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Abstract

We consider acoustic scattering at a non-smooth penetrable object and coupled boundary ele-
ment finite element schemes for its numerical simulation. Straightforward coupling approaches
are haunted by instabilities at wave numbers related to interior resonances, the so-called spurious
resonances.

A remedy is offered by adopting the idea underlying the widely used combined field integral
equations. We apply it in the form of modified trace operators. These will also feature regularizing
operators to offset the lack of compactness of the double-layer potential integral operators on non-
smooth surfaces. Calderón projectors can be defined based on the modified trace operators. Thus,
Costabel’s approach to the symmetric coupling of domain variational formulations and boundary
integral equations carries over.

The modified traces guarantee uniqueness of solutions of the coupled problem, whereas regu-
larization ensures coercivity. From this we immediately conclude asymptotic quasi-optimality of a
combined finite element and boundary element Galerkin discretization.
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1 Introduction

Let Ω− ⊂ R3 denote volume occupied by a inhomogeneous bounded object 1. Plane time harmonic
sound waves described by a pressure amplitude U i propagate in the exterior homogeneous air region
Ω+ := R3 \ Ω̄−, hit the object and get scattered.

As explained in [12, Sect. 2.1], a suitably scaled pressure amplitude U of the resulting sound
field will satisfy the homogeneous Helmholtz equation

−∆U − κ2n(x)U = 0 in Ω− ∪ Ω+ , (1)

plus suitable radiation boundary conditions at ∞. The refractive index n belongs to L∞
(
R3
)
. It

is allowed to vary spatially inside Ω−, but is equal to 1 in Ω+. Furthermore we assume the wave
number κ to be positive and real valued.

The numerical simulation of this acoustic scattering problem is faced with the unbounded
domain Ω+. Many different strategies have been devised to cope with this challenge: one could
truncate Ω+ and use standard finite elements in conjunction with absorbing boundary conditions
[20]. An alternative is provided by infinite finite elements in Ω+ [3, 1] or the method of fundamental
solutions [18].

However, in this article we will restrict ourselves to another possibility, namely boundary in-
tegral equation methods, which reduce the problem in Ω+ to equations on the bounded surface
Γ := ∂Ω−. Boundary integral equations come in different varieties, among them direct and indirect
methods [19, Ch. 8].

Useful integral equations remain elusive for boundary value problems with non-constant coeffi-
cients. This is the case inside Ω− and, therefore, we are forced to use a classical spatial discretization
like the finite element method to discretize (1) in Ω−. This entails linking the weak variational
formulation of (1) with boundary integral equations on Γ.

In short, coupled problems are derived by expressing the Dirichlet-to-Neumann map of the
exterior problem by means of boundary integral operators. This can be done in many ways.
Yet, in many cases, in particular with so-called indirect formulations, the resulting operator lacks
structural properties of the Dirichlet-to-Neumann map. This is blatantly obvious in the case of
second order elliptic problems [23]. If structure is not preserved, both theoretical analysis becomes
much more difficult, and the linear systems of equations obtained through Galerkin boundary
element discretization are adversely affected.

For second order elliptic problems Costabel [13] discovered that the so-called direct boundary
integral equations provide a remedy. The key concept is that of the Calderón projector acting on the
Cauchy data of the problem. For details and theoretical examinations we refer to [10, sect. 4.5] and
[16]. In short, the Calderón projector supplies two sets of boundary integral equations. Judiciously
combining them yields a version of the Dirichlet-to-Neumann map that perfectly lends itself to
a Galerkin discretization. The realisation of Costabel’s idea is called the “symmetric coupling
approach” to marrying finite elements and boundary elements. It has been applied to a wide range
of transmission problems; see, among many others, [9, 21, 25, 22].

Unfortunately, for the acoustic scattering problem the direct symmetric coupling approach
invariably leads to equations vulnerable to spurious resonances [17, 29]: if κ2 agrees with a Dirichlet
or Neumann eigenvalue (resonant frequency) of the Laplacian in Ω−, then the integral equations
may fail to possess a unique solution, though the overall scattering problem remains well-posed.

One way to deal with spurious resonances is the use of integral operators with modified kernels
[32, 24]. Here we will restrict our attention to another remedy, namely the widely used combined
field integral equations (CFIE). They owe their name to the typical complex linear combination of
different boundary integral operators on the left hand side of the final boundary integral equation.
In the case of indirect schemes this trick has independently been discovered by Brakhage and
Werner [4], Leis [26], and Panich [28] in 1965. In 1971 Burton and Miller used the same idea
to obtain direct boundary integral equations without spurious resonances [8]. Meanwhile, CFIEs
have become the foundation for numerous numerical methods in direct and inverse acoustic and
electromagnetic scattering [12, Ch. 3 & 6].

1We assume that Ω− is a curvilinear Lipschitz-polyhedron in the sense of [15, Sect. 1].
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We aim to pursue symmetric coupling based on CFIE. To do so we first have to identify related
Calderón projectors. Secondly, we have to overcome a potential lack of coercivity of the coupled
system due to the fact that the double-layer integral operators fail to be compact on non-smooth
surfaces. Both problems are tackled by introducing modified trace operators. These are motivated
by the regularization approach to CFIE developed in [6, 5, 7] based on ideas by Panich [28].

2 The Transmission Problem

We depart from a formulation of the scattering problem as a transmission problem. To do so we
have to rely on the following continuous and surjective trace mappings [14, Lemma 3.2]

Dirichlet trace γ±0 : H1
loc

(
Ω±
)
→ H

1
2 (Γ) ,

Neumann trace γ±1 : Hloc

(
∆,Ω±

)
→ H−

1
2 (Γ) .

We refer to [27, Ch. 3] for the definitions function spaces H1
loc (Ω±), Hloc (∆,Ω±), H

1
2 (Γ), and

H−
1
2 (Γ). The trace operators generalize the following pointwise restrictions of smooth functions

V ∈ C∞
(

Ω±
)

(γ±0 V )(x) := V (x) and (γ±1 V )(x) := grad V (x) · n(x), x ∈ Γ.

Then the mathematical model for the acoustic scattering problem boils down to the following
transmission problem for the Helmholtz equation, see [30, Sect. 2.9].

−∆U − κ2n(x)U = f(x) in Ω−,

γ+
0 U

s − γ−0 U = g0 on Γ,

−∆U s − κ2U s = 0 in Ω+,

γ+
1 U

s − γ−1 U = g1 on Γ,

∂U s

∂r
− iκU s = o(r−1) uniformly for r := |x| → ∞,

(2)

with the refractive index n ∈ L∞ (Ω−), the source term f ∈ H−1 (Ω−) and the wave number

κ > 0. In the case of excitation by an incident field U i the generic jump data g0 ∈ H
1
2 (Γ) and

g1 ∈ H−
1
2 (Γ) evaluate to the Dirichlet and Neumann data of U i on the boundary Γ:

g0 := −γ+
0 U

i, g1 := −γ+
1 U

i .

It is known that the transmission problem (2) has a unique solution u ∈ Hloc

(
∆,R3

)
[30, Sect. 2.10].

Remark 2.1. Please note that inside Ω− the field U in (2) refers to the total field, whereas in Ω+

we write U s for the scattered field. There the total field can be recovered through U = U s + U i.

3 Potentials and Boundary Integral Operators

In this section we define relevant boundary integral operators and review some of their properties.
Only sketches of proofs will be given and the reader is referred to [30, 27, 14] for details. To begin
with, let us fix some notations and notions: jumps of traces across Γ will be designated by

[γ0V ]Γ := γ+
0 V − γ−0 V , [γ1V ]Γ := γ+

1 V − γ−1 V,

and averages across Γ will be denoted by

{γ0V }Γ := 1
2

(
γ+

0 V + γ−0 V
)
, {γ1V }Γ := 1

2

(
γ+

1 V + γ−1 V
)
.

For a fixed wave number κ > 0 a distribution U on R3 is called a radiating Helmholtz solution, if

∆U + κ2U = 0 in Ω− ∪ Ω+, lim
r→∞

r

(
∂U

∂r
− iκU

)
= 0,



R. Hiptmair and P. Meury 3

where the limit is assumed to hold uniformly in all directions. Based on the Helmholtz kernel

Gκ (z) :=
1

4π

exp (iκz)

z
(3)

we can state the transmission formula for radiating Helmholtz solutions U [30, Thm. 3.1.6]

U = −Ψκ
SL ([γ1U ]Γ) + Ψκ

DL ([γ0U ]Γ) . (4)

with the potentials

single-layer potential Ψκ
SL (ϑ) (x) :=

∫

Γ

Gκ (|x− y|)ϑ (y) dS(y),

double-layer potential Ψκ
DL (v) (x) :=

∫

Γ

∂Gκ (|x− y|)
∂n (y)

v (y) dS(y).

The potentials provide radiating Helmholtz solutions and continuous mappings [30, Thm. 3.1.16]

Ψκ
SL : H−

1
2 (Γ) → H1

loc

(
R3
)
∩Hloc

(
∆,Ω− ∪ Ω+

)
,

Ψκ
DL : H

1
2 (Γ) → Hloc

(
∆,Ω− ∪ Ω+

)
.

Applying the trace mappings yields the following four continuous boundary integral operators

Vκ : Hs− 1
2 (Γ)→ Hs+ 1

2 (Γ) , Vκ := {γ0Ψκ
SL}Γ ,

Kκ : Hs+ 1
2 (Γ)→ Hs+ 1

2 (Γ) , Kκ := {γ0Ψκ
DL}Γ ,

K′κ : Hs− 1
2 (Γ)→ Hs− 1

2 (Γ) , K′κ := {γ1Ψκ
SL}Γ ,

Wκ : Hs+ 1
2 (Γ)→ Hs− 1

2 (Γ) , Wκ := −{γ1Ψκ
DL}Γ ,

for a scale of Sobolev spaces with |s| < 1
2 , see [14, Thm. 1]. From the jump relations [30, Thm. 3.3.1]

[γ0Ψκ
SL (ϑ)]Γ = 0 , [γ1Ψκ

SL (ϑ)]Γ = −ϑ, ∀ϑ ∈ H− 1
2 (Γ) ,

[γ0Ψκ
DL (ϕ)]Γ = ϕ , [γ1Ψκ

DL (ϕ)]Γ = 0 , ∀ϕ ∈ H 1
2 (Γ) ,

(5)

we can directly deduce the following four identities

γ±0 Ψκ
SL = Vκ , γ±1 Ψκ

SL = Kκ ± 1
2 Id ,

γ±0 Ψκ
DL = K′κ ∓ 1

2 Id , γ±1 Ψκ
DL = −Wκ .

(6)

In the sequel (·, ·)Γ will stand for the L2 (Γ)-inner product

(ϑ, ϕ)Γ :=

∫

Γ

ϑϕ dS ϑ, ϕ ∈ L2 (Γ) ,

which can be extended to a duality pairing on H−
1
2 (Γ) × H

1
2 (Γ). Adjoints of operators with

respect to (·, ·)Γ will be tagged by ∗.
Crucial for any variational formulation based on boundary integral operators will be the fol-

lowing three lemmata, see [30, Lemma 3.9.8], [14, Thm. 2].

Lemma 3.1. The following operators are compact

Vκ − V0 : H−
1
2 (Γ)→ H

1
2 (Γ) ,

Kκ − K0 : H
1
2 (Γ) → H

1
2 (Γ) ,

K′κ − K′0 : H−
1
2 (Γ)→ H

1
2 (Γ) ,

Wκ −W0 : H
1
2 (Γ) → H−

1
2 (Γ) .
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The proof relies on the fact that both Vκ−V0 and Kκ−K0 turn out to be integral operators with
continuous and bounded kernels, which ensures that they map into H1 (Γ), which is compactly

embedded in H
1
2 (Γ). Details can be found in [5, Sect. 2]. This result combined with the ellipticity

of both V0 and W0 in H−
1
2 (Γ) and H

1
2 (Γ), respectively, yields the next lemma.

Lemma 3.2. The operators Vκ and Wκ satisfy a generalized G̊arding inequality in the sense that
there exists a constant γ > 0 and compact operators

TV : H−
1
2 (Γ)→ H

1
2 (Γ) , TW : H

1
2 (Γ)→ H−

1
2 (Γ)

such that

Re {(ϑ, (Vκ + TV) (ϑ))Γ} ≥ γ ‖ϑ‖2
H−

1
2 (Γ)

,

Re {((Wκ + TW) (ϕ), ϕ)Γ} ≥ γ ‖ϕ‖2
H

1
2 (Γ)

holds true for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H 1

2 (Γ).

Finally, K′κ is the (·, ·)Γ-adjoint of Kκ up to a compact perturbation:

Lemma 3.3. There exists a compact operator TK : H−
1
2 (Γ)→ H−

1
2 (Γ) such that

(K∗κ (ϑ), ϕ)Γ = ((K′κ + TK) (ϑ), ϕ)Γ

holds true for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H 1

2 (Γ), where K∗κ denotes the L2 (Γ)-adjoint of Kκ.

Proof. Following [30, Sect. 3.1] and [14], we recall the representations

Kκ = {γ0}Γ ◦ Nκ ◦ γ1
∗ , K′κ = {γ1}Γ ◦ Nκ ◦ γ0

∗,

where Nκ : H−1
comp

(
R3
)
→ H1

loc

(
R3
)

is the Newton potential for the Helmholtz kernel.

Kκ
∗ − K′κ = {γ1}Γ ◦ (Nκ −Nκ∗) ◦ γ0

∗ .

Observe that

(Nκ −Nκ∗) (V ) (x) =
i

2π

∫

R3

sin(κ|x− y|)
|x− y| V (y) dy

is an integral operator with analytic kernel, which maps continuously H−1
comp

(
R3
)
7→ Hs

loc(R3)

for any s ∈ R. Thus, K∗κ − K′κ : H−
1
2 (Γ) 7→ H1 (Γ) is continuous and the compact embedding

H1 (Γ) ↪→ H−
1
2 (Γ) finishes the proof.

