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Abstract

The time-harmonic Maxwell equations do not have an elliptic nature by themselves. Their reg-
ularization by a divergence term is a standard tool to obtain equivalent elliptic problems. Nodal
finite element discretizations of Maxwell’s equations obtained from such a regularization con-
verge to wrong solutions in any non-convex polygon. Modification of the regularization term
consisting in the introduction of a weight restores the convergence of nodal FEM, providing
optimal convergence rates for the � Version of Finite Elements, [20]. We prove exponential
convergence of ��� FEM for the weighted regularization of Maxwell’s equations in plane polyg-
onal domains provided the ��� -FE spaces satisfy a series of axioms. We verify these axioms for
several specific families of ��� finite element spaces.
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Introduction

0.a FEM discretizations of Maxwell equations

When applied to the discretization of boundary value problems associated with standard el-
liptic equations such as Laplace’s equation or the system of elasticity, the convergence of the
Finite Element Method (FEM) is well understood by now, in particular for two-dimensional or
three-dimensional domains with corners and edges. Low convergence rates caused by edge and
vertex singularities can be overcome by a variety of techniques, such as isotropic or anisotropic
algebraic mesh refinement ( � Version of FEM), increase of the polynomial degree (spectral
methods or � Version of FEM), or a combination of both, more precisely, by combining ge-
ometric mesh refinement with an increase of the polynomial degree � . This latter method is
known as the ��� Version of FEM and was introduced by BABUŠKA et al. [4, 8, 9, 33]. We
know from [5, 6, 25, 26] and [32] that, when the boundary of the domain and the data are
piecewise analytic, the ��� Version of the FEM gives approximate solutions to elliptic problems
with exponential convergence rates: This means that the error is divided by an asymptotically
constant factor as the polynomial degree � is increased by � , whereas the number � of degrees
of freedom is bounded by a power of � (namely, ��� in 2D). In two dimensions, the error has
the order �����
	�������

�� �
with a positive constant � .

Time-harmonic Maxwell equations form a system of order � and, by themselves, do not
exhibit standard ellipticity. There are two main strategies to discretize them by FEM, see the
survey papers [28, 21]. The first one enforces the divergence-free constraint with the help of
a Lagrange multiplier and requires the use of special compatible polynomial bases and inter-
polants, respecting the commuting diagram properties (NÉDÉLEC and RAVIART-THOMAS el-
ements, known as edge elements). The second strategy transforms the Maxwell system into
an elliptic system of Helmholtz equations by “regularization”, which consists of adding in
the variational formulation a divergence term ������������ � div ��� div ��� to the usual curl term
��������� �� � curl ��� curl �!� . The new bilinear form is coercive on the space " � of electric fields
� with square integrable curl and divergence, satisfying the perfect conductor boundary con-
dition �$#&%('*) on the boundary of the domain. Thus the discretization by a finite element
method based on nodal elements appears promising, and of simpler use and analysis than the
edge elements.

In practice, nodal discretizations of the Maxwell equations are suitable only for regular
domains or at best for convex polygons or polyhedra. Indeed, if the domain has reentrant
corners or edges, the subspace of +-, fields in " � is closed in " � , without being dense, see
[17, 23, 19]. Since any discrete conforming space based on a standard nodal finite element
method is contained in +-, , nodal FEM converges in this situation in general to a wrong solution,
see [18].

Nevertheless, a slight modification of that method restores its full efficiency and accuracy:
In [20], COSTABEL-DAUGE introduced a positive weight in the divergence term which does not
alter the equivalence properties with the original Maxwell problem, but enlarges the associated
energy space. They proved that there exist weight functions so that the subspace of continuous
functions is now dense in the enlarged energy space restoring the possibility of Galerkin dis-
cretizations in electromagnetics based on nodal finite elements. In [20] it was also demonstrated
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that nodal � Version FEM converge with optimal rates in the weighted energy space.

Numerical experiments [22] for the source problem as well as for the eigenvalue problem
were first performed with the FE library MÉLINA [30], combining geometric mesh refinement
towards the corners with simultaneous increase of the polynomial degree of the approxima-
tion. These numerical experiments showed exponential convergence well-known for ��� -FEM
applied to standard scalar second order elliptic equations. The experiments [22] were corrobo-
rated by computations with the ��� -FE library CONCEPTS [24] using conforming ��� -FEM on
geometric meshes of quadrilaterals with hanging nodes. This raised hope that the exponential
convergence of nodal ��� -FEM for scalar problems could be transferred to Maxwell equations
via weighted regularization.

The main task of the present paper is to prove that this is true: For a wide range of contin-
uous, nodal ��� finite element families

���
	 ��� 		� 	�
 , based on geometric meshes

�
	 and local

polynomial approximation spaces � 	 , we prove exponential convergence rates of the Galerkin
approximations � 	 to the solution � in the weighted energy norms.

The reason why judicious combinations of polynomial degrees and geometric mesh refine-
ment give exponential convergence rates is the same as for the standard elliptic operators inves-
tigated in [5, 6]: The asymptotics of the solution at a corner is a linear combination of terms of
the form ���� ��� � . But, whereas for “standard” problems investigated in [5, 6] the exponent �
is always � ) , for Maxwell problems in non-convex domains, � is � ) (but still ��� � ) at any
reentrant corner. The weight which we use in the regularization is then ��� with ��������� � .
The structure of the weight is thus similar to that of the singularities and combines perfectly
with the fundamental properties of ��� -FEM.

One of the main difficulties with nodal FEM for Maxwell’s equations is the strong singular-
ity of the solutions. It is known that the most singular part (the non- + , contribution correspond-
ing to negative exponents � ) can be written in the form of the gradient of a singular potential:
For finite regularity, this is the BIRMAN-SOLOMYAK decomposition ([11], see also [20, 16] in
weighted spaces). Our exponential convergence proof for analytic data relies on generalizing
the Birman-Solomyak decomposition to weighted analytic spaces.

Our ��� -FEM is based on a coercive formulation in spaces for which the embedding into��
is compact. Therefore, thanks to standard tools (C éa Lemma), our approximation results

and the analytic regularity yield exponential convergence of Maxwell solutions at any fixed fre-
quency. Moreover, as a direct consequence of the classical estimates of [7], we can derive also
exponential convergence of ��� -FEM approximations to Maxwell eigenvalues and eigenvectors.

This is in contrast to the situation with edge elements, where approximation estimates have
to be combined with the proof of the discrete compactness property which is not obvious for the
� Version [13, 12]. The price to pay for circumventing the discrete compactness in our analysis
is the construction of a  , ��� -interpolant. We emphasize that is merely a technicality of our
proof for a discrete analog of the Birman-Solomyak decomposition, but has no influence on the
��� -FE discretization which only uses nodal, Lagrangian  "! interpolants.

The ��� Version FEM for edge elements is now widely used in practice, see [1, 31] for ex-
ample. It has not yet been thoroughly analyzed from a theoretical point of view for the Maxwell
equations, however. A step in that direction is [2] where exponential convergence is proved
for Raviart-Thomas elements when approximating a scalar Laplace equation in mixed form.
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If combined with our result on an “analytic Birman-Solomyak decomposition”, the approx-
imation result of [2] can provide exponential convergence towards Maxwell solutions in the
coercive case (e.g. in the presence of a non-zero conductivity).

0.b Plan and scope of the paper

We will concentrate on the following model situation: The domain � is a not necessarily convex
polygon with corners � and openings ��� ����� . The Maxwell source problem consists in find-
ing �
	 � � ��� � � with curl �
	 � � ��� � , div � ' ) and � # % ' ) on �� such that curl curl � '��
where � is a divergence free field with analytic regularity. We postpone the analysis of the ���
FEM in three dimensions — the basic functional results of weighted regularization leading to
the convergence of the � Version are proved for three-dimensional polyhedra in [20].

In Section 1, we give a brief account of the weighted regularization introduced in [20]. Next,
in Section 2, we study analytic regularity for our Maxwell boundary value problem on polygons.
The main result in Theorem 2.7 and Corollary 2.8 gives a decomposition of the solution into a
“regular” part and a gradient containing the main corner singularity. The regularity of both the
regular part and the potential of the gradient are characterized precisely in terms of weighted
analytic spaces.

The subsequent part of the paper is devoted to ��� finite element convergence analysis. It
is divided into an abstract part comprising Sections 3, 4, 5 and a specific part with applications
in Section 6. The abstract part axiomatizes mesh and degree selection principles sufficient for
exponential convergence for the specific examples of ��� -FE spaces that we have in mind. These
examples include the main classes of finite elements most frequently used in ��� methods:

(a) Rectangles with hanging nodes, and � 	 polynomials,

(b) Conforming parallelograms and triangles, using � 	 and � 	 polynomials respectively,

(c) Non-affine � , quadrilaterals with mapped � 	 polynomials.

Verification of the abstract axioms for these specific examples is done in Section 6.

The unified treatment of these (and other) examples requires a certain degree of generality in
the hypotheses of the abstract part of our error analysis: we cannot stay within the framework of
“affine families of finite elements” where the polynomial spaces on the elements are generated
from one polynomial space on the reference element. For the non-affine quadrilaterals, approx-
imation spaces on an element are generated from polynomial spaces on the reference element
that are proper subspaces of � 	 and depend on the element. We do not, however, try to present
a framework that is more abstract and general than strictly necessary.

In Section 3, we introduce the axioms to be satisfied by the families of meshes, and in
Section 4, those relating to the elementwise spaces and interpolation operators. At each level,
global exponential estimates are derived from generic local estimates, if applied to functions in
suitable weighted analytic spaces. In Section 5, the axioms on the families of discrete spaces
for the weighted regularization are introduced and the main convergence result (Theorem 5.2)
is immediately derived. In Section 6, we exhibit the different interpolation operators corre-
sponding to concrete situations (a), (b), and (c). The proofs of the local estimates rely on more
technical results (some of them “classical”), which we have gathered in the appendix Section 8.
We draw some conclusions in Section 7.
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In this work, we assume for simplicity that the polynomial degree � of the elements is con-
stant throughout the geometric mesh

�
	 . We point out, however, that all our proofs and results

carry over to the case of linearly increasing polynomial degree vectors with sufficiently large
slope (see e.g. [32]). Our analysis simplifies even more in the last layer around the corners,
where our interpolant vanishes identically, thereby avoiding the analysis of low order inter-
polants in weighted spaces in these elements.

The abstract ��� convergence framework presented in this paper simplifies the proof of ex-
ponential convergence also in other situations because it is split into different estimates which
are proved independently, inside separate modules. For the more interesting and difficult case
of three-dimensional polyhedra, it can serve as a strategy for the convergence analysis of the
��� -FEM. The main difficulty that will have to be overcome in the 3-d case is the precise descrip-
tion of the analytic regularity of solutions of “standard” elliptic problems as well as Maxwell’s
equations on polyhedral domains. This analytic regularity is available for 2-d problems, but
has only partially been analyzed for 3-d problems [25, 26]. Another difficulty in the 3-d case
are anisotropic estimates (see [3, 15]) that are needed when mesh refinements lead to strongly
anisotropic meshes. In two dimensions, we can exclude strong anisotropy and stay in the frame-
work of shape-regular elements.

1 Weighted regularization

The domain � is a Lipschitz polygonal domain in � � and the Cartesian coordinates are �&'
��� , ��� � � . Let + ! � curl � � � be the subspace of

� �
fields � ' ��� , ��� � � in � such that curl � 	� � ��� � (with curl � '  , � � �  � � , ) and � # % ' ) on �� (with % the unit outward normal field

to �� ). The source problem reads: given � 		� � ��� ��
 ' �� ��� � � with div � ' ) ,

find � 	 + ! � curl � � � with div � ' ) :� �
	 + ! � curl � � � � ��
curl � curl ����� ' �� ��� ������� (1.1)

Let " � ��� � be the subspace of + ! � curl � � � :
" � ��� ��
 '���� 	 + ! � curl � � ��� div � 	 � � ��� �����

Then � solves (1.1) if and only if � solves

Find � 	 " � ��� � :� �
	 " � ��� � � ��
curl � curl � � div � div ����� ' �� ��� ������� (1.2)

The variational formulation (1.2) allows to prove the existence and uniqueness of solution and,
moreover, to determine the singularities of � near the corners of � , see [19].

Let  be the set of the corners � of � and � � the distance function to � . Let � � denote the
interior opening angle of � at vertex � . Let ! '*� � � � �#"%$ be a multi-exponent and denote by� & the weight function � & '('*),+��"%$ � �.-� �����/�
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The regularization with weight consists in introducing � & in the definition of the variational
space and formulation: Let

" & � ��� ��
 ' � � 	 + ! � curl � � ��� � & div �
	 � � ��� � � �
with its norm � ������� �	�

�

 ' � � ��� � �� �

�

 ��� curl ��� � �  �

�

 ��� � & div ��� �  �

�

 � ,��

�
.

The corresponding variational formulation is

Find � 	 " & � ��� � :� �
	 " & � ��� � �  �
curl � curl � � � & div � � & div ����� '  � ��� ������� (1.3)

From the " & � ��� � -coercivity of the bilinear form, we get existence and uniqueness of a solution
of (1.3), and there holds, [20]

Theorem 1.1 (i) For any multi-exponent ! ' � � � � �/"%$ with � � 	�� )�� ��� , the field � solves (1.1)
if and only if � solves (1.3).
(ii) For any multi-exponent ! ' � � � � �#" $ such that� � 	  � ) ��� � and � � ����� ��� � � � � � (1.4)

the space + ,� ��� � of + , fields with tangential boundary condition is dense in " & � ��� � .
The finite element method for the weighted regularization consists in Galerkin approxima-

tion based on finite dimensional subspaces � 	 of " & � ��� � :
Find � 	 	 �-	 :� � 	 	 � 	 � ��

curl � 	 curl � 	 � � & div � 	 � & div � 	 ����' �� ��� � 	 ����� (1.5)

By C éa’s lemma we have

� � � � 	 � � � � �
�

 ����� � � � 	 � � � � �

�

 � � � 	 	 � 	 � (1.6)

We are going to construct a class of families of finite element approximation spaces
� � 	 � 	 "��so that

� The dimension of � 	 is � � � � � ,

� We have an error estimate � �"� � 	 � � � � �
�

 ��� � ���
	 with � , � � ) independent of � ,

provided the data � has certain analyticity properties.
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2 Analytic regularity

The error analysis of our method is based on two principles:

1. The decomposition � '��(�������	��
 of the solution into a regular part and a gradient, in
the style of BIRMAN-SOLOMYAK [10]. Note that this is not a Hodge or Helmholtz type
decomposition where � is represented by means of a vector and a scalar potential. The
latter would not provide the required additional regularity.

2. The use of weighted analytic function spaces of the type of Babuška-Guo’s “countably
normed spaces” [5].

In [20], the error analysis of the � Version FEM was similarly based on the Birman-Solomyak
decomposition and regularity in weighted Sobolev spaces of (arbitrarily high but) finite order.

As usual for Maxwell’s equations, we will obtain our regularity results as corollaries of
better known results for the Laplace operator.

2.a Corners

We gather in this section the notations relating to the geometry of the domain which will be
used all over the paper. We recall that we denote by  the set of the corners � of � and by � �
the opening of � in � . By  � we will denote the set of non-convex corners � of � for which
� � � � . The set  �� can be empty in the case of a convex polygon. In this case, the analysis
will simplify, because we will not need the Birman-Solomyak decomposition. Geometric mesh
refinement is generally needed also towards convex corners to achieve exponential convergence.

We also introduce an open covering ��� ! ��� � � of � separating the corners:

� '�� ! ����#"%$ � � 
 � � � � ��" $ mutually disjoint,
� � 	  � � � 	 � � and ���	 � ! � � (2.1)

We will further need a “larger” covering ����� ! ����� � � defined as follows: For any corner � let ��� �
be a neighborhood such that ��� � contains � and no other corner. We assume that ��� � is larger
than � � , which means that there exist two neighborhoods � ��� �!�"�� of � in � � such that� � '#� �%$ � and � � � '#� �� $ � . In a similar way, there exist open sets � ! � �&� �! disjoint
from  such that � ! ''� ! $ � and ��� ! '(�"�! $ � .

Let ) � and ) ! denote the respective parts of the boundary of � :

) � '� �*$ � � and ) ! '���+$ � ! �
and let us define similarly ),� � and )�� ! relating to ��� � and ��� ! .
2.b Spaces

We first recall some definitions of weighted spaces, cf [29]. Let - ' �/. � � 	 �10 $ 0 be a multi-
exponent and 2 a non-negative integer and let � ��� � � � � be polar coordinates centered in � .

For any 3 	546� ��� � we define the semi-norm

� 3 �87:9; �
�

 '=<�� 3 � � > 9 �@?BA 
 �DC

��" $ C0 � 0 E	F � �HG�IKJ 0 � 0�  � 3 � � �  �@? I 
ML ,��
� � (2.2)
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The weighted space � F� ��� � is the space of 3 	'46� ��� � such that for all � , ) ��� �&2 , the
semi-norm � 3 � 7 9; �

�

 is finite.

Note that any derivative  � is continuous from � F� � 0 � 0 ��� � into � F � 0 � 0� ��� � . Moreover
� F� ��� � is contained in + F ��� � if and only if - � � 2 (i.e. .�� � � 2 for any corner � ).

We also need the corresponding trace spaces. For any 3 	(4$��� ���  � (i.e. with support
outside the set of corners) we define the semi-norm

� 3�� 7 9; ���
�

 ' <�� 3 � � > 9 �	� A 
 � C

��" $ � � G I J F�  F
 I 3 � � �  �	� I 
 L ,��
�

(2.3)

and the space � F� ���� � is the closure of 4$��� � �  � for the norm
���

!���� F � 3 � � 7��; ���
�

 � ,��

�
. Note

that for positive non-integer � , ���� ���� � can be defined by interpolation and the trace operator

is continuous from � F� � ,�� � ��� � into � F � ,�� �� �� � � .
The analytic weighted space � � ��� � is the space of 3 	�� F "�� � F� ��� � such that

� � � )�� � 2�� )�� � 3 � 7 9; �
�

 � � F J , 2�� (2.4)

and the trace space � � �� � � is the space of 3 	 � F "�� � F� ���� � such that
� � � ) ,

� 2 � ) ,� 3 � 7 9; ���
�

 � � F J , 2�� .

Thus the derivative  � is continuous from � � � 0 � 0 ��� � into � � ��� � and the trace is continuous
from � � � ,�� � ��� � into � � ���� � .

We will also use the localized version of these spaces in each neighborhood � � : then we
only need one weight . � and define � FG I ��� � � , � G�I ��� � � in the natural way.

The following result gives the analytic weighted regularity of corner singular functions:

Lemma 2.1 Let ! 	 � and � an analytic function on � )�� ��� � . Then the function �#"� � � � � �
belongs to � � , � G I ��� � � for all . � � ! .

The spaces � � ��� � are related to the spaces $�%� ��� � of BABUŠKA-GUO [5]. If ) �'. � � ,
� � ��� � coincides with $ !� ��� � , whereas for � � �!. � ) , � � ��� � coincides with $ ,� J , ��� � .Finally, for � � � . � � � , � � ��� � is a closed subspace of $ �� J � ��� � and differs from it by
constants at the corner points.

2.c Shift theorem

Let & be a properly elliptic � # � system of second order, homogeneous with constant co-
efficients. Let ' , ������� �(' � be homogeneous boundary operators of orders 2 , ������� � 2 � with
constant coefficients on each edge of � , satisfying the Shapiro-Lopatinski covering condition
for & . Then, combining a dyadic partition of � � � and analytic type a priori estimates between
pairs of nested annular domains together with an homogeneity argument, cf [14], we can prove
(we use the notations of ) 2.a)

Theorem 2.2 Let � 	*� �G�I ����� � � � satisfy & � 	+� G�I J � ����� � � � and ' � �
	,� G�I J F � J ,�� � ��)�� � � . Then
�
	�� G�I ��� � � � .
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Corollary 2.3 Let � 	 � �� ��� � � satisfy & � 	 � � J � ��� � � and ' � � 	 � � J F � J ,�� � ���� � . Then
�
	�� � ��� �

�
.

We could apply this result to the Maxwell solution � of problem (1.1) if � belonged to an
analytic space, say � ! ��� � � . Indeed, from the equivalent formulation (1.2), we can see that � is
solution of the elliptic boundary value problem, with & the diagonal Laplace operator:

& � ' � � in � � � # % ' ) � div � ' ) on �� . (2.5)

Using the results of [19], we find that the strongest singularity of � at the corner � has the
exponent ! ' �	��� � � � , and, hence, that � belongs to the weighted space

� �
� � ��� � for any- ' � . � � with ) �'. � � ' ) +�� � � �	��� ��� . As each component of � belongs to � ! ��� � which is

contained in � � � J � ��� � , the shift theorem yields that � belongs to � � � ��� �
�
.

But the space � � � ��� �
�

is not a subspace of the variational space � &� ��� � for any relevant
choice of ! , because the curls of its elements do not belong to

� � ��� � in general. That is why we
have to take advantage of a splitting of � in the form of a singular gradient part and a “regular”
part.

2.d The Dirichlet problem for the Laplace operator

Consider a right hand side � 	 � ! �	� ��� � for 
 	 � )�� � � (for 
 ' ) in particular � 	 � � ��� � ) and
the solution � of the Dirichlet problem

����� '� in � � � 	 + ,! ��� � � (2.6)

Denote by � ��� � the singularities � ��� ��� I� � ) + � � � � ����� � � , �
	�� , of problem (2.6) at the corner � .
From KONDRAT’EV [29], we obtain a decomposition of � at each corner � 	  

< � � C
� 
 ,��� ��� I�� , J �

� ��� � � ��� � L���� ? I 	*� � � � �	� J�� ��� � � � � � ) (2.7)

(here
�

can be omitted if no exponent � ��� ��� equals � �!
 ). The coefficients
� ��� � depend

continuously on � 	 � ! �	� ��� � . In particular, for 
 ' ) , � �� ? I belongs to � � � � ��� � � � + � ��� � �
if � is a convex corner, and ��� � � ��� , � ��� , � �� ? I belongs to � � � � ��� � � if � is a non-convex corner,
i.e. � 	  � . Let 
#" be defined as


#" ' ' ) +%$ � � ' ) +��"%$'& $)( � �� � � � � � '*),+��" $ ( � � �� � � � �+* � (2.8)

For any 
 	 � ) ��
#" � , if � 	 � ! �	� ��� � , � �� ? I belongs to � � � � �	� ��� � � if � is convex, and ��� �� ��� , � ��� , � �� ? I belongs to � � � � �	� ��� � � if not.

We obtain a global decomposition of � on the whole domain � by an extension of the
singular functions: Let , � be a smooth function which is - � in � � and - ) outside ��� � . Let
us define .� � by extending , �/� ��� , by zero outside ��� � . Then� 
 	 � )���
#" � and � 	*� ! �	� ��� � � � � C

��"%$ ( � ��� , .� � 	 � � � � �	� ��� � � (2.9)
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We easily check that .� � belongs to � � � , � � ��� � for any - with ) ��. � � '*),+'� � � �	��� ��� . But of

course, .� � is not analytic inside � . That is why we need a proof for

Lemma 2.4 For any � 	  �� , there exists a function � � 	 + ,! ��� � which also belongs to
� � , � � ��� � for any - ' �/.�� � with ) � . � � ' ) +�� � � ��� � � � , such that for any 
 	�� )���
�" � :
(i) � � � 	�� �	� ��� � ,
(ii) � � � � � ��� , � �� ? I 	*� � � � �	� ��� � � ,
(iii) For any corner � � �' � , � � �� ? I � 	 � � � � �	� ��� � � � .
PROOF. The function .� � belongs to � � � , � � ��� � , satisfies (ii)-(iii) and the relaxed version of

(i) : � .� � 	 � � ��� � .
Let us embed � in a square

�
, extend � .� � by zero and denote this extension by � � . Let � �����

be the & � � � � projection of � � on the space � � � � � of polynomials of partial degree ��� and
let 
 ���	� 	 + ,! ��� � be the solution of the Dirichlet problem � 
 ����� ' � ���
� ��

�
.

As � ����� ��
�
� � .� � in

� � ��� � as � � � , then 
 ���	� � .� � in the domain of � . Therefore the
coefficients

� ���	�� � � , such that� � � 	  ��� ��
 ����� � � ��
�� � � , � ��� , � �� ? I � 	 + � ��� � � �
satisfy as � � � � ���	�� � � , ��� � if � � ' � and

� ���	�� � � , ��� ) if � � �' �

Therefore for � large enough, the matrix
� � ���	�� � � , � �#"%$ ( � � � " $ ( is non-singular. For such an � , there

exists for each � 	  �� a linear combination

� � ' C
� � " $ ( � � � ��� 
 � � �	� such that

� � � � 	  � � C
� � "%$ ( � � � �	� � �

� �	�� � � � , ' 
 ��� � � � �
Since � � � is a polynomial on � , it belongs to � �	� ��� � for any 
 � � . We easily check the
other properties (ii)-(iii). Finally, we can see that � � belongs to

� �
� , � � ��� � for any - ' � . � �

with ) � . � � ' ) + � � � ��� � �#� . Since � � � belongs to � �	� ��� � which is contained in � , � � ��� � ,
the shift theorem gives the analytic regularity � � , � � ��� � for � � .

As a corollary of Lemma 2.6 and of the shift theorem we obtain

Proposition 2.5 For all 
 	 � )���
�" � and for all � 	,� �	� ��� � there holds:

� � C
��" $ ( � ��� , � � 	,� � � �	� ��� �/�

2.e Principal singularities of Maxwell solutions

Let � 	�� � ��� � with div � ' ) , and let � be the solution of problem (1.1) (or, equivalently,
of problem (1.2)). In [19] the singularities at the corners of � are described thoroughly: For
� 	  the associated Maxwell singular functions are the gradients of the Laplace singularities
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��� � � � ��� � and other fields � ��� � of the form � � � ��� I� � � ��� � � , — note that ��� � ��� ��� � has the form
� � � ��� I � ,� � ��� � � .

For � as above, there exist coefficients
� ��� � and

� ���� � such that (here and below, we use
boldface letters for spaces of vector functions)

< � � C
� 
 ,��� ��� I�� �

� ��� � �����	��� ��� � � C
� 
 ,��� ��� I�� ,

� ���� � � � � � L���� ? I 	�� � � � J�� ��� � � � � � )�� (2.10)

The singularities ��� � � � � � � belong to � � � G I ��� � � for . � � � ����� � . The singularities � ��� �
belong to � � � , � G�I ��� � � for . �"� � �	��� � . Thus we check that all �����	� � ��� � for � � � or for
� ' � when � �	  �� and all � ��� � belong to � � � , �	� ��� � for any 
 , ) � 
 � 
�" . Thus we deduce
from (2.10) that� 
 	 � )���
#" � � < � � � ��� , ��� � � � ��� , L ��� ? I 	�� � � , �	� ��� � � if � 	  � (2.11)

and � �� ? I 	�� � � , �	� ��� � � otherwise.

Setting 
	
 ' � �/"%$)( � ��� , � � (with � � the functions defined in Lemma 2.4) we have obtained
a global version of (2.11) on the whole domain � :

Lemma 2.6 Let � 	 � � ��� � with div � ' ) , and let � be the solution of problem (1.1). There
exists 
 	 + ,! ��� � which also belongs to � � , � � ��� � for any - ' � . � � with ) � . � �'*),+ � ��� ����� � � such that � 
 	 � )���
#" � � � ������� ��
 	�� � � , �	� ��� � �
2.f Analytic regularity of Maxwell solutions

The main result of this section is the regularity of � when � belongs to the analytic weighted
space � ! ��� � .
Theorem 2.7 Let � 	�� ! ��� � with div � ' ) . Then the solution � of problem (1.1) splits as

� ' �����	��
 ��� with 
 	 + ,! $ � � , � � ��� � and � 	�� � , �	� ��� � (2.12)

for any - ' � . � � with ) � . � � '*),+'� � � �	��� ��� and for any 
 	 � )���
�" � .
PROOF. The existence and regularity of 
 is known from Lemma 2.6. Let & be the diagonal
Laplace operator. Recall that � solves problem (2.5). Thanks to property (i) in Lemma 2.4,� 
 	,� �	� ��� � . We obtain that &�� '�� ������� � � 
 belongs to � , �	� ��� � . Moreover, � satisfies
the same essential boundary conditions as � , i.e. � #(% ') on �� and, since div � ' ���6
 ,
div � �� �

�
belongs to �	� �	� �� � � . Since � already belongs to � � � , �	� ��� � , the shift theorem yields

that � 	�� � , �	� ��� � .
Thus the main singularities are written as a gradient, i.e. their curl is zero. This idea can

already be found in [10], but its application in the framework of weighted analytic spaces is
new.
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Let us fix a weight ! convenient for the weighted regularization: � � ������� � � � and� � 	 � )�� ��� , cf (1.4). The main property of such an exponent is that - 
 ' � � ! satisfies the
conditions of Theorem 2.7, therefore 
 belongs to � & � � ��� � . Thus, for a Maxwell solution �
satisfying the splitting (2.12), there holds

� ��� � � � �
�

 � �/� 
 � 7 A� �

�

 ��� 
 � > � �

�

 ����� � � � � � � 


� � 
 � 7 ���  �
�

 � ��� ��� � �

�



� � 
 � 7 ���  �
�

 � ��� ��� �� � �

�

 �

We have obtained

Corollary 2.8 Let ! be a weight satisfying (1.4). Let 
 & be the positive number, cf (2.8):


 & ' ' ) + $ 
#" � ' ) +�#"%$ � �
� � � � � � � ��* � (2.13)

Let � 	,� ! ��� � � with div � ' ) . Then the solution � of problem (1.1) splits as

� ' �����	��
 ��� with 
 	 + ,! $ � & � � �	� ��� � and � 	 � � , �	� ��� � (2.14)

for any 
 	 � )���
 & � . Moreover we have the estimate of the energy norm of �
� ��� ��� � �

�

 � � 
 � 7 ���  �

�

 ����� � � �� � �

�

 � (2.15)

Remark. If we take ! ' � , we have 
 & ' 
#" .

3 Geometric meshes

We address in this section the principles which have to be satisfied by the geometric meshes
on which ��� -FEM spaces are constructed. Not all meshes satisfying the axioms of this section
will be suitable for our ��� approximation schemes, however: implicit conditions on the mesh
stemming from the axioms on function spaces and interpolation operators of Section 4 below
may have to be imposed. In some cases, the algebraic and analytic conditions on the ��� -FE
spaces can lead to conditions of purely geometric nature on the mesh. An example for this is
Lemma 6.2 below for bilinearly mapped, quadrilateral elements.

We illustrate our definitions by three examples of geometric meshes on a L-shaped domain,
in Figures 1, 2 and 3 corresponding to three categories (a), (b), and (c) of ��� -FE spaces, re-
spectively, for which we eventually give complete proofs.

3.a Meshes and layers

From Theorem 2.7, we know that for � 	 � ! ��� � the solution � is analytic in � �  . More
precisely, for each � 	 � �  , the analytic Birman-Solomyak decomposition (2.12) yields that
the convergence radius of the Taylor series of � and � at � can be bounded from below by
a constant times the distance from � to  . As a consequence, in any domain

�
such that
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� � � �  , the functions � and � can be approximated by polynomials of degree � in
�

with rate ����� � � � ��� where � � ) depends on the ratio of ) +�����"	� � � ����� versus ��)�
 '�� � � . The
principle underlying ��� -FEM is to keep this ratio uniformly bounded from above and below.

For this, we consider mesh families � ' � � 	 � 	 "�� indexed by the integer � which corre-
sponds to the degree of the reference polynomial spaces, and such that, as � increases to � �&� ,
only the “layer” of elements close to the corners is subdivided.

We adopt the following conventions.

A mesh
�

on � is a finite set of (open) disjoint elements
�

such that  � "�� � ' � . Note
that, at this stage, we do not require the “usual” conformity conditions on the intersection of
the elements

�
, considering “hanging nodes” as admissible, see below, Section 6.a.

An element
� 	

�
is either a convex quadrilateral with straight sides or a triangle, hence� '���� ��� � � , with ����	

�
� , �

�
, or

� '���� � � � � , with ��� 	 �
� , �

�
with ��� a diffeomorphism, and with the reference elements �� '�� � (unit square) or �� ' � �
(unit simplex).

Each family � consists of an infinite sequence of disjoint layers � 	 , �+� ) and an infinite
sequence of nested terminal layers � 	 , � � � such that for each � � �

��� ! �
��� ��
� 	 
 ' � ! � � , � ����� � � 	 � , � � 	 (disjoint union) is a mesh on ��"! � )�� � � 	#�%$ � � � � 	&�'$ J � � � $ � ��'�( �� � 	  � � � 	#� 	 � � 	 �

The hypothesis of separation between the layers ��$ and �%$ J � is not restrictive. It is introduced
mainly for later convenience.

3.b ) -geometric meshes

Now we quantify the properties of the elements
�

relating to their position with respect to the
corners. For doing this, we fix a covering ��� ! ��� � � of � as in (2.1). We denote by �*� the
center of

�
and by +,� the following localization index:

If �-� belongs to � ! , then +.�(
 ' )
If �-� �	 � ! , � � 	  unique, �/��	 � � ; then +.� 
 ' � .

Let
� � be the following distance parameter:

If +��&' ) , then
� � 
 ' �

If +��&' � , then
� � 
 ' � � ���-� � .

Finally we denote by 01� the homothety with center �/� and ratio
� � , that is

02� � ��� '(�-� � � ����� � �-� �
and by 3� the “semi-reference” element 3� '�0 � ,� � � � with the associated chart

3��� 
 ' 0 � ,�54 ��� � i.e. ���&'�02� 4 3��� �
Let 36 � � 7 be the coefficients of 3��� and 38 � be its Jacobian determinant 38 �&' �9��:-;<3��� .
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� !
� ,
� �
� �
���

Figure 1: Mesh of squares with hanging nodes – case (a).

Definition 3.1 Let � ' � � 	 � 	 "�� be a family of meshes with the structure ��� ! � . Let ) 	
� )�� � � . The family � is geometric with grading factor ) (“ ) -family” for short), if there exists
a regularity constant � � � such that the following conditions ��� , � – ��� � � are satisfied:

��� , � The family of scaled diffeomorphisms
� 3��� � � "���� � � is a uniform � -family of map-

pings: � 38 � � ��� � , on �� and 36 � � 7 ��� �
��� � � � � � � ,

� � 	&� 	 , ��� , ) 	 � � �����9) 	 .

��� � � There exists a larger covering ��� � ! ��� � � � , cf ) 2.a, of � such that
� � 	 � 	 � 	

If +�� ' ) , then
� ��� � ! ,

If +�� ' � , then
� ����� � and

� � , � � � � � �� � ��� � � if
� 	 � $ �%$ � � � �� � ��� � � if

� 	 � $ ��$ .
We have written the conditions on the mesh families in the easiest way for their application

to error estimates. It is also interesting to draw consequences of these conditions on the layers� $ to figure out the structure of the meshes.

Let � ' � � 	 � 	 "�� be a ) -family of meshes. Then there exists
! ! such that for all

! � ! ! ,
and for all

� 	&�'$ the intersection
� $ ��� ! is empty. Thus, for all

! � ! ! and for all
� 	#�'$ ,

the localization index of
�

is a corner � and there holds

� � � ) $ � � � �� � ��� � ) $ � (3.1)
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� !
� ,
� �
� �
���

Figure 2: Mesh with triangle elements – case (b).

3.c Patches

The construction of ��� -interpolants in Section 4 will be a two-step procedure. In the first step,
one constructs a basic interpolant defined elementwise which will in general not satisfy inter-
element continuity conditions. The construction may even start from a projection operator that
has no pointwise interpolation properties at all and which is then corrected on the element level
in order to interpolate a certain number of derivatives at the nodes.

In the second step, conformity, i.e. inter-element continuity, is achieved by the construction
of interface correctors that are defined on patches of elements (2 or 3 elements, in general) that
share an interface.

We now define the hypotheses that the geometry of such patches will have to satisfy.

Definition 3.2
(i) We call patch a subset

�
of a mesh

�
such that the interior ��� of

� � "�� � is connected.

(ii) Let � be a subset of edges of elements
� 	

�
. We say that the patch

�
is associated with

� if
��� "�� 6 is contained in �	� .

(iii) For each patch
�

, we choose a center point �
� 	���� , and define its localization index +�
and the distance parameter

� � as before for
�

. We also denote by 0�� the homothety of center��� and ratio
� � .

For a ) -family
� � 	 � 	 , we denote by � 	 the set of (open) edges 6 of all elements

� 	� ! � ����� � � 	 � � such that 6 $ �� '�( .
Definition 3.3 We call admissible family of patches associated with the ) -family

� � 	 � 	 a

family � ' ��� 	 � 	 where for any � ��� , we have the following properties:
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� !
� ,
� �
� �
���

Figure 3: Mesh with
� , elements (trapezia) – case (c).

��� , � For each � , each
� 	

� 	 is a patch of
� 	 � � 	 , associated with a subset of edges

� ' � � � � � � 	 so that the � � � � are mutually disjoint and �-	 is the union of the
� � � � .

��� � � There exists an integer � such that for any � � � and each point � 	 � , � belongs
to at most � different patches

� 	
� 	 .

��� � � There exists a larger covering ����� ! ����� � � , cf ) 2.a, of � such that
� � 	 � 	 � 	

If +�� ' ) , then �	������� ! ,
If +�� ' � , then �	������� � and

� � , � � � � � �� ��� ��� � � �
In the situation of standard conforming interfaces between elements, for any edge 6 there

exist at most two elements
�

and
� � which share 6 , and the patch

�
associated with � ' � 6 �

is
� � � � . This is the situation for our concrete cases (b) and (c). In case (a), any hanging node

corresponds to a set � of three edges, corresponding to a patch of three elements.

4 � � -Interpolants

In this section, we describe the general structure of the function spaces and interpolation oper-
ators that will serve to construct the finite dimensional subspaces of the energy space used as
test and trial spaces, and analyze their approximation properties in weighted analytic spaces.

We want to construct conforming finite element approximations with error estimates based
on the decomposition (2.14) of the solution � into a regular part � and a gradient ��� � ��
 . This
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means that we need to consider globally continuous approximations for both � and ����� ��
 .
We shall have to approximate �����	��
 by gradients, thus requiring  $, approximations for 
 .

Thus we have to construct vector valued  ! elements and scalar  , elements with the
additional property that the gradients of the latter belong to the same finite dimensional space
as the former. Note that in the implementation of ��� -FEM, only the  ! elements will be used;
the  , elements are a purely theoretic tool required by our strategy of proving error estimates.

These requirements are specific to our method of approximation for Maxwell’s equations
and they demand a certain degree of flexibility and generality of the hypotheses for the function
spaces and interpolants.

We are going to introduce our collection of axioms in the order which could be the most
natural for the reader: In ) 4.a elementwise interpolants are defined independently on each

�
.

This produces a global interpolant � 	 on � , but we have to modify it on the element interfaces
( ) 4.b), at corners ( ) 4.c), and, if essential boundary conditions have to be implemented, along
the boundary of � ( ) 4.e). The global operator � 	 has to satisfy enough nodal interpolation
properties to allow all the mentioned corrections locally. The first global interpolant has to
satisfy some analytic type interpolation estimates (which will be proved for our examples in
Section 8), and the various corrections have to satisfy stability estimates.

4.a Elementwise interpolants

For each � 	 � and
� 	

� 	 , we give ourselves a first approximation space � 	� of finite
dimension and assume the existence of a linear operator

� 	 � 
  �� � � � � � 	� �
In the situation where the elementwise maps � � are affine (e.g. our concrete cases (a) and (b))
we will take � 	� as � 	 on parallelepipeds

�
– the polynomials of partial degrees less than �

in the axes directions of
�

, or � 	 on triangles – the polynomials of global degree less than
� . In such a situation, it seems simpler and more usual to define the discrete spaces and the
interpolants on the reference element �� and to push them forward to

�
using the element

maps ��� 
 �� � �
: � �� 
 � �� � �� � ' � 4 �����

But in more general situations than the affine mapped rectangles – our case (c), we adopt the
converse point of view: We start defining � 	 � and � 	� and transport them on the reference
element �� in order to introduce an axiom providing uniform estimates: Let

�� 	� '�� 	� 4 ��� 
 '�� �� ��� 	� � and �� 	 � ' � �� � 	 � � � �� � � , �
i.e. �� ' � 4 ��� and �� 	 �

�� ' ��� 	 � ��� 4 ��� �
We assume the following approximation estimates in the Sobolev norm +	� , where 
 is fixed
(and will be chosen later, see Section 6):
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��� , � For all

�� 	  � � �� � and for all integer � such that 
 � � � �

�
�� � �� 	 � �� � >�� ���� 
 ��� 	 � � �

�� � > � ���� 
 (4.1)

where the convergence rate � 	 � � does not depend on
�

.

As a consequence of ��� , � , if moreover ��� , � holds, we have uniform interpolation error esti-
mates on the semi-reference elements 3� ' 0 � ,� � � �

� 3� � 3� 	 � 3� � > � �	�� 
 � �
� 	 � � � 3� � > � ���� 
 (4.2)

with a constant � independent on
�

, � , � and

3� ' � 4 0 � and 3� 	 � 3� ' ��� 	 � ��� 4 02� �
Proposition 4.1 Let the family of meshes � ' � � 	 � 	 "�� satisfy assumptions ��� ! � , ��� , � and
��� � � . Let for any �+� �

� 	 
 ' � ! � � , � � ��� � � 	 � , and � 	 ' � � �� "� � � ' int
� �
� "�� � � � �

We assume moreover that assumption ��� , � holds. For � 	  � � � 	 � let � 	 � be defined on each� 	 � 	 by �-	 � �� � ' � 	 � ��� �� � � . Then for all . 	 � and all � with 
 � � � � , we have the
estimate �/� � � 	 � �M7 � � � � � 
 � ��� 	 � � �/� � 7 �� � � � 
 � (4.3)

Here ��3 � 7 � � � � � 
 is the “broken norm”
��� � "�� � ��3 �� � � � 7 � � � � 
 � ,�� � , the constant � is indepen-

dent of
�

, � , � , and 
 and � 	 � � are as in ��� , � .
PROOF. Let

�
belong to

� 	 . Thanks to assumption � � � � , we can freeze the weight on each
element. Then by the homothety 01� we transport the norm to 3� . Here we denote � �� � 4 02�by 3�-� . Let us prove first the following equivalence of norms, where the equivalence constants
do not depend on

�
, 2 	�� , � 	  � � � � , . 	 � :

�/� � 7 9� � � 
 � � G:J ,� � 3� � > 9 � �� 
 (4.4)

Indeed,

�/� � � 7 9� � � 
 � C0 � 0  F � � G J 0 � 0  � � �
� �  � � 


� C0 � 0  F
� � � G J 0 � 0 
� �  � � � � �  � � 


� C0 � 0  F
� � � G J 0 � 0 
� � � � , � 0 � 0 
� �  � � � 4 02� � � � �  � �� 


' C0 � 0  F
� � � G J , 
� �  � 3� � � �  �	�� 


� � � � G:J , 
� � 3� � � > 9 � �� 
 �
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Now we use (4.2) and (4.4) twice and obtain

�/� � � 	 � � 7 � � � � 
 � � G J ,� � 3� � 3� 	 � 3� � > � �	�� 

� � G J ,� � 	 � � � 3� � > � � �� 

� � 	 � � �/� � 7 �� � � 
 �

Squaring this inequality and summing over all
� 	 � 	 , we obtain (4.3).

If the bounds � 	 � � have the special form (4.5), the exponential convergence rate for ���
methods follows immediately (Corollary 4.2). This special form for the � 	 � � will be verified
for our examples of ��� -FE spaces in Section 8.

Corollary 4.2 Under the assumptions of Proposition 4.1 on the meshes and interpolation oper-
ators, we suppose moreover that the constants � 	 � � in estimate (4.1) have the following bounds:
There exists a constant � � ) such that

� � 	 � � � � ��� � � � � � � �� � � � � � � � � � � � )�� � � � � (4.5)

Then for any � in the analytic weighted space � G ��� � we have the exponential convergence of
the interpolation error

�/� � � 	 � �M7 � � � � � 
 � � � ���
	 with � � ) independent of � � (4.6)

PROOF. Combining (4.3), (4.5) with (2.4) we obtain for any � , 
 � � � �

�/� � � 	 � � � 7 � � � � � 
 � � � � � � � � � � � � � � �� � � ��� � �
By Stirling’s formula � ��� �

� ��� ��� � � � there exists 
 � ) such that

� � � � � � � � � � � � � �� � � ��� � � 
 � � � � � � � 	 � � � � � �� � � � � 	 J � ' < � � �� � � L 	 � � < 
 �
� � � L � � �

Choosing � ' � � ��
 � � � , we obtain

� � � � � � � � � � � � � �� � � � � � '=< 
��
��
 � � ��� L 	 � � < 
 �

� 
 � � � � L � � ' < 

�� � L 	 � , J ���� �

 �

With � 
 ' �	��
� < �� J � L
� , J ���� � 
 � � we have proved (4.6).

4.b Interface correctors on patches

With the elementwise defined spaces � 	� and operators � 	 � we associate broken spaces of func-
tions (discontinuous in general) on patches

�
or on the whole domain � , and the corresponding

interpolation operators:
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Let � ' � � 	 � 	 "�� be an admissible family of patches. Let � ��� and
� 	

� 	 . We define

 � � � � '��� "��  � � � � and � 	 � � � '��� " � � 	� �
These spaces are subspaces of & � � ��� � , where we recall that ��� is the interior of

� � "�� � .

From our family of interpolants � 	 � 
  � � � � � � 	� we define the interpolation operator
�-	�� � � 
 '�� � "�� � 	 � which acts from  � � � � into � 	�� � � . The space  � � � � � is a sub-
space of  � � � � . Likewise, we define the interpolation operator � 	�� � 	 � on the set

� 	 of non
terminal elements (we recall that

� 	 ' � ! � � , � ����� � � 	 � , ).
We denote by � 	���	� � � � and � 	�
��� � � 	 � the image of  � � � � � and  � � � 	 � by �-	 � � � and

�-	�� � 	 � , respectively:

� 	�
��� � � � ' � 	 � � � �  � � � � � � and � 	���	� � � 	 � ' � 	 � � 	 � �  � � � 	 � � � (4.7)

In the typical case where the basic interpolants �� 	 � interpolate some derivatives at the corners
of the reference domain, the elements of � 	���	� will satisfy corresponding matching conditions at
the nodes of the mesh. They will, in general, still be discontinuous across the edges, however.
We will achieve interelement continuity by constructing interface correctors.

Let � ' � � � � be the set of (open) edges 6 which is associated with the patch
�

, and let
' be the remaining set of edges � of elements

� 	 �
. Since for all 6 	 � , 6 is contained in

��� , all the edges contained in 
��� belong to ' . For a two-element patch in particular ' is
exactly the set of edges contained in 
��� .

Each “active” edge 6 	 � runs between two elements of the patch
�

, hence for any 3 	
� 	 � � � , the jump � 3 � � of 3 across 6 is well-defined.

The application of interface correctors possibly increases the degree of the local polynomial
spaces. To allow for such an increase, we admit a second family of spaces � 	�� � 	� together
with the following axioms on local interface correctors:

Definition 4.3 An interface corrector of order
� � ) for the family of interpolants � � 	 � � on

the patch
� 	

� 	 consists of� discrete spaces � 	�� � 	� on each
� 	 � ,� an operator � 	 � 
 � 	�
��� � � � � � 	 � � ��
 '�� � " � � 	� for the correction of jumps � 3 � � on each

edge 6 	 � , satisfying the algebraic condition ��� � � and the stability condition ��� � � :
��� � � For all 3 	 � 	�
��� � � � , the function � 
 '�� 	 � 3 satisfies� 6 	 � � � � � � � � � � � �  � � � � ' �  � 3 � �� � 	�' � � �-� � � � � � �  � � �� � ' )��
��� � � With 3� ' 0 � ,� � � � , 33 ' 3 4 0 � and 3� 	 � ' 0 �� � 	 � � 0 �� � � , , there hold the uniform

estimates � 3� 	 � 33 � >�� � � � �� 
 � � ),+"� � � 33 � 3� � > � � �� 
 � 3� 	 + � � � �� � � �
Here + � � 3� � is the broken norm and 
 � � � � is a fixed integer.
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Remark 4.4 The existence of the function � in ��� � � implies that the jumps �  � 3 � � vanish at the
common node of 6 and � , for all functions 3 in the range of � 	 . Therefore the mere existence
of an interface corrector implies that the basic “interpolant” � 	 � has indeed some interpolation
properties at the nodes, although we did not need to impose this before. In this way, hypothesis
��� � � is not only an explicit condition imposed on � 	 � , but also an implicit condition on � 	 � .
This will have to be taken into account in the construction of � 	 � in the examples of Section 6.

We obtain a similar statement to Proposition 4.1:

Proposition 4.5 We assume that � ' � � 	 � 	 "�� is an admissible family of patches satisfying
condition ��� � � and that we have a family of interpolants ��� 	 � � . If the interface corrector � 	 �
satisfies ��� � � then for any . 	 � and 3 	 � 	���	� � � � , we have the estimate

� � 	 � 3 � 7 � � �� � � 
 � � ) +"� � ��3 � � � 7 � � � � 
 � � 	 + � ��	� � ��� (4.8)

Note that the norm on the right hand side of (4.8) is a norm on the jumps of 3 across the edges6 	 � .

4.c Interpolants in the corner regions

We do not use the interpolants � 	 � when
�

belongs to � 	 , but the trivial approximation by
zero

� 	� � ' ) . We need a transition from
� 	� to � 	 � . We denote by .� 	 � � 
 '�� 	 � � 	 � , � � 	 � �

the extended terminal layer. We recall that
� 	 � � is defined as � 	 � � � ����� � � ! and that, in this

case, � 	 ' .� 	 � � � � 	 � � �
Definition 4.6 The corner interpolant

� 	� is defined for all
� 	 .� 	 � � so that:

��� � � For
� 	&� 	 � � 	 � , , � 	� -) and for

� 	#� 	 � � , � 	� acts  � � � � � � 	� .
For any function 3 	  � � � 	 � and defined on � , the function � ' 
 8 	 3 defined on
all elements

� 	
� 	 by� � 	 .� 	 � � � � �� � ' � 	� 3 and

� � 	 � 	 � � � � �� � ' � 	 � 3
satisfies � 	 � 	�
��� � � 	 � .

����� � For some integer 2 � 
 there hold the uniform stability estimates on the semi-
reference element � 33 � 3� 	� 33 � > � � �� 
 � ��� 33 � > 9 � �� 
 �
where � is independent of � and

�
.

Proposition 4.7 Let the family of meshes � ' � � 	 � satisfy assumptions ��� ! � , ��� , � , ��� � �
and ��� � � . Assume moreover that ����� � holds. For � 	  � � � 	 � defined on � , let

� 	 � be
defined on each

� 	 .� 	 � � by
� 	�� �� � ' � 	� ��� �� � � .
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Then for all . � . ��	 � with . � � . and all � 	*� FG � ��� � , we have the estimate

�/� � � 	 � � 7 � � ��� � �  
 � � ) 	 � G � G � 
 �/� � 7 9� � ��� � �  
 � (4.9)

where the constant � is independent of � .

PROOF. Let
�

belong to � 	 � � 	 � , . Here
� 	� � ' ) .

�/� � � 	 � � 7 � � � � 
 ' �/� � 7 � � � � 
 � C0 � 0  � � � G:J 0 � 0  � � �
�  � � 


� � � ���" � ������� G � G � C0 � 0  � � � G
� J 0 � 0  � � � �  � � 


� � G � G �� �/� � 7 � � � � � 

� ) 	 � G � G � 
 �/� � 7 � � � � � 
 � (4.10)

If
�

belongs to � 	 � � we use ����� � together with the usual scaling to 3� and we obtain the in-
equality �/� � � 	�� � 7 � � � � 
 � ���/� � 7 � � � � 
 . Then we obtain (4.9) by combining this with estimates

like (4.10) above, since for
� 	#� 	 � � the size

� � is bounded by � ) 	 , cf ��� � � and (3.1).

4.d An interpolant of class  � with exponential estimates

We obtain such an interpolant
� 	 ' � 	 � � 
 by chaining together the previous spaces and inter-

polants: First recall from ��� � � that
8 	 is the extension of � 	 by

� 	 :� � 	 .� 	 � � � 8 	 � �� � ' � 	� � � �� � � and
� � 	 � 	 � � � 8 	 � �� � ' � 	 � � � �� � � (4.11)

Recall that .� 	 � � '�� 	 � � 	 � , � � 	 � � and
� 	 � � '�� 	 � � � ����� � � ! .

We define the global interface corrector � 	 by adding the contributions of all patches. Let�� 	 � the extension by zero of � 	 � outside
�

and set

� 	 � ' C� "�� �
�� 	 � � � for � 	 � 	�
��� � � 	 � � (4.12)

We recall that, by virtue of � � , � , the patches
� 	

� 	 do not contain any terminal element� 	#� 	 . Therefore � 	 � �� � ' ) for all
� 	#� 	 .

Finally we apply the corrector � 	 to obtain
� 	 : If ��� , � - ����� � are satisfied for the integer� � ) , then we set for any � �	� and � 	  � � � 	 � defined on � :

� 	 � ' 8 	 � � � 	 8 	 � � (4.13)

Note that according to ��� � � ,
8 	 � 	 � 	�
�	� � � 	 � , so that (4.13) is well defined. Since the discrete

spaces satisfy the inclusion � 	� ��� 	� , the interpolant
� 	 takes its values in the space

� 	 ' � � 	 � � ��� ��� � � 	
� 	 � � �� � 	 � 	� � � (4.14)
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Lemma 4.8 If assumptions ��� , � - ����� � hold with
�

, then the interpolant
� 	 takes its values in

the space � 	� � 
 
 '�� 	 $  � � � � .
PROOF. Let � belong to  � � � 	 � and 3 ' � 	 � . It suffices to prove that for all edges 6 of any
element

� 	
� 	 , the jumps �  � 3 � � are zero for all � , � � � � �

.� If 6 is the edge of a
� 	�� 	 , then

8 	�� ' � 	 � ' ) and 6 is outside the support of � 	 ,
therefore 3 -) in a neighborhood of 6 , therefore its jumps are zero.� If 6 is the edge of a

� 	 � 	 � , which does not belong to � 	 � � , then, again,
8 	�� ' � 	 � '

) . Moreover if 6 is contained in a patch
�

, it does not belong to the set � � � � . Therefore
 � � 	 8 	 � �� � is zero for all � , � � � � �

.� If 6 	 � 	 (the set of the edges of the
� 	 � 	 � � ), there exists a unique patch

� 	
� 	 , such

that 6 	 � � � � . Then

�  � 3 � � ' �  � 8 	 � � � � �  � � 	 8 	 � � � ' )�� � � ��� � �
since

8 	 � �� � belongs to � 	�
��� � � � .
The combination of all axioms yields exponential convergence for the interpolant family� 	 :

Theorem 4.9 Let the family of meshes � ' � � 	 � satisfy assumptions ��� ! � - � � � � , the family
of patches � ' � � 	 � assumptions ��� , � - ��� � � , the family of interpolants assumptions ��� , � - ����� �
for

� � ) . Then for any .,� 	 � , if � 	 � G � ��� � , � 	 � 	  � � � � . If, moreover, (4.5) holds, We
obtain for all . � .,� the exponential convergence rate

�/� � � 	 � � 7 � � �� �
�

 � � � ���
	 � with � � )�� (4.15)

PROOF. We have

�/� � � 	 � � 7 � � �� �
�

 � �/� � 8 	 � � 7 � � �� �

�

 � C� " � � � � 	 � 8 	 � � 7

�
� �� � � 
 �

But �/� � 8 	 � � 7 � � �� �
�

 � �/� � � 	 � � 7 � � �� � � � �  
 � �/� � � 	 � � 7 � � �� � � � �  
 �

For �/� � � 	�� � 7 � � �� ��� � �  
 , we use (4.9). For �/� � � 	 � � 7 � � �� � � � � � 
 we use (4.6) (recall that


 � � � � ). And we obtain �/� � 8 	 � � 7 � � �� �
�

 � � � ���
	 � (4.16)

By (4.8)

� � 	 � 8 	 � �M7 � � �� � � 
 � � ) +"� � � 8 	 � � � �M7 � � � � 
 � � 	 + � � ��� � �
� � � 8 	 � �	� � 7 � � � � 
 since � 	 + � � ��� �/�

Thanks to assumption ��� � � ,
C� " � � � 8 	 � �	� � 7 � � � � 
 � � � 8 	 � �	� � 7 � � �

�
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Using again (4.16), we obtain (4.15).

4.e Boundary correctors

We finally need (elementwise) boundary correctors to implement Dirichlet boundary conditions
in the discrete spaces. For our application to Maxwell, we only need to cancel the first trace� �� �
�

. Thus, we do not address a more general theory.

We assume that we have constructed a family of interpolants � 8 	 � according to (4.11) and
that, moreover, ��� , � - ����� � hold for a

� � ) and that � � � . Then, in particular,
8 	 is zero on� 	 � � 	 � , and takes values in the space � 	�
�	� � � 	 � .

Let
� 	 � 	 with at least one edge 6 contained in �� . Let ' be the set of remaining edges

of
�

. Since in the terminal layers � 	 � � 	 � , the interpolant is already zero, no correction
is needed there. For

� 	 � 	 � , , let � 	� � ���	� � � � be the image under
8 	� of the space � 3 	

 � � � � � 3 �� � ' )	� . The next definition is in the same spirit (but simpler) as the definition of
the interface correctors.

Definition 4.10 A boundary corrector for the interpolant
8 	� is an operator ' 	 � 
 � 	� � �
�	� � � � �� 	� satisfying the algebraic condition ��� � � and the stability condition ����� � :

��� � � For all 3 	 � 	� � �
��� � � � , the function � 
 ' ' 	 � 3 satisfies

� �� � '�3 �� � and
� � 	,' � � � � � � � � � �  � � �� � ' )��

����� � With 3' 	 � ' 0 �� ' 	 � � 0 �� � � , , there hold the uniform estimates

� 3' 	 � 33 � >�� � � � �� 
 � � ),+"� � � 33 � 3� � > � � �� 
 � 3� 	 + � � 3� � with 3� �� �� ' ) � �
Note that the conditions on the edges � 	 ' ensure that the extension by zero

�
' 	 � of ' 	 �

defines an operator which takes its values in  � � � � . Note also that, since 6 is contained in �� ,
so does not belong to any active set � � � � , the interface correctors � 	 � never modify the traces
on 6 .

We obtain again a similar statement to Proposition 4.5:

Proposition 4.11 Under the above hypotheses for any . 	 � and 3 	 � 	� � �
��� � � � , we have the
estimate

� ' 	 � 3 � 7 � � �� � � 
 � � ),+"� � ��3 � � � 7 � � � � 
 � � 	 + � � � � with � �� � ' )�� � (4.17)

5 Exponential convergence

We are going to list the properties required the ��� -subspaces � 	 so that the Galerkin solution � 	
to the discrete problem (1.5) converges exponentially to the solution � of the Maxwell problem
(1.3) (or equivalently (1.1)). Throughout, an admissible weight ! (i.e. such that (1.4) holds) for
the weighted regularization is fixed.
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In the next section, we give three classes of concrete constructions for such discrete spaces,
based on different chains of discrete elementary subspaces and interpolants satisfying the con-
ditions ��� , � - ����� � . All examples are such that ��) ' � 	 '�� � � � � .

Let for each integer � ��� the two chains of elementary subspaces and interpolants� � 	� ! 
 � � � � 	 � ! 
 � � � � 	� ! 
 � � � � 	 � ! 
 � � � � 	 � ! 
 � � � ' 	 � ! 
 � � satisfy ��� , � - ����� � with (4.5) for
� ' )

� 	� , 
 � � � � 	 � , 
 � � � � 	� , 
 � � � � 	 � , 
 � � � � 	 � , 
 � � � ' 	 � , 
 � � satisfy ��� , � - ����� � with (4.5) for
� ' �

(5.1)
such that for all

� 	 � 	 ��� � � � 	� , 
 � � ��� 	� ! 
 � � # � 	� ! 
 � � � (5.2)

Then we set

� 	 ' � �
	 " & � � � � 	#� 	 � � �� � ' )�� � � 	 � 	 � � �� � 	 � 	� ! 
 � � # � 	� ! 
 � � � � (5.3)

Remark 5.1 (i) �-	 is equivalently defined as the subspace of the � in � � " � � � 	� ! 
 � � # � 	� ! 
 � �
which are zero on � 	 , continuous on � and satisfy � #(% ' ) on �� .

(ii) Let � 	 be the set of the 
 	 + ,! ��� � in � � " � � � 	� , 
 � � which are zero on � 	 and  , on � .
Then conditions (5.2) and (5.3) yield

��� � ��� 	 � � 	 � (5.4)

Theorem 5.2 Let � 	 � ! ��� � with div � ' ) . Let the family of discrete spaces � � 	 � be defined
according to (5.1)-(5.3), where the underlying family of meshes � ' � � 	 � satisfies conditions
��� ! � - ��� � � . Then � ' ��),' � 	 '�� � � � � as � � � and the ��� -FE approximations � 	 defined
in (1.5) converge exponentially to the solution � of problem (1.3), i.e. there are � � � � � � � )
independent of � such that

� � � � 	 � ��� � �
�

 � � � ��� � 	 ' � � ��� �� � as � � � � (5.5)

PROOF. We rely on Corollary 2.8 which gives the splitting � ' ��� � ��
 �+� (with 
 	 + ,! ��� �
and � 	 + ,� ��� � , – let us recall that + ,� ��� � is the subspace of + , ��� � � with zero tangential
trace) together with the weighted analytic regularity (2.14)


 	,� & � � �	� ��� � and � 	�� � , �	� ��� � � with 
 � )��
We have the energy estimate (2.15)

� ��� ��� � �
�

 � � 
 � 7 ���  �

�

 ����� � � �� � �

�

 �

Therefore for any � 	 	 � 	 in the form �����	��
 	 ��� 	 with 
 	 	�� 	 and � 	 	 � 	 we have

� � � � 	 � � � � �
�

 � � 
 � 
 	 �M7 � �  �

�

 ����� � � 	 � � �� � �

�

 � (5.6)
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Thus, we are going to choose 
 	 	 � 	 as an interpolant of 
 and � 	 as an interpolant of � .
Using (5.4), we have that �����	� 
 	 ��� 	 belongs to � 	 and is an interpolant for � .

Defining the boundary corrector

' 	 � , 
 ' �� " �
�
� � � � �

�
' 	 � , 
 � �

with
�
' 	 � , 
 � � the extension by zero of ' 	 � , 
 � � , we modify the interpolant (4.13)

.� 	 � , 
 
(' 8 	� , 
 
 � � 	 � , 
 8 	� , 
 
 � ' 	 � , 
 8 	� , 
 
 �
Thanks to conditions ��� � � - ����� � this interpolant acts from � & � � �	� ��� � $ + ,! ��� � into � 	 and
satisfies the same exponential estimates as in Theorem 4.9. Therefore we obtain for . ' ! � �
and .,� ' ! � � � 
 the exponential estimate (note that

� � � ' � )

� 
 � .� 	 � , 
 
 � 7 � �  �
�

 � � � ���
	 � with � � )�� (5.7)

For any edge 6 	 �� $ � 	 � , , let �
�

be a tangential unit vector to 6 . Then we can define the
tangential boundary corrector

' 	 � ! 
 � ' �� " �
�
� � � � �

�
' 	 � ! 
 � � �/� ��� � �

and we modify the interpolant (4.13)

.� 	 � ! 
 � ' 8 	� ! 
 ��� � 	 � ! 
 8 	� ! 
 � � � 	 � ! 
 ' 	 � ! 
 8 	� ! 
 � �
This interpolant acts from � � , �	� ��� ��$ + ,� ��� � into � 	 . Again by a modification of Theorem 4.9,
we obtain for . ' � � and . � ' � � � 
 the exponential estimate (now

� � � ' � )

��� � .� 	 � ! 
 � � � �� � �
�

 � � � ���
	 � with ��� )�� (5.8)

The inequalities (5.6)-(5.8) yield (5.5).

6 Three concrete � � -Element Families

Here we present the two chains of elementary subspaces and interpolants according to require-
ments (5.1)-(5.2) for three different families of ��� -elements for which we verify the conditions
of the preceding convergence analysis. The element families considered consist of (a) rectan-
gular elements on geometric meshes with hanging nodes, or (b) triangular elements on regular
geometric meshes, or (c) bilinearly mapped quadrilaterals on geometric meshes.

In each case, a  , conforming ��� -interpolant will be be constructed on the geometric mesh
under consideration, implying exponential convergence of the corresponding  ! ��� -FEM for
the weighted regularization of Maxwell’s equations. Our ��� interpolants may also be of interest
in approximation of plate and shell problems. Further, our construction of  , -conforming ���
interpolants is flexible:  , conforming interpolants on other geometric mesh families, e.g. on
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combinations of affine quadrilaterals and triangles, with exponential convergence estimates are
readily constructed with the tools developed here.

Thus, in this section we are going to prove that the generic families of elements quoted above
satisfy conditions (5.1)-(5.2) with suitable choices of elemental polynomial spaces. All our
interpolants are based on the basic tensorial interpolants � 	 � of the reference square constructed
and studied in ) 8.b. We note in particular that approximation estimates (8.20) are compatible
with the exponential bound (4.5) of the � 	 � � .

For nodal and trace liftings we will use the following family of polynomials on the standard
interval � ' � )�� � � : Let

� � ) and + , ) � + � �
. There are (unique) functions , � � 7 	 � � � J ,

such that for all
!

, ) � ! � �
there holds

, � $ 
� � 7 � ) � ' 
�7 $ and , � $ 
� � 7 � � � ' ) � (6.1)

Generic trace lifting from one edge of a reference square or triangle are stated in ) 8.c and 8.d.
We do more specific constructions here for the interface correctors.

6.a Affine quadrilaterals (rectangles) with hanging nodes

Here we consider affine quadrilaterals in the following restrictive sense: There exists a global
affine mapping which transforms the whole mesh into a rectangular mesh with hanging nodes.
Thus the directional derivatives  , and  � are the derivatives along the axes of this global
affine mapping, and, from now on, we work directly on the rectangular mesh. We consider
rectangular elements

�
with at most one hanging node per side. The reference element is the

square �� ' � � � � � � � .
It is not hard to see that our analysis allows to combine several meshes of this type, plus

additional triangular and quadrilateral elements, under the condition that the matching between
different meshes is done in the unrefined regions, see Figure 4. The geometric meshes investi-
gated in [2] are similar.

6.a.(i) Primary interpolants

The elemental spaces � 	� � 
 � � for
� ' )�� � are transported from the same tensor space � 	 on the

reference square �� .

The interpolants � 	 � � 
 � � are transported from the interpolants � 	 � on �� constructed in The-

orem 8.5. Since in that case, �� 	 � coincides with � 	 � , Theorem 8.5 gives immediately property
��� , � combined with the estimate (4.5) of the � 	 � � .
6.a.(ii) Interface correctors

We now verify Properties ��� � � , ��� � � in Definition 4.3, and construct the interface correctors of
order

� � ) on the patches
� 	

� 	 : the discrete spaces � 	� � 
 � � ' � 	� � 
 � � here. We are going
to construct the lifting � 	 � � 
 � � .

We note that, by construction of � 	 � � 
 � � , we have for any subset
�

of the mesh
� 	

� 	�
��� � � � ' � � � � � 	 � � � �� � 	 � 	� � � � � � � 	 � � � � 	 � $ � � �
 $ ,  �� � �� � � � � '� $ ,  �� � �� � � � �$� � ) � ! � � � � ��� (6.2)



�
6. THREE CONCRETE �	� -ELEMENT FAMILIES 27

Figure 4: Composite mesh with hanging nodes

It is sufficient to consider two types of patches shown in Fig. 5. Denote by 6 $ � � the edges of
element

� $ � � ' � � � � ��� � .

� Patch
� ' � � , � � � � of two elements

The two elements
�
, and

� � share an entire, active edge 6 	 � , say, 6 ' 6 , � , ' 6 � � , .
The inactive edges (i.e. where the lifting of the jumps across 6 will have no influence) are
� 	 ' ' � 6 $ � � 
 ! ' � � � � � ' � � ��� � � . Denote by � , � � � the endpoints of 6 ,  6 ' � � , � � � � .
For any � � ! 
 	 � 	�
�	� � � � , the tangential derivatives  �� of the normal jumps �  �� � � ! 
 � � satisfy by
(8.19) the nodal compatibility conditions at the nodes � $ , ! ' � � �

 ����  �� � � ! 
�� � � � $ � ' ) � ��� 
 ' ) ������� � � � (6.3)

To remove the normal jumps of � � ! 
 across 6 , we make use directly of Proposition 8.6: there
exist polynomials � 7 ��� , ��� � � such that

 �� � 7 �� � ' 
�7 � �  7� � � ! 
 � � and  �� � 7 �� � � � & � ' )�� ) � 
 � � �
The lifting � 	 � � � of � � ! 
 	 � 	�
�	� � � � is then given by

� 	 � � � � � ! 
 
 '
��� �� �

�C 7 E ! � 7 ��� , ��� � � in
�
,

) in
� �

� ��
�� (6.4)

and the corrected function

� '�� � ! 
 � � 	 � � � � � ! 
 	 � 	 � � 7 � � + ' � � � (6.5)
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Figure 5: Two patches in geometric mesh with hanging nodes and notation

satisfies for ��� 
 ' ) ������� � � :

 �� �  �� � � � -) on 6 ' �
, $ � � �

Hence � 	  � � � , � � � � and � 	 � � � satisfies ��� � � , ��� � � for
� ' � � , � � � � .� Patch

� ' � � , � � � � � � � of three rectangles

The three rectangles have two edges in common: an edge 6 , ' �
, $ � � 	 � , i.e. 6 , '6

, � , ' 6 � � , and another edge 6 � 	 � shared by all three elements, say

6 � ' 6 � � � and 6
, � � � 6 � � 6 � � � � 6 � �

cf Fig. 5 (ii). The node � in Fig. 5 (ii) is hanging: � ! ' 6 , $ 6 , � � $ 6 � � � . By � , � � � � � � , we
denote the ends of edges 6 , � 6 � 	 � as shown in Fig. 5 (ii).

For � 	 � � � � � , define � � ! 
 	 � 	�
��� � � � by � � ! 
 � ��� ' � 	 � � ��� � where
� � ) is a fixed

degree of conformity. Then � � ! 
 satisfies in each
� 7 	 � the nodal exactness (8.19) of order

�
and the estimates

�/� � � � ! 
 � > � � � 
 ��� 	 � � �/� � > � � � 
 ) � 
 � �"� � (6.6)

with � 	 � � as in (4.5), where Sobolev norms over
�

are broken. We construct the lifting of class � for � � ! 
 on
�

in three steps and refer to Figure 1, (ii).

(a) Lifting on edge 6 , . The jumps �  �� � � ! 
 � � � across edge 6 , satisfy for � ' )�������� � � the nodal
compatibility conditions (6.3) at the nodes � 7 , + ' )�� � . For sufficiently large � , �  �� � � ! 
 � � �
may be lifted as in case (i) to

�
, by a trace-lifting � � , 
� � � ! 
 	 � 	�� � , � such that

� � , 
 
 ' � � � ! 
 � � � , 
� � � ! 
 � in
�
, �
� �

� � ! 
 in
�
�

(6.7)

is in  � � � , � � � � , and such that the values  � � � ! 
 , ) � � , � � � � �
, in the nodes of

�
are

not changed.
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(b) Compatibility at � ! . It will be achieved by modifications of � � , 
 in
�
, �
� � as follows.

By step (a), �  �� � � , 
 � � � - ) , 
 '*) ������� � � . Therefore the jumps
8
� � 
 '  �� �  �, �

� , 
 � �  � � ! � of
� � , 
 across edge 6 � in hanging node � ! are well defined for ��� 
 ' )�������� � � . For the lifting of8
� � , we use the polynomials ,%7 � � 	 � � � J , introduced in (6.1) and set

� � � 
� � � , 
 
 ' �
�C
� � � E !

8
� �
� � � � � � , � � � � � � , � , � � � ��� � � in

�
,

� � � � � J � , � � � � � � , � , � � � � � � � � in
� � �

� � � 
� � � , 
 
 ' ) in
�
� �

Then by (6.1)

 7,  $� � � � �



� � � , 
 � � � � � � ! � ' �
�C
� � � E !

8
� � � � � � � � J 7 
 7 � 
 $ � ' � 8 7 $

and
8 7 $ is likewise attained by � � � � 
� � � , 
 � �  � � � ! � . Moreover, for

! ' )�� ����� � � ,

 $� � � � � 
� � � , 
 � �� � ��  E ! ' �
�C
� � � E !

8
� � � � � � � , � � � � � � , � '  $� � � � � 
� � � , 
 � �� � �  E ! �

i.e. �  $� � � � 
� � � , 
�� � � -) 
 + 6 , � ! ' )������ � � � �
Therefore � � � 
� � � , 
 	  � � � , � � � � and  � � � � 
� � � , 
 ' ) for ) � � , � � � � �

in all nodes of�
, �
� � except � ! . Define

� � � 
 
 ' � � � , 
 � � � � 
� � � , 
 in
�
,
� � � �

� � , 
 in
�
� � (6.8)

Then � � � 
 	  � � � , � � � � , � � � � 
 � �  	 � 	 � 6 7 � � � for + ' � � � and for ) � ��� 
 � �
it holds

) ' �  �,  �� ��� � � � � 
 � � �  � � 7 � ' � �  �,  �� �
� � 
 � �  � � 7 � � + ' )�� � � � � (6.9)

(c) Lifting on edges 6 7 � � . Therefore �  �, �
� � 
 � �  is a polynomial of degree � on the pieces 6 , � � ,6 � � � of 6 � with  �� �  �, �

� � 
 � �  � � 7 � ') , + ' )�� � � � , for ��� 
 ' )�� � ������� � � . We may therefore lift�  �, �
� � 
 � � ���  separately into � 	 � � 7 � , + ' � � � , such that � � � 
 and its derivatives up to order

�
remain unchanged on  � 7 � 6 7 � � : call the lifting � � � 
� � � � 
 and set

� � � 
 
 ' � � � � 
 � � � � 
� � � � 
 in
�
,
� � � �

� � � 
 in
�
� � (6.10)

Then � � � 
 	 � 	 � � 7 � , + ' � � � � � , � � � 
 	  � � � � � and � � � 
 is given by

� � � 
 
 ' � � � � � � � 
� � � � � � � � 
� � � � � � � , 
� � � � ! 
 in
�
,
� � � �

� � ! 
 in
�
�

(6.11)
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and the interface corrector � 	 � � � , given by

� 	 � � � � � ! 
 
 ' � � � , 
� � � ! 
 � � � � 
� � � , 
 � � � � 
� � � � 
 in
�
,
� � � �

) in
�
�

satisfies ��� � � .
To verify ��� � � , we observe that for any edge 6 in

�
, we have the trace inequality

� 
 � � � �  � � 
 � � � 
 � > � � � 
 � (6.12)

Since � � , 
� � � ! 
 depends only on � � � ! 
 � � � , we have � � , 
� � � ! 
 ' � � , 
� ��� � ! 
 � � � for any � 	� � � � � � , and get for any � � � � � with (6.12)

� � � , 
� � � ! 
 � > � � � 
 � �
�C 7 E ! � � 

7
� � � ! 
 � � > � � � � � � 


' �
�C 7 E ! � � 

7
� � � ! 
 � � � � > � � � � � � 


� � � � � ! 
 � � � > � � � � � 
 �
(6.13)

Likewise, for any
� � � � 
� � � � 
 � > � � � 
 � ��� � � � 
 � � � > � � � � � 
 � (6.14)

For � � � 
� , we observe that e.g. on
�
, for any � 	 � � � � � �

� � � � 
� � � , 
 � > � � � � 
 � �
�C7 � $ E ! �
8 7 $ �

� � � � � , 
 � � � >  � �  � � 

'���� � � ! 
 � � � , 
� � � ! 
 � � � >  � �  � � 

� � � � � � � � ! 
 � >  � �  � � 
 � � � � , 
 � � ! 
 � >  � �  � � 
 �
� �

� , � 
� � � � � � � ! 
 � >  � � � � � 
 �
hence, for any � 	 � � � � � � , ) � �"� � � � ,

� � � � 
� � � , 
 � > � � � 
 � � � � � � � ! 
 � >  � � � � � 
 � (6.15)

With the definition of � � � 
 , we get

� � � � 
 � � � > � � � � � 
 ' � � � , 
 � � � � 
� � � , 
 � � � > � � � � � 

� � � � ! 
 � � � > � � � � � 
 � � � � , 
� � � ! 
 � > � � � � � 
 ��� � � � 
� � � , 
 � > � � � � � 
 �
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Combining this with (6.13) - (6.15), we get

� � 	 � � � � � ! 
 � >�� � � � � 
 � ��� � � ! 
 � � � >  � � � � � 
 � (6.16)

A density argument and a scaling imply ��� � � .
6.a.(iii) Corner correctors

We have to define the corner interpolant
� 	� , so to satisfy conditions ��� � � and ����� � . By defini-

tion,
� 	� is zero for any

�
in the terminal layers � 	 � � 	 � , . It remains to define

� 	� for any� 	#� 	 � � , so that the extension of
� 	 by �-	 in

� 	 � � takes its values in � 	�
��� � � 	 � . According
to (6.2), this means that the nodal values  $ ,  �� � � �$� , ) � ! � � � �

, have to be uniquely defined
for any

�
containing � .

Let � 	  � � � 	 � and let
� 	 � 	 � � . If

�
does not intersect any

� � with
� � 	 � 	 � � , we

set
� 	� �(' ) . If not, let

�
be those vertices � which

�
shares with elements

� � 	 � 	 � � ,
and let � be the set of the remaining nodes of

�
. For any � � � � � � , define � 
 ' � 	� � as

unique Hermite interpolant in � � � J , � � � such that� � 	 � �  $ ,  �� � � � � '� $ ,  �� � � � � and
� � 	�� �  $ ,  �� � � � � ' )�� ) � ! � ����� � �

The stability of
� 	� in + � � J � � �� � is obvious.

We then define
8 	 � according to ��� � � by extending � 	 by

� 	 in � 	 � � $ � 	 � , $ � 	 . Since
condition � � ! � gives the separation between layers � 	 � � and � 	 � , , the whole construction
above yields an element � ' 8 	 � which belongs to � 	�
�	� � � 	 � as required.

6.a.(iv) Boundary correctors

Let 6 be an edge contained in �� and let
�

be the element containing 6 . We have to define
the lifting operator ' 	 � satisfying ��� � � and ����� � . If

�
belongs to � 	 � � 	 � , , nothing is to be

done, since the interpolant
8 	� coincides with

� 	� which vanishes there. Let now
�

belong to� 	 � , and � 	  � � � 	 � $ + ,! ��� � . We set � 
 ' 8 	� � and 
 
 ' � �� � . Let � , and � � be the
endpoints of edge 6 .

If
�

belongs to
� 	 � � , 8 	� ' � 	 � . Therefore, by (8.19), for + ' � � � :


 � $ 
 � � 7 � '  $� � � � 7 � � ! ' )�� ����� � � � (6.17)

Since � �� � - ) , we find that 
 � $ 
 � � 7 � ' ) ,
! ' )�������� � � , which is condition (8.21). Thus,

Proposition 8.6 yields � ! defining ' 	 � � with suitable trace properties and stability in + � J , ���� � .
If
�

belongs to � 	 � � , 8 	� is now defined as in the section above. If � 7 belongs to
�

, then
(6.17) still holds, therefore 
 � $ 
 � � 7 � ' ) . If � 7 belongs to � ,  $� � � � 7 � is zero by construction
for
! ' )������ � � � . Thus we can end the construction as before.

6.a.(v) Conclusion

With � 	� � 
 � � ' � 	�� � � for
� ' )�� � , we check immediately property (5.2), i.e. the embedding

of �����	� � 	� , 
 � � into � 	� ! 
 � � # � 	� ! 
 � � . This ends the verification of all our axioms in the case of
rectangles with hanging nodes.
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6.b Conforming parallelograms and triangles

We consider meshes
� 	 formed with parallelograms and triangles, affine equivalent to the

reference elements, and we assume that they are conforming, that is, that the intersection of two
distinct elements is either empty, one node, or an entire edge. This case was already considered
in [27]. We show here how this case fits our axioms. Moreover the condition we will introduce
on triangles is simpler as in loc. cit., and generically always satisfied. We assume that � � 	 �
satisfies � � ! � � ��� � � .
6.b.(i) Primary interpolants� Parallelograms. Like in the rectangular case, the elemental spaces � 	� � 
 � � for

� ' )�� � are

transported from the same tensor space � 	 on the square �� . Again we take � 	� � 
 � � ' � 	� � 
 � � .

But now, whereas for
� ' ) the interpolant � 	 � ! 
 � � is still transported from the interpolant

� 	 ! on �� , for
� ' � the interpolant � 	 � , 
 � � is transported from the interpolant � 	 � on �� ,

ensuring in particular the nodal interpolation for all vertices � of
�

 � ��� 	 � , 
 � � ��� � � � '  � � � �$� � � �-� � � � ����� (6.18)

Theorem 8.5 gives immediately property ��� , � combined with the estimate (4.5) of the � 	 � � .� Triangles. All triangles
� 	

� 	 are affine images of the reference element � � . We assume
that for each � � ) and each

� 	 � � there is a parallelogram
� � sharing three common

corners with
�

and such that � � � �
� � "�� � ��� � � � � � �

Note that such an assumption is generically satisfied since the “width” of the layer � � � , is larger
that the width of � � , which is itself larger than the diameter of

�
. In the above assumption, it

is of course understood that
� � does not itself belong to

� 	 . Moreover, it is not assumed that� �
� �

belongs to
� 	 (in other words, the fourth node of

� � does not need to be a node of� 	 ).

We omit the subscript
�

on
� � if its relation to triangle

�
is clear. Then

� ' ��� � � � � ,� '<��� ��� � � . As a consequence of assumptions � � , � � � � � � there exists a fixed integer �
such that for all

� 	 � 	 , the number of elements
� � 	 � 	 having a non-empty intersection

with
� � is bounded by � .

We consider only the cases
� ' ) and � , which is sufficient for our application. The

elemental spaces � 	� � 
 � � ' � � 	�� � � are transported from � � 	���� � � and we take � 	� � 
 � � ' � 	� � 
 � � .
We define the primary interpolants as

� 	 � � � � 
 ' ��� 	 � � ��� � � 4 ��� � � 4 � � ,� � � ' )�� � (6.19)

transported from the interpolation operators (8.18) in � � for orders ) and � , – Note that we
need approximation estimates in + � J , norm. Transporting � 	 � � � back to � � using � �� , we find
for �� 	 � � � � � � �� 	 � � � �� 
 ' � 	 � � �� ���  	 � 	 � � � 	 ��� � � � (6.20)
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As a consequence of the approximation estimate (8.20), we obtain, instead (4.1)

�
�� � �� 	 � � � �� � >�� � � � �� 
 ��� 	 � � �

�� � > � � �� 
 (6.21)

with the � 	 � � satisfying the exponential bound (4.5). The finite intersection condition above
allows to draw the same consequences from (6.21) than from (4.1).

Since the three nodes � of
�

are nodes of the associated parallelogram
�

, condition (8.19)
yields in particular that

� 	 ! � � � � �$� ' � � �$� and
� �-� � � � ��� �  � � 	 , � � � � �$� '  � � � � � � (6.22)

6.b.(ii) Interface correctors

From now on we equally denote by
�

parallelogram or triangle elements. The patches consist
of element pairs

� ' � � , � � � � which share an entire edge 6 , and where
�
, and

� � can be both
parallelograms, or both triangles, or one of each sort. We agree that if

�
, is a parallelogram,

so is
� � . Thanks to (6.22) the image � 	� � 
 � �
�	� � � � of  � � � � � through � 	 � � 
 � � � is

� 	� � 
 � �
��� � � � ' � � � � �� ��� 	 � 	� � 
 � ��� � + ' � � � � � � 	 �
, $ � � �

 � � �� � � � �$� '  � � �� �  � � � � � � � ��� � � � (6.23)

We are going to construct the lifting � 	 � � 
 � � . We set, for � 	  � � � � � ,
� � , 
 � ��� ' � 	 ��� � � + ' � � ���

We detail the proof for
� '*� (for

� ' ) , it is easier). Denote by � the normal to 6 pointing
from

�
, into

� � . Then for
! ' )�� � the normal jumps


 $ � � � ' �  $� � � , 
 � � � � � 	 � � 	 � 6 � � ( 	 ��	�� 6 � if
�
, parallelogram),

satisfy, by (6.23), 
 � 7 
$ � � � ' ) � 	  6 � + ' )�� � � � � ! �
Applying Proposition 8.7 in

�
, , with

� ' � , if
�
, is a triangle, and Proposition 8.6, if

�
, is a

parallelogram, gives a lifting � � � 
 � � , 
 in � � 	 � � , � if
�
, is a triangle, and in � 	 � � , � if

�
, is

a parallelogram, such that

� � � 
 
 ' � � � , 
 � � � � 
 � � , 
 in
�
,

� � , 
 in
� � (6.24)

belongs to  , � �	� � .
Remark 6.1 We obtained here an interpolant with  , -conformity. It is straightforward, using
a higher order vertex correction and Proposition 8.7, to obtain  �

conforming interpolants for
any

� � � .
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6.b.(iii) Conclusion

Like in the rectangular case, the corner corrector is constructed thanks to Lagrange and Hermite
interpolants on parallelograms

�
or triangles

�
: For

� ' ) we simply use the Lagrange
interpolants + ! � + ! 
 + � � � � � � , � � � on the parallelogram and � ,� 
�+ � � � � � � , � � � on the
triangle, whereas for

� ' � we make use of the Hermite interpolants + � � + � 
!+ � � � � � � � � � �
on the parallelogram and Argyris � �� 
 + � � � � � � � � � � , which are such that

 � � � + � � + � � � � � � � '  � � � �$� � � 	 + � � � � � � node of
� � � � � � � �

 � � � �� � � � � � '  � � � �$� � � 	 + � � � � � � node of
� � � � � � ���

As for the boundary correctors, they rely on Propositions 8.6 and 8.7. Finally the inclusion (5.2)
is obvious.

6.c Bilinearly mapped quadrilaterals

Here, the elements
� 	

� 	 are images of �� � ' � )�� � � � under a bilinear map, i.e.
� ' � � � � � � ,��� 	 ��� , � � , or, in coordinates,

��� � ' � � � �� � . The mapping � � is bijective and its Jacobian
is given by

; ��� � ���� '
���
�
�� ,
 �� , �� ,

 �� �
�� �
 �� , �� �

 �� �
����
	 � (6.25)

Its determinant,
8 � � ���� ' �9��: ; ����� ���� is an affine function of �� .

In order to obtain a  , continuous ��� -interpolant, we need to impose a geometric condition
on the mappings ��� . To state it, consider a patch

� ' � � J � � � � of two elements sharing edge6 as shown in Figure 6. If
8 J ,
8
� denote the Jacobians of the element maps � � � � ��� � , we

assume that there is a constant 
 �' ) such that8 J � � � '�
 8 � � � � � (6.26)

This condition does not hold for arbitrary bilinear element maps. We have

Lemma 6.2 Consider two elements
� J � � � sharing a common edge 6 as shown in Figure 6.

If the quantities 6� � � � shown in Figure 6 satisfy 6 J � � J ' 6 � � � � , then condition (6.26) holds.

Denoting by �/� the center of
�

and by 01� ����� the homothety from Section 3.b, we have
for the semi-reference element 3� '<0 � ,� � � � that ��� ' 02� 4 3��� where 3��� 	 � , � �� � � is
independent of the diameter of element

�
, and it holds8 ��� ���� ' �9��: ; ����� ���� '(�9��: ; 02� �9��: ; 3��� �

Moreover, there exists � � ) independent of
� 	

� 	 and of � such that� �� 	 �� � 
�� � , � �9��:-; 3��� � �������� � ) � (6.27)

We assume below that we are in a semi-reference patch and omit the “3 ” from all quantities.
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6.c.(i) Primary interpolants

The elemental approximation spaces at the level
� ' ) are

� 	� ! 
 � � '�� 	� ! 
 � � '!� 3 ' � 3 4 � � ,� 
 � 3 	 � 	 � �� � ��� � (6.28)

and the corresponding interpolant is

� 	 � ! 
 � � � 
 ' � � 	 � ��� � � 4 ��� � � 4 � � ,� (6.29)

with � 	 � as in Section 8.b below.

For the level
� ' � , we define moreover the spaces

� 	� , 
 � � '!� 3 ' � 3 4 � � ,� 
 � 3 ' 8 �� � 3�� � 3 	 � 	 � � ���
� 	� , 
 � � '!� 3 ' � 3 4 � � ,� 
 � 3 ' 8 �� � 3 � � 8 �� � 3 � � � 3 � 	 � 	 � � � � 3 � 	 � 	 � � � � (6.30)

There holds

Lemma 6.3 It holds �����	� � 	� , 
 � � ��� 	� ! 
 � � # � 	� ! 
 � � �
PROOF. It holds, with � 7 ' �� �� � �  7 ' �� � � ,����

�
 �� ,
�� ,  �� �

�� ,
 �� ,
�� �  �� �

�� �
�����
	

�� � ,� �
�	 '��  ,

 ��� ' � ; ��� � � , � � � ���� �� � ,� �
�	 �

For 3 ' � 3 4 � � ,� , we have � '������	��3 ' �� 4 � � ,� with

�� ' � ; ��� � �� ��� � , � �������� � � 3 ' �8 � � ���� � � � ���� ���� � � � 3
where � ��	 � � , � � . For � 3 ' 8 $� � 3 $ , � 3 $ 	 � 	 � $ , we find���� � � � 3 ' 8 $� ���� � � � 3 $ � ! 8 $ � ,� � ���� � � 8 � � � 3 $
and hence for

! ��� that

�� ' 8 $ � ,� � � ������ � � 3 $ � ! 8 $ � �� � � � ���� � � 8 � � � 3 $ �
If � 3 $ 	 � 	 � $ , this expression shows that �� 	 ��� 	 � � .

We define the elemental interpolant � 	 � , 
 � � through a modification of � 	 � ! 
 � � . We set first

� 	� , 
 � � � 
 ' 8 �� � 	 � �� , 
 � � ��� 8 � �� � � (6.31)
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and we modify
� 	� , 
 � � so to satisfy nodal interpolation properties of order � . Note that

� 	� , 
 � �
has the same approximation properties as � 	 � ! 
 � � , i.e. (4.2) holds also for

� 	� , 
 � � . We chain� 	� , 
 � � with a Hermite interpolant � �� such that for any � 	  � � � � ,
� �� � has the form

8 �� 3 with 3 ' � 3 4 � � ,� and � 3 	 � � � �� � �
and there holds for all nodes � of

�
�
 � � �� � � � �$� ' �

 � � � � �$� � � �-� � � � �����
Finally we set

� 	 � , 
 � � ' � 	, � � � � �� 4 � 	, � � � (6.32)

Using the approximation properties of
� 	� , 
 � � and the stability of � �� , we see that ��� , � holds.

6.c.(ii) Interface correctors

Let
� ' � � J � � � � be a patch. We denote by

8 J � 8 � the Jacobian determinants of � � � , ��� � .
We are in the situation shown in Fig. 6.

The spaces � 	� � 
 � �
��� � � � are like in (6.23). Let � 	 � � � � � � . Since the case
� ' ) is

standard, we fix
� ' � and construct in two steps a  , -lifting of

� � , 
 
 ' � 	 � , 
 �
� � � �

fig6.2.eps
165 � 54 mm �� ,

�� J� ,

�� �

�

�� ,
� 6

�

� �

6
� J

� ,

6 J6 �
��� �

� �

� �

�
�

� J
�� ! �� �

(ii)(i)

� ! ��� �

Figure 6: Patch
� ' � � J � � � � of two bilinearly mapped quadrilaterals sharing an edge 6 , and

reference patch �� ' � �� J �*�� � �
(a) Lifting of � � � , 
 � � . Writing � � , 
� '�� � , 
 � ��� , we have

� � , 
J 4 ��� � ' 8 �J �� � , 
J � � � , 
� 4 ��� � ' 8 �� ��
� , 
� �

with �� � , 
� 	 � 	 � � . Noting that � � � � � � '���� � � � � , we construct the lifting � � , 
 of � � � � � , 
 � � in
the reference patch �� , for convenience. We have

� � � , 
J � � � , 
�
� � 4 ����� � � � ' � 8 �J �� � , 
J � 8 �� ��

� , 
�
� � � �
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Under assumption (6.26) then

� � � , 
J � � � , 
�
� � 4 ��� � � � � ' 8 �J � �� � , 
J � 
 �� � , 
� � � � �

and, since � � , 
 belongs to � 	� � 
 � ���	� � � � , the jump ���� � , 
J � 
 �� � , 
� � � � vanishes to order two at �� !
and �� , .

Let �, � �� , � 	 � � � )�� � � satisfy �, � $ 
 � ) � ' 
 ! � $ and �, � $ 
 � � � ' ) ,
! ' )�� � � � . Then we define

� � , 
 � � , 
 '
� � 8 �J � �� � , 
J � 
 �� � , 
� � � �� , � ) � �, � �� � � � 4 � � ,� � in

� J �
) in

�
�

(6.33)

and set
� � � 
 
 ' � � , 
 � � � , 
 � � , 
 � (6.34)

By construction, � � � 
 	 � ! � � � � , and we have still

; � � � � 
 � � 7 � ' � ; � � � � � 7 � for + ' ) � � , � � � ��� � (6.35)

(b) Lifting of �  �  � � � 
 � � . By (6.27), the maps � ��� are nondegenerate in
� � and the

directional derivatives  �  �  ��  are nontangential to edge 6 . With

� � � 
� 4 ����� ' 8 �� �� � � 
�
we have

�� �  � � � 
J 4 ��� � � � � � ' 8 �J � � J � ,  �� � � � � 
J � � J � �  ��  � � � 
J � � 8 J � J � � � � � 
J (6.36)

and

�� �  � � � 
� 4 ��� � � � � � ' 8 �� � � � � ,  �� � � � � 
� � � � � �  ��  � � � 
� � � 8 � � � � � � � � 
� � (6.37)

In (6.36), (6.37), � � � , and � � � � are linear and � � � � are quadratic polynomials in �� , .
We construct now the lifting � � � 
 � � � 
 such that

� � � 
 � � � 
 	 � 	� � � � � � � � 
 � � � 
 ' ) in
�
� �

 �  � � � � 
 � � � 
 � � � ' �  �  � � � 
J �  �  � � � 
� � � �
� � � 
 � � � 
 � � ' )

; � � � � � 
 � � � 
 � � � ' ) � � � � � � ���� � � � 6 �
(6.38)

This lifting will be obtained with �� � � 
 	 � 	 � � such that

� � � 
 � � � 
 4 ��� � ' 8 �J �� � � 
 (6.39)
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and such that

�� � � 
 � � � ' ) (6.40)

; � �� � � 
 � � � ' ) � � � � � � � ���� � J � � 6 �
and (6.38) holds, i.e.

 $�  � � � � 
 � � � 
 � � � ' 
 , $ �  �  � � � 
J �  �  � � � 
� � � ! ' )�� � � (6.41)

Since �� � � 
 � � � -)��  �� � �� � � 
 � � � -) and it follows from (6.36) and (6.39) that

�� �  � � � 
 � � � 
 � 4 ��� � � � � ' 8 J � J � �  ��  �� � � 
 � (6.42)

Since � J � � ' � � �� �� � �� ��  E ! 	 � , � 6 � is independent of �� , , � J � � '�� 
 + � :D�' ) on � 6 . Using assump-

tion (6.26), we find from (6.36) and from (6.42) the following equation for  ��  �� � � 
 :
8 J � J � �  ��  �� � � 
 ' 8 �J � � J � ,  �� � �� � � 
J � � J � �  ��  �� � � 
J � � 8 J � J � � �� � � 
J� 
 � 8 �J � � � � ,  �� � �� � � 
� � � � � �  ��  �� � � 
� � � 
 8 J � � � � �� � � 
� � (6.43)

Since �� � � 
� 	 � 	 � � , (6.43) reads

8 J � J � �  ��  �� � � 
 ' 8 J � � � �� , � � � � 	 � 	 � � � � 6 � � (6.44)

and we have
�� � � � � �"�� 7 � ' )�� + ' )�� � � � � � � � � (6.45)

We set

�� � � 
 '
� � � J � � � � , �� � �� , � �,-� �� � � in

� J �
) in �� � (6.46)

where �, ��� � 	 � � � � 6 � satisfies �, � $ 
 � ) � ' 
 , � $ and �, � $ 
 � � � ' ) ,
! ' )�� � � � .

Then � � � 
 � � � 
 defined in (6.39), (6.46) satisfies (6.40), (6.41) and � 6 � � �5�  �� J �  �� � , and,
since also  $�� � � 8 J � � � ���� 7 � ' ) for +�� ! ' )�� � , we have �� $� � � � � ���� 7 � ' ) for +�� ! ' )�� � . Then it
follows that ; � �� � � 
 �"�� � ' ) � � � ��� for all nodes of �� J � �� � �
and � � � 
 � � � 
 in (6.39), (6.46) satisfies all conditions (6.38) and also � ;"� � � � 
 � � � 
 � ����$� ' )
for � � � ��� , �� node of

� J . �
6.c.(iii) Conclusion

The corner and boundary correctors are constructed with the same technique as in 6.c(i) for the
primary interpolants. All our axioms are then satisfied.



�
7. CONCLUDING REMARKS 39

7 Concluding Remarks

In the present paper, we have proved exponential convergence of conforming ��� -FE approxi-
mations for the weighted regularization of the time-harmonic Maxwell equations in polygons.
Let us conclude by emphasizing some points from the technical discussion of the preceding
sections.

We assumed that the exact bilinear form of the weighted regularization (1.3) for Maxwell’s
equations can be computed in our ��� -FEM – a rather strong assumption since the element stiff-
ness matrices contain the possibly non-polynomial weight function � & . Constraining the ��� -FE
approximations to vanish in the terminal layer, using mesh axiom ( � � ) and the coercivity of
the bilinear form in (1.3), a Strang-type perturbation argument together with classical error es-
timates for Gaussian quadrature of analytic functions shows that the exponential convergence
rates are preserved even in the presence of numerical integration by product Gaussian rules with
a (fixed) amount of overintegration.

Our ‘ ��� -axiomatic approach’ contains a simple construction of ��� -interpolation operators
in the terminal mesh layers which vanish identically there. This eliminates the necessity of error
bounds of low order interpolants in the terminal layer by Hardy-type inequalities.

The ��� mesh and element classes admissible in the present convergence analysis are – even
when considered for standard elliptic boundary problems – more general than those previously
given (e.g in [25, 26]). In particular, the ��� -convergence results in [25, 26] are special cases
of our Axioms on meshes and local polynomial spaces. The  $, -conforming ��� -interpolant on
bilinearly mapped quadrilateral meshes which is needed in the approximation of the potentials
implies also exponential convergence of the ��� -FEM for the biharmonic problem on mapped
quadrilaterals in 2-d. The construction of  , -conforming ��� -interpolants on nonaffine, bilin-
early mapped geometric meshes of quadrilaterals is, to our knowledge, new and implies expo-
nential convergence of ��� -FEM for Kirchhoