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Abstract

Krylov space methods for solving linear systems of equations come in many flavors and use various

types of recursions to generate iterates xn (approximate solutions of Ax = b), corresponding

residuals rn := b−Axn, and direction vectors (or search directions) vn := (xn+1−xn)/ωn. Starting

from a general definition for a Krylov space solver we give necessary and sufficient conditions for the

existence of various types of recursions, and we recall the relations that exist between the matrix

representations of these recursions. Much of this is more or less well known, but there are also

some new, perhaps even surprising aspects. In particular, we introduce what we call the general

inconsistent OrthoRes algorithm, which in contrast to the other recursions is also applicable in

situations where for some n the iterate xn is not defined due to a so-called pivot breakdown.



1. Introduction. Nowadays, when we refer to iterative methods for solving large sparse lin-

ear systems we normally mean Krylov (sub)space solvers. Classical methods that do not belong

to this class, like the successive overrelaxation (SOR) method, are no longer competitive, though

the matrix splittings of some of them, e.g. the one of SSOR (the symmetric version of SOR), are

still used for preconditioning. Multigrid is also an iterative method, but often it is also considered

as a preconditioner now. In the past, Krylov space solvers were referred to by different names, in

particular semi-iterative methods (Varga, 1962; Young, 1971) and polynomial acceleration meth-

ods. Some of them can also be used as preconditioners, in which case they get referred to as

polynomial preconditioners. Flexible preconditioning even allows to apply any Krylov space solver

as a preconditioner of a Krylov space solver. In this case one often refers to this as an inner-outer

iteration method.

Although Krylov (sub)space methods are ubiquitous in scientific computing and several text-

books are nearly exclusively devoted to them, we hardly ever find a mathematical definition of this

class. The notion of a Krylov (sub)space is, of course, uniquely defined, and Krylov space solvers

are methods based on using such a Krylov space for approximating the solution of a linear system

(or, in another application, the eigenvectors of a matrix). There is a large number of specific

methods that distinctly belong to this class.

In this paper we actually give a mathematical definition of a Krylov space solver, which,

however, contains the vague expression “for most n”, and which, moreover, is not general enough

to cover all methods that most people would include in the class. In the last section of the paper,

we will then extend the definition to cover further well-known examples.

Recurrences for iterates and residuals are a key ingredient of Krylov space solvers. Starting

from our definition we derive several well-known types of recurrences, whose existence is seen to

hinge on very basic properties of the methods. In this way we will build up a general framework

for a large subset of the class of Krylov space solvers. The emphasis is on the properties that allow

or disallow a certain type of recurrence and on the connections between these properties, but not

on the derivation of specific methods that perform particularly well. So the paper is intended to

be a contribution to the mathematical basis of Krylov space solvers. In the literature there are

other papers with a similar aim, like those of Young and Jea (1980), Jea and Young (1983), Ashby,

Manteuffel and Saylor (1990), Ashby and Gutknecht (1993), Weiss (1994a), Weiss (1994b), Weiss

(1996), and Gutknecht and Rozložńık (2002). Many of the basic results we present here are well

known and are just recalled to make the paper self-contained. Other may be known but difficult

to find.

There are Krylov space solvers like GMRes, MinRes, SymmLQ, and QMR that primarily

build up a basis of the Krylov space (or rather of a sequence of spaces) and then solve the linear

system approximately in coordinate space. These methods are not covered by our framework yet,

but there is the possibility to extend our approach to methods of this type.

2. Krylov Subspaces and Krylov Space Solvers. We start with a formal definition of a

Krylov (sub)space and with various characterizations of its maximum extension.

Definition. Given a nonsingular N ×N matrix A and an N -vector y 6= o, the nth Krylov

(sub)space Kn(A,y) generated by A from y is

Kn :≡ Kn(A,y) :≡ span (y,Ay, . . . ,An−1y). (2.1)

N

Clearly, by this definition, whenever z ∈ Kn(A,y), there is a polynomial p of degree at most

n− 1 such that z = p(A)y. In general, this polynomial may be not unique since the spanning set

in (2.1) may be linearly dependent. We can say more about this case in a moment.
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Definition (2.1) associates with a matrix A and a starting vector y a whole nested sequence

of Krylov subspaces:

K1 ⊆ K2 ⊆ K3 ⊆ ... .

The following lemma answers the question of the equality signs.

Lemma 2.1. There is a positive integer ν̄ :≡ ν̄(y,A) such that

dim Kn(A,y) =

{
n if n ≤ ν̄ ,

ν̄ if n ≥ ν̄ .

The inequalities 1 ≤ ν̄ ≤ N hold, and ν̄ < N is possible if N > 1.

Definition. The positive integer ν̄ :≡ ν̄(y,A) of Lemma 2.1 is called grade of y with

respect to A. N

Proof of Lemma 2.1. It follows readily that

A
ν̄
y = yγ0 + Ayγ1 + · · · + A

ν̄−1
yγν̄−1 , (2.2)

where γ0 6= 0 due to the minimality of ν̄. Using this relation we can successively express any Any with

n > ν̄ as a linear combination of y, Ay, . . . , Aν̄−1y, that is, as an element of Kν̄ . �

There are a number of further characterizations of the index ν̄ of the maximum Krylov subspace

Kν̄ . Let us state three of them without proof. Their verification is easy.

Corollary 2.2. The grade ν̄(y,A) satisfies

ν̄(y,A) = min
{
n

∣∣ dim Kn(A,y) = dim Kn+1(A,y)
}

= min
{
n

∣∣ Kn(A,y) = Kn+1(A,y)
}
.

Corollary 2.3. The grade ν̄(y,A) is the dimension of the smallest A–invariant subspace that

contains y.

Lemma 2.4. The grade ν̄(y,A) satisfies

ν̄(y,A) = min
{
n

∣∣ A−1y ∈ Kn(A,y)
}
≤ ∂χ̂A,

where ∂χ̂A denotes the degree of the minimal polynomial of A.

For proving here the validity of the ≤–sign one applies an enhanced form of the Cayley–

Hamilton theorem which says that for the minimal polynomial χ̂A of A holds χ̂A(A) = O.

From Lemma 2.4 it now follows quickly that once we have constructed a basis of Kν̄(A, r0) we

can find the exact solution of the linear system there.

Corollary 2.5. Let x? be the solution of Ax = b and let x0 6= x? be any initial approximation

of it and r0 :≡ b −Ax0 the corresponding residual. Moreover, let ν̄ :≡ ν̄(r0,A). Then

x? ∈ x0 + Kν̄(A, r0) .

Proof. In view of A−1r0 = A−1(b − Ax0) = x? − x0 and by Lemma 2.4,

x? − x0 = −A
−1

r0 ∈ Kν̄(A, r0) .
�

This corollary shows that if we choose xn from the affine space x0 +Kn(A, r0) there is a chance

that we find the exact solution within (exactly) ν̄ steps. We say then that our method has the

finite termination property. It is easy to deduce methods that have this property. In fact, it
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suffices to insure that the residuals rn are linearly independent as long as they are nonzero. Of

course, once rn = o for some n, the linear system is solved.

