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Abstract

The rate of total heat loss of two bodies maintained at constant temperature in
a homogeneous conducting medium of low temperature is a function of the distance
between the two bodies. Assuming spherical bodies with equal temperatures, this
function has been explicitly computed in [4] and its monotonic increase has been verified
numerically. In this note we give a rigorous completely elementary proof of this fact,
and thus a positive answer to the question raised by M.L. Glasser in [3].
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Figure 1: Nine-banded armadillo.

1 Problem Formulation

In [4] Glasser and Davidson proposed a mathematical model which explains the habit
of many animals to huddle together at night to keep warm, a model considered espe-
cially appropriate for armadillo colonies (see Figure 1). Considering for simplicity only
a pair of sleeping animals (identical spherical bodies of constant temperature) in an
homogeneous environement of lower temperature, they derived an explicit expression
for the total amount of heat given off by the two bodies in the steady state, in depen-
dence of the distance between the bodies. Numerical tests confirmed the intuititively
clear monotonic increase with the distance between the bodies of the heat loss, but a
formal proof of this fact was not found.

Following the presentation of this problem given by Eremenko in [1], let us denote
by B; and By the two bodies of constant temperature 1 in a medium R3 of constant
temperature 0 away from B, Bs. Let 2r be the distance between B; and Bo. If
T, : R3\ (B1 U By) — [0,00] denotes the temperature of the environement, then in
steady state

AT, = 0 inR3*\ (B UBy)
T, = 1 onodBiUOBy
. — 0 at oo.

The heat loss of the two bodies is then given by

C(r) := /(9 T s (1.1)

B1UOB> an



where 0/0n is the differentiation along the inward normal.

Explicit computation based on knowledge of the general solution to Laplace equation in
R3\ (B1 U By) with By, B, disjoint translates of the unit ball led Glasser and Davidson
to the formula

o0
1
— k
C(r) = const ;(—1) T Vr>1, (1.2)
where (Uy)x>1 are the Chebyshev polynomials of the second kind given by the recursion
Uo(r) =1, Ui(r) =2r, Ugs1(r) = 2rUk(r) — Ug—1(r) VE > 1. (1.3)
Equivalently,
.’L‘2k+2 -1
U(r) = 5%
P N
1
- . Vr> 1 (1.4)
=1 yly+1)

_ 1
Y=oy z=r+vr2-1

or (see e.g. [5]),

Uk(r) = H(r — cos kjj-rl) Vr > 1. (1.5)

The monotonicity of C given by (1.2) on [1,00[ was an open question (see e.g. [2])
until very recently, when Eremenko, returning to (1.1) and avoiding in fact the explicit
computation of Glasser and Davidson, found an elegant solution using basic principles
of classical potential theory (see e.g. [6]). We recommend the reader to consult [1]
for this solution and for an illuminating discussion of the original problem and of its
possible generalizations.

In this note we propose a direct, completely elementary (but rather technical) argument
showing that the monotonicity of C given by (1.2) follows from the convexity properties
of the function Ny 3 k — U] (r)/UZ(r) € [0, 00[ for a fixed r > 1.

2 Solution

An equivalent formulation of the problem is to prove that

ioj(—l)’c+1 56"“((7“7”))2 >0 Vr>1. (2.1)
k=1

A straight calculation based on the representation formula (1.4) shows that the general
term Ry := Uj/UZ of the alternating series (2.1) (formula (1.5) ensures that Uy is
strictly increasing on [1,00[) is given by

bl

:L‘2 - y= 1
@2k t2 -1 |y \r2 ]

Ri(r) = 24/y(y+ 1) (k— 2 1+2(k—|—1)y)




which suggests considering the natural interpolation between the integers given by
R :[0,00[ x]1,00[— [0, 00],

2
R(t,z) := 2/y(y + 1) (t — 5 T2+ 1)y> (2.2)
B Y= ety
Clearly then,
Ri(r) = R(k,r + Vr?2—1) VkeNi,Vr>1, (2.3)

and further simple properties of the function R are collected in the following result.

