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1. Introduction.

1.1. The need for stochastic simulations. This paper addresses numerical
solutions of differential equations with random inputs. The source of random inputs
includes uncertainty in system parameters, boundary and initial conditions, material
properties, source and interaction terms, geometry, etc. Such types of uncertainty are
ubiquitous in engineering applications, and are often modeled as random fields. The
classical approach is to model the random inputs as functionals of idealized processes
such as Wiener processes, Poisson processes, etc. This approach has led to elegant
mathematical analysis and corresponding numerical methods by using stochastic cal-
culi, as e.g., Ito or Stratonovich calculus for ordinary differential equations and the
stochastic calculus of variations of Malliavin for partial differential equations.

The resulting differential equations are broadly termed “stochastic ordinary/partial
differential equations”; see, for example, [15, 21, 24, 41]. Recently, more research ef-
forts have been devoted to studying problems with more realistic random inputs,
e.g., correlated random processes (“colored noise” in the language of physics) and, in
case of random parameters, fully correlated random processes, i.e., random variables.
In this context, the classical stochastic calculi do not readily apply and hence other
approaches are required. This class of problems is the focus of this paper.

Efficient numerical solution of differential equations with stochastic inputs has di-
rect impact on simulations of physical and biological processes in at least the following
three areas:

1. Uncertainty quantification,
2. Stability of noisy systems,
3. Coarse-grained and multiscale representation.
In the following, we will elaborate on each of these areas.

There has been an increasing interest recently in studying uncertainty quantifica-
tion in large-scale numerical simulations to assess modeling uncertainty, see [39, 1, 17].
In deterministic numerical simulations we can now routinely monitor accuracy of the
computed results by a posteriori error bounds and thus assess discretization errors.
In contrast, a posteriori estimation of modeling errors, due to adoption of simplified
working models as basis for numerical simulation, is still at an early stage of develop-
ment. Often there are discrepancies between computational results and experimental
observations, and errors from any stage of the numerical simulations can contribute to
such discrepancies. However, if we assume that the discretization and modeling errors
are appropriately controlled (which can be achieved for many problems of engineering
interest), then the validity of the adopted mathematical model, e.g., a constitutive
law, becomes the leading cause of the discrepancies. The validity of the underlying
mathematical model can be established only if uncertainty in numerical predictions
due to uncertain input data (e.g., transport and material coefficients, source and
interaction terms, geometric irregularities as surface roughness) can be quantified.

Uncertainty quantification requires the propagation of uncertainty through a given
mathematical model and affects all stages of numerical simulation. Specifically, par-
tial differential equations widely used to formulate mathematical models of physical
systems must be reformulated as stochastic partial differential equations. This poses
new challenges for mathematics (pure and applied alike): parsimonious parametric
description of stochastic input data and model calibration requires methods from
statistics, while the numerical solution of stochastic partial differential equations will
equally impact numerical analysis and scientific computing. Due to limitations of
space, in the present paper only some of these issues will be addressed.
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Noisy nonlinear systems are encountered in many applications, from the nanoscale,
e.g. in self-assembly processes [63], to the macroscale, e.g. large sudden disturbances
in flow past an aircraft. Bifurcations and chaotic transitions in stochastic dynam-
ical systems can be very different from instabilities in deterministic dynamical sys-
tems [53]. The counter-intuitive phenomenon of stochastic resonance for noisy signals,
where the signal-to-noise ratio can be improved by increasing the noise level, is unique
to stochastic systems. (An extensive review on stochastic resonance can be found in
[14].) How exactly extrinsic stochasticity interacts with intrinsic stochasticity caused
by the systems’ nonlinear interactions is intriguing and generally not well understood
at present.

In fluid flows, for example, at high Reynolds number where a wide range of small
scales exists the mean flow seems to be totally unaffected even in the presence of
substantial background turbulence [36]. In contrast, for other flow systems at low
Reynolds number even small amounts of noise can have a dramatic effect on the
structure of the mean flow. In Figure 1.1 we present an example of such response. A
uniform flow past a circular cylinder oscillating in the crossflow direction is considered.
A small amount of noise is superimposed on the uniform inflow velocity. In the absence
of noise, a vortex street is formed in the wake characterized by the shedding of three
vortices per shedding cycle — the so-called (P+S) pattern [66]. However, when noise is
introduced the vortex street switches to another state above a certain noise threshold,
characterized now by only two vortices per shedding cycle, as in the standard von
Karman street for stationary cylinders (2S pattern). This phenomenon is discussed
in detail in [33] and independent experimental validation can be found in [44].
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F1g. 1.1. Comparison between deterministic (a) and stochastic mean (b) instantaneous vorticity
field in a 2D cylinder wake at identical time. The “clean” wake shows a (P + S) shedding-mode
while the “noisy” wake shows a 2S shedding-mode similar to the standard von Karman vortez street.
A 10% noise level is superimposed to the uniform inflow at Reynolds number 400.

The third area in the aforementioned list contains complex systems with an ex-
tremely large number of degrees of freedom, e.g., models of turbulent flows at very
high Reynolds number or atomistic simulations of mesoscopic size systems. Often,
a coarse-grained procedure is employed to remove degrees of freedom carrying rel-
atively small contributions to the overall system’s energy. The removed degrees of
freedom are usually accounted for by stochastic terms in the dimensionally reduced
‘effective’ or ‘upscaled’ equations. For example, in the dissipative particle dynamics
method [10], coarse-graining of the molecular dynamics method leads to a system of
stochastic ODEs that need to be solved efficiently for a large number of particles [51].

1.2. Statistical versus non-statistical approaches. As mentioned, from the
mathematical point of view we need to reformulate mathematical models as stochastic
ordinary or partial differential equations, while from the computational point of view
new efficient numerical solution methods must be developed. From the perspective
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of the computational scientist, familiarity with existing concepts as well as physical
interpretation and implementation friendliness of the stochastic models obtained by
such reformulation are also important factors. For the numerical solution of stochastic
differential equations, we broadly distinguish statistical and deterministic methods.

The statistical approach includes among others Monte Carlo simulation, strati-
fied sampling, Latin hypercube sampling (cf. [11]). Such statistical methods involve
sampling and estimation and in most cases are straightforward to apply to partial dif-
ferential equations if efficient deterministic PDE solvers are available. However, since
the accuracy of the sampling techniques depends on the sample size, in accordance
with the ‘weak law of large numbers’, simulations can become prohibitively expensive,
especially for systems that are already computationally complex even in their deter-
ministic version. In addition, attempting to resolve high-order moments associated
with the low probability domain of the stochastic response may require a very large
number of realizations, beyond the limits of even massively parallel computers. To ac-
celerate convergence of statistical simulation methods, several modifications have been
introduced. We mention here only Latin hypercube sampling [31], the Quasi-Monte
Carlo (QMC) method [12], the Markov Chain Monte Carlo method (MCMC) [37],
and the Response Surface method (RSM) [45]. These methods improve the efficiency
of statistical, ‘brute-force’ sampling methods. Additional restrictions on the statistics
of the random input are imposed, thus limiting the generality and applicability of
these ‘accelerated’ sampling methods.

Alternatively, one can develop deterministic methods for stochastic PDEs. The
most widely used method is the perturbation method, where input random fields
are represented as infinite perturbation expansions of fluctuations around their mean
fields. These perturbation expansions are truncated at a certain order in order to
obtain coupled finite systems of differential equations for corresponding expansions of
the random solution. We emphasize that a priori truncation of moment expansions
of random data and solutions amounts de facto to the imposition of moment closure
hypotheses on perturbation expansions.

In practical applications, at most second-order expansions are employed — the
so-called ‘first-order - second moment analysis’ [29] that has been used extensively
in engineering applications [23, 28, 58, 74]. This is due to the following reasons: (a)
first and second moments of random solutions are of main interest in applications;
(b) the system of equations resulting from truncations at higher order becomes quite
complicated beyond second-order; and (c) the dimensionality of the (deterministic)
differential equations for the higher order moments of the random solution increases
with the order of the moment to be computed: if the physical problem is posed in
a (space or time) domain D C R? of dimension d, the kth moment of the random
solution involves the solution of a deterministic problem on the domain D¥ C R*¥. An
inherent limitation of such first-order perturbation methods is that the uncertainties
must not be too large, i.e., the fluctuations of the random fields should be small
compared to their mean values (typically less then 10%). This requirement needs to
be satisfied not only by the stochastic inputs but also by the stochastic outputs. This
is especially difficult to verify a priori for nonlinear problems, as small fluctuations
in random inputs may result in large fluctuations in the systems’ responses (see an
example in [72]). Also, higher order statistics of input data are not readily available.

A related approach is based on manipulation of the stochastic operators. Such
methods include the Neumann expansion, which is based on expanding the inverse of
the stochastic operator in a Neumann series [52, 73], and the weighted integral method
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[8, 9, 55]. These methods have limitations on the type of model equations they can
address, and, if truncated after second moment terms, they are also restricted to small
uncertainties. In the present paper, we sketch, following [48, 49], an efficient approach
for the deterministic approximation of second and higher order spatial correlations of
random solutions, based on sparse tensor products of hierarchic finite element spaces.
It allows, in principle, for the fast evaluation of perturbation expansions to any fixed
order in log-linear complexity with respect to N, the number of degrees of freedom
used to approximate the mean field problem in the physical domain D.

Another approach to deterministic numerical solution of stochastic PDEs is based
on introducing geometry and coordinates in the probability space on which input and
solution uncertainty are modeled. It is based on two observations:

(i) The space of random fields with finite second moments can be equipped with
norm and innerproduct, thereby turning it into a Hilbert space and allowing for
‘Galerkin projection’ of a random field onto a (computationally convenient) family of
parametric approximations of it — very much akin to what is done in the variational
formulation of finite element methods for deterministic problems.