However, in practice the finite termination property is nearly irrelevant, since ν̄ is normally

much larger than the maximum number of iterations we are willing to execute. We rather want

an approximation with sufficiently small residual quickly.

The corollary motivates the following definition.

Definition. A (standard) Krylov space method for solving a linear system Ax = b

or, briefly, a (standard) Krylov space solver is an iterative method starting from some initial

approximation x0 6= x? and the corresponding residual r0 :≡ b−Ax0 and generating for all, or at

least most n, iterates xn such that

xn − x0 = qn−1(A)r0 ∈ Kn(A, r0) (2.3)

with a polynomial qn−1 of exact degree n− 1. N

We first note that (2.3) implies that for the error vectors dn :≡ xn − x? and for the residual

vectors rn :≡ b −Axn holds

dn − d0 = qn−1(A)r0 ∈ Kn(A, r0) , (2.4)

rn − r0 = −Aqn−1(A)r0 ∈ AKn(A, r0) . (2.5)

The last relation yields yet another lemma.

Lemma 2.6. The residuals of a Krylov space solver satisfy

rn = pn(A)r0 ∈ r0 + AKn(A, r0) ⊆ Kn+1(A, r0) , (2.6)

where pn is a polynomial of degree n, which is related to the polynomial qn−1 of (2.3) by

pn(ζ) = 1 − ζqn−1(ζ) . (2.7)

In particular,

pn(0) = 1 . (2.8)

Definition. The polynomials pn ∈ Pn in (2.6) are the residual polynomials of the Krylov

space solver. We refer to the condition (2.8) as the consistency condition for these polynomials.

N

As we will see, for some Krylov space solvers there may exist exceptional situations, where

for some n the iterate xn and the residual rn are not defined. It may also occur that the iterates

stagnate, so that xn+1 = xn, which contradicts our assumption that qn has exact degree n.

Finally, there are nonstandard Krylov space methods where the approximation space for

xn − x0 is still a Krylov space, but one that differs from Kn(A, r0). We will treat this case in

Section 7.

3. Recursions for Generating a Krylov Space Basis. By definition of the Krylov space

Kn(A,y) and by Lemma 2.1 the vectors y, Ay, . . . , An−1y form a basis of Kn(A,y) as long as

n ≤ ν̄(y,A). It is well known that this so-called Krylov basis is typically very ill-conditioned as,

for k → ∞, the normalized vectors Aky/‖Aky‖ converge to an eigenvector associated with the

eigenvalue of largest absolute value if there is a single such eigenvalue.

To construct a better basis, we could apply Gram-Schmidt orthogonalization to the Krylov

basis. But as suggested by Lanczos (1950) and Arnoldi (1951) it is is far better to combine the
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Gram-Schmidt process directly with the generation of the basis. Here is a version of the Arnoldi

algorithm (or Arnoldi process) using classical Gram-Schmidt (CGS) orthonormalization.

Algorithm 1 (Arnoldi algorithm based on CGS).

Let a nonsingular matrix A and a nonzero vector y be given. For constructing a nested

set of orthonormal bases {y0,y1, . . . ,ym} for the nested Krylov subspaces Km+1(A,y) (m =

0, . . . , ν̄(y,A) − 1) we let η0 := ‖y‖, y0 := y/η0 and compute, for n = 0, 1, . . . ,m− 1,

ỹ := (Ayn − yn ηn,n − · · · − y0 η0,n)

yn+1 := ỹ/ηn+1,n ,

}
(3.1)

where the coefficients η0,n, η1,n, . . . , ηn,n are chosen to make ỹ orthogonal to y0, y1, . . . ,yn,

and ηn+1,n is used to normalize ỹ:

ηk,n :≡ 〈yk,Ayn〉 (k = 0, . . . , n), ηn+1,n :≡ ‖ỹ‖ . (3.2)

When n = m− 1 = ν̄ − 1, then ỹ = o and the process terminates.

In practice, in finite precision arithmetic it is much better to integrate the mathematically

equivalent modified Gram-Schmidt (MGS) algorithm, but for theoretical work the CGS recursion

(3.1)–(3.2) is all we need. The orthonormal basis {y0,y1, . . . ,ym−1} of Km (m ≤ ν̄) generated

here is called the Arnoldi basis.

Clearly, in exact arithmetic, the Arnoldi process will terminate with ην̄,ν̄−1 = 0 when n =

m−1 = ν̄−1 since the dimension of the Krylov space generated from y is exhausted. We therefore

define yν̄ :≡ o . This is useful for theoretical considerations. In practice ην̄,ν̄−1 may be far from

small due to roundoff errors, but typically m is limited to values much smaller than ν̄.

A disadvantage of the Arnoldi process is that the whole basis must be stored and that at each

step all the vectors that have been generated before must be retrieved. There is an important

exception: when the matrix is real symmetric or (complex) Hermitian, the long recursion of (3.1)

reduces to a three-term recursion, and the Arnoldi process becomes the symmetric Lanczos

process:

Lemma 3.1. If A = A?, then in (3.1) with (3.2) we have

ηk,n = 0 , k = 0, 1, . . . , n− 2, (3.3)

ηn−1,n = ηn,n−1 , (3.4)

so that if we let βL
−1 :≡ 0 and

αL
n :≡ ηn,n = 〈yn,Ayn〉 , (3.5a)

βL
n :≡ ηn+1,n = ‖Ayn − yn α

L
n − yn−1 β

L
n−1‖ , (3.5b)

the recursion (3.1) reduces to

yn+1 :=
(
Ayn − yn α

L
n − yn−1 β

L
n−1

)
/βL

n , n = 0, 1, . . . , ν̄ − 2 , (3.6)

with αL
n ∈ R (n = 0, . . . , ν̄ − 1) and βL

n > 0 (n = 0, . . . , ν̄ − 2).

In this case the basis is called Lanczos basis, and the vectors yn are referred to as Lanczos

vectors.

Proof. By construction we have yn ⊥ yi for i = 0, 1, . . . , n−1 and ‖yj‖ = 1 for j = 0, 1, . . . , n. Therefore,
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if k < n − 1 we can conclude from (3.1) that

ηk,n = 〈yk, Ayn〉 = 〈Ayk,yn〉

= 〈yk+1ηk+1,k + ykηk,k + · · · + y0η0,k , yn〉

= 0 .

Moreover,

α
L
n = ηn,n = 〈yn,Ayn〉 = 〈A?

yn,yn〉 = 〈Ayn,yn〉 = 〈yn,Ayn〉 = αL
n ,

β
L
n = ηn+1,n = ‖Ayn − yn α

L
n − yn−1 β

L
n−1‖ > 0

except when n = ν̄ − 1 where βL
ν̄−1 = 0. Finally,

ηn−1,n = 〈yn−1,Ayn〉 = 〈Ayn−1,yn〉

= 〈ynηn,n−1 + yn−1ηn−1,n−1 + · · · + y0η0,n−1 , yn〉

= 〈yn,yn〉 ηn,n−1

= ηn,n−1 .