Proposition 2.1 For R defined by (2.2) it holds (compare Figure 2),
i. R(t,z) >0, Y(t,z) € [0,00[ x ]1,00][, with equality only for t = 0.
ii. tl}m R(t,z) =0, Vz €]1,00].

iii. ii\mlR(t,a:) = % (t—i— 1-— H%) , Vt € [0,00].
Proof. i. It suffices to prove that the derivative w.r.t. ¢ of the bracketed expression
in (2.2) is positive for ¢ €]0, oo[, which is equivalent to %% > 2(t + 1)z?*2logz + 1
or, with the substitution z := 2?2, to 22 > zlogz + 1 for z > 1. This follows from
log z < z — 1. Property ii. is obvious while iii. is just a simple calculus exercise left to
the reader. [l

Plots of R(-,z) are shown in Figure 2 for several values of z. The simple but crucial
observation is that for any x > 1 the function R(-,z) has exactly one inflection point
ty €]0,00[ and this is what we prove in Theorem 2.2 below.

Clearly, (2.1) becomes with the notations introduced above,

i(—l)kHR(k,x) >0 Vz>l1. (2.4)
k=1

Before proceeding, let us explain the proof idea. We distinguish two cases, as follows.
I. For large values of z we show that the sequence (R(k,z))x>1 is strictly decreasing
(this can be seen in Figure 2 already for z = 3), so that (2.4) holds trivially.

II. For z close to 1 a more refined argument is needed. Essentially, what we use is
that for a concave function f : I — R defined on an interval I C R and a sequence
zp =x0+ kh,k =0,1,2,... of equidistant points (h > 0) in I we have

flz1) = f(z2) + f(z3) — ... + flz2n-1) > % (f(z2n) + f(z0)) Vn2>1, (2.5)

which follows easily by summing over 1 < j < n the obvious inequalities f(z2;—1) —
f(z2j—2) > (f(z2;) — f(z2j-2))/2. A reversed inequality holds of course for convex
functions.

We employ (2.5) twice for the function R(-,z), on both the concavity and convexity
domains of R(-,z), avoiding the region around the inflection point ¢,. The part of the



sum (2.4) corresponding to k ~ t; is then estimated using a sharp lower bound on the
derivative dR/dt(-,z) (see Lemma 2.4). Finally we conclude the proof by noting that
this negative contribution to the series (2.4) is compensated by the positivity of the
sum (2.5) corresponding to the concavity domain [0,t,] of R(-, z).

Theorem 2.2 For any = > 1 there ezists a unique t; €]0,00[ such that R(-,z) is
strictly concave on [0,t,[ and strictly convez on |tz, ool.

Proof. A straight calculation based on formula (2.2) shows that

dR 1
E(t,m) = Vyly+1) ((1 + 2y)c(z) — (1 + 8y + 8y?) log(1 + —)) (2.6)
Y 7 ly= e
where ¢ : [1,00[— [4, 00| is strictly increasing, given by
] 2
c(z) :==2(1+logz + o logz) Vz > 1.
Further,
d’R 9
—z (@) = —(logz)v/y(y + 1) (1 + 8y + 8y”) (c(w) +2)—
1
~ (14 2¢)(1 + 24y + 2492) log(1 + —)) (2.7)
Y7 ly= e

Due to R(t,z) \(0 ast ~ oo, it suffices to prove (see Corollary 2.3 below) that for any
x > 1 there exists a unique zero t; €]0, 00| of d2R/dt?(-, ). In view of (2.7) and with
the substitution

u:=2(t+1)logz/(c(z) +2) (2.8)

the zeros of d?R/dt?(-,z) in | — 1, oc[ are given via (2.8) by

! (1 + 2 ) >0 (2.9)
_ = U . .
142 3 3(1+24 24792
+2y (L+24y +249%) Sy 1
Equation (2.9) can be viewed as a fixed point problem
(g oh)(u) =u €]0, 00| (2.10)
where )
h:]0,00] =]0,00],  h(u) = o —y
and
10,0010, 1L 96) = 15 (3 + 5750,
:]0, 0o = - .
9% b ST 00 \3 T 31+ 24y + 2442)



Since Ran g C]0, 1], all solutions u to (2.10) lie in ]0,1[. Moreover, the existence of such
a solution follows by observing that (g o h)(1) < 1 (trivially) and (g o h)(u) > u for
u > 0 small enough. Indeed, the latter is equivalent to

S 2 > 1 g (14t
142y \3  3(1+ 24y + 24y?) c(r) + 2 & y
for y > 0 large enough and this holds asymptotically as y — oo due to ¢(z) > 4.

It remains therefore to show that the solution is unique. To this end we compute the
derivative of g o h,

(970 Y () = (ela) + 2],y )|y 1

where i : [0, 00[— [0, 00 is given by

. R 2 1 1
i(e) =2 (3(4z +1) "3z + D62+ 1/4) ' (62 + 1/4)2> '

It is easy to see that 7 is strictly increasing on [0, zjax] and strictly decreasing to 1/6
on [Zmax, 00| With zgayx the unique positive solution of 8422 — 19z/4 — 27/32 = 0. This
implies the existence of a unique 2} €]0, zymax| such that i < 1/(c(z) + 2) on [0, 23],
i(zy) =1/(c(z) +2), and i > 1/(c(z) + 2) on |z, 00l

Equivalently, (go h)’ > 1 on ]0,u}[ and 0 < (go h)’ < 1 on Juk, o[, where

1 1+/1+4z2F
uzzilog 1+& .
c(r) +2 2z}

In particular, g o h is a contraction on [u} + €, 1] for any € > 0 small enough, such that
also (g o h)(ul + €) > u} + € holds. The uniqueness of a fixed point in [u}, + ¢,1] for
g o h is therefore proven. Besides, g o h can not have further fixed points in ]0,u} + €]
if € is small enough to ensure (g o h)" > 1 on |0, u’ + €[, too.

Due to (2.8), the corresponding inflection point ¢, of R(-,z) belongs to [—1,00[. But
the properties i. and ii. in Proposition 2.1 ensure the existence of at least one inflection
point of R(-,z) in 0, co[, so that we conclude ¢, €]0, cof. O

From Proposition 2.1 and Theorem 2.2 we obtain

Corollary 2.3 For any = > 1 there exists a unique T, €]0,t,[ such that R(-,z) is
strictly increasing on [0,Ty] and strictly decreasing on [Ty, ool

Proof. For any x > 1 properties i. and ii. in Proposition 2.1 ensure the existence of
a global maximum of R(-,z) while Theorem 2.2 implies the existence of at most one
extremal point for R(-, ). O

Theorem 2.2 and Corollary 2.3 mathematically describe the observed shape of
R(-,z) (see Figure 2), which consists of a bump followed by a long convex (and quite
flat, as we shall see next) tail. It can be inferred from Figure 2 that the steepest descent
of R(-,z) has an approximate slope of —1/10, independent of z. Indeed, we have



Lemma 2.4 It holds

%(t,w) > %(tw,x) > _0.107 Vi€ [0,00],Vz > 1. (2.11)

Proof. Noting that ¢(z) > 4 for any z > 1, we deduce from formula (2.6) that for any
t,z as in (2.11) we have

%(t, z) > ;2% Vyly+1) (4(1 +2y) — (1 + 8y + 8y%) log(1 + i)) ) (2.12)

The infimum in (2.12) (which is also the unique local minimum of the corresponding
function; this follows from the proof of Theorem 2.2) can be found numerically and it
equals —0.1061... (see Figure 3). O

2.1 The case z away from 1

As Figure 2 for z = 3 suggests, in this case the sequence (R(k,z))ren, is decreasing
(the bump migrates towards t = 0 as z " o0), so that the positivity of (2.4) follows
trivially.

Proposition 2.5 If x > 3, then
R(k,z) > R(k+1,z) VkeN,. (2.13)
In particular R(2n — 1,z) > R(2n,x) for any n € N4, so that (2.4) holds for © > 3.

Proof. Fix z > 3 and note first that the inequality (2.13) for £ = 1 can be proved
easily using (2.3) and the explicit formulae R;(r) = 1/2r%, Ry(r) = 8r/(4r? — 1)? for
r > 1.5 (ensured by z > 3). From Corollary 2.3 we deduce then T, < 1, so that R(-,x)
is decreasing on [1, co[, which gives (2.13).

Alternatively, due to (2.3) it suffices to show for any k& > 2 that

ULr) | U )
U%(T) UI?+1(7")

Vr > 1.5. (2.14)

Differentiating the recursive formula (1.3) we see that
Upy1 (1) = 2Uk(r) + 21U (r) — Up_1 (7). (2.15)

Dividing (2.15) by Uj(r), and using the resulting formula as well as the recursion (1.3),
we obtain that (2.14) is equivalent to

Uhlr) _ Ui a(r) _ () Uea(n)\’
2r+2U,g(r) Ty < (2 AT ) : (2.16)

But (1.5) and the Jensen inequality for the convex function | —oo,r[2 s = 1/(r—s) €

R, ensure
-1

Ui(r) _ [« 1 AN
AGH D TG ED) S(r) s

=1




so that a sufficient condition for (2.16) to hold is

T Ue—1(r) )
2T+2E < <2r— U (r) ) . (2.17)

From (1.4) we deduce that

Uk_1(r) T+z? -+ a2

Uk(r) — 1+z+---+g2kt!

<——F——=<
p=rpvr?=1 T VT2 =1

1\2
3r < (27"——) .
r

This inequality is equivalent to 4r* — 373 — 4r2 +1 > 0, which holds for r > 1.5 due to
2r* > 3r3 and 2rt > 4r2. O

so that (2.17) holds if (k > 2)

2.2 The case z close to 1

Lemma 2.6 For any 1 < x < 3.7 it holds
2R(1,z) — R(2,z) > 1/9 > 0.111. (2.18)

Proof. Due to (2.3) it suffices to prove that 2R;(r) — Ra(r) > 1/9 for any 1 < r < 2.
But Ri(r) = 1/2r? and Ry(r) = 8r/(4r%2 —1)2, so that the claimed inequality becomes,
after some simple algebra, (r — 1)(16r° + 16r* — 13673 — 6472 + 9) < 0. This holds for
1 <7 <2dueto 16r° < 64r3, 16r* < 6472 and 9 < 9r3. O

Proposition 2.7 For any 1 < x < 3.7 it holds

1 dR

> (=)' R(k,z) > 3 (1/9 + E(Q,w)) > 0.002 > 0. (2.19)

k>1

Proof. Set ki := |t;] € N and note that the concavity of R(-,z) on [0, k] implies
that the function [1,k;] 5t — R(t,z) — R(t — 1,z) € R is decreasing (having negative
derivative). Coupling this property with (2.18) we obtain, with dp; the Kronecker
symbol,

1
R(2k + 1,z) — R(2k,z) > R(2k + 2,z) — R(2k + 1,z) + (50k§,

for k =0 and any 1 < k < (ky — 2)/2. Adding R(2k + 1,z) — R(2k,z) on both sides

and summing over k we obtain, with I := max{2, k;},

, 1 1
kzl(—l)lH—IR(k,x) > 2 (R(lw,x) + 5) , (2.20)



where we have assumed [, to be an even integer (the case I, odd follows analogously).
A similar argument based on the convexity of R(-,z) on [l 4+ 1, 00[ leads to

o0

> () R(k,z) > —%R(lx + 1,z). (2.21)
k=ly+2

Summing inequalities (2.20) and (2.21) we obtain a lower estimate for the part of the
series (2.4) corresponding to k ¢ {l;,ly+1}. The conclusion follows then by adding
—R(lz,z) + R(l; + 1,z) on both sides of the resulting estimate, taking into account
that, due to Lemma 2.4 and to the mean value theorem,

d
Rl +1,2) — R(ly,z) > d—lf(tx,x) > ~0.107.
Note that in order to estimate the terms of (2.4) with k& around k, in the case [, odd
(Iz = kg then) one should first derive estimates of type (2.20) and (2.21) for k < ky —2
and k > k, + 3 respectively, and use then the inequalities

—R(kg,z) + R(tz, x)
tl‘ - km

—R(tg,z) + R(kz + 1, )
ke +1—t,

—R(ky — 1,z) + R(kg,z) >

—R(ky + 1,2) + R(ky +2,2) >

(which follow from the concavity/convexity of R(-,z) on [0,t3]/[tz, 00 respectively) to
control the terms of (2.4) for k € {ky — 1, kg, ks + 1, ky + 2}. O

Propositions 2.5 and 2.7 cover the case x > 1, so that the proof of (2.4) is complete.
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Figure 2: Plots of R(-,z) for z = 1.0001,1.001,1.01,1.1,3 and asymptotic behaviour of

R(t,z) as £\ 1.
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Figure 3: The r.h.s. of (2.12) in a neigbourhood of its extremal point.
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