(ii) The efficiency of this approach depends crucially on the judicious choice of
“coordinates” in probability space. Ghanem and Spanos in [54] pioneered the compu-
tational use of the polynomial chaos (PC) expansion method, and have successfully
applied it to various problems in solid mechanics [16]. PC expansions are based on the
homogeneous chaos theory of N. Wiener [65] and are essentially spectral expansions
of Gaussian random fields into Hermite polynomials. PC expansions allow high-order
deterministic approximation of random fields and appear to exhibit spectral conver-
gence in many cases as we will show.

Classical Wiener-Hermice PC expansions are based on the Hermite polynomial
functionals in terms of Gaussian random variables. In theory, they converge to any Loy
functional on the random space [6]. However, in practice they converge slowly for non-
Gaussian random fields and do not apply to random fields with discrete distributions.
Accordingly, for fast convergence in PC expansions and, hence, for computational ef-
ficiency, the “coordinates in probability space” in which PC expansions of the random
solution are sought should be adapted to the statistics of the input data and of the
random solution. This can be done in at least two ways:

(a) By employing generalized PC expansions (gPC expansions) that are orthog-
onal with respect to non-Gaussian probability measures. Such expansions,
referred to as ‘Wiener-Askey’ chaos expansions were first employed in com-
putational algorithms in [70], following developments in probability in [40, 46],
and on orthogonal polynomials in [2, 25].

(b) By optimally separating deterministic and stochastic components of random
input data with prescribed spatial correlation through Karhunen-Loeve (KL)
decomposition [30]. Apart from being a theoretical tool, we show how KL
decompositions can be efficiently computed in general domains D for a wide
class of spatial correlation functions by generalized Fast Multipole Methods
for efficient computational spectral approximation of the covariance operator.

In gPC, the polynomials are chosen from the hypergeometric polynomials of the
Askey family where the underlying random variables are not restricted to Gaussian
random variables. In fact, there exists a unique correspondence between the probabil-
ity distribution function (PDF) of the stochastic input and the weighting function of
the orthogonal polynomials. The convergence properties of different trial bases were
studied in [70] and exponential convergence rate was demonstrated computationally
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for model problems. The aforementioned correspondence can be extended to arbi-
trary PDFs with the orthogonal polynomials constructed on-the-fly; this extension
was presented in [60]. In essence, gPC approximations of random fields correspond to
the spectral/hp element method, see [22, 47]. Depending on the stochastic regularity
of the random field, it may by advantageous to combine mesh refinement with increase
of the polynomial degree, leading to an hp-generalization of gPC approximations, see
[59, 27, 4].

The paper is organized as follows: We first review basic concepts and formulation
of gPC approximations of stochastic differential equations in Section 2. We discuss
in some detail the representation of stochastic inputs in general domains and with
prescribed spatial correlation using multipole-based Karhunen-Loéve expansions in
Section 3. In Sections 4 and 5 we present gPC solutions to prototype ordinary and
partial differential equations. The exposition of the gPC-based methods in Sections
2 to 5 is formal. In Section 6 we present the main ideas on combining perturbation
expansions and sparse grids. Finally, in Section 7 we address some outstanding math-
ematical and computational issues associated with stochastic modeling in general, and
with gPC based methods in particular.

2. Generalized Polynomial Chaos. Stochastic mathematical models are based
on a probability space (2, A, P) where Q is the event space, A C 29 its o-algebra, and
‘P its probability measure.

Data and solutions of stochastic differential equations are random fields X (w), i.e.
mappings X : @ — V from the probability space into a function space V. If V =R,
we speak of random variables, and if V' is a function space over a time and/or space
interval, of random fields or stochastic processes. For stochastic partial differential
equations, V is often a space of generalized functions in a physical domain D C R?,
d=2,3.

In all examples considered here, V is a Hilbert space with dual V', norm || o || and
inner product (-,-) : V xV — R. As V is densely embedded in V', we abuse notation
and denote by (-,-) also the V' x V' duality pairing.

A random field X : Q — V is a second-order random field over a Hilbert space V,
if

E[|X|* = E(X, X) < o0,
where E denotes the expectation of a random variable Y € L'(Q2,R) defined by

EY — / Y (@)dP()

Generalized polynomial chaos (gPC) is a means of representing second-order stochas-
tic processes X (w) parametrically through a set of random variables {¢; (w)}j.v:l, N €
N, through the events w € :

Xw) =Y aru(ew)). (2.1)

Here {®;(£(w))} are orthogonal polynomials in terms of a zero-mean random vector
£:=1{¢ (w)}j-vzl, satisfying the orthogonality relation

(®;®;) = (97)ds, (2.2)
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where §;; is the Kronecker delta and (-, ) denotes the ensemble average. The number
of random variables N € N is in general infinite, so is the index in (2.1). In practice,
however, we need to retain a finite set of random variables, i.e., to {fj}j.v:l with
N < 00, and a finite-term truncation of (2.1).

The inner product in (2.2) is in the Hilbert space determined by the measure of
the random variables

(F(©)9(E)) = / I ©u©)iPw) = / F(€)g(€w(E)de (2.3)

with w(€) denoting the density of the law dP(w) with respect to the Lebesgue measure
d€ and with integration taken over a suitable domain, determined by the range of the
random vector &.

In the discrete case, the above orthogonal relation takes the form

(f(©)9(©) = F(&)g(&)w(®). (2.4)
€

In equation (2.1), there is a one-to-one correspondence between the type of the
orthogonal polynomials {®} and the law of the random variables £. This is deter-
mined by choosing the type of orthogonal polynomials {®} in such a way that their
weighting function w(€) in the orthogonality relation (2.3) has the same form as the
probability distribution function of the underlying random variables €. For example,
the weighting function of Hermite orthogonal polynomials is \/(217)71 exp(—1€7¢), and
is the same as the probability density function of the N—dimensional Gaussian ran-
dom variables £&. Hence, the classical Wiener polynomial chaos is an expansion of
Hermite polynomials in terms of Gaussian random variables. A correspondence be-
tween orthogonal polynomials and random variables was first established in [40, 46].
Here, we list some types of generalized polynomial chaos corresponding to the com-
monly known distributions in Table 2.1. The flexibility of generalized polynomial

TABLE 2.1
Correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N > 0 is a finite integer).

| | Random variables £ | Wiener-Askey chaos {®(£)} | Support |
Continuous Gaussian Hermite-chaos (—o0, 00)

gamma Laguerre-chaos [0,00)
beta Jacobi-chaos [a,b]
uniform Legendre-chaos [a, b]

Discrete Poisson Charlier-chaos {0,1,2,...}

binomial Krawtchouk-chaos {0,1,...,N}

negative binomial Meixner-chaos {0,1,2,...}

hypergeometric Hahn-chaos {0,1,...,N}

chaos can be seen in Figure 2.1, where we use Hermite-chaos to approximate a uniform
random variable. We observe that although the Hermite-chaos converges to the target
distribution as the expansion order increases, the approximation is not accurate and
suffers from Gibbs-like oscillations. On the other hand, the generalized polynomial
chaos corresponding to a uniform distribution, the Legendre-chaos (see Table 2.1), can
represent uniform random variables exactly by just first-order expansions. For more
details on approximation of an arbitrary random variable via generalized polynomial
chaos, see [70, 60].
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F1G. 2.1. Approzimations of a uniform distribution by Hermite- Chaos

The expansion in equation (2.1) can be truncated by reducing the expansion to
the finite-dimensional space, i.e., expansion of finite-dimensional random variables
&, according to the nature of random inputs; we also set the highest order of the
polynomials {®} according to accuracy requirements. The finite-term expansion takes
the form

M
X(w) =) a;9;(¢w)), (2.5)
=0
where & = (&,--- ,&n)7 is an N—dimensional random vector with &; independent of

& foralll <i#j < N.If we denote the highest order of polynomial {®} as P, then
the total number of expansion terms (M + 1) is,

(M +1) = (N + P)!/(N!P). (2.6)

The multi-dimensional generalized polynomial chaos expansion is constructed as the
tensor product of the corresponding one-dimensional expansion. Note in one-dimensional
expansions (N =1), M = P.

Let us now consider a general setting for a differential equation with random
inputs

L(x,t,w;u) = f(x,t;w), z € D(A),t € (0,T),w € Q, (2.7

where £ is a differential operator, D(A) € R%(d = 1,2,3) a bounded domain with
diameter A > 0, and T > 0. (2, A, P) is an appropriately defined complete probability
space, where A C 29 is the o-algebra and P the probability measure; u := u(x,t;w)
is the solution and f(x,t;w) is the source term. The general procedure of applying
the generalized polynomial chaos consists of the following steps:
1. Express the random inputs by a finite number of random variables £(w) =
{&(w), -, En(w)}, and rewrite the stochastic problem parametrically as

L(x,t,&u(z,t;€)) = f(x,1;6)- (2.8)
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This step is trivial when the random inputs already take the form of ran-
dom variables. When the random inputs are random fields, a decomposi-
tion technique is needed. One popular choice of such decomposition is the
Karhunen-Logéve expansion, which will be discussed in the following section.

2. Approximate the solution and inputs by finite-term polynomial chaos ex-
pansions (2.5), and substitute the expanded variables into the variational
equation

M

L <X,t,£(w);zuz~<1>i(£(w)> = f(x,t;€(w)).

=0

3. Perform a Galerkin projection onto each of the polynomial basis

<£ <X=t=§5zuz"1’i(€)> ,‘I’k(ﬁ)> =(f,®x(€)), k=0,1,---,M.