�

To generate a basis of a Krylov subspace, we can also use recursions of the form (3.1) with

other coefficients, because, in view of Lemma 2.1, any such recursion will guarantee that

span (y0,y1, . . . ,yn−1) = span (y,Ay, . . . ,An−1y) = Kn(A,y) . (3.7)

Of course, the generated basis will no longer be orthonormal. Moreover, for n > ν̄, the spanning

set y0,y1, . . . ,yn−1 will no longer be a basis.

In the following we will make heavy use of the fact that recursions for generating Krylov space

bases and the recursions for residual vectors, search directions and approximate solutions can be

cast in terms of matrix relations. Here we first define the N ×m matrix

Ym :≡
(

y0 y1 · · · ym−1

)
(3.8)

and gather the coefficients of m steps of the recursion (3.1) in an extended Hessenberg matrix of

size (m+ 1) ×m:

Hm :≡




η0,0 η0,1 · · · η0,m−1

η1,0 η1,1 · · · η1,m−1

η2,1
. . .

...

. . . ηm−1,m−1

ηm,m−1




. (3.9)

Then we can summarize the recursions (3.1) for n = 0, . . . ,m− 1 as

AYm = Ym+1Hm . (3.10)

This is often referred to as Arnoldi relation. In the Arnoldi process, the matrices Ym have

orthonormal columns, but this has not been used in the derivation of (3.10).

Hm can be partitioned into

Hm ≡:




Hm

ηm,m−1l
T

m



, (3.11)

5



where lTm is the last row of the m×m unit matrix Im and Hm is square. In the symmetric Lanczos

process the matrix Hm reduces to the real extended tridiagonal matrix

Tm :≡




Tm

βL
m−1l

T

m




:≡




αL
0 βL

0

βL
0 αL

1

. . .

βL
1

. . . βL
m−2

. . . αL
m−1

βL
m−1




, (3.12)

whose square part Tm is real symmetric — even if A is (complex) Hermitian.

By (3.10), the image of the restriction A
∣∣
Km

to the subspace Km of the linear mapping (or,

operator) defined by A is contained in Km+1. With respect to the bases y0, . . . , ym−1 and y0,

. . . , ym in the domain and the range, respectively, this restricted linear mapping is represented by

the (m + 1) ×m matrix Hm. Let Πm denote the projection of Km+1 onto Km along ym. If the

bases are orthogonal, then so is this projection, but we need not assume this. With Πm we can

project the image A
∣∣
Km

(Km) into Km In terms of the aforementioned bases, Πm has the simple

representation
(

Im o
)
, and the self-mapping of Km defined by ΠA

∣∣
Km

is just

(
Im o

)
Hm = Hm or

(
Im o

)
Tm = Tm , (3.13)

respectively. The square matrices Hm and Tm are therefore often referred to as orthogonal pro-

jections of A into Km when the basis is orthonormal.

Once the Krylov space is exhausted, that is, once m + 1 = ν̄ and ην̄,ν̄−1 = 0, yν̄ = o by

definition, and thus the identities (3.10) simplify to

AYν̄ = Yν̄Hν̄ and AYν̄ = Yν̄Tν̄ . (3.14)

This means that the columns of Yν̄ span the invariant subspace Kν̄ of A. Every eigenvalue of Hν̄

is also an eigenvalue of A (but, in general, not vice-versa).

If ηm,m−1 is small, one can expect that the spectrum of Hm or Tm approximates in some

sense the one of A, although A has many more eigenvalues than Hm or Tm if N � m. In the

Hermitian case this connection is fully explored by the Rayleigh–Ritz procedure and a number of

related error bounds; see Parlett (1980). In the case of non-Hermitian matrices the connection

between the size of ηm,m−1 and the accuracy of the approximate eigenvalues is more complicated.

Let us next consider the relation between the Arnoldi bases, denoted by {yn}
m−1
n=0 , and some

other nested Krylov space bases denoted {ŷn}
m−1
n=0 , which may be neither normalized nor orthog-

onal. When we express the new bases in the old ones, then, since the Krylov subspaces and their

bases are nested, we have relations of the form

ŷk = y0σ0,k + y1σ1,k + · · · + ykσk,k , k = 0, . . . ,m.

Therefore, the transformation matrix Sm+1 =
(
σn,k

)m

k=0
, for which Ŷm+1 = Ym+1Sm+1 holds,

is upper triangular. Thus, Sm with Ŷm = YmSm is just the m × m leading principal minor of

Sm+1. So, we have a nested sequence of triangular transformation matrices. When the restricted

linear mapping A
∣∣
Km

: Km → Km+1 is in the new basis represented by Ĥm, then

Ĥm = S−1
m+1HmSm . (3.15)

In fact, if w = Ymk = Ŷmk̂ and Aw = Ym+1j = Ŷm+1ĵ with k = Smk̂, j = Sm+1ĵ, j = Hmk,

and ĵ = Ĥmk̂, then it follows that

ĵ = S−1
m+1j = S−1

m+1Hmk = S−1
m+1HmSmk̂ = Ĥmk̂
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if Ĥm satisfies (3.15). So, the following holds:

Lemma 3.2. Any generation of a nested sequence of bases for a nested sequence of Krylov

subspaces can be represented by a matrix identity of the form (3.10) with a nested sequence

of extended upper Hessenberg matrices Hm (m = 1, . . . , ν̄) with nonzero elements on the first

subdiagonal, except for ην̄,ν̄−1 = 0 if m+ 1 = ν̄.

A basis transformation in such a nested sequence of Krylov subspaces is expressed by a nested

sequence of upper triangular matrices Sm (m = 1, 2, . . . ). The two sets of Hessenberg matrices

describing the generation of the two sets of bases are then related by (3.15).

A particularly simple special case is when we rescale a basis, that is, just change the length of

the basis vectors. In this case, the matrices Sm are nested diagonal matrices.

Actually, the value ην̄,ν̄−1 = 0 is irrelevant for the compact representation of the recursion (3.1)

since ỹ = o in this case: Yν̄+1Hν̄ = Yν̄Hν̄ does not depend on ην̄,ν̄−1. But from the theoretical

point of view it is important that the Arnoldi algorithm discovers that Ayν̄−1 ∈ K, that is, that

the Krylov space is exhausted: this property will allow us to implement methods that have the

finite termination property.

In this connection we mention that the recursion (3.1) may also be used for generating a

sequence of vectors that has more than ν̄ elements. Then, for n ≥ ν̄ these vectors will no longer be

linearly independent. But also in this case, where ην̄,ν̄−1 6= 0, the matrix identity (3.10) remains

valid. An example is Chebyshev iteration.

4. Recursions for Iterates and Residuals. In this section, we start from our general

definition of a standard Krylov space solver in Section 2 and derive recursions for the iterates and

residuals of any such solver. In the last section we have only considered the generation of Krylov

space bases, but not yet the solution of a linear system. However, the recursion (3.1) for generating

a basis is easily turned into recursions for generating iterates xn and corresponding residuals rn.

