder reflections.
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Lehoucq [26] compares different variants for the choice of the vector v and
the corresponding coefficient β. He specifically compares the different ways of
computing H

v
in EISPACK, LINPACK, NAG and LAPACK. Golub and van

Loan [27] also discuss the real case at length.

6 QR decomposition of a lower banded matrix

In this section we describe a particularly efficient way of computing the QR
decomposition (27), which capitalizes on the trapezoidal structure of the ma-
trix νn :≡ βn−1πn. Recall that µn is sn−1 × sn−1, while νn is sn × sn−1. For
example, if sn−1 = 5 and sn = 4,




µn

νn


 =




◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦




.

We determine sn−1 Householder reflections H1,n, . . . ,Hsn−1,n such that




α̃n−1

0sn×sn−1


 = Hsn−1,n . . .H1,n




µn

νn


 , (33)

where α̃n−1 is an upper triangular matrix. In particular

Ûn = H1,n . . .Hsn−1,n . (34)
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Assume that reflections H1,n,H2,n have been computed such that

H2,nH1,n




µn

νn


 =




◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

• ◦ ◦

• ◦ ◦

• ◦ ◦

• ◦ ◦

• ◦ ◦

• ◦ ◦

◦ ◦




.

The highlighted section of the third column determines the next Householder
reflection. In step i this vector has the size

li,n = sn−1 − i + 1︸ ︷︷ ︸
size of upper part

+ min (i, sn)︸ ︷︷ ︸
size of lower part

,

and the last entry is in row

ei,n = li,n + i − 1.

In this example we have i = 3 and

l3,n = 5 − 3 + 1 + 3 = 6, e3,n = 6 + 3 − 1 = 8.

Hence the Householder reflection that has to be applied to the ith column is
given by

Hi,n :≡ diag
(
Ii−1, Ĥi,n, Isn−min(i,sn)

)
,

where Ĥi,n is a Householder reflection in the sense of our original definition
(28): a reflection at a hyperplane but in a space of dimension li,n only. When
applying this reflection we only compute those entries that are not invariant.
In this example the first two and the last row will not be influenced at all.
All we have to do is to apply the reflection Ĥi,n on the submatrix whose left

column is exactly given by the vector generating Ĥi,n. Here this submatrix is

14



highlighted:



◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

α • •

• •

• •

• •

• •

• •

◦ ◦




After this submatrix has been updated we proceed with the construction of
the next reflection.

Algorithm 6 (Implicit construction of Ûn)

Let µn be an sn−1 × sn−1 block, νn an upper trapezoidal sn × sn−1 block, and

M :≡




µn

νn


 . (35)

For implicitly constructing sn−1 Householder reflections such that (33) holds
we proceed for i = 1, . . . , sn−1 as follows:

• Compute li,n and ei,n:

li,n :≡ sn−1 − i + 1 + min (i, sn) , ei,n :≡ li,n + i − 1. (36)

• Construct by Algorithm 5 the Householder reflection Ĥi,n that generates
zeros in the ith row of M below the diagonal: i.e., compute β and v using
the vector

y := yi,n :≡ M (i : ei,n, i) . (37)

• Apply Ĥi,n to the corresponding submatrix of M:

M (i : ei,n, i + 1 : sn−1)

= M (i : ei,n, i + 1 : sn−1) + βv
(
vHM (i : ei,n, i + 1 : sn−1)

)
.

(38)
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7 Adaptation to block Hessenberg matrices

So far we have only treated the QR decomposition of the block tridiagonal
matrix that results from the symmetric (Hermitian) block Lanczos process.
As the symmetry of Tn has not been accounted for in our algorithms, all
we said is also applicable to the QR decomposition of the block tridiagonal
matrix generated by the nonsymmetric Lanczos algorithm and used by the
block QMR method, as long as no look-ahead is needed and orthogonalization
with respect to block vectors whose “child” was numerically rank deficient and
has been reduced by inexact deflation is neglected.

For block GMRes we need to QR-decompose a block Hessenberg matrix how-
ever, but the modification needed in the above treated procedure are minor.
They are to be discussed in this section. First, the block matrix that needs to
be QR-decomposed is no longer TnPn of (17) but

HnPn =




η0,0π1 η0,1π2 · · · η0,n−1πn

η1,0π1 η1,1π2 · · · η1,n−1πn

η2,1π2
. . .

...
. . . ηn−1,n−1πn

ηn,n−1πn




∈ C
tn+1×tn , (39)

and the resulting upper triangular factor Rn is now full:

Rn :≡




η̃0,0 η̃0,1 · · · η̃0,n−1

η̃1,1 · · · η̃1,n−1

. . .
...

η̃n−1,n−1

0sn×tn




∈ C
tn+1×tn . (40)

When the unitary transformations Û1, . . . , Ûn−1, which make up Qn according
to (19) and (20), have been applied to HnPn, then as in (25), this matrix has
been transformed into upper triangular form except for the last block column:

16






QH

n 0

0 Isn


 HnPn = UnRn =




η̃0,0 η̃0,1 · · · · · · η̃0,n−1

η̃1,1 · · · · · · η̃1,n−1

. . .
...

η̃n−2,n−2 η̃n−2,n−1

...

µn

βn−1πn




. (41)

However, because the last block column contains now not only four blocks but
n+1, the computation of this block column, which is the first step in updating
Rn, requires to apply the transformations Û1, . . . , Ûn−1 to this block column
from the top to the bottom: instead of (26) we have now




η̃0,n−1

η̃1,n−1

...

η̃n−2,n−1

µn

βn−1πn




=




Itn−2
0 0

0 ÛH

n−1 0

0 0 Isn



· · ·




ÛH

1 0 0

0 Itn−s0−s1
0

0 0 Isn







η0,n−1πn

η1,n−1πn

...

ηn−2,n−1πn

ηn−1,n−1πn

βn−1πn




.

(42)
Here, the last two blocks on the left-hand side are processed as before in
(27) and Section 6. Their QR decomposition has to be computed, and we do
that by applying sn−1 Householder reflections. There is no modification of this
part needed. As we have just seen, the adaptation from block tridiagonal to
block Hessenberg requires a major modification of Algorithm 4 however. The
relations (42) and (27) yield the following new version.

Algorithm 7 (Block update scheme for the QR decomposition)

By applying a sequence of unitary matrices Û1, . . . , Ûm to the block Hessenberg
matrix HmPm of (39) the upper triangular matrix Rm of (40) is recursively
constructed as follows. For n = 1, . . . , m:

(1) Set η̃k,n−1 := ηk,n−1πn (k = 0, . . . , n − 1). If n > 1, apply each of the

n − 1 unitary transformations ŨH

1 , . . . , ŨH

n−1 to two blocks of the new
last block column of Tn: for k = 1, . . . , n − 1, redefine
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η̃k−1,n−1

η̃k,n−1


 := ÛH

k




η̃k−1,n−1

η̃k,n−1


 .

(2) Let µn := η̃n−1,n−1, νn := ηn,n−1πn, and compute Ûn and α̃n−1 by the
QR decomposition (27) (as described in Section 6).

(3) If needed, construct Qn+1 according to Algorithm 3.

8 Numerical experiments on Householder reflections vs. Givens
rotations

Given an upper trapezoidal matrix M defined by (35) with sn−1 = sn = w,
a total of w Householder reflections, applied as described in Section 6, are an
efficient way to construct the QR decomposition of M. An alternative is to
apply in a double loop a set of w Givens rotations per column, that is a total
of w2. Most important is that in Algorithm 6 the block-wise update in (38)
by a single Householder reflection (applied to a whole submatrix of M) must
be replaced by applying w Givens rotations to suitable pairs of rows of this
submatrix of M. In this section we present numerical experiments performed
with Matlab on an IBM ThinkPad T42 with a 1.7 GHz Centrino processor
and 512 MByte of RAM running Windows XP and Matlab 6.5. (On an older
IBM ThinkPad T23 with a 1.133 GHz Pentium III mobile processor with 640
MByte of RAM running Windows XP, and Matlab 7.0 the tests took roughly
twice as long, but the relative performance was also a bit different.) In a first
experiment we compare the accuracy of both approaches.

Experiment 1 We apply both methods for the QR decomposition — House-
holder reflections and Givens rotations — to a set of 100 random 10×5 upper
trapezoidal matrices M. The results are shown in Fig. 3. The accuracy of both
methods turns out to be on the same level: except in a few cases the Frobe-
nius norms of M − QR and of QHQ − I are for both methods of the same
magnitude. The norm of QHQ − I is typically slightly smaller if Householder
reflections are used. For the explicit computation of Q we have applied the
unitary transformations to I10×10 as in (34).

Next we compare the computing time of the two approaches, but again limited
to the decomposition of M, not of the whole matrices Hn or Tn. (Recall
that in our application M is a submatrix of Hn or Tn.) The time-critical
second step of the updates involves the application of the so far constructed
unitary transformations to the remaining columns of M. The block Arnoldi
and Lanczos processes described in Sections 2 and 3 allow us a block-wise
construction of Hn and Tn as opposed to the column-wise construction of
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Fig. 3. Experiment 1: Accuracy of the QR decomposition of 100 random 10 × 5
upper trapezoidal matrices M. The solid line represents results gained by using
Householder reflections. The dashed line corresponds to Givens rotations.

Ruhe [21] or Freund and Malhotra [10]. This block-wise construction enables
us to update the QR decomposition of Hn and Tn block-wise. In particular,
M is constructed at once, and we can profit from the possibility to update
during the QR decomposition of M several columns at once as in (38).

We begin by comparing timings where during the QR decomposition of M the
update of the block consisting of the remaining columns of M is done block-
wise, in the sense that the Givens rotations are always applied to a pair of
rows of the block, while the Householder reflections are applied in an explicit
for-loop to all the columns of the block. This is an efficient implementation of
applying Givens rotations, but not yet the optimal one for the Householder
reflections.

Experiment 2 In order to compare the speed of the two approaches we mea-
sure the cpu time for constructing the QR decomposition of 100 random ma-
trices M of size s1 = s2 = w, using Householder reflections or Givens rota-
tions, respectively, both applied block-wise (in the just described sense) to the
remaining columns of M. See Fig. 4. For a matrix M of width 20 the Givens
rotations turn out to be about 65% slower, but for small matrices the efficiency
difference is small.

In contrast to Experiment 2, in the implementation of block QMR by Freund
and Malhotra there is only a routine for mapping a single column vector by a
set of Givens rotations, since in block QMR the matrix Tn (and thus M) is
generated column-wise, and its QR decomposition is updated whenever a new
column of Tn becomes available. In particular, in the first iteration a vector
of length s + 1 is obtained as first column of Tn. A set of s Givens rotations
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Fig. 4. Experiment 2: Computation time for the QR decomposition of 100 random
2w × w upper trapezoidal matrices M. The solid line represents results gained by
using Householder reflections. The dashed line corresponds to Givens rotations. In
both cases we have updated the remaining columns block-wise using an explicit loop
over the columns or pairs of rows, respectively.

is constructed to annihilate all except the first entry. In the next iteration a
second vector of length s + 2 appears as second column, etc. At every stage
we have to apply the previously constructed rotations (or reflections) to the
newly constructed column. In our third experiment we mimic this approach
by applying the Givens rotations in an explicit loop over the columns to just
one column at a time. We compare this to applying Householder reflections
to just one column at a time, which is an alternative for this case where Tn

(or Hn) is constructed column by column.

Experiment 3 We measure the cpu time for constructing the QR decompo-
sition of 100 random matrices M of size s1 = s2 = w using, on the one hand,
Givens rotations to update just one column at a time, and, on the other hand,
Householder reflections to update one column at a time. See Fig. 5. While in
the first case the cpu time grows even much stronger with the block width
w than in the Givens curve of Fig. 4 (note the different scales), it grows only
about twice as fast as in the Householder curve of Fig. 4.

The final experiment concerns the QR decomposition of M with Householder
reflections, where as proposed in this paper, the so far constructed transfor-
mations are applied block-wise at once to all the remaining columns of M
using a BLAS2 operation as suggested by (38).

Experiment 4 We measure the cpu time for constructing the QR decom-
position of 100 random matrices M of size s1 = s2 = w using Householder
reflections with simultaneous update of the remaining columns by a vector-
matrix operation as in (38). See Fig. 6, where the result is compared with the
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Fig. 5. Experiment 3: Computation time for the QR decomposition of 100 random
2w × w upper trapezoidal matrices M. In contrast to the block-wise updates of
Experiment 3 and Fig. 4, timings for column-wise updates are shown here. The
dashed line corresponds to using Givens rotations, while the solid line represents
results gained by using Householder reflections.
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Fig. 6. Experiment 4: Computation time for the QR decomposition of 100 random
2w × w upper trapezoidal matrices M. In contrast to the column-wise updates of
Experiment 3 and Fig. 4 (shown here again for Givens rotations as dashed line),
the solid line represents now results gained by using Householder reflections and
block-wise updates based on a vector-matrix product, that is, a BLAS2 operation.

one of Experiment 3 using Givens rotations to update a single column at a
time. With our proposal the cpu time grows only about half as fast as in the
Householder curve of Fig. 5. So the improvement over the Givens curve is even
more striking (despite the fact that only M and not the full Tn is decomposed
here).
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So the procedure proposed here is much faster than its alternatives if w ≥ 5.
The comparison of Experiments 2–4 shows that the difference is mainly due to
avoiding column-wise updates with Givens rotations (which requires a double
loop), and that the best performance is obtained when the remaining columns
of M are updated by applying Householder reflections as BLAS2 operations.
This fastest option does not exist if the columns of M become available only
one at time as in Ruhe’s implementation of block Lanczos.

We need to point out that these experiments only show a small part of the
effect that can be noticed in the QR decomposition of a large extended block
Hessenberg matrix Hn or block tridiagonal matrix Tn since we only treated
the QR decomposition of the 2 × 1 block matrix M here. Actually, only the
first block column of Hn and Tn consists just of M. Later, once a new block
column of Hn or Tn has been constructed, the so far determined Householder
or Givens transformations need to be applied to this block column first (for
constructing M) before M can be QR-decomposed itself. In our approach this
updating of the newly found block column is also done by BLAS2 operations
analogous to the one in (38). This can be expected to manifest even bigger
speedups than the QR decomposition of M, in particular in the case of the
block Hessenberg matrix Hn from GMRes, where the new block columns
are full. (In the case of a block triangular matrix Tn some of the previously
constructed Givens rotations have no effect on a new block column.)

9 Conclusions and generalizations

The symmetric block Lanczos process produces a banded matrix Tn, which
is bordered in every step and which consists of a symmetric block tridiagonal
matrix Tn, extended by some additional rows. Additionally, a permutation
matrix Pn is implicitly determined by the column pivoting. In a related paper
[28] we discuss the need for those permutations and deflations in the symmetric
block Lanczos process and give details and results for the block MinRes and
block SymmLQ algorithms, which require to compute the full QR decomposi-
tion TnPn = QnRn. The standard approach for this decomposition has been
an update algorithm based on Givens rotations, a generalization of the well
known update algorithm for tridiagonal matrices. It has been recommended
to compute both Tn and Rn column by column.

We promote instead a block-wise construction of Tn and a block-wise update
algorithm based on Householder reflections for the QR decomposition. It turns
out that our QR decomposition is equally accurate as the one based on Givens
rotations and that even on a serial computer it is much faster than column-
wise updates with Givens rotations, the difference becoming more and more
pronounced as the block size grows.
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Our approach can be generalized quickly from the symmetric block Lanczos
to the unsymmetric block Lanczos and the block Arnoldi processes, and from
the QR decomposition of banded symmetric block tridiagonal matrices to the
one of banded unsymmetric block tridiagonal matrices or block Hessenberg
matrices as they come up in block QMR and block GMRes, respectively. In
block GMRes the speedup will be even higher.
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