4 Calderón Projectors

A crucial tool for the coupling of the variational equations on Ω− and boundary integral equations
on Γ are the two Calderón projectors [30, Sect. 3.6]

P± :=

[
1
2 Id± Kκ ∓Vκ
∓Wκ

1
2 Id∓ K′κ

]
: H

1
2 (Γ)×H− 1

2 (Γ) 7→ H
1
2 (Γ)×H− 1

2 (Γ) .

They arise from applying the trace operators γ±0 and γ±1 to (4) and using (6). The operators P+

and P− obviously satisfy the identity

P+ + P− = Id. (7)

The Calderón projectors can be used to characterise pairs of functions in H
1
2 (Γ)×H− 1

2 (Γ) that
are eligible as traces of Helmholtz solutions, see [33].
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Theorem 4.1. If and only if (ϕ, ϑ) ∈ H 1
2 (Γ) × H− 1

2 (Γ) belongs to the range of P±, there is a
Helmholtz solution U such that ϕ = γ±0 U and ϑ = γ±1 U .

The theorem paves the way for establishing expressions for the exterior Dirichlet-to-Neumann
map for the Helmholtz problem in Ω+. This is the operator DtN+

κ : H
1
2 (Γ) 7→ H−

1
2 (Γ) returning

the Neumann traces of an exterior Helmholtz solution matching prescribed Dirichlet boundary
conditions on Γ. Three different formulas can instantly be obtained from (4.1), at least formally,
because the inverses of operators might not exist:

DtN+
κ := Vκ

−1 ◦
(
Kκ − 1

2 Id
)
, (8)

DtN+
κ := −

(
1
2 Id + K′κ

)−1 ◦Wκ, (9)

DtN+
κ := −Wκ +

(
1
2 Id− K′κ

)
◦ Vκ

−1 ◦
(
Kκ − 1

2 Id
)
. (10)

Only the third formula reflects the essential symmetry of the boundary value problem in the case
κ = 0. It will be the starting point for symmetric coupling.

Remark 4.2. If the incident wave U i can be extended to an interior Helmholtz solution, which is
evidently the case, when U i is a plane wave or generated by a sound source compactly supported
in Ω+, then, by (4) and (5), its traces on Γ will fulfill

[
γ0U

i

γ1U
i

]
= P−

[
γ0U

i

γ0U
i

]
⇔ P+

[
γ0U

i

γ1U
i

]
= 0 . (11)

For the same reasons, the scattered field U s satisfies
[
γ+

0 U
s

γ+
1 U

s

]
= P+

[
γ+

0 U
s

γ+
1 U

s

]
. (12)

Using that the total field in Ω+ is given by U = U s + U i, we can eliminate U s from (11) and (12)
and end up with

[
γ+

0 U
γ+

1 U

]
= P+

[
γ+

0 U
γ+

1 U

]
−
[
g0

g1

]
(13)

As above Dirichlet-to-Neumann maps for the total field can be constructed from this relationship.

5 Classical Symmetric Coupling

For the sake of completeness we will review the classical approach to the coupling of boundary
integral equations and variational formulation in Ω− due to Costabel [13]. First, integration by
parts shows that a solution U of problem (2) will fulfill

a (U, V )−
(
γ−1 U, γ

−
0 V
)

Γ
= f (v) ∀v ∈ H1

(
Ω−
)
, (14)

where we have used the abbreviations

a (U, V ) :=

∫

Ω−

gradU · gradV − κ2n(x)U V dx , U, V ∈ H1
(
Ω−
)
,

f (V ) :=

∫

Ω−

f V dx , V ∈ H1
(
Ω−
)
.

Lemma 5.1. The sesqui-linear form a satisfies a generalized G̊arding inequality in the sense that
there exists a constant γ > 0 and a compact sesqui-linear form

k : H1
(
Ω−
)
×H1

(
Ω−
)
→ C

such that

Re {a (U,U) + k (U,U)} ≥ γ ‖U‖2H1(Ω−)

holds true for all u ∈ H1 (Ω−).
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Proof. The lemma is a straightforward consequence of the compact embeddingH1 (Ω−) ↪→ L2 (Ω−).

The variational problem associated with the classical symmetric coupling approach emerges
by employing the transmission conditions of (2) and using the Dirichlet-to-Neumann map (10) to
express γ−1 U in (14). In order to avoid the operator products occurring in (10) we also introduce
γ+

1 U
s as the new variable

ϑ :=
(
Vκ
−1 ◦

(
Kκ − 1

2Id
)) (

γ−0 U + g0

)
∈ H− 1

2 (Γ) .

Thus, we end up with: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ)
there holds

a (U, V ) +
(
Wκ

(
γ−0 U

)
, γ−0 V

)
Γ
−
((

1
2 Id− K′κ

)
(ϑ), γ−0 V

)
Γ

= f̃(V ) ,
(
ϕ,
(

1
2 Id− Kκ

) (
γ−0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ = g̃(ϕ) ,
(15)

where

f̃(V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
−
(
Wκ (g0), γ−0 V

)
Γ
,

g̃(ϕ) :=
(
ϕ,
(
Kκ − 1

2 Id
)

(g0)
)

Γ
.

Using the lemmata of the previous section it is not difficult to verify that the bilinear form associ-
ated with (15) satisfies a G̊arding inequality. Unfortunately, this is no safeguard against spurious
resonances:

Assume the resonance case, that is, κ2 is a Dirichlet eigenvalue of −∆ in Ω−. Then we can find
U ∈ H1 (Ω−) \ {0} such that

∆U + κ2U = 0 in Ω− and U = 0 on Γ .

Since γ−0 U = 0 ,by Thm. 4.1 we have that

[
0

γ−1 U

]
= P−

[
0

γ−1 U

]
=

[
Vκ
(
γ−1 U

)
(

1
2 Id + K′κ

) (
γ−1 U

)
]
,

which means that (0, γ−1 U) provides a solution of (15) in the case f̃ = g̃ = 0.
Even in the resonance case, the right hand side of (15) will be consistent and the variational

problem still has solutions (U, ϑ), whose first component will still be unique. Alas, this is little
comfort as far as numerical solution procedures are concerned: firstly, inevitable perturbations
introduced by discretization will destroy the consistency of the right hand side. Secondly, whenever
κ2 is merely close to an interior resonant frequency, the resulting linear systems of equations may
not be useless, but will be extremely ill-conditioned: see the profound analysis of the impact of
spurious resonances in the case of electromagnetic scattering given in [11].

So, from a numerical point of view suppressing spurious resonances is essential for the efficacy
of methods based on boundary integral equations.

Remark 5.2. Under the assumptions made in Remark 4.2 we may use a symmetric Dirichlet-to-
Neumann map derived from (13). This will lead to a coupled variational problem of the form (15)

with much simpler right hand sides f̃(V ) = f (V )−
(
g1, γ

−
0 V
)

Γ
and g̃(ϕ) = − (ϕ, g0)Γ.

6 Transformed Traces

As pointed out at the end of the previous section, the existence of spurious resonances is directly
linked to the fact that for certain κ there are non-trivial interior Helmholtz solutions U that satisfy
γ−0 U = 0. We know that there are Robin-type (mixed) boundary conditions that ensure the unique
solvability of the corresponding boundary value problem for −∆U −κ2U = 0 in Ω−. Note that we
can rely on two Robin-type boundary operators to state the transmission conditions of (2) as long
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as we can recover the conventional Dirichlet and Neumann trace from them. In fact, this idea can
serve as the starting point for the derivation of all CFIEs. Here, it motivates the introduction of
the following generic trace transformation operator.

T :=

[
A B
C D

]
: H−

1
2 (Γ)×H 1

2 (Γ)→ H−
1
2 (Γ)×H 1

2 (Γ) . (16)

We demand that the interior homogeneous “Dirichlet problem” for −∆U − κ2U = 0 and the
modified traces has a unique solution for every κ. In light of Thm. 4.1 this amounts to the
following assumption:

Assumption 6.1. The trace transformation operator T satisfies

Range (T ◦ P−) ∩
(
{0} ×H− 1

2 (Γ)
)

= {0} .

Then one can use T , build associated Calderón projectors for the modified traces, derive sym-
metrically coupled variational problems and check their properties. Here, we would like to skip
this tedious process of creative discovery 2 and present the final finding on what is required for T :

Assumption 6.2. The blocks of the transformation operator T from (16) are assumed to possess
the following properties

1. T : H−
1
2 (Γ)×H 1

2 (Γ)→ H−
1
2 (Γ)×H 1

2 (Γ) is bijective,

2. A : H
1
2 (Γ)→ H

1
2 (Γ) is bounded and bijective,

3. B : H−
1
2 (Γ)→ H

1
2 (Γ) is compact,

4. C : H
1
2 (Γ)→ H−

1
2 (Γ) is compact,

5. D : H−
1
2 (Γ)→ H−

1
2 (Γ) is bounded and bijective.

The first requirement enables us to retrieve the conventional Dirichlet and Neumann trace from
their transformed counterparts. This is essential, because it is these traces that will invariably occur
in (14) so that we have to resort to them in one way or another when pursuing the coupling of (14)
with boundary integral equations. Switching back and forth between conventional and transformed
traces employs the following splitting of the trace transformation operator

T = R+ S, R :=

[
A 0
0 D

]
, S :=

[
0 B
C 0

]
. (17)

Based on it we define the following generalized Calderón projectors

P± := R−1 ◦ (T ◦ P± − S) . (18)

Note that they are meant to act on conventional traces. Let us make the transformed exterior
Calderón projector more explicit: an elementary computation yields

P+ =

[
A B
C D

]
(19)

where the entries of the operator matrix are given by

A := 1
2 Id + Kκ − A−1 ◦ B ◦Wκ, (20)

B := −A−1 ◦ B ◦
(

1
2 Id + K′κ

)
− Vκ, (21)

C := D−1 ◦ C ◦
(
Kκ − 1

2 Id
)
−Wκ, (22)

D := 1
2 Id− K′κ − D−1 ◦ C ◦ Vκ . (23)

An analogue of Thm. 4.1 still holds for the transformed Calderón projectors.

2We have a habit in writing articles published in scientific journals to make the work as finished as possible, to
cover up all the tracks, to not worry about the blind alleys or describe how you had the wrong idea first, and so on.
So there isn’t any place to publish, in a dignified manner, what you actually did in order to get to do the work – R.
Feynman
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Lemma 6.3. If and only if U is an exterior/interior radiating Helmholtz solution we have

P±
[
γ±0 U
γ±1 U

]
=

[
γ±0 U
γ±1 U

]
.

Proof. As T is one-to-one, we immediately conclude from Thm. 4.1 that U is an exterior/interior
radiating Helmholtz solution if and only if

P±

[
γ±0 U
γ±1 U

]
=

[
γ±0 U
γ±1 U

]

m

(T ◦ P±)

[
γ±0 U
γ±1 U

]
= T

[
γ±0 U
γ±1 U

]
= (R+ S)

[
γ±0 U
γ±1 U

]

m
[
γ±0 U
γ±1 U

]
= R−1 ◦ (T ◦ P± − S)

[
γ±0 U
γ±1 U

]
.

Now, the same formal manipulations as in Sect. 5 yield the following operator expression for
the Dirichlet-to-Neumann map

DtN+
κ := C+ D ◦ B−1 ◦ (Id− A) , (24)

which maps exterior Dirichlet traces of radiating Helmholtz solutions U to exterior Neumann
traces.

Remark 6.4. Again, if the incident wave U i can be extended to an interior Helholtz solution, then
we can apply the trace transformation operator to (13) and we end up with

T
[
γ+

0 U
γ+

1 U

]
= (T ◦ P+)

[
γ+

0 U
γ+

1 U

]
− T

[
g0

g1

]
. (25)

Using the operator splitting (17) and definition (18) of the generalized Calderón projector we can
eliminate the trace transformation operator T from the left hand side of (25) and we obtain

[
γ+

0 U
γ+

1 U

]
= P+

[
γ+

0 U
γ+

1 U

]
−
(
R−1 ◦ T

) [ g0

g1

]
. (26)

As above this relationship can be used to construct new Dirchlet-to-Neumann maps for the total
field.

We end this section with an easily verifyable criterion telling us when Ass. 6.1 is satisfied:

Lemma 6.5. If the following is equivalent

Im
{(
ϑ,
(
A−1 ◦ B

)
(ϑ)
)

Γ

}
= 0 ⇔ ϑ = 0 ,

then

Range (T ◦ P−) ∩
(
{0} ×H− 1

2 (Γ)
)

= {0} .

Proof. If ξ ∈ H− 1
2 (Γ) satisfies

[
0
ξ

]
∈ Range (T ◦ P−) ,
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then there exists ϑ ∈ H 1
2 (Γ) and ϕ ∈ H− 1

2 (Γ) such that

[
0
ξ

]
= (T ◦ P−)

[
ϑ
ϕ

]
.

Taking the transformed interior traces of the function

U (x) := −Ψκ
DL (ϑ) (x) + Ψκ

SL (ϕ) (x) , x ∈ Ω−

gives us the following set of equations

T
[
γ−0 U
γ−1 U

]
= (T ◦ P−)

[
ϑ
ϕ

]
=

[
0
ξ

]
. (27)

Thus U is a solution to the boundary value problem

∆U + κ2U = 0 in Ω−, (28)

A
(
γ−0 U

)
+ B

(
γ−1 U

)
= 0 on Γ. (29)

Recalling equation (14) and using that A is bijective, we obtain

a (U,U)−
(
γ−1 U, γ

−
0 U
)

Γ
= a (U,U) +

(
γ−1 U, (A−1 ◦ B)

(
γ−1 U

))
Γ

= 0 .

Since, a (U,U) ∈ R, taking the imaginary part, we get

Im
{(
γ−1 U,

(
A−1 ◦ B

) (
γ−1 U

))
Γ

}
= 0.

Thus, the assumption of the lemma implies γ−1 U = 0, and via (29) we conclude γ−0 U = 0. Even-
tually, (27) shows that ξ = 0.

7 Stabilized Coupling

Parallel to the approach in Sect. 5, we use equation (14) in combination with the transformed
Dirichlet-to-Neumann map (24) and introduce the new variable

ϑ := −
(
B−1 ◦ (Id− A)

) (
γ−0 U + g0

)
∈ H− 1

2 (Γ) . (30)

If U solves the Helmholtz transmission problem (2), then γ−0 U + g0 = γ+
0 U

s, and we learn from
Lemma 6.3 and (19) that actually ϑ = −γ+

1 U
s. As in the case of classical coupling, ϑ will supply

the exterior Neumann trace of the scattered field.
Thus we arrive at the following regularized variational formulation: find U ∈ H1 (Ω−), ϑ ∈

H−
1
2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ) there holds

a (U, V )−
(
C
(
γ−0 U

)
, γ−0 V

)
Γ

+
(
D (ϑ), γ−0 V

)
Γ

= f̂(V ) ,
(
ϕ, (A− Id)

(
γ−0 U

))
Γ
− (ϕ,B (ϑ))Γ = ĝ(ϕ) ,

(31)

where

f̂(V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
+
(
C (g0), γ−0 V

)
Γ
, (32)

ĝ(V ) := (ϕ, (Id− A) (g0))Γ . (33)

We first investigate the H1 (Ω−) × H− 1
2 (Γ)-coercivity of the sesqui-linear form underlying (31).

From assumption 6.2 it is immediate that the operators A−1 ◦B, D−1 ◦C are compact. This plays
a key role in the proofs of the following two lemmata.
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Lemma 7.1. There exists a constant γ > 0 and compact operators

TB : H−
1
2 (Γ)→ H

1
2 (Γ) , TC : H

1
2 (Γ)→ H−

1
2 (Γ)

such that

−Re {(ϑ, (B+ TB) (ϑ))Γ} ≥ γ ‖ϑ‖
2

H−
1
2 (Γ)

,

−Re {(ϕ, (C+ TC) (ϕ))Γ}≥ γ ‖ϕ‖
2

H
1
2 (Γ)

,

for all ϑ ∈ H− 1
2 (Γ) and ϕ ∈ H 1

2 (Γ).

Proof. Using (21) and (22) a straightforward application of Lemma 3.2 yields

Re
{
− (ϑ,B (ϑ))Γ −

(
ϑ,
(
A−1 ◦ B ◦

(
1
2 Id + K′κ

))
(ϑ)
)

Γ
+ (ϑ,TV (ϑ))Γ

}

= Re {(ϑ, (Vκ + TV) (ϑ))Γ} ≥ γ ‖ϑ‖2
H−

1
2 (Γ)

,

Re
{
− (C (ϕ), ϕ)Γ +

((
D−1 ◦ C ◦

(
Kκ − 1

2 Id
))

(ϕ), ϕ
)

Γ
+ (TW (ϕ), ϕ)Γ

}

= Re {((Wκ + TW) (ϕ), ϕ)Γ} ≥ γ ‖ϕ‖2
H

1
2 (Γ)

,

for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H 1

2 (Γ).

Lemma 7.2. There exist compact operators

TA : H
1
2 (Γ)→ H

1
2 (Γ) , TD : H−

1
2 (Γ)→ H−

1
2 (Γ)

such that

(ϑ, (A− Id + TA) (ϕ))Γ + ((D+ TD) (ϑ), ϕ)Γ = 0

for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H 1

2 (Γ).

Proof. We begin with an application of lemma 3.3 and obtain

((
1
2 Id− K′κ

)
(ϑ), ϕ

)
Γ

+
(
ϑ,
(
Kκ − 1

2 Id
)

(ϕ)
)

Γ

=
((

1
2 Id− K∗κ + TK

)
(ϑ), ϕ

)
Γ
−
((

1
2 Id− K∗κ

)
(ϑ), ϕ

)
Γ

for all ϑ ∈ H− 1
2 (Γ), ϕ ∈ H 1

2 (Γ). Using this result we finally arrive at the following equation

(ϑ, (A− Id) (ϕ))Γ + (D (ϑ), ϕ)Γ

=
((

TK − D−1 ◦ C ◦ Kκ
)

(ϑ), ϕ
)

Γ
−
(
ϑ,
(
A−1 ◦ B ◦Wκ

)
(ϕ)
)

Γ
,

which holds for arbitrary ϑ ∈ H− 1
2 (Γ), ϕ ∈ H 1

2 (Γ).

Summing up, from these lemmata and Lemma 5.1 we conclude that the sesqui-linear form
of the regularised variational problem (31) satisfies a G̊arding inequality in H1 (Ω−) × H− 1

2 (Γ).
It remains to establish uniqueness of solutions, which amounts to confirming that (31) is really
immune to spurious resonances.

Theorem 7.3. Solutions to the regularised variational problem (31) are unique.

Proof. In order to establish uniqueness of solutions of (31) we consider the case f̂ = ĝ = 0: seek

U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ) there holds

a (U, V )−
(
C
(
γ−0 U

)
, γ−0 V

)
Γ

+
(
D (ϑ), γ−0 V

)
Γ

= 0 ,
(
ϕ, (A− Id)

(
γ−0 U

))
Γ
− (ϕ,B (ϑ))Γ = 0 .
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Using integration by parts, we obtain

∆U + κ2n(x)U = 0 in Ω− ,

and from a (U, V ) =
(
γ−1 U, γ

−
0 V
)

Γ
the identities

[
γ−0 U
γ−1 U

]
= P+

[
γ−0 U
−ϑ

]
. (34)

By the definition of P+ and (7)

P+ = R−1 ◦ (T ◦ P+ − S) = R−1 ◦ (T ◦ (Id− P−)− S) = R−1 ◦ (R+ S − T ◦ P− − S)

= Id−R−1 ◦ T ◦ P− ,

and we infer

T ◦ P− = R ◦ (Id−P+) .

Together with (34) this identity confirms

(T ◦ P−)

[
γ−0 U
−ϑ

]
= −R

[
0

γ−1 U + ϑ

]
∈
(
{0} ×H 1

2 (Γ)
)
,

and by Ass. 6.1 and Ass. 6.2, 5., we conclude that

γ−1 U = −ϑ .

From this and (34) we directly obtain

[
γ−0 U
γ−1 U

]
= P+

[
γ−0 U
−ϑ

]
.

Hence, setting

W (x) :=

{
U (x) , x ∈ Ω−

Ψκ
DL

(
γ−0 U

)
(x)−Ψκ

SL (−ϑ) (x) , x ∈ Ω+

provides us with a solution to the Helmholtz transmission problem with zero right hand side. and
thus uniqueness of solutions to the Helmholtz transmission problem finishes the proof.