For brevity, also these residuals and iterates are gathered into matrices

Rm :≡
(

r0 r1 · · · rm−1

)
, Xm :≡

(
x0 x1 · · · xm−1

)
.

We first assume that the residuals and iterates generated for a particular example exist for all

n up to m and are known. We claim that they always satisfy a certain type of recursion formula.

Theorem 4.1. If defined for all n up to m, the iterates xn and the residuals rn of a Krylov

space solver satisfy, for n = 0, 1, . . . ,m− 1, recursions of the form

rn+1 :=
(
Arn − rn η

◦
n,n − · · · − r0 η

◦
0,n

)
/η◦n+1,n , (4.1)

xn+1 := −
(
rn + xn η

◦
n,n + · · · + x0 η

◦
0,n

)
/η◦n+1,n (4.2)

with

η◦n+1,n :≡ − η◦n,n − η◦n−1,n − · · · − η◦0,n . (4.3)

Equivalently,

Rm = −Xm+1H
◦

m , ARm = Rm+1H
◦

m , (4.4)

where H◦

m :≡ (η◦k,l) is an (m + 1) ×m extended Hessenberg matrix with column sums 0 whose

leading principal submatrices are all nonsingular.

Proof. By definition (2.3), for any Krylov space solver, one has xn −x0 = qn−1(A)r0 ∈ Kn(A, r0) with a

polynomial qn−1 of exact degree n − 1, and by Lemma 2.6 the nth residual satisfies rn = pn(A)r0, where

qn−1 and the nth residual polynomial pn, which has exact degree n, are related by pn(ζ) = 1 − ζ qn−1(ζ),
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see (2.7). So, the vectors r0, . . . , rn−1 span Kn (even when they are linearly dependent, in which case

Kn = Kn−1). Therefore, if we define the extended (m + 1) × m Frobenius (or companion) matrix

Fm :=

0
BBBBBBB@

−1 −1 · · · −1

1

1

. . .

1

1
CCCCCCCA

, (4.5)

then we have, in view of xn − x0 ∈ Kn,

Xm+1Fm = −RmUm (4.6)

with some upper triangular m × m matrix Um and an extra minus sign. Since both xn+1 and rn are

represented by polynomials of exact degree n, the diagonal elements of Um do not vanish (or, if the

residuals are linearly dependent, these elements can be chosen not to vanish).

Each column sum in Fm is zero, i.e.,

“
1 1 · · · 1

”
Fm = oT, and therefore, for an arbitrary N -

vector b, multiplication of Fm from the left by the N × (m + 1) matrix
“

b b · · · b

”
yields an N ×m

zero matrix. Therefore,

Rm+1Fm =
““

b · · · b

”
− AXm+1

”
Fm = −AXm+1Fm = ARmUm . (4.7)

Hence, if we let

H
◦

m :≡ FmU
−1
m , (4.8)

we can write (4.6)–(4.7) as (4.4), where H◦

m is an (m+1)×m unreducible upper Hessenberg matrix whose

m leading principal submatrices are all nonsingular. In particular, the subdiagonal elements η◦

n+1,n are all

nonzero. As a consequence of eTFm = oT, this matrix satisfies

e
T
H

◦

m = o
T
, where e

T :≡
“

1 1 · · · 1
”

. (4.9)

�

Algorithm 2 (OrthoRes form of a Krylov space solver).

The OrthoRes form of a Krylov space method for solving Ax = b applies the recursions (4.1)–

(4.3). They just require an initial approximation x0 and the corresponding residual r0 := b−Ax0.

The coefficients η◦k,n, (k = 0, . . . , n; n = 0, . . . ,m− 1) depend on the particular solver; η◦n+1,n is

given by (4.3) and must be nonzero.

This is a straightforward generalization of the classical OrthoRes method (Young and Jea,

1980), where the residuals are chosen orthogonal (hence the name), and thus the coefficients η◦k,n

are for k ≤ n determined as in the Arnoldi algorithm.

We claim that the property (4.3) of zero column sums is the matrix version of the consis-

tency condition for Krylov space solvers. Note that this property is inherited from Fm . Recall

that we introduced a consistency condition for the residual polynomials pn, namely pn(0) = 1 from

(2.8), which we obtained by inserting ζ = 0 into (2.7). We want to show that the two conditions

are equivalent.

We start by casting the recursions of the residual polynomials pn and those for the polynomials

associated to the basis vectors yn in terms of the Hessenberg matrices H◦

m and Hm representing

the recursions for the vectors rn and yn, respectively. Denote the latter polynomials by tn, so that

yn = tn(A)y0. Then (4.1) and (3.1), when translated into polynomial space, become

pn+1(τ) :=
(
(τ − η◦n,n)pn(τ) − η◦n−1,npn−1(τ) − · · · − η◦0,np0(τ)

)
/η◦n+1,n , (4.10a)

tn+1(τ) := ((τ − ηn,n)tn(τ) − ηn−1,ntn−1(τ) − · · · − η0,nt0(τ)) /ηn+1,n , (4.10b)

8



with p0(τ) :≡ 1, t0(τ) :≡ 1. If we let

pT

m :≡
(
p0 p1 · · · pm−1

)
, tT

m :≡
(
t0 t1 · · · tm−1

)
, (4.11)

then, for n = 0, . . . ,m− 1, these recursions can be summarized as

τ pT

m(τ) = pT

m+1(τ)H
◦

m , τ tT

m(τ) = tT

m+1(τ)Hm . (4.12)

From the first one we see that pn(0) = 1 (n = 0, . . . ,m) is equivalent to eTH◦

m = oT from (4.9).

The second one yields

tT

m+1(0)Hm = oT , (4.13)

which is shorthand for a recursion obtained from (4.10b) for computing tn(0) recursively:

tn+1(0) := − (ηn,ntn(0) − ηn−1,ntn−1(0) − · · · − η0,nt0(0)) /ηn+1,n . (4.14)

Here is a formal statement of the equivalence result just shown:

Theorem 4.2. The consistency condition pn(0) = 1 for the residual polynomials and the zero

column sums condition (4.3) (or, (4.9)) for the extended Hessenberg matrices containing the

recurrence coefficients are equivalent.