This procedure results in a set of (M +1) deterministic, in general coupled, differential
equations which can be solved by conventional discretization methods. Importantly,
this successive Galerkin discretization “in probability” (by gPC approximation) and
“in physical space” (by finite differences or finite elements) yields generally large sys-
tems of algebraic equations which carry a tensor product block structure. For linear
problems, the structure of the probabilistic part of this system is determined by the
orthogonal polynomials used in the gPC discretization and is, in particular, indepen-
dent of the differential operator under consideration. This observation underlies the
application of gPC type methods described in Sections 4 and 5 ahead. Let us next
turn to the problem of parametric representation of random field input data.

3. Representation of Stochastic Inputs: Karhunen-Loéve Expansion.
Karhunen-Loéve (KL) expansion is a way of representing a random process [30]. It
is based on the spectral expansion of the covariance function of the process. Let us
denote the process as h(x,w) and its covariance function as Rp(z1,%2), where 1 and
Z2 are spatial or temporal coordinates. By definition, the covariance function is real,
symmetric and positive-definite. It has an orthogonal set of eigenfunctions which
forms a complete basis; ¢;(z) and )\; are the eigenfunctions and eigenvalues of the
covariance function, respectively, i.e.,

/ Ri(21,22)¢m(@2)dos = N (1), m=1,2,-- . (3.1)

The finite-term Karhunen-Loeéve expansion then takes the following form:

N
hy(@,w) = h(@) + 0n Y vV Ambm (t)em(w), (3.2)

where h(z) is the mean of the random process, o, the standard deviation, and &, (w)
a set of uncorrelated random variables with zero mean and unit variance. These
random variables are determined by

() = / h(t, )b (@)de, m=1,2,--. (3.3)
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3.1. Properties of Karhunen-Loéve expansion. Among other possible de-
compositions of a random process, the Karhunen-Loéve expansion is optimal in the
sense that the mean-square error of the finite-term representation hy (x,w) of the pro-
cess h(z,w) is minimized [30]. The covariance function Ry (z1,22) plays a central role
in Karhunen-Loeve expansion, as it is the kernel function in the eigenvalue problem
defined in (3.1). The decay of the eigenvalues and the regularity of the eigenfunctions
depend strongly on the regularity of the covariance kernel function. It can be shown
that (see [50] for the proofs)

e if Ry is piecewise analytic on D x D, we have exponential KL eigenvalue
decay and convergence of the KL expansion. More precisely,

Am < exp(—czml/d), Ym > 1, (3.4)

where ¢1,c2 > 0 are constants independent of m;
o if Ry, is piecewise H*? = H* @ L? with k > 0, i.e., R, has finite differentia-
bility, then

Am < cgm™F/4, Ym > 1, (3.5)

where ¢3 > 0 is a constant.
For example, two of the most commonly used covariance kernels are the Gaussian
covariance function

Rh($1;$2) = e_(an—zz)z/’YQ’ ($1,$2) € D(A) X D(A), (36)
and the exponential covariance function
Rp(z1,m2) = exp(—|z1 — 32//7),  (1,22) € D(A) x D(A), 3.7)

where v > 0 is the correlation length. The Gaussian kernal (3.6) is analytic, and
a sharper estimate of eigenvalue decay than (3.4) can be obtained, i.e., 0 < Ay, S

ml
U%%Nm > 1, where I' is the gamma function. In Fig. 3.1, we show the decay

of eigenvalues for the Gaussian kernel function. On the left of Fig. 3.1, the decay in
a three-dimensional (d = 3) domain is shown, along with the theoretical estimate, for
up to 2,000 eigenvalues. We observe good agreement between the estimate and the
actual eigenvalue decay. On the right of Fig. 3.1, the first 21 eigenvalues are plotted
for the Gaussian kernel in 1D, 2D and 3D (d = 1, 2, 3) spatial domains D. We observe
exponential decay of eigenvalues in all three cases, with smaller decay rate at higher
dimensions. This is consistent with the theoretical estimate. In Fig. 3.2, we show the
decay of eigenvalues for the covariance kernel function Ry, = exp(—|z1 —z2|'*?), where
0 < § < 1is a parameter to control the differentiability of the function. (Note when
4 =1 we obtain the Gaussian kernel.) The first 14 eigenvalues are shown, along with
the theoretical estimate, and good agreement is obtained. Also, for smaller values of
4, the eigenvalues decay slower, as predicted by the estimate.

In the above results, we have used the notions of “piecewise analytic” and “piece-
wise H*0”. For precise definitions of such terms and mathematical analysis of KL
expansions, see [50]. Numerical studies of the convergence of truncated KL expan-
sions can be found in [19]. In another study ([34]), the convergence rate of the N-term
truncated Karhunen-Loeve expansion for the exponential covariance function (3.7) in
one-dimensional (d = 1) space D(A) was estimated as

(1 (@;w)) — (W (z;0)) AL
i) 04053 .

€ (3.8)
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F1G. 3.2. Decay of eigenvalues of covariance functions with varying differentiability.

Numerical simulations for random oscillators established that this indeed is a very
sharp error estimate [34].

3.2. Choices of covariance kernel functions. The kernel function Ry, in (3.1)
is the covariance function of the random process h(z;w), and it can be constructed
from repetitive observations of the process. Such measurement procedure can be
costly, and in computations we often assume the form of the covariance function. The
most commonly used covariance function is the “exponential kernel” defined in (3.7).
Such a covariance function can be generated through a first-order Markov process

hi = ahi_1 + B&, a=e Y, o2 +4%=1, (3.9)

where {h;} are discrete points on a uniform stencil indexed by integers i, {¢;} are
i.i.d. random variables with zero mean value and unit variance. Note that such a
process has a preference in one direction and is more suitable to model random time
series. For spatial random processes, it is more appropriate to take into account the
dependence on all spatial directions. Several choices are presented in Table 3.1, along
with the corresponding covariance functions generated by them.
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TABLE 3.1
Correspondence of random processes and their covariance functions. Here i,j,k are integers,
r = |z1 — T2| is the distance between two points in D C R%,d = 1,2,3, and {¢} are i.i.d. random
variables with zero mean and unit variance. K1(zx) is the first-order modified Bessel function of the
second kind. For the d = 3 case both the plus and minus terms (e.g. hi:i:l,j,k) should be included.

[ Dimension d | Random process h(z;w) | Covariance function Ry, |
d=1 hi = ahi_1 + P& exp (1)
d=1 hi = S(hi—1 +hiy1) +& (I +7/7) exp(=r/7)
d=2 hij = S(hit1,; + hij+1) + & j 2Ky (%)
d=3 Rije = S(hizje + hijat e + hijesr) + &gk exp (-%)
d=1,2,3 N/A exp(—r2?)

It is worth mentioning that the spatial processes with dependence in all directions
in Table 3.1 are obtained as solutions to Helmholtz equation ([64, 35]). For example, in

two dimensions (d = 2), the process with covariance kernel (%) K (%) corresponds
to the equation

|

On the other hand, the exponential kernel exp(—r/v) in two dimensions (d = 2)
corresponds to

2 o 1\

It is difficult to find a physical analog which would lead to such a relation although
the exponential kernel is used in the literature indiscriminately in all dimensions.

The appropriate relationship between such kernels and discrete dynamical systems
for a variety of conditions was studied in [35]. Here we give a specific example for a
spatially periodic process on one-dimensional equidistant grid with spacing Az. The
discrete dynamical system is given by

a ,
hl:a(hz—l_}_hﬂ-l)_}_ﬁgla 22172737"'7(,”_1)
where hy = h, = 0 and n is an even integer. The corresponding continuous process
satisfies (within O(Az?) approximation) the following Helmholtz equation
&h  h

9 B
Ox? ?_2Ax2§'

Solving analytically the above equation with periodic boundary conditions produces
the solution h(z,&) from which the covariance can then be computed, see [35].

3.3. Fast computation of Karhunen-Loéve expansion. In one spatial di-
mension, the eigenvalue problem (3.1) with the exponential covariance kernel func-
tion (3.7) can be solved analytically ([57, 16]). Such analytical solutions, however,
are not available for most other cases, and numerical procedures are required to solve
equation (3.1). Numerical methods are typically based on projection methods, such
as Galerkin methods and collocation methods (cf. [5]). In projection methods, we
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choose a sequence of finite-dimensional approximating subspaces V;, C L2(D),n > 1,
with V}, having dimension &, = dim(V},) and a set of basis {v;};~,. We then seek
¢ € Vp,m=1,2,--- to approximate the eigenfunctions in (3.1)

Kn
bm (2) =Zam,kvk($), ze€eDm=12,---.
k=1
The Galerkin approximation of (3.1) reads: find A, # 0 and ¢, € V,, such that

/ Ry (z1,22) b, (z2)v(z)drdrs = /\m/ o (x)v(z)dz, Vv € V,. (3.10)
DxD D

This problem is a matrix eigenvalue problem
Av = A\Myv, (3.11)

where matrices A and M are symmetric and positive definite, with M being diago-
nal if we choose an L?(D)-orthogonal basis. Usually, V;, are finite element spaces of
piecewise polynomial functions. No continuity of V,, is required since the approxima-
tion (3.11) is in L?(D). In [43], a wavelet-Galerkin method with better resolution is
presented.

The size of the matrices is k, X Ky, and it can be large for practical problems,
especially in three-dimensional space (d = 3). For example even a modest size prob-
lem with about 200,000 degrees of freedom required solution on 256 processors in
[61]. To avoid the O(k2) computational and memory cost for the Galerkin solution
of the KL-eigenvalue problem (3.11), several methods have been proposed. A kernel-
independent Fast Multipole Method (FMM) with O(k,, log(k,)) operations and mem-
ory is discussed in [50]. For Gaussian covariance kernels Ry, as in (3.6), in [61] a Fast
Gauss Transform (FGT) with O(k,) operations and memory complexity is applied
and sharp estimates on the error induced by the Gauss Transform is presented.