Eventually, the existence of solutions to the variational problem (31) follows from Thm. 7.3
and a Fredholm argument, see for instance [27, Thm. 2.33].

Finally, the arguments in the proof of Thm. 7.3 have also confirmed that we really get infor-
mation about the solution of the Helmholtz transmission problem from (31):

Corollary 7.4. If (W,ϑ) ∈ H1 (Ω−) ×H− 1
2 (Γ) solves (31), then W = U and ϑ = −γ+

1 U
s with

(U,U s) solving (2).

8 Regularisation operators

In this section we present a rather simple specimen of a trace transformation operator T , which
satisfies all the assumptions 6.2 and 6.1. Its main ingredient is a regularising operator

M : H−
1
2 (Γ)→ H

1
2 (Γ) ,

which satisfies the following assumption.

Assumption 8.1. We suppose that
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1. M : H−
1
2 (Γ)→ H

1
2 (Γ) is compact, and

2. (ϑ,M (ϑ))Γ > 0 for all ϑ ∈ H− 1
2 (Γ) \ {0}.

Various examples of such operators are discussed in [7]. Below we will present a concrete
representative. Then, for η ∈ R \ {0} we chose the following trace transformation operators

T1 :=

[
Id iηM
iη Id

]
, T2 :=

[
Id iηM
0 Id

]
(35)

Now, we have to verify the assumptions 6.1 and 6.2. We note that Ass. 6.1 can instantly be
concluded from Ass. 8.1, 2., and Lemma 6.5. Items 2. through 5. of Ass. 6.2 are evident
appealing to Ass. 8.1, 1.. It is also obvious that T2 is bijective with

T2
−1 =

[
Id −iηM
0 Id

]
.

It remains to establish that T1 is bijective, too. Key will be the following lemma.

Lemma 8.2. For ζ ∈ R+ or ζ ∈ iR the following operators are bijective

Id + ζM : H−
1
2 (Γ)→ H−

1
2 (Γ) , Id + ζM : H

1
2 (Γ)→ H

1
2 (Γ) .

Proof. We verify that the operators have trivial kernel. In the first case we find that (Id + ζM) (ϑ) =
0 implies

(ϑ, ϕ)Γ + ζ (M (ϑ), ϕ)Γ = 0 ,

which holds true for all ϕ ∈ H 1
2 (Γ). We choose ϕ := M (ϑ) and we obtain

(ϑ,M (ϑ))Γ + ζ ‖M (ϑ)‖2L2(Γ) = 0 .

For either ζ > 0 or ζ ∈ iR Ass. 8.1, 2., implies

(ϑ,M (ϑ))Γ = 0 ⇔ ϑ = 0 .

Thanks to Ass. 8.1, 1., we have a Fredholm alternative argument [27, Thm. 2.27] at our disposal

and conclude that the operator Id + ζM : H−
1
2 (Γ)→ H−

1
2 (Γ) is surjective from the fact that it is

injective.
In the H

1
2 (Γ)-setting (Id + ζM) (ϕ) = 0 is equivalent to

(ϑ, ϕ)Γ + ζ (ϑ,M (ϕ))Γ = 0 ∀ϑ ∈ H− 1
2 (Γ) .

The same reasoning as above also settles this case.

The lemma tells us that the formal inverse

T1
−1 =

(
Id + η2M

)−1 ◦
[

Id −iηM
−iη Id

]

is well defined, which implies Ass. 6.2, 1., for T1.
A particularly convenient regularising operator has been presented in [5]: there, M : H−1 (Γ)→

H1 (Γ) is implicitly defined by

(gradΓM (p),gradΓq)Γ + (M (p), q)Γ = (p, q)Γ (36)

for all q ∈ H1 (Γ). It is an easy exercise to verify Ass. 8.1 for this M, see [5, Sect. 4.2]. For later
use we define the following sesqui-linear form

b (p, q) := (gradΓp,gradΓq)Γ + (p, q)Γ , p, q ∈ H1 (Γ) , (37)

which allows us to restate definition (36) as

b (M (p), q) = (p, q)Γ ∀q ∈ H1 (Γ) . (38)
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9 Mixed Regularised Variational Formulations

Using the two trace transformation operators we obtain two variational formulations which are free
from spurious resonances. However, from the point of view of boundary element discretization,
they are not yet useful, because they still contain products of (non-local) operators that elude a
straightforward Galerkin discretization. To get rid of the operator products, we rely on the usual
trick and introduce extra unknown functions. We discuss the resulting variational problems for
the trace transformation operators T1 and T2 from (35) and M given by (36):

Case T = T1: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ)

a (U, V )−
((
iη
(
Kκ − 1

2 Id
)
−Wκ

) (
γ−0 U

)
, γ−0 V

)
Γ

+
((

1
2 Id− K′κ − iηVκ

)
(ϑ), γ−0 V

)
Γ

= f1 (V ) ,
(
ϕ,
(
iηM ◦

(
1
2 Id + K′κ

)
+ Vκ

)
(ϑ)
)

Γ
+
(
ϕ,
(
Kκ − 1

2 Id− iηM ◦Wκ

) (
γ−0 U

))
Γ

= g1 (ϕ) ,

(39)

where the right hand sides are given by

f1 (V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
+
((
iη
(
Kκ − 1

2 Id
)
−Wκ

)
(g0), γ−0 V

)
Γ
,

g1 (ϕ) :=
(
ϕ,
(

1
2 Id− Kκ + iηM ◦Wκ

)
(g0)

)
Γ
.

Case T = T2: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ)

a (U, V ) +
(
Wκ

(
γ−0 U

)
, γ−0 V

)
Γ

+
((

1
2 Id− K′κ

) (
γ−0 U

)
, γ−0 V

)
Γ

= f2 (V ) ,
(
ϕ,
(
Kκ − 1

2 Id− iηM ◦Wκ

) (
γ−0 U

))
Γ

+
(
ϕ,
(
iηM ◦

(
1
2 Id + K′κ

)
+ Vκ

)
(ϑ)
)

Γ
= g2 (ϕ) ,

(40)

where the right hand sides are given by

f2 (V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
−
(
Wκ (g0), γ−0 V

)
Γ
,

g2 (ϕ) :=
(
ϕ,
(

1
2 Id− Kκ + iηM ◦Wκ

)
(g0)

)
Γ
.

Both regularised variational formulations contain the same operator products, namely

−B = Vκ + iηM ◦
(

1
2 Id + K′κ

)
,

A− Id = Kκ − 1
2 Id− iηM ◦Wκ .

This suggests that we introduce the new variable

p :=
(
M ◦

(
1
2 + K′κ

))
(ϑ)− (M ◦Wκ)

(
γ−0 U + g0

)
∈ H1 (Γ) , (41)

which converts (31) into the following two variational problems. The first arises from using T1:

find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) and p ∈ H1 (Γ) such that for all V ∈ H1 (Ω−), ϕ ∈ H− 1

2 (Γ) and
q ∈ H1 (Γ) there holds

a (U, V ) + iη
((

Kκ − 1
2 Id
) (
γ−0 U

)
, γ−0 V

)
Γ

+
(
Wκ

(
γ−0 U

)
, γ−0 V

)
Γ

+
((

1
2 Id− K′κ

)
(ϑ), γ−0 V

)
Γ

+ iη
(
Vκ (ϑ), γ−0 V

)
Γ

= f1(V ) ,
(
ϕ,
(
Kκ − 1

2 Id
) (
γ−0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ + iη (ϕ, p)Γ = g1(ϕ) ,
(
Wκ

(
γ−0 U

)
, q
)

Γ
−
((

K′κ + 1
2 Id
)

(ϑ), q
)

Γ
+ b (p, q) = h1(q) ,

(42)

with right hand sides

f1 (V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
− iη

((
Kκ − 1

2 Id
)

(g0), γ−0 V
)

Γ
−
(
Wκ (g0), γ−0 V

)
Γ
,

g1 (ϕ) :=
(
ϕ,
(

1
2 Id− Kκ

)
(g0)

)
Γ
,

h1 (q) := − (Wκ (g0), q)Γ .
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The second arises from using T2: find U ∈ H1 (Ω−), ϑ ∈ H− 1
2 (Γ) and p ∈ H1 (Γ) such that for all

V ∈ H1 (Ω−), ϕ ∈ H− 1
2 (Γ) and q ∈ H1 (Γ) there holds

a (U, V ) +
(
Wκ

(
γ−0 U

)
, γ−0 V

)
Γ

+
((

1
2 Id− K′κ

)
(ϑ), γ−0 V

)
Γ

= f2 (V ) ,
(
ϕ,
(
Kκ − 1

2 Id
) (
γ−0 U

))
Γ

+ (ϕ,Vκ (ϑ))Γ + iη (ϕ, p)Γ = g2 (V ) ,
(
Wκ

(
γ−0 U

)
, q
)

Γ
−
((

K′κ + 1
2 Id
)

(ϑ), q
)

Γ
+ b (p, q) = h2 (q) .

(43)

with right hand sides

f2 (V ) := f (V )−
(
g1, γ

−
0 V
)

Γ
−
(
Wκ (g0), γ−0 V

)
Γ
,

g2 (ϕ) :=
(
ϕ,
(

1
2 Id− Kκ

)
(g0)

)
Γ
,

h2 (q) := − (Wκ (g0), q)Γ .

In order to settle the issue of existence and uniqueness of solutions of (42) and (43) we first
observe that by the very definition of M in (36) and (41) the first two components of any solution
(U, ϑ, p) of (42) and (43) will also solve (39) and (40), respectively. Since these are special cases of
(31) and both T1 and T2 are valid trace transformation operators, Thm. 7.3 yields uniqueness.

Next, it follows directly from the compact embeddings H1 (Γ) ↪→ H
1
2 (Γ) and H−

1
2 (Γ) ↪→

H−1 (Γ) that all new off diagonal terms are compact sesqui-linear forms. Since b is H1 (Γ)-
elliptic, we obtain that the sesqui-linear forms for both variational formulations satisfy a generalized
G̊arding inequality.

Again, a Fredholm argument ensures the existence of solutions from the the uniqueness result.
The statement of Cor. 7.4 directly carries over to the (U, ϑ)-components of (39) and (40). Thus we
have obtained two well-posed variational formulations which yield weak solutions to the Helmholtz
transmission problem 2 and which are also amenable to standard Galerkin discretizations.

We finish this section by an important observation: (41) can be recast into

p =
(
M ◦ ( 1

2 + K′κ)
)

(ϑ)− (M ◦Wκ)
(
γ−0 U + g0

)
.

At second glance, we realize that p = 0, if (U, ϑ) solve (39) and (40), respectively. This directly
follows from Cor. 7.4, Thm. 4.1 and the definition of the exterior Calderón projector P+. In short,
p is a “dummy variable”.

Remark 9.1. Under the assumptions made in remark 4.2 we can derive a Dirichlet-to-Neumann
map from (26), to obtain coupled variational problems of the form (42) and (43) with much simpler
right hand sides

f1 (V ) = f (V ) + iη
(
g0, γ

−
0 V
)

Γ
−
(
g1, γ

−
0 V
)

Γ
,

g1 (ϕ) = (ϕ, g0)Γ ,

h1 (q) = − (g1, q)Γ ,

f2 (V ) = f (V )−
(
g1, γ

−
0 V
)

Γ
,

g2 (ϕ) = + (ϕ, g0)Γ ,

h2 (q) = − (g1, q)Γ .

The solution U in Ω− will remain the same.

10 Galerkin Discretization

With operator products removed, the Galerkin discretization of the variational problems (39) and
(40) is easily achieved by restricting them to finite element subspaces Vh of H1 (Ω−) and boundary

element subspaces Θh and Qh of H−
1
2 (Γ) and H1 (Γ), respectively. A powerful theorem about

the Galerkin approximation of coercive variational problems, see [31] and [34], will then yield the
asymptotic quasi-optimality of the Galerkin solutions: assuming a minimal resolution of Vh, Θh,
and Qh, existence and uniqueness of discrete solutions (Uh, ϑh, ph) ∈ Vh × Θh × Qh of (39) and
(40) is guaranteed and we have the a priori error estimate

‖U − Uh‖H1(Ω−) + ‖ϑ− ϑh‖
H−

1
2 (Γ)

≤ γ
(

inf
Vh∈V

‖U − Vh‖H1(Ω−) + inf
ϕh∈Θh

‖ϑ− ϕh‖
H−

1
2 (Γ)

)
, (44)
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where the constant γ > 0 does not depend on the discrete trial spaces.
The standard choices for Vh, Θh, and Qh are based on a tetrahedral or quadrilateral mesh M

of Ω−, which yields a mesh MΓ of Γ by plain restriction to Γ. Then we may pick

Vh :={V ∈ C0(Ω−) : V|K ∈ Pk(K) ∀K ∈ M} ,
Θh :={ϕ ∈ L2 (Γ) : ϕ|K ∈ Pk−1(K) ∀K ∈ MΓ} ,
Qh :={q ∈ C0(Γ) : q|K ∈ Pk(K) ∀K ∈MΓ} .

(45)

Here, Pk(K) stands for the space of polynomials of degree ≤ k on the cell K. This refers to the
total degree in the case of tetrahedra and the degree in each variable in the case of hexahedra.

Then, the usual best approximation estimates [30] for the h-version of finite elements and
boundary elements give us

inf
Vh∈Vh

‖U − Vh‖H1(Ω−) ≤ γhmin{s−1,k} ‖U‖Hs(Ω−) ,

inf
ϕh∈Θh

‖ϑ− ϕh‖
H−

1
2 (Γ)
≤ γhmin{s+1/2,k} ‖ϑ‖Hs(Γ) ,

with constants depending on the shape regularity of M and h > 0 denoting the meshwidth of M.

Remark 10.1. Why do we have to approximate the dummy variable p at all, though it vanishes and
apparently the choice of Qh does not affect the convergence of Galerkin solutions. The reason is
that (44) is an asymptotic statement, whose proof also hinges on sufficiently good approximation
properties of Qh. In the context of the h-version of finite elements and boundary elements, this
means that the mesh has to be sufficiently fine to make (44) hold.

11 Numerical Experiments

The above theoretical developments are set in three dimensions, but they carry over verbatim to
two dimensions, when replacing the kernel Gκ by

Gκ(z) :=
i

4
H

(1)
0 (kz) , (46)

where H
(1)
0 is the Hankel function of the first kind of order zero.

For the numerical experiments we considered the unit circle Ω−◦ := {x ∈ R2 : |x| < 1} and
the unit square Ω−� := {x ∈ R2 : −1/2 < x1, x2 < 1/2}. For the former we find the two lowest
interior resonant frequencies κ1 = 5.5201 and κ2 = 11.7915, which correspond to the second and
fourth zero of the Bessel function J0 (x). For the square we two lowest resonant frequencies are
κ3 = 2π/

√
2 and κ4 = 5π/

√
2.

On each domain regular finite element meshes Ml, l ∈ N, consisting of quadrilaterals with
straight edges were used. In the case of Ω−◦ the triangulation Ml is created by inscribing Ω−◦ a
regular 2l+3-gon and a centered unit square. The portions of the line segments from the center to
the corners of the polygon are split into 2l equal parts, whose endpoints are connected to form a
quadrilateral mesh outside the unit square. This is extended by an orthogonal tensor product mesh
inside the unit square. The mesh M1 is drawn in Fig. 1. The family of meshes arising from this
construction will be quasi-uniform and shape-regular with meshwidth ofMl being proportional to
2−(l+1).

On Ω−� the mesh Ml is a plain uniform orthogonal tensor product grid with meshwidth h =

2−(l+1).
We used mapped bilinear Lagrangian finite elements to build Vh, piecewise constants onMΓ for

Θh, and linear surface elements for Qh, that is, the case k = 1 of (45). The finite element stiffness
matrix was assembled using a four-point Gaussian quadrature rule on the reference element. All
computations were done in MATLAB and a direct solver was used whenever we aimed to study
discretization errors. As far as the stable regularized coupled schemes are concerned we consistently
rely on the variants discussed in Sect. 9.
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Figure 1: Quadrilateral mesh of the unit circle

In all the experiments we used n(x) = 1 in Ω− and excitation by incident plane waves. These
will also provide the exact solutions. Please note that in this setting ϑ = 0, because there is no
scattered field.

If analytic solutions are known, we measure the discretization error in the interior total field in
either the H1 (Ω−) or the L2 (Ω−)-norm and the error in ϑ in either the H−

1
2 (Γ) or the L2 (Γ)-

norm. To compute the norms on the domain Ω−, we use a local four-point Gaussian quadrature
rule. The fractional Sobolev norm is evaluated by means of the discrete single layer potential
operator on that mesh. To evaluate the fourth norm we again rely on the same local four-point
Gaussian quadrature rule.

In a first experiment, a plane incident wave U i(x) = exp(−iκd · x), |d| = 1, is used, where
the incident angle between the propagation direction d and the x-axis is π/4. We measure the
discretization errors in different norms on the domain Ω−� for the two frequencies κ3 and κ4 on
a series of shape-regular meshes using the second regularized variational formulation (43) with a
coupling parameter η = 1.

From our computations we obtained the following experimental convergence rates for the first
experiment:

1. The discretization error in the U -component measured in the H1 (Ω−)-norm yields an alge-
braic convergence rate of ≈ 1 for both κ3 and κ4. The discretization error in the ϑ-component
measured in the H−

1
2 (Γ)-norm decays with a rate of 2 for both κ3 or κ4. This is much more

than expected from the mere approximation properties of the trial spaces, but this may be
due to the fact that ϑ = 0.

2. The discretization error in the U -component measured in the L2 (Ω−)-norm and the ϑ-
component in the L2 (Γ)-norm results in a convergence rate of 2 in the case of κ3 and κ4.

The second experiment, see figures 4 and 5, still asumes plane wave incident fields with the
same incident angle. This time we measure the discretization errors on a series of shape-regular
meshes of the unit circle Ω−◦ for the two frequencies κ1 and κ2.

The numerical results of our second experiment are similar to the results of our first experiment
and can be summed up as follows:

1. The H1 (Ω−)-norm of discretization errors in the U -component decays algebraically with a

rate of ≈ 1 in each case. As above, we observe a convergence rate of ≈ 2 for the H−
1
2 (Γ)-norm

of the ϑ-unknown.
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Figure 2: Discretization errors for κ3 (−) and κ4 (− ·) on the unit square Ω−�. Errors in the total
interior field U are labeled with ◦ and errors in the ϑ-component with �.
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Figure 3: Discretization errors for κ3 (−) and κ4 (− ·) on the unit square Ω−�. Errors in the total
interior field U are labeled with ◦ and errors in the ϑ-component with �.
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Figure 4: Discretization errors for κ1 (−) and κ2 (− ·) on the unit circle Ω−◦ . Errors in the total
interior field U are labeled with ◦ and errors in the ϑ-component with �.
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Figure 5: Discretization errors for κ1 (−) and κ2 (− ·) on the unit circle Ω−◦ . Errors in the total
interior field U are labeled with ◦ and errors in the ϑ-component with �.
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2. The discretization errors in U and ϑ measured in the L2 (Ω−)-norm and L2 (Γ)-norm, respec-
tively, converge to zero with a rate of ≈ 2 for all wave numbers.

The third experiment, see figure 6, shows the dependency of the discretization error, measured
in the H1 (Ω−) and H−

1
2 (Γ)-norms, on the wave number for a mesh of the domain Ω−� with 14161

elements using the second regularized variational formulation (43) with a coupling parameter η = 1.
This time the incident angle was choosen to be equal to π/4.

It is hardly surprising that the discretization error grows as κ increases, because this is already
observed, if the Helmholtz equation is discretized by means of low order Lagrangian finite elements
alone [2].
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Figure 6: Discretization errors on the unit square Ω−�. Errors in the total interior field U are
labeled with ◦ and errors in the ϑ-component with �.

The fourth experiment, see figure 7, shows the dependency of the condition number of the
entire system matrix on the wave number for

1. the symmetric FEM-BEM coupling (15) and

2. the second version of regularized FEM-BEM coupling (43)

in the neighbourhood of the resonant frequency κ3 for a mesh of the domain Ω−� with 14161
elements. In each case the extremal eigenvalues were computed by means of direct in inverse power
iterations. Obviously, regularization manages to suppress the pronounced peak in the condition
number of the symmtrically coupled problem.
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Figure 7: Condition numbers on the unit square Ω−� close to the resonant frequency κ3. Condition
numbers of the matrix underlying the classical variational formulation are labelled with ◦, whereas
condition numbers related to the matrix underlying the regularized variational formulation are
labelled with �.
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