Next we want to explore further the relationship between the Arnoldi-like recursion (3.1) and

the residual recursion (4.1) in OrthoRes. We assume an arbitrary choice of ηk,n (k = 0, . . . , n)

in (4.1). Given {yn}
m
n=0 generated by (3.1), we can rescale this sequence by dividing yn by tn(0),

so that rn :≡ yn/tn(0) becomes a sequence of residuals, since the associated polynomials pn(τ) :≡

tn(τ)/tn(0) are then normalized at τ = 0. Clearly, this is possible if and only if tn(0) 6= 0 (∀n). In

the matrix formulation, this scaling amounts to multiplying tT

m by D−1
t;m, where

Dt;m :≡ diag (t0(0), . . . , tm−1(0)) . (4.15)

Hence, the two identities in (4.12) are related as follows:

τ tT

m(τ)D−1
t;m︸ ︷︷ ︸

pT

m(τ)

= tT

m+1(τ)D
−1
t;m+1︸ ︷︷ ︸

pT

m+1(τ)

Dt;m+1HmD−1
t;m︸ ︷︷ ︸

H◦

m

. (4.16)

That is, by an “extended diagonal similarity transformation” the extended Hessenberg matrix Hm

can be scaled to become one with zero column sums, provided tn(0) 6= 0 (n = 0, . . . ,m). This

transformation is a special case of (3.15) with Sm = D−1
t;m. The corresponding transformation

between the two matrix relations (3.10) and (4.4) is

AYmD−1
t;m︸ ︷︷ ︸

Rm

= Ym+1D
−1
t;m+1︸ ︷︷ ︸

Rm+1

Dt;m+1HmD−1
t;m︸ ︷︷ ︸

H◦

m

. (4.17)

We conclude that the following holds:

Theorem 4.3. Given an extended upper (m+1)×m Hessenberg matrix Hm = (ηk,l) with nonzero

subdiagonal elements, let t0 :≡ 1, let tn(0), n = 1, . . . ,m, be defined by the recursion (4.14), and

let Dt;m be given by (4.15). Assume that tn(0) 6= 0, n = 1, . . . ,m. Then the transformation

Dt;m+1HmD−1
t;m turns Hm into an extended Hessenberg matrix H◦

m with nonzero subdiagonal

elements and vanishing column sums.

If tm(0) = 0 or ηm,m−1 = 0, then η◦m,m−1 = 0.

If we delete the last rows of Hm and H◦

m and concentrate on the square matrices Hm and H◦
m,

we can reformulate and invert this theorem in the following way.
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Theorem 4.4. Given an irreducible upper Hessenberg matrix Hm = (ηk,l)
m−1
k,l=0, let t0 :≡ 1, and

let tn(0), n = 1, . . . ,m−1, be defined by the recursion (4.14). Then there is a diagonal similarity

transformation Dt;mHmD−1
t;m that turns Hm into an irreducible Hessenberg matrix H◦

m with

vanishing column sums in all columns but the last one if and only if tn(0) 6= 0, n = 1, . . . ,m− 1.

If the latter holds, Dt;m is up to a nonzero scalar factor given by (4.15).

Proof. One direction of the claim has been established above: if tn(0) 6= 0, n = 1, . . . , m − 1, our

construction yields H◦

m with m − 1 vanishing column sums.

To prove the converse, we try to construct the diagonal similarity transformation with the mentioned

properties directly from the condition Dt;mHmD−1
t;m = H◦

m. The first element, δ0 6= 0 of Dt;m can be

chosen arbitrarily. To make the first column sum vanish, we need to choose δ1 so that δ0 η0,0 + δ1 η1,0 = 0.

Likewise, to make the (n + 1)th column sum zero we have to choose δn+1 such that

δ0 η0,n + δ1 η1,n + · · · + δn ηn,n + δn+1 ηn+1,n = 0 .

Hence, Dt;m is uniquely determined if it exists and if it is normalized by δ0 := 1. Moreover, the above

condition translates into the recursion (4.14) if we identify δn with tn(0), and the resulting matrix Dt;m

provides a similarity transformation if and only if it is nonsingular. �

The following, well-known result sheds more light on the condition we found.

Theorem 4.5. The eigenvalues of the irreducible Hessenberg matrix Hm are the zeros of tm,

that is, up to normalization tm is the characteristic polynomial of Hm.

An analogue statement holds for H◦
m and pm.

Proof. One approach to proving this theorem consists in expanding χHm
(λ) :≡ det (λI − Hm) along its

last column in order to show that the characteristic polynomials χHn
of the leading principal submatrices

Hn satisfy the same recursion as suitably scaled versions of the polynomial tn. Details are left to the

reader.

The fact that every zero of tm is an eigenvalue of Hm (and every zero of pm is an eigenvalue of H◦

m)

is also seen from (4.12), whose second formula may be written

t
T

m(τ )(τI− Hm) = tm(τ )ηm,m−1l
T

m . (4.18)

If tm(τ ) = 0, the row vector tT

m(τ ) (which is not the zero vector since its first component t0 is a nonzero

constant) is a left eigenvector for the eigenvalue τ . �

Theorem 4.5 has two simple corollaries:

Corollary 4.6. Assume that tn(0) 6= 0, n = 1, . . . ,m − 1, and let tT

m, pT

m, Hm, and H◦
m

be related as in (4.16). Then the zeros of tm are equal to those of pm and thus equal to the

eigenvalues of H◦
m. Consequently, pm is a scalar multiple of tm.

Proof. The relation Dt;m+1HmD−1
t;m = H◦

m in (4.16) implies that Dt;mHmD−1
t;m = H◦

m, that is, the

matrices Hm and H◦

m are similar. Also, by Theorem 4.5 the polynomials tm and pm are up to normalization

the characteristic polynomials of Hm and H◦

m, respectively. �

Corollary 4.7. The following statements are equivalent:

(i) tn(0) 6= 0, n = 1, . . . ,m− 1;

(ii) all leading principal submatrices Hn, n = 1, . . . ,m− 1, of Hm are nonsingular.

(iii) Hm has a Gaussian LU decomposition (without pivoting) such that Hm = LmUm, where

Um is unit upper triangular and Lm is lower triangular and has at least m− 1 nonzero

leading diagonal elements.

Proof. (i) ⇐⇒ (ii): this is an immediate consequence of Theorem 4.5. (ii) =⇒ (iii) is a well-known fact

about Gaussian elimination: in particular, when in Gaussian elimination a pivot becomes zero, then the

decomposition can be completed without pivoting only if the reduced system matrix is zero. (The last

row of the row-echelon form of the matrix is reached.) Here, this happens if Hm is singular, in which case
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the last diagonal element of Lm is zero. Conversely, since Hm = LmUm implies that Hn = LnUn (n =

1, . . . , m−1), the nonsingularity of Ln and Un for n = 1, . . . , m−1 implies the nonsingularity of Hn. �

Recall from what we said at the end of Section 3 that if the Krylov space solver described by

H◦

ν̄ has the finite termination property, then the last column of H◦
ν̄ is determined (up to a scalar

factor) by the representation of Arν̄−1 in terms of the basis r0, . . . , rν̄−1 of Kν̄ :

Arν̄−1 = rν̄−1η
◦

ν̄−1,ν̄−1 + · · · + r0η
◦

0,ν̄−1 .

If different coefficients are used in (4.1), then the method will not have the finite termination

property.

5. The Inconsistent OrthoRes Algorithm. When the OrthoRes algorithm breaks down

for some n < ν̄ − 1 due to η◦n+1,n = 0 (which goes along with tn(0) = 0 as is seen from (4.15)

and (4.16); cf. Theorem 4.3), this is called a pivot breakdown. We can no longer compute

xn+1 and rn+1, but we can still compute yn+1 (scaled arbitrarily) and proceed building up this

sequence. A corresponding sequence of incorrectly scaled iterates x̂n can also be generated, and,

once tm(0) 6= 0 for some m > n, we can rescale x̂m and ym to find xm and rm. This is what

we call the inconsistent OrthoRes form of a Krylov space solver whose iterates need not exist

for all n. A version of the biconjugate gradient (BiCG) method based on this idea was first

presented in Gutknecht (1990) and Gutknecht (1992) as the “unnormalized” BiORes algorithm;

in Gutknecht (1997) it was renamed inconsistent BiORes algorithm. Here are the details of the

general inconsistent OrthoRes algorithm:

Algorithm 3 (inconsistent OrthoRes form of a Krylov space solver).

In the OrthoRes form of a Krylov space method for solving Ax = b we choose an initial

approximation x0 and let y0 := (b − Ax0)/η−1 with some η−1 6= 0. (For example, we choose

η−1 := ‖b − Ax0‖ or η−1 := 1.) Then we let x̂0 := x0/η−1, t0(0) := 1/η−1 and compute, for

n = 0, 1, . . . ,

• yn+1 according to

yn+1 := (Ayn − yn ηn,n − · · · − y0 η0,n) /ηn+1,n (5.1)

with ηn+1,n 6= 0 (e.g., such that ‖yn+1‖ = 1),

• x̂n+1 according to

x̂n+1 := − (yn + x̂n ηn,n + · · · + x̂0 η0,n) /ηn+1,n , (5.2)

• tn+1(0) according to (4.14), i.e.,

tn+1(0) := − (tn(0)ηn,n − · · · − t0(0)η0,n) /ηn+1,n , (5.3)

• if ‖yn+1‖/|tn+1(0)| < tol, set

xn+1 :=
x̂n+1

tn+1(0)
, rn+1 :=

yn+1

tn+1(0)
(5.4)

and stop.

The coefficients ηk,n, (k = 0, . . . , n; n = 0, 1, . . . ,m−1) depend on the particular solver; ηn+1,n 6=

0 can be chosen freely. Pivot breakdowns do not occur.
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Theorem 5.1. In the inconsistent OrthoRes algorithm yn and x̂n are related by

yn = btn(0) −Ax̂n . (5.5)

In particular, in (5.4) rn+1 is the residual of xn+1, that is, rn+1 = b −Axn+1.

If yn+1ηn+1,n = o, then n+ 1 = ν̄, tn+1(0) 6= 0, and x? = xn+1 = x̂n+1/tn+1(0).

Proof. For n = 0, (5.5) is correct. Assume it is correct up to the index n. Then by (5.1)–(5.3))

(btn+1(0) − Abxn+1)ηn+1,n

= −b (tn(0)ηn,n + tn−1(0)ηn−1,n + · · · + t0(0)η0,n)

+Ayn + Abxnηn,n + Abxn−1ηn−1,n + · · · + Abx0η0,n

= Ayn − ynηn,n − yn−1ηn−1,n − · · · − y0η0,n

= yn+1ηn+1,n .

So, (5.5) follows by induction. It implies that in (5.4) rn+1 is the residual of xn+1.

When the algorithm terminates due to yn+1 = o, then n + 1 = ν̄ and the eigenvalues of Hν̄ are also

eigenvalues of A. Since by Theorem 4.5 the eigenvalues of Hn+1 are the zeros of tn+1, it follows from our

assumption of a nonsingular A, that tn+1(0) 6= 0. So rn+1 = o and xn+1 = x?. �

In terms of recursion coefficient matrices, the recursions (5.1)-(5.3) translate into

Ym = −X̂m+1Hm , AYm = Ym+1Hm (5.6)

and, in view of tT

n(0) = eTDt;n ,

tT

m+1(0)Hm = eTDt;m+1Hm = oT . (5.7)

Finally, (5.4) becomes

X̂m+1 = Xm+1Dt;m+1 , Ym+1 = Rm+1Dt;m+1 . (5.8)

With this notation it is easy to verify that the approximate solutions xn found in this way are

(in exact arithmetic) identical to those of OrthoRes as long as the latter does not break down.

Theorem 5.2. If tn 6= 0 for n = 0, . . . ,m, the approximants xn+1 generated according to

(5.4) are identical to those generated by the OrthoRes algorithm 2 with the coefficient matrix

H◦

m := Dt;m+1HmD−1
t;m.

Proof. Inserting (5.8) into the relations (5.6) leads via (4.17) to the relations (4.4) of OrthoRes. �

From Theorem 5.1 and the connection to the general Arnoldi-like construction of Krylov space

bases discussed in Section 3 we can further conclude that the following holds:

Theorem 5.3. Given any nonsingular square system Ax = b and any initial approximation x0

and the corresponding residual r0, a nested set of bases for the nested set of Krylov subspaces

Kn(A, r0), n = 1, 2, . . . , ν̄(r0,A), can be constructed by the inconsistent OrthoRes algorithm,

which at the same time produces an approximate solution xn whenever the nth basis polynomial

tn has no zero at the origin.

If the implemented method has the finite termination property, xν̄(r0,A) = x?.

There is lots of freedom in choosing the basis vectors. In particular they could be chosen

orthonormal, in which case the first recursion of the inconsistent OrthoRes algorithm is just the

Arnoldi process. So, in this case inconsistent OrthoRes is an alternative to GMRes or FOM,

and in the symmetric case as well to MinRes and SymmLQ. Compared to the classical OrthoRes

algorithm of Young and Jea (1980), there are no pivot breakdowns.

Restarts and truncation are possible. But there may be roundoff propagation problems. Of

course, in the case of orthogonal residuals, the modified Gram-Schmidt (MGS) formulas should be

applied instead of the classical (CGS) ones.
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6. Search Directions and Coupled Recursions. In this section we discuss how the Corol-

laries 4.6 and 4.7 lead to alternative recursions that involve search directions in addition to iterates

and residuals.

We assume that the irreducible Hessenberg matrix Hm is nonsingular and has m−1 nonsingular

leading principle submatrices. So by a diagonal similarity transformation it can be brought into

the form of H◦
m, which has zero column sums in all but the last column, which has a nonzero sum.

(Recall: otherwise eT were a left eigenvector with the eigenvalue 0.) Equivalently, we could assume

that the latter matrix is the given one.

By Corollary 4.6 H◦
m has a Gaussian LU decomposition without pivoting, i.e., H◦

m = L◦
mUm

with L◦
m nonsingular lower triangular and Um unit upper triangular. Then also the extended

Hessenberg matrix H◦

m has such a decomposition,

H◦

m = L◦

mUm , (6.1)

since we just have to append to L◦
m the last row η◦m,m−1l

T

m of H◦

m with η◦m,m−1 :≡

−
∑m−1

k=0 η◦k,m−1 (6= 0).

Lemma 6.1. In the decomposition (6.1) L◦

m is lower bidiagonal and has vanishing column sums,

that is, it has the form

L◦

m ≡:




ω−1
0

−ω−1
0 ω−1

1

−ω−1
1 ω−1

2

. . .
. . .

−ω−1
m−2 ω−1

m−1

−ω−1
m−1




. (6.2)

Proof. It is well known and easy to verify that the LU–decomposition of a Hessenberg matrix yields a

lower bidiagonal and an upper triangular matrix. The elements on the diagonal of L◦

m are nonzero since

H◦

m is assumed to be nonsingular. Furthermore, in view of (4.9) we have

e
T
L

◦

m = e
T
H

◦

mU
−1
m = o

T
U

−1
m = o

T
. (6.3)

�

Let us denote the elements of Um by ψk,n:

Um ≡:




1 ψ0,1 ψ0,2 · · · ψ0,m−1

1 ψ1,2 · · · ψ1,m−1

1
. . .

...

. . . ψm−2,m−1

1




. (6.4)

We now define search directions vn and a corresponding matrix Vm by
(

v0 v1 · · · vm−1

)
:≡ Vm :≡ RmU−1

m , (6.5)

so that (4.4), ARm = Rm+1H
◦

m, becomes equivalent to the coupled identities

Rm = VmUm , AVm = Rm+1L
◦

m . (6.6)

The second one implies further that the iterates satisfy

Vm = −Xm+1L
◦

m . (6.7)
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These three identities are shorthand for the coupled recursions

vn := rn − vn−1 ψn−1,n − · · · − v0 ψ0,n , (6.8a)

rn+1 := rn −Avn ωn , (6.8b)

xn+1 := xn + vn ωn . (6.8c)

The last recursion motivates the name search direction for vn. Moreover, ωn is seen to be the step

length. However, we must admit that, in general, vn is neither normalized nor orthogonal.

In summary, we have seen that every Krylov space solver written in the form (4.2)–(4.1) with

the condition (4.3) can be reformulated as (6.8a)–(6.8c). The latter version is the OrthoMin form

of a Krylov space solver. It is a generalization of the OrthoMin algorithm of Vinsome (1976),

where the search directions are A?A–orthogonal and the residuals are minimal like in GMRes.

Algorithm 4 (OrthoMin form of a Krylov space solver).

The OrthoMin form of a Krylov space method for solving Ax = b applies the recursions (6.8a)–

(6.8c). They require an initial approximation x0 and the corresponding residual, which is also

the first search direction: v0 := r0 := b − Ax0. The coefficients ψk,n, (k = 0, . . . , n − 1; n =

0, . . . ,m− 1) as well as the step length ωn depend on the particular solver.

In particular, the step length ωn is easily chosen so that the residual rn+1 is minimized in some

norm on the straight line ω 7→ rn + Avn ωn.

While the reformulation of a method given only by its coefficients η◦k,n (that is, by H◦

m) requires

to LU-decompose H◦

m, the methods based on orthogonal or oblique projection allow us to compute

the coefficients of L◦

m and Um directly.

There is a third basic form for Krylov space solvers, the OrthoDir form. We obtain it by

eliminating from (6.6) the residual vectors:

AVm = Vm+1H
′

m , where H′

m :≡ Um+1L
◦

m . (6.9)

H′

m is again an extended Hessenberg matrix, but its column sums are, in general, not zero.

The identity (6.9) yields a recursion for the search directions, but we need additionally a way

to update the iterates, and, preferably, also the residuals, since otherwise we spend two matrix-

vector multiplications per step, one to update the search direction and the other for computing

the residual (in order to judge the quality of the approximation xn). The two formulas (6.8b) and

(6.8c) satisfy this need. Together with the recursion expressed by (6.9) and given as (6.10a) next,

they yield the OrthoDir form of a method:

Algorithm 5 (OrthoDir form of a Krylov space solver).

The OrthoDir form of a Krylov space method for solving Ax = b applies, for n = 0, 1, . . . , the

recursions

vn :=
(
Avn−1 − vn−1 η

′

n−1,n−1 · · · − v0 η
′

0,n−1

)
/η′n,n−1 , (6.10a)

rn+1 := rn −Avn ωn , (6.10b)

xn+1 := xn + vn ωn . (6.10c)

They require an initial approximation x0 and the corresponding residual, which is also the first

search direction: v0 := r0 := b−Ax0. The coefficients η′k,n, (k = 0, . . . , n−1; n = 0, 1, . . . ,m−1)

as well as the step length ωn depend on the particular solver.

So here the Krylov space is generated by a recursion for the search directions, while in the

OrthoRes form it is generates by the recursion for the residual vectors, and in the OrthoMin

form by two coupled recursions involving both vector sequences. Again, the step length ωn is

normally determined by some minimality or orthogonality condition for the residual.
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In summary we have found the following:

Theorem 6.2. If the iterates xn of a Krylov space solver are defined for all n up to m, then

they can be computed

1) by an OrthoRes algorithm based on the recursions (4.2)–(4.1) with the restriction (4.3)

and the compact form (4.4);

2) by an inconsistent OrthoRes algorithm based on the recursions (5.1)–(5.4) with the

compact form (5.6)–(5.8);

3) by an OrthoMin algorithm based on the recursions (6.8a)–(6.8c) with the compact form

(6.6)–(6.7);

4) by an OrthoDir algorithm based on the recursions (6.10a)–(6.10c) with the compact

form consisting of the right-hand side relation in (6.6), of (6.7), and (6.9).

In contrast to the other methods the inconsistent OrthoRes algorithm still works if some xn+1

is undefined (or infinite) due to tn+1(0) = 0. On the other hand, the OrthoMin and Ortho-

Dir algorithms also work if xn+1 stagnates due to ωn = 0, in which case pn+1 does not have full

degree n.

In general, in any of the three forms, a Krylov space method may have the disadvantage to

require the storage of all previous iterates, all previous residuals, or all previous search directions.

However, we know from the CG and CR methods, that there are situations where this is not the

case. Here is a related result:
Theorem 6.3. Under the assumption of Theorem 6.2, the following three statements are equiv-

alent with some ` ≥ 0:

1) In the OrthoRes algorithm the recursions for the residuals and iterates are at most

`+ 2-term:

rn+1 :=
(
Arn − rn η

◦

n,n − · · · − rn−` η
◦

n−`,n−
)
/η◦n+1,n ,

xn+1 := −
(
rn + xn η

◦

n,n + · · · + xn−` η
◦

n−`,n

)
/η◦n+1,n ;

2) In the inconsistent OrthoRes algorithm the recursions for yn and x̂n are at most `+2-

term:

yn+1 := (Ayn − yn ηn,n − · · · − yn−` ηn−`,n−) /ηn+1,n ,

x̂n+1 := − (yn + x̂n ηn,n + · · · + x̂n−` ηn−`,n) /ηn+1,n ;

3) In the OrthoMin algorithm the recursions for the search directions are at most `+ 1-

term:

vn := rn − vn−1 ψn−1,n − · · · − vn−` ψn−`,n if ` > 0 ,

vn := rn if ` = 0 ,

4) In the OrthoDir algorithm the recursions for the search directions are at most ` + 2-

term:

vn :=
(
Avn−1 − vn−1 η

′

n−1,n−1 − · · ·vn−`−1 η
′

n−`−1,n−1

)
/η′n,n−1 .

Proof. The first two statements are equivalent because the sequences {yn} and {rn} as well as {bxn} and

{xn} are related by (5.4). The first and the third statements are equivalent because the LU decomposition

of a banded Hessenberg matrix H◦

m with upper bandwidth ` ≥ 0 yields a lower bidiagonal matrix L◦

m and

an upper triangular matrix Um with upper bandwidth ` — and vice versa. Moreover, since the same is

true for the UL decomposition in (6.9), the third and the fourth statement are also equivalent. �
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7. A More General Framework. Instead of the nested Krylov spaces Kn(A, r0) that were

the starting point for our definition of a Krylov space solver in (2.3), we consider a more general

situation and let {Ln}
ν
n=1 be any finite sequence of nested subspaces with dim Ln = n for n ≤ ν.

In other words,

Ln :≡ span {y0,y1, . . . ,yn−1} (7.1)

with a sequence y0,y1, . . . ,yν−1 of linearly independent vectors. We further assume that

xn − x0 ∈ Ln\Ln−1 (n = 1, . . . , ν) . (7.2)

So the errors dn :≡ xn − x? and the residuals rn :≡ b − Axn associated with xn still satisfy

rn = − Adn and additionally

dn − d0 ∈ Ln\Ln−1 , rn − r0 ∈ ALn\ALn−1 . (7.3)

Using as before the notation Ym :≡
(

y0 · · · ym−1

)
, Xm :≡

(
x0 · · · xm−1

)
, Rm :≡

(
r0 · · · rm−1

)
, we get the following result analogous to Theorem 4.1:

Theorem 7.1. If defined for all n up to m (≤ ν), the iterates xn and the corresponding residuals

rn of a linear solver characterized by (7.2) satisfy, for n = 0, 1, . . . ,m− 1,

xn+1 := −
(
yn + xn η

◦

n,n + · · · + x0 η
◦

0,n

)
/η◦n+1,n , (7.4a)

rn+1 :=
(
Ayn − rn η

◦

n,n − · · · − r0 η
◦

0,n

)
/η◦n+1,n , (7.4b)

where η◦n+1,n :≡ − η◦n,n − · · · − η◦0,n. Equivalently, in matrix form,

Ym = −Xm+1H
◦

m , AYm = Rm+1H
◦

m (7.5)

with a full rank (m+ 1) ×m Hessenberg matrix H◦

m with column sums 0.

Note that in contrast to (4.4) in Theorem 4.1 the matrices Ym and Rm are different here,

and this, in general, by more than the scaling of the columns. We will refer to this solver as the

generalized OrthoRes algorithm.

Proof of Theorem 7.1 The proof is analogous to that of Theorem 4.1. By assumption (7.2) holds, so

with the matrix Fm from (4.5) we have now

Xm+1Fm = −YmUm (7.6)

with a nonsingular upper triangular m × m matrix Um. Again
“

b b · · · b

”
Fm = beTFm = O.

Therefore,

Rm+1Fm =
““

b · · · b

”
− AXm+1

”
Fm

= −AXm+1Fm = AYmUm . (7.7)

So, with H◦

m :≡ FmU−1
m as in (7.5) we can write (7.6) and (7.7) as (4.4), where H◦

m is an (m + 1) × m

upper Hessenberg matrix that satisfies eTH◦

m = oT. �

There are some widely used methods that fit into this framework, but not in the one of standard

Krylov space solvers treated before.

One class are block Krylov space methods, where the subspaces Lm are direct sums of Krylov

subspaces of the form Knk
(A, r0,k), some of which may already be exhausted (i.e., nk ≥ ν̄(r0,k,A)),

while others are still growing.
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Another case of importance is when the search space is essentially a Krylov space generated

by a matrix B different from A. One encounters this case when treating least squares problems

with the CGNR and CGNE algorithms. More specifically, we consider the nested spaces

Ln :≡ A−1BKn(B, r0) = span {A−1Br0,A
−1B2r0, . . . ,A

−1Bnr0} . (7.8)

Then, in the recursions (7.4a)–(7.4b) we can choose

yn :≡ A−1Brn , (7.9)

so that they become

xn+1 := −
(
A−1Brn + xn η

◦

n,n + xn−1 η
◦

n−1,n + · · · + x0 η
◦

0,n

)
/η◦n+1,n , (7.10a)

rn+1 :=
(
Brn − rn η

◦

n,n − rn−1 η
◦

n−1,n − · · · − r0 η
◦

0,n

)
/η◦n+1,n , (7.10b)

or, in compact form, since Ym = A−1BRm,

A−1BRm = −Xm+1H
◦

m , BRm = Rm+1H
◦

m . (7.11)

Of course, this make sense only if matrix-vector products of the form A−1Br can be computed

easily, as, e.g., in the cases where B = A or B = AA?. The first case, B = A, is the standard situ-

ation treated before, where these recursions reduce to (4.2)–(4.1) with the compact representation

(4.4). The second case, B = AA?, is what we encounter in the CGNR and CGNE algorithms.

As before, the Hessenberg matrix H◦

m (with zero column sums) of Theorem 7.1 has an LU

decomposition Hm = LmUm; see Theorem 4.4 and Corollary 4.7. The factors Lm and Um can be

taken of the same forms as in (6.2) and (6.4).

This leads quickly to a generalized OrthoMin algorithm: We define the search directions

vn and a corresponding matrix Vm again by

(
v0 v1 · · · vm−1

)
:≡ Vm :≡ RmU−1

m , (7.12)

so that (4.4), AYm = Rm+1H
◦

m, becomes equivalent to the coupled identities

Ym = VmUm , AVm = Rm+1L
◦

m . (7.13)

The second one implies further that the iterates satisfy

Vm = −Xm+1L
◦

m . (7.14)

These three identities are shorthand for the generalized coupled recursions

vn := yn − vn−1 ψn−1,n − · · · − v0 ψ0,n , (7.15a)

rn+1 := rn −Avn ωn , (7.15b)

xn+1 := xn + vn ωn . (7.15c)

Since the residuals appear now only in one of the two equations (7.13) there is no way to

eliminate them in order to define a generalized OrthoDir version in the same way as before.

There is also no easy way to define a generalized inconsistent OrthoRes algorithm.

8. Conclusions. We have shown that under very mild conditions every Krylov space solver

has realizations based on general OrthoMin, OrthoRes, and OrthoDir recurrences, which are

generalizations of the classical OrthoMin, OrthoRes, and OrthoDir recurrences of Vinsome

(1976) and Young and Jea (1980), but do not assume any orthogonality of the residuals or of
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the search directions, in contrast to the classical algorithms, which were designed for orthogonal

residual and minimum residual methods. While OrthoRes is based on a recurrence for the resid-

uals, the recurrences of OrthoMin and OrthoDir involve both residuals and search directions

(direction vectors). We have established various equivalent conditions for the validity of these

recurrences, one being that so-called pivot breakdowns do not happen. We have also introduced a

general algorithm, inconsistent OrthoRes, which does not suffer from such pivot breakdowns. It

computes, in each step, an approximation of the solution of a linear system whose right-hand side

b is suitably scaled.
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