4. Ordinary Differential Equations. In this section, we illustrate the solu-
tion procedure of gPC for a simple ordinary differential equation, and present error
convergence both through numerical examples and theoretical estimates. The model
ODE we consider takes the following form

dy .
%(taw) = _k(w)y7 y(O) = y7t € (O,T), (41)
where the decay rate coefficient k(w) is a random variable with certain continuous
distribution function f(k) and zero mean value. The solution takes a simple form of

y(t,w) = ge FWt, (4.2)
We apply the gPC expansion (2.5) to the solution y and random input &
M M
y(tw) =Y n)@i(EWw)), kW)= ki®i(EWw)). (4.3)
i=0 =0

Note here the only random input is k(w) and a one-dimensional gPC is needed, i.e.,
N =11in (2.6) and M = P, where P is the highest order of expansion. By substituting
the expansions into the governing equation, we obtain

M dy;(t) M M
> ydz—tq’i ==Y ®:®,kiy;(t). (4.4)

i=0 i=0 j=0



GENERALIZED POLYNOMIAL CHAOS FOR DIFFERENTIAL EQUATIONS 13

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {®;} by taking the inner product of the equation with each basis.
By utilizing the orthogonality condition (2.2), we obtain:

dy (t) 1
l
= - E E ei'kiy't, l—O,l,...,M, 4.5
dt <<I)12)z’0j0 7 J() ( )

where e;;; = (®;®;®;). Note that the coefficients are smooth and thus any standard
ODE solver can be employed here.

In Figure 4.1, the computational results of Jacobi-chaos expansion is shown, where
the random input k(w) is assumed to have a beta distribution with PDF of the form

(1—k)*(1+ k)P

-1<k<1 -1 4.
2a+ﬂ+lB(a+1’ﬂ+1)7 < < 2 a76> ’ ( 6)

f(k;a, ) =

where B(a, ) is the Beta function defined as B(p,q) = I'(p)['(¢)/T(p + ¢). An
important special case is a = f = 0 when the distribution becomes the uniform
distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos. We
observe exponential convergence rate of the errors in mean and wvariance on the right
of Figure 4.1, with different sets of parameter values a and 3. In particular, we mote
that the asymptotic convergence rate seems to be the same for the variance and the
mean unlike in Monte Carlo methods.

os|

04l

S s
= 5107
3 Oz ==rEr=rSI T =
S ~ - w
n S~
[ ~o 107k
04 -
r Yo (mean) S~
- ~
b Vi S | —=— Mean (@=0,p=0)
o8k _ Y ~o 10"~ —8— Variance (a=0, p=0) .
[ 53 \\\ —-—A—-— Mean (a=1, B=3) \\
[ ————— Deterministic \\\ —-—A—-- Variance (=1, p=3) A
L ) ol v v v )
0 0.25 0.5 0.75 1 0 1 2 3 4 5
Time P

F1G. 4.1. Solution with beta random input by 4th-order Jacobi-Chaos; Left: Solution of each
mode (oo = 3 = 0: Legendre-Chaos), Right: Error convergence of the mean and the variance with
different a and (.

For this simple ODE we can also perform error analysis for different types of
distributions. To this end, we define the relative mean-square error as ep = {(y(t) —
yp(t))?)/{y?(t)), where yp(t) is the finite-term expansion (4.3). The following results
have been obtained in [34]:

o If k(w) is a Gaussian random variable with zero mean and standard deviation
o > 0 and Hermite-chaos is used, then

ep < (g)2+D [(P+ 1)! (1 _ Lot )]_1. (4.7)

~ elot)? —1
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e If k(w) is an ezponential random variable with zero mean and standard devi-
ation o > 0 and Laguerre-chaos is used, then

ot \2P
= . 4.
P (1 +at> (48)

o If k(w) is a uniform by distributed random variable and Legendre-chaos is
used, no explicit formula for the error is available. However, the error can
be readily evaluated via the three-term recurrence formula of the Legendre
polynomials.

In Figure 4.2 we plot the number (P + 1) of Legendre expansion terms that is
needed to ensure that the error reaches a prescribed value. In particular, we fix the
value at e = 10~7. It can be seen that as time increases, the number of terms required
grows, and the rate of such growth is different for the three cases; the Legendre-chaos
has the slowest growth rate and the Hermite-chaos the fastest. Note that the time
axis is scaled with the variance o for each process. More numerical examples for the
first-order ODEs can be found in [70] and the detailed error analysis in [34].

90

— Hermite-Chaos/Gaussian distribution

T T T T
— - Laguerre-Chaos/Exponential distribution
—— Legendre-Chaos/Uniform 1 - 4

80 L

701 - 4

60 - q

- -7

£=1.0 x 10 . .
50 ’ 4 4

o .

£ L

40t . |

301 7 4

0 1 2 3 4 5 6 7 8 9 10

FIG. 4.2. Number of expansion terms needed to reach a prescribed error level of ep = 10~7.
The three curves are Hermite-chaos, Laguerre-chaos, and Legendre-chaos, corresponding to k(w)
being Gaussian, exponential, and uniform random variables, respectively.

5. Partial Differential Equations. In this section, we present applications
of generalized polynomial chaos to some prototype partial differential equations. In
particular, we consider some cases for which analytical results can be derived so that
such cases can be used for verification studies.

5.1. Linear advection equation. First, we consider the linear advection equa-
tion with uncertain transport velocity field, i.e.,

0 0

St mw) + Vi m,w) e =0 (Low) €[0,T)x [-1,1]xQ,  (5.1)
ot Oz

with initial condition u(0,z) = sin 7wz, and periodic boundary conditions. We assume
that the transport velocity V(¢,z,w) is a given random process with mean value
V(z) = 1 and finite variance o2 > 0. If the transport velocity V = V (¢,w) in (5.1) is
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not a function of space, the initial value problem can be solved exactly by the method
of characteristics (see [20]). The mean solution is given by

u(z,t) =sinm(z + 1 — Vi)e (779°/2, (5.2)
where 7 characterizes the correlation structure of V(¢,w) in time

2, fully correlated,
=< (At uncorrelated, (5.3)
29[t — (1 — e~/7)], partially correlated,

where <y is the correlation length and At denotes the sampling interval.
The variance of the solution u(zx,t), when V(t,w) is a Gaussian random field, is:

ar(u(z,t)) = =(1 — e~ )1+ cos2n(z + 1 — Vi)e™ . 5.
V. ; (woT) \7 (moT) 4

Detailed computational results for linear advection equations can be found in [20]; for
advection-diffusion equations, see [62]. We note here that the numerical solution of
the gPC equations is rather trivial using standard discretization methods. However,
following a Monte Carlo approach special care is required in handling the spatial
discretization in the case that V(z,t,w) is a stochastic process depending on the
spatial or temporal coordinate.

5.2. Elliptic equation. Next, we consider diffusion problems with random dif-
fusivity k(x,w) which are prototype equations for subsurface flow problems and heat
conduction:

{ -V [k(z,w)Vu(z,w)] = f(z,w), (z,w) €D xQ (5.5)

u(r,w) = g(z,w), (z,w) € 0D x Q

Here D is a bounded domain in R? (d = 1,2,3) and € is a probability space, and f,
g and k are R-values functions on D x 2. This also can be considered as a model
of steady state diffusion problems subject to internal (diffusivity ) and/or external
(source term f and/or Dirichlet boundary condition g) uncertainties. For theoretical
analysis on the convergence of polynomial chaos expansions for elliptic problems, see
[4, 49].

In order to demonstrate numerically the convergence of generalized polynomial
chaos, we consider the following simple benchmark problem

% [n(m,w)j—i(m,w)] =0, u(0,w) =0, u(l,w) = 1. (5.6)

The random diffusivity has the form
K(z,w) =1+ e(w)z, (5.7
where €(w) is a random variable, and k(z,w) > 0. The exact solution to this problem

is

(5.8)

_ [ In[l1+ew)z] /In[1+e(w)], fore(w) #0,
wlo) = { Y

z, for e(w)
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1/
and we compute the ‘mean-square’ error defined as es(z) = (IE [up(z,w) — u.(z, w)]Q) / ,
where up(z,w) is the P—th order gPC solution. The L., norm is employed in captur-
ing errors due to spatial discretization, which is done using the spectral/hp element
method [22].

In Figure 5.1, the convergence of the mean-square error of Jacobi-chaos is shown,
where we assume e¢(w) = o€(w) in equation (5.7) is a beta random variable. Here
o > 0 measures the magnitude of input uncertainty and £(w) is a standard beta
random variable in (—1,1) with PDF (4.6). It can be seen on the semi-log scale that
the Jacobi-chaos solution, including the Legendre-chaos for uniform random variables
(a = B8 = 0), converges exponentially fast as the expansion order P increases. The
exponential convergence rate is retained for large input uncertainty such as ¢ = 0.9,
which is close to the limit of the existence of the solution (¢ < 1). This is in direct
contrast to the perturbation-based method which typically works for o < 0.1.

— A 0=0.1 (0=0, B=0)
—w—— 0=0.5 (a=0, f=0)
—&—— 0=0.9 (a=0, p=0)

10711 -
—-—A—-— 0=0.1 (a=1, p=3)
—-——-- 0=0.5(0=1, B=3) N
—O—-— 0=0.9 (a=1, B=3) A
10" 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
p

Fi1c. 5.1. Convergence of Jacobi-chaos for the one-dimensional elliptic model problem.

For numerical examples with other types of random inputs, multi-dimensional
applications with random fields, and an efficient block-Jacobi iteration solver for the
resulting equations, see [69)].

5.2.1. Heat equation. We now consider the unsteady stochastic heat equation

in a spatially varying medium, i.e.,

O (t,7,0) = V- (K, ) VT] 4 f(6,2,6)  (52,0) € (0,00) x D x @ (5.9)

subjected to the following initial and boundary conditions

c(z,w)

T0,z,w) = To(z,w), (5.10)
oT
T(t,z,w) =Ty, x€0Ds; —k%(t,x,w) =q, € 0Ds. (5.11)

The temperature field T'(¢,z,w) and heat source f(¢,z,w) are R-valued functions on
[0,00) x D x Q. The initial condition Ty, the volumetric heat capacity of the medium
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¢, and the conductivity k& are R-valued functions on D x Q. dD; and 8Dy denote the
subsets of the boundary with fixed temperature and heat flux, respectively.

Here we consider the heat conduction in an electronic chip subject to uncertainties
in heat conductivity and capacity (see equation (5.9)). The computational domain
D is shown in Figure 5.2 along with the spatial discretization. The boundary of
the domain consists of four segments: the top I'r, the bottom I'p, the two sides I'g
and the boundaries of the cavity I'c, which has a depth of 0.6. Adiabatic boundary
conditions are prescribed on I'p and I's. The cavity boundary I'c is exposed to
heat flux qb|rc = 1. Two types of conditions on the top I'r are considered: one is
maintained at constant temperature 7' = 0 (case 1) and the other is adiabatic (case
2). Due to non-zero net heat flux into the domain, there is no steady state in case 2.
The initial condition is zero everywhere. Six reference points are placed at the vertices
of some chosen elements in the domain, as shown in Figure 5.2. We are interested in
the stochastic solution at these points and their cross-correlation coefficients.

15 B~
rT
1 Il Il Il
1 1 1
B] C D
> 05 ’ ’
[ [
fs N = r
. A 1= s
=
rC ¢ rC gl
o5 o CE
r x r

F1G. 5.2. Schematic of the geometry of the electronic chip. The mesh consists of 16 spectral
elements of order 6% (7 points in each direction).

The uncertain heat conductivity and capacity of the medium are random fields,
with mean fields k(z,y;w) = 1,é(z,y;w) = 1, and with correlation functions of the

form C(r) = LK (L], as defined in Section 3.2. The Karhunen-Lo&ve (KL) de-
B! B!

composition (3.2) is employed to decompose the input random field. In Figure 5.3,
the cross-correlation coefficient between point A and B, and A and C, are plotted,
along with the results from Monte Carlo simulation. Good agreement is seen between
the two approaches. The Legendre-chaos is 4-dimensional (N = 4) and third-order
(P = 3), which results in (M + 1) = 35 terms expansion (see equation (2.6)). On the
other hand, we utilize 20,000 and 150,000 realizations for the steady problem (case
1) and the unsteady problem (case 2), respectively. More applications of stochastic
heat conduction can be found in [71].

5.3. Burgers’ equation. Here we consider the viscous Burgers’ equation,

Ut + UUy = VUge, < € [—1,1],
Ly o (312)
where § > 0 is a small perturbation to the left boundary condition (x = —1) and

v > 0 is the viscosity. The presence of viscosity smoothes out the shock discontinuity
which will develop otherwise. Thus, the solution has a transition layer, which is a
region of rapid variation and extends over a distance O(v) as v | 0. The location of
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F1G. 5.3. Comparison of results obtained by Monte Carlo simulation (MCS) and gPC ezpan-
sion. Left - case 1: evolution of cross-correlation coefficients at reference points for case 1 (20,00
realizations for MCS); Right -case 2: evolution of COVs at reference points (150,000 realizations
for MCS).

the transition layer z, defined as the zero of the solution profile u(z) = 0, varies with
time, and its eventual location at steady state is extremely sensitive to the boundary
data. This phenomenon, termed supersensitivity in deterministic asymptotic analysis,
was first observed by Lorentz [32]. In this section, we will present numerical solutions
that exhibit supersensitivity under random perturbations on the boundary condition.
In particular, we consider § ~ U(0,¢) is a uniform random variable in (0,¢) with
e 0(1).

In Table 5.1, the mean location of the transition layer (z) and its standard devia-
tion (0,) are shown. They are obtained by assuming § ~ U(0,0.1) and v = 0.05. The
results of several methods are shown, along with their computational cost normalized
by the cost of one deterministic simulation. Specifically, interval analysis deals with
the maximal output bounds, and is straightforward to apply to this problem . How-
ever, it does not provide any statistical information of the solution. The results from
perturbation methods are noticeably different from the accurate solution obtained by
Monte Carlo simulation with 10,000 realizations. In addition, the fourth-order per-
turbation method does not yield any improvement over the first-order method. This
suggests that the perturbation method converges slowly, if at all. The Legendre-chaos
method accurately resolves the solution statistics. At fourth-order, its cost is about
the same as the fourth-order perturbation method and is much less than the Monte
Carlo method. On the left of Figure 5.4, the solution profiles of mean and standard
deviation are plotted; on the right are the solution PDFs at x = 0.7 and x = 0.8,
obtained by the Legendre-chaos and Monte Carlo simulation with 10,000 realizations.
We observe good agreement between the Legendre-chaos solution and Monte Carlo
solution. More details of computations of stochastic Burgers’ equation can be found
in [72], where high resolution numerical solutions convergent to up to seven significant
digits are presented.

6. Perturbation Expansion and Sparse Grids. It has been mentioned that
in subsurface flow models perturbation expansions are often used to obtain statistics

1For this problem, we only need to conduct one simulation corresponding to the maximum input
of § = 0.1 to determine the maximum output. In general, however, such monotonic dependence
between input and output does not exist, and a systematic search in the input range is needed to
locate the maximum response.
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Method (2, 02) Cost (unit)
Interval analysis N/A <2
First-order perturbation method  (0.823,0.349) ~ 2
Fourth-order perturbation method (0.824,0.328) ~5
Fourth-order Legendre-chaos (0.814,0.414) ~5
Monte Carlo simulation (0.814,0.414)  ~ 10,000
TABLE 5.1

Stochastic solutions and computational cost of different methods for Burgers’ equation with
uncertain boundary condition. (One unit of cost corresponds to the cost of one deterministic simu-
lation.)

1F
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— - standard deviation
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FiG. 5.4. Stochastic solutions by Legendre-chaos with § ~ U(0,0.1) and v = 0.05. Left:
Solution profiles of mean and variance. The upper and lower bounds are the deterministic solutions

corresponding to the bounds of the random inputs, § = 0.1 and § = 0, respectively. Right:Probability
density functions at x = 0.7 and z = 0.8.

of the random solution. These techniques are different from gPC approaches since
they work via moments of the random solution: for
u(z,w):Dx Q=R
we define the moment of order k by
ME:DE=DxDx---xD—=R

M (21,23, . 21) 1= / w(@r, W), w) - u(zg, w) dP(w)
Q

Assuming in (5.5) the coefficient k to be deterministic and the source term f(z,w) to
be stochastic, we have a deterministic problem of order 2k for M*:
To define it, we require anisotropic Sobolev spaces of mixed highest derivatives:

H(D¥) = H*(D)® H*(D)®---® H*(D) Vs € [-1,00]
H}(D¥) = H}(D)®H{D)® - ® H}(D)

e.g. HY(D?) ~ {v(z,y) € L*(D x D) | V4v,Vyv,V,V,v € L?} and define on these
spaces the following product linear operators

A, :=div(kV) : Hy(D) = H (D),
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A @A, ®-- @A, : Hy(DF) - HY(DF).
Then, a deterministic equation for M¥ in terms of M’} is
(D" A @A, @@ AIME =M in H-1(D¥)

This deterministic problem for the kth moment of u in terms of the kth moment of
f shows that we can trade, as in gPC, randomness in the boundary value problem at
the expense of high dimension in the problem domain. In [48, 49], it was shown that
sparse grids can be used to solve the high dimensional kth moment problems in work
essentially proportional to that of the mean field equation, i.e. for k = 1.

The fast numerical solution of the kth moment equations with any k£ > 1 by sparse
grid techniques is also significant for problems with stochastic coefficient x(x,w) in
the context of a perturbation approach. The computation proceeds in terms of the
moments of the data (k, f) and gives directly the moments of the solution u. We
present here the mean field computation algorithm (see e.g. [56] for more details).

The idea is now, as in the widely used first order - second moment approach, to
use a decomposition

k(z,w) = e(x) + r(z,w) = ‘deterministic expectation’ 4+ ‘random fluctuation’,
where the fluctuation is assumed to be smaller than the expectation,

||7“||L°°(D><Q)

0< infzep e(x)

<1,
and analytic in the physical domain D C [~1,1]¢ (this condition can be relaxed to
only finite Sobolev regularity),

r € A([-1,1]¢, L*°(Q)).

The analyticity assumption (which is satisfied e.g. if the covariance of k is Gaus-
sian) ensures the existence of a fluctuation representation as a fast convergent series
separating the deterministic and stochastic variables,

—Oo(mY
r(w,w) = Z ¢m($)Xm(w)a ||¢m ® Xm||L°°(D><Q) S € ol d)'
meENL

Note that such a representation is of course not unique; for example, one can choose
e.g. the Karhunen-Loeéve expansion of 7, or (¢, )men, to be the Legendre polynomials
in [—1,1]%. In both cases the deterministic part (¢, )men 4 can be computed explicitly
and statistical information on the stochastic part (X,;)men, follows by testing r

againSt (¢m)mEN+,
Xm(w):/gr(a:,wwm(x) dP(w).

Choosing a truncation order M for the fluctuation series (rjs denotes the trun-
cated fluctuation) and a finite element (FE) discretization level L (corresponding to
the FE space Vi, of dimension Np,), we define recursively, with A, = div(eV), the
sequence (U, 1.)menN by

_ACHO,L('aw) = f(,w)
inVy, P-ae we.

—Acum,L(-,w) div(rp (-, w)um—1,0.(w)) ¥Ym>1
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The Neumann series )« Um,1 is then easily shown to converge uniformly in w like
a geometric series. Moreover, assuming the data f to be sufficiently regular in D as
to ensure FE convergence rate ®(Np) uniformly in w € 2, we have

ML — ZM%L|H1(D) e~ OMY™) 4 §(Np) + e O™,
7=0

In order to balance the contributions of the three discretization steps (truncation of
fluctuation series, FE in D, truncation of Neumann series) and achieve an accuracy
of order ¢ > 0 we choose

M ~ |loge|?, Lst. ®(Ng)<e, n~|logel

However, the computation of M}ij , for 0 < j < n is not an obvious task. It can be

shown that M (uj,1) can be computed ezactly using any deterministic solver in D at
FE discretization level L, starting from the mized moment

M, f

MO (x,2) := / rav(z,w)rpu(xe,w) - -ru (), w) f(z,w)dP(w) x€ DixeD
Q

via a composition of (j + 1) bounded operators defined in terms of div, V, the trace
operator on the diagonal set in D x D and the FE solution operator A;IL of the
diffusion problem with coefficient e at level L,

—1
Id oo (piy®AL L
%

A(Dj,Hfl(D)) A(Dj,VL) — A(Djil,VL) - - = Vi
, 1} o i) @A . -
MS‘J]\:II,)f % Ms‘g&l,)uo,[, — M%M,}jll’)L - ... — M}LJ L

The alternative representation of the (j,1) mixed moment of (s, f),

MUY, ( [ X )Xo, 1 0,0) AP)) b 0+ 0 b,
1<my < _ v )
1gk5 c Hrl(D) € L>(D?)

is here processed and transformed into M} ;.. at a cost which is essentially equal to
the computational effort needed to run the first step for 5 = n (definition of the the
following j operators in the diagram above thus omitted). Taking into account the
moment symmetry, the resulting algorithm consists therefore in solving as many dif-
fusion problems at FE discretization level L as terms in the alternative representation
of the mixed moment of (r,s, f), that is,

M"/n! ~ e OW)|loge|CUd-DIloge) deterministic problems in D with accuracy .

This super-algebraic complexity (which renders the algorithm inefficient, compared to
a standard Monte Carlo simulation, see discussion below) can be substantially reduced
by noting that not ezact but only approzimate, e—accurate knowledge of Mtj,L for
0 < j < mnis required. Based on the fast decay of the fluctuation series, many terms
in the alternative representation of the mixed moment of (rys, f) can be discarded
without affecting the computation accuracy. By doing so the complexity is reduced
to a nearly optimal one, that is to solving

d/(d+1) N . :
~ |loge|©(1og =l ) < g7°M) deterministic problems in D with accuracy e.
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Note the higher efficiency of the perturbation algorithm as contrasted with the Monte
Carlo method. Sampling k, f requires knowledge of the data distribution everywhere
in D and solving for each sample the diffusion problem at discretization level L
produces an

1
V1]’

where Qg denotes the (finite) sample set. The complexity of the Monte Carlo method
is therefore as high as that of solving

accuracy ~ ®(Np) +

~ €72 deterministic problems in D with accuracy &.

The spatial regularity of the random fluctuation can be therefore used to construct
alternative algorithms which perform better than the Monte Carlo simulation.

We conclude by noting that the perturbation algorithm presented above combined
with the sparse grid solution algorithm for the higher order moment problem make
possible also the computation of M¥ for k > 2 in nearly optimal complexity. For
details, we refer to [56].

7. Open Issues.

7.1. Mathematical framework. So far, we presented the variational formula-
tion underlying stochastic Galerkin projections formally, and in particular assuming
the existence of a probability space (2,.4,P) on the function spaces V in which data
and/or solutions are sought. As is well known since the pioneering work of N. Wiener,
however, the construction of a probability measure P on a function space is non-
trivial. One way to build such measures is via Kolmogoroff’s construction whereby
‘P is obtained as suitable limit of product measures on cylinders of increasing dimen-
sion. Kolmogoroff’s construction is important in the context of gPC discretizations of
stochastic PDE, since a gPC discretization is, in a sense, the converse to the limiting
process in Kolmogoroff’s construction.

In a series of papers, Babuska and his co-workers [4] gave a mathematical frame-
work for gPC approximation of the elliptic boundary value problem with stochastic
coeflicients, see Section 5.2, for homogeneous boundary conditions. The diffusion co-
efficients are represented by a truncated KL expansion at sufficiently high-order V.
The error incurred in truncating KL expansions of input data on the accuracy of the
solutions of stochastic elliptic equations can be estimated using standard numerical
analysis of elliptic boundary value problems, in particular, the Strang Lemma. In
accordance with the remarks made at the end of Section 2, and as illustrated in the
examples in Sections 4 and 5, gPC discretization is fairly independent of the type of
differential equation under consideration. Combining continuous dependence results
of solutions on the coefficients of parabolic and hyperbolic PDEs with decay estimates
on KL expansions should therefore allow justification of the gPC approximations of
linear differential equations presented in Sections 4 and 5 above.

7.2. Stochastic regularity and short correlation length. A key step in
the error analysis and the understanding of the performance of gPC approximations
of stochastic differential equations is the stochastic regularity of the solution. The
principle underlying efficiency of gPC approximations for linear stochastic differential
equations is that this dependence on £ is analytic; this, in turn, implies exponen-
tial convergence rates exp(—bP) where b > 0 and P denotes the degree of the gPC
approximation.
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Even with exponential convergence, gPC is computationally effective only if the
number N of random variables £ used in the computation is small: for example, if
a tensor product gPC space is used, the number M of deterministic problems to be
solved after gPC discretization is M = O(P™) and the exponential gPC convergence
expressed in terms of M is O(exp(—bM'/N)). Smallness of N is, therefore, essential;
unfortunately, the size of N necessary for good approximation of the stochastic input
data is closely related to the decay of the eigenvalues of the covariance operator
for the input data; we have given in Section 3 some theoretical estimates for this
eigenvalue decay — in particular, for many covariances exponential eigenvalue decay
can be achieved.

Computational practice has shown, in accordance with the above heuristic con-
siderations, even exponential gPC convergence rates to be useless if the decay rate in
the KL expansion of the input data is too small. Slow KL eigenvalue decay occurs if
the spatial correlation length of input data and solution are small compared to the
diameter A of the physical domain D. This implies an excessively high dimension
N of the vector € in the gPC discretization and, hence, of the gPC computational
domain.

One question of stochastic regularity pertinent to the efficiency of gPC approx-
imation is, therefore, how the correlation length of the input data influences that of
the solution; it appears that at least for linear problems, absence of small correlation
length in input data ensures this in the random solution. For nonlinear problems the
mechanisms which produce singularities (as, e.g., shocks, singularities, etc.) in the
deterministic case appear also to generate random solutions with small spatial correla-
tion length, even if the input random fields are not of this type (see [18] for numerical
results in this direction). This problem of small correlation length in input data and
solution is, at present, a major bottleneck in the development of robust and generally
applicable gPC-based deterministic solvers for stochastic differential equations.

Based on the above discussion, we see two approaches to tackle the small corre-
lation length problem:

(a) ‘coarsening’ of the tensor product gPC subspaces; the most direct way to
achieve this is to allow for wvariable stochastic polynomial degrees P;,i =
1,...,N. This was used e.g. in [13] and also in [4] and allows to handle
(on parallel architectures) expansion orders up to N = 50. Numerical exper-
iments appear to indicate, however, that even product spaces with variable
polynomial degrees are ‘too generous’; if and how further savings can be
realized is the topic of ongoing work.

(b) abandoning the KL-type separation of stochastic and deterministic variables
— this is rather speculative at present and may be computationally infeasible.

Although analysis of gPC for linear elliptic problems is “relatively” complete, in
the sense that exponential convergence under sufficient smoothness assumption has
been proved, much remains to be done for nonlinear problems.

7.3. Other expansion basis. The gPC expansion is a p-type expansion that
enjoys fast convergence whenever the solution is smooth. However, for some appli-
cations, the probability function of the solution may not have sufficient smoothness.
Subsequently, the convergence of the p-type expansion deteriorates, as it is a global
polynomial approximation in the random space. To circumvent the difficulty, one
could use piecewise polynomials. Such approach, termed as k-type expansion, was
first proposed in [4]. A similar method, also based on the idea of local approximations,
is presented in [27], where a wavelet basis is analyzed. Also, in [59] a multi-element



24 KARNIADAKIS,SU,XIU,LUCOR, SCHWAB, AND TODOR

decomposition of the random space is developed and gPC expansions are employed
on each element. An extension of the Wiener-Askey expansions to arbitrary pdfs was
presented in [60] where orthogonal polynomials were constructed on-the-fly to repre-
sent optimally an arbitrary probability distribution. This extension, in fact, is the
key to multi-domain random decomposition, otherwise we are only limited to uniform
pdfs and correspondingly Legendre polynomials. Another construction of basis worth
mentioning is the “double-orthogonal” basis discussed in [4]. When random inputs
are represented as KL expansions, the double-orthogonal basis can effectively diag-
onalize the matrix resulting from the stochastic Galerkin projection. The matrix in
doubly orthogonal basis will be block diagonal and can be solved in same complexity
as Monte Carlo methods.

7.4. Collocation methods. In addition to the Galerkin methods discussed in
this paper, one can adopt a collocation approach. Such an approach typically re-
quires repetitive runs of a deterministic solver on a set of prescribed (deterministic)
nodal points and results in a completely uncoupled system of equations. Hence, its
implementation is trivial and is parallelization is rather straightforward. The choice
of nodal points is critical; although in one random dimension (N = 1) there are abun-
dant choices, e.g., quadrature points of orthogonal polynomials ([38, 70]), the cases
of multi-dimensional random spaces (N > 1) are more difficult. In [68], high-order
collocation methods are proposed and analyzed. It is shown that the nodal set based
on tensor products of one-dimensional nodal sets is inappropriate in high-dimensional
random spaces (due to its fast growth of total number of points), and the sets based on
Smolyak sparse grid and Stroud’s curvature are much more efficient. The collocation
method based on the Smolyak sparse grid is able to achieve high-order convergence.
Although its total number of nodal points is higher than the number of basis functions
of a gPC expansion, the sparse grid collocation method should be investigated as a
potential alternative to Galerkin methods.

7.5. The “Tails”. The assumption that random inputs follow a Gaussian distri-
bution is employed in many applications, but it is obviously inappropriate for random
fields which exhibit significant skewness. For example, the coefficient in the diffu-
sion equation may follow a lognormal distribution. Sign properties of input data that
are crucial for well-posedness of boundary value problems may be lost in the process
of KL truncation, resulting in ill-posedness of the deterministic problems with small
probability in gPC approximation. For example, unsolvability of systems resulting
from Hermite-chaos expansion for order P of expansions higher than a critical order
was observed in numerical experiments [67]. A remedy proposed in [67] was the use
of a “truncated” Gaussian distribution. Such a model is based on a truncated Jacobi-
chaos expansion. Its distribution approximates a Gaussian closely, as shown in Figure
7.1, and it has bounded support, thereby allowing control of the undershooting which
causes ill-posedness.

It has also been shown that the Karhunen-Loéve expansion may develop long
tails as one increases the number of terms, even though all the random variables in
the expansion have bounded support. This will cause the underlying problem, e.g.,
elliptic equation, to be singularly perturbed, see [3]. It is yet unclear how to resolve
this issue from a mathematical point of view, although, in practice, one can control
the number of expansion terms to keep the constructed random process well bounded.

7.6. Long-term integration. The results in Section 4 shows that the error of
generalized polynomial chaos may grow for long-term integrations. Such observation
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Fig. 7.1. Approzimated Gaussian random variables by Jacobi-chaos; Left: a = 3 = 8, Right:
a=pF=10.

presents a challenge on the control of error for time-dependent problems. A possi-
bly remedy may be to regularly change the parameters £ in terms of which the gPC
approximation is sought. This change of parameters can be achieved efficiently from
an estimated covariance kernel Rj by the fast approximation of the KL eigenval-
ues. The long-term integration issue has been addressed in [59], where an adaptive
multi-domain gPC approach was developed; specifically, more elements are introduced
selectively in order to suppress the fast growth of error as the interval of time inte-
gration increases.

7.7. Stochastic discontinuities. It is well known that polynomial chaos fails
in a short time for the so-called Kraichnan-Orszag three-mode problem, constructed
as a simplified model to represent turbulence interactions [42]. It is a nonlinear three-
dimensional ODE system:

i L R
dt—23; dt—137 dt

subject to stochastic initial conditions. Standard polynomial chaos fails to predict
the solution, and in fact truncated expansions may converge to erroneous solutions.
The main reason for this is that the frequency of the solution depends on the ran-
dom variable and also that there is a discontinuity in the initial conditions. Using
an adaptive multi-element gPC approach, however, based on the local variance can
effectively resolve this problem, see [59]. In figure 7.2(left), we show the evolution of
the variance of z; using this multi-element approach for different values of an adaptive
threshold 6;. For comparison we include the results given by gPC with polynomial
order p = 30. It can be seen that comparing to the results given by Monte Carlo with
1,000,000 realizations, gPC with polynomial order p = 30 begins to lose accuracy
at t =~ 8 and fails beyond this point while the multi-element gPC converges as 6,
decreases. In figure 7.2(right), we show the corresponding adaptive mesh. We can see
that around the point £ = 0 in random space of &, where the discontinuity occurs,
the random elements are smallest; this means that the discontinuity can be captured
effectively by small random elements. These results hold for the Kraichnan-Orszag
problem with a discontinuity in only one variable, namely z;. In three-dimensions,
however, the number of elements required to control accuracy is quite high so this

multi-element adaptive refinement approach becomes computationally expensive, see
[59].

= —2.’L'1.’L'2
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Fic. 7.2. Evolution of variance (left) and length of elements in the adaptive mesh (right).
Refinement occurs in the region around the discontinuity. GPC fails to converge but adaptive
ME-GPC converges fast. (Courtesy of Xiaoliang Wan,)

7.8. Computational complexity. Generalized polynomial chaos can be orders
of magnitude more efficient than sampling methods such as Monte Carlo method. A
comparison of these two approaches for a second-order oscillator is shown in Table 7.1.
A similar comparison is also shown in Table 7.2, where we present the computational
cost for a two-dimensional diffusion equation with four-dimensional random inputs.
The appropriate gPC basis is employed according to the type of input distributions,
and all gPC expansions have M +1 = 35 terms at third-order N = 4, P = 3. Note here
this comparison is approximate because the number of realizations in Monte Carlo
simulations is determined in such a way that their solutions are reasonably close to
the gPC solutions. For details of the computational results, see [69].

Although gPC can be quite efficient, it is still orders of magnitude more expensive
than methods for deterministic problems. Massively parallel solution approaches are,
therefore, necessary and future focus should be on development of fast and efficient
solvers. An important scientific computing issue in this context is thus the clever
choice of basis functions in the gPC discretization. The doubly orthogonal polynomials
in [3] which perform very well for linear problems, the pseudospectral techniques of
[7] to evaluate efficiently nonlinear functionals of gPC expansions, and the adaptive
multi-element approaches in [26, 59] are attempts to reduce computational complexity.

REFERENCES

[1] Decision making under uncertainty, in Series: The IMA Volumes in Mathematics and its
Applications, C. Greengard and A. Ruszczynski, eds., vol. 128, Springer-Verlag, 2002.

[2] R. ASKEY AND J. WILSON, Some basic hypergeometric polynomials that generalize Jacobi poly-
nomsals, Memoirs Amer. Math. Soc., AMS, Providence RI, 319 (1985).

[3] I. BABUSKA AND P. CHATZIPANTELIDIS, On solving elliptic stochastic partial differential equa-
tions, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4093-4122.

[4] 1. BABUSKA, R. TEMPONE, AND G. ZOURARIS, Galerkin finite element approzimations of
stochastic elliptic differential equations, Tech. Report 02-38, TICAM, 2002.



GENERALIZED POLYNOMIAL CHAOS FOR DIFFERENTIAL EQUATIONS 27

Speed-up factors

Monte-Carlo: | Generalized Polynomial Chaos:
€mean N P+1 S
2% 350 56 6.25
Gaussian | 0.8% 2,150 120 18
0.2% 33,200 220 151
0.2% 13,000 10 13,000
Uniform | 0.018% 1,580,000 20 79,000
0.001% | 610,000,000 35 17,430,000
TABLE 7.1

Speed-up factors S based on relative mean error €émean 0f generalized Polynomial Chaos ((P+1)
terms) versus Monte-Carlo simulations (N events) for Gaussian and Uniform distributions.

input distributions | uniform | Gaussian | Poisson | binomial
o 0.4 0.2 0.2 0.2
Monte Carlo 50,000 20,000 | 100,000 | 50,000
TABLE 7.2

Cost comparison of a two-dimensional (d = 2) diffusion equation with four-dimensional (N =
4) random inputs with different types of distributions. gPC using 3rd-order ezpansion (P = 3) or
equivalently M + 1 = 35 expansion terms.

[5] C. BAKER, The numerical treatment of integral equations, Oxford University Press, London,
1977.

[6] R. CAMERON AND W. MARTIN, The orthogonal development of nonlinear functionals in series
of Fourier-Hermite functionals, Ann. Math., 48 (1947), pp. 385-392.

[7] B. DEBUSSCHERE, H. NAJM, P. PEBAY, O. KNIO, R. GHANEM, AND O. LE MAITRE, Numerical
challenges in the use of polynomial chaos representations for stochastic processes, SIAM
Journal of Scientific Computing, to appear (2005).

[8] G. DEODATIS, Weighted integral method. I: stochastic stiffness matriz, J. Eng. Mech., 117
(1991), pp. 1851-1864.

[9] G. DEODATIS AND M. SHINOZUKA, Weighted integral method. II: response variability and reli-
ability, J. Eng. Mech., 117 (1991), pp. 1865-1877.

[10] P. ESPANOL AND P. WARREN, Statistical mechanics of dissipative particle dynamics, Europhys.
Lett., 30 (1995), pp. 191-196.

[11] G.FI1sHMAN, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag New York,
Inc., 1996.

[12] B. Fox, Strategies for Quasi-Monte Carlo, Kluwer Academic Pub., 1999.

[13] P. FRAUENFELDER, C. SCHWAB, AND R. TODOR, Finite element methods for elliptic problem
with stochastic coefficients, Comput. Meth. Appl. Mech. Engr., in press (2004).

[14] L. GAMMAITONI, P. HANGGI, P. JUNG, AND F. MARCHESONI, Stochastic resonance, Rev. Modern
Phys., 70 (1998), pp. 223-288.

[15] C. GARDINER, Handbook of stochastic methods: for physics, chemistry and the natural sciences,
Springer-Verlag, 2nd ed., 1985.

[16] R. GHANEM AND P. SPANOS, Stochastic Finite Elements: a Spectral Approach, Springer-Verlag,
1991.

[17] J. GLiIMM AND D. SHARP, Prediction and the quantification of uncertainty, Physica D, 133
(1999), pp. 152-170.

[18] T. Hou, H. Kim, B. Rozovskil, AND H. ZHOU, Wiener chaos ezpansions and numerical solu-
tions of randomly forced equations of fluid mechanics, Preprint, (2004).

[19] S. HuaNg, S. QUEK, AND K. PHOON, Convergence study of the truncated Karhunen-Loeve
ezpansion for simulation of stochastic processes, Int. J. Numer. Meth. Engng., 52 (2001),
pp. 1029-1043.

[20] M. JArRDAK, C.-H. Su, AND G. KARNIADAKIS, Spectral polynomial chaos solutions of the
stochastic advection equation, J. Sci. Comput., 17 (2002), pp. 319-338.

[21] I. KARATZAS AND S. SHREVE, Brownian motion and stochastic calculus, Springer-Verlag, 1988.



[50]
51]
(52]

53]

KARNIADAKIS,SU,XIU,LUCOR, SCHWAB, AND TODOR

G. KARNIADAKIS AND S. SHERWIN, Spectral/hp Element Methods for CFD, Oxford University
Press, 1999.

M. KLEIBER AND T. HIEN, The stochastic finite element method, John Wiley & Sons Ltd, 1992.

P. KLOEDEN AND E. PLATEN, Numerical solution of stochastic differential equations, Springer-
Verlag, 1999.

R. KOEKOEK AND R. SWARTTOUW, The Askey-scheme of hypergeometric orthogonal polyno-
mials and its g-analogue, Tech. Report 98-17, Department of Technical Mathematics and
Informatics, Delft University of Technology, 1998.

O. LE MAITRE, O. KnN10, H. NAJM, AND R. GHANEM, A stochastic projection method for fluid
flow: basic formulation, J. Comput. Phys., 173 (2001), pp. 481-511.

, Uncertainty propagation using Wiener-Haar ezpansions, J. Comput. Phys., 197 (2004),
pp. 28-57.

P.-L. Liv AND A. DER KIUREGHIAN, Finite element reliability of geometrically nonlinear un-
certain structures, J. Eng. Mech., 117 (1991), pp. 1806-1825.

W. Liu, T. BELYTSCHKO, AND A. MANI, Applications of probabilistic finite element methods in
elastic/plastic dynamics, J. Engrg. Ind., ASME, 109 (1987), pp. 2-8.

M. LOEVE, Probability Theory, Fourth edition, Springer-Verlag, 1977.

W. LoH, On Latin hypercube sampling, Ann. Stat., 24 (1996), pp. 2058-2080.

J. LORENTZ, Nonlinear singular perturbation problems and the Engquist-Osher difference
scheme, Tech. Report 8115, University of Nijmegen, Nijmegen, The Netherlands, 1981.

D. Lucor AND G. KARNIADAKIS, Noisy inflows cause a shedding-mode switching in flow past
an oscillating cylinder, Phys. Rev. Lett., 92(15) (2004), p. 154501.

D. Lucor, C.-H. Su, AND G. KARNIADAKIS, Generalized polynomial chaos and random oscil-
lators, Int. J. Numer. Meth. Engng., 60 (2004), pp. 571-596.

, Karhunen-Loeve representation of periodic second-order auto-regressive processes, in
Proceedings of International Conference on Computational Science, June 6-9, Krakow,
Poland, 2004.

P. MACIEJEWSKI AND R. MOFFAT, Heat transfer with very high free-stream turbulence. Part I
- Ezperimental data, Journal of Heat Transfer, 114 (1992), pp. 827-833.

N. MADRAS, Lectures on Monte Carlo methods, American Mathematical Society, Providence,
RI, 2002.

L. MATHELIN AND M. HUSSAINI, A stochastic collocation algorithm for uncertainty analysis,
Tech. Report NASA /CR-2003-212153, NASA Langley Research Center, 2003.

W. OBERKAMPF, T. TRUCANO, AND C. HIRSCH, Verification, validation, and predictive ca-
pability in computational engineering and physics, Tech. Report SAND2003-3769, Sandia
National Laboratories, 2003.

H. OGURA, Orthogonal functionals of the Poisson process, IEEE Trans. Info. Theory, IT-18
(1972), pp. 473-481.

B. OKSENDAL, Stochastic differential equations. An introduction with applications, Springer-
Verlag, fifth ed., 1998.

S. ORSZAG AND L. BISSONNETTE, Dynamical properties of truncated Wiener-Hermite erpan-
sions, Phys. Fluids, 10 (1967), pp. 2603—2613.

K. PHOON, S. HUANG, AND S. QUEK, Implementation of Karhunen-Loeve expansion for simu-
lation using a wavelet-Galerkin scheme, Prob. Eng. Mech., 17 (2002), pp. 293-303.

T. POTTEBAUM, The relationship between near-wake structure and heat transfer for an oscil-
lating cylinder in cross-flow, PhD thesis, California Institute of Technology, 2003.

M. RAJASCHEKHAR AND B. ELLINGWOOD, A new look at the response surface approach for
reliability analysis, Struc. Safety, 123 (1993), pp. 205-220.

W. SCHOUTENS, Stochastic processes in the Askey scheme, PhD thesis, K.U. Leuven, 1999.

C. SCHWAB, p- and hp-Finite Element Methods, Oxford Science Publications, 1998.

C. SCHWAB AND R. TODOR, Sparse finite elements for elliptic problems with stochastic data,
Numer. Math., 95 (2003), pp. 707-734.

, Sparse finite elements for stochastic elliptic problems-higher order moments, Comput-

ing, 71 (2003), pp. 43-63.

, Karhunen-Loeve approzimation of random fields by generalized fast multipole methods,
in preparation, (2004).

T. SHARDLOW, Splitting for dissipative particle dynamics, SIAM J. Sci. Comput., 24 (2003),
pp. 1267-1282.

M. SHINOZUKA AND G. DEODATIS, Response variability of stochastic finite element systems, J.
Eng. Mech., 114 (1988), pp. 499-519.

E. SmmIu, Chaotic Transition in Deterministic and Stochastic Systems, Princeton University
Press, 2002.




GENERALIZED POLYNOMIAL CHAOS FOR DIFFERENTIAL EQUATIONS 29

[54] P. Spanos AND R. GHANEM, Stochastic finite element ezpansion for random media, J. Eng.
Mech., 115 (1989), pp. 1035-1053.

[55] T. TAKADA, Weighted integral method in stochastic finite element analysis, Prob. Eng. Mech.,
5 (1990), pp. 146-156.

[56] R.A.TODOR, Numerical analysis of Galerkin FEM for stochastic elliptic PDEs, PhD thesis,
ETHZ, in preparation.

[57] H. vaN TREES, Detection, estimation and modulation theory, part 1, Wiley Press, New York,
1968.

[58] E. VANMARCKE AND M. GRIGORIU, Stochastic finite element analysis of simple beams, J. Eng.
Mech, 109 (1983), pp. 1203-1214.

[59] X. WAN AND G. KARNIADAKIS, An adaptive multi-element generalized polynomial chaos method
for stochastic differential equations, J. Comput. Phys., submitted (2004).

[60] , Beyond Wiener-Askey expansions: Handling arbitrary PDFs, J. Sci. Comput., submit-
ted (2004).

[61] , A fast Gauss transform/generalized polynomial chaos solver for 8D random diffusion
with high-dimensional stochastic coefficient, J. Comput. Phys., submitted (2004).

[62] X. WaN, D. X1U, AND G. KARNIADAKIS, Stochastic solutions for the two-dimensional advection-
diffusion equation, SIAM J. Sci. Comput., in press (2004).

[63] G. WHITESIDES AND B. GRZYBOWSKI, Self-assembly at all scales, Science, 295 (2002), pp. 2418—
2421.

[64] P. WHITTLE, On stationary processes in the plane, Biometrika, 41 (1954), pp. 434-449.

[65] N. WIENER, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897-936.

[66] C. WILLIAMSON AND A. ROSHKO, Vorter formation in the wake of an oscillating cylinder, J.
Fluid Mech., 2 (1988), pp. 355-381.

[67] D. X1u, Generalized (Wiener-Askey) polynomial chaos, PhD thesis, Brown University, 2004.

[68] D. Xiu AND J. HESTHAVEN, High order collocation methods for differential equations with
random inputs, SIAM J. Sci. Comput., submitted (2004).

[69] D. X1u AND G. KARNIADAKIS, Modeling uncertainty in steady state diffusion problems via
generalized polynomial chaos, Comput. Methods Appl. Math. Engrg., 191 (2002), pp. 4927—
4948.

[70] , The Wiener-Askey polynomial chaos for stochastic differential equations, STAM J. Sci.
Comput., 24 (2002), pp. 619-644.

[71] , A mnew stochastic approach to transient heat conduction modeling with uncertainty,
Inter. J. Heat Mass Trans., in press (2003).

[72] , Supersensitivity due to uncertain boundary conditions, Int. J. Numer. Meth. Engng., in

press (2004).

[73] W. ZHu, Y. REN, AND W. WU, Stochastic FEM based on local average of random vector fields,
J. Eng. Mech., 118 (1992), pp. 496-511.

[74] W. ZHU AND W. WU, A stochastic finite element method for real eigenvalue problems, Prob.
Eng. Mech., 6 (1991), pp. 228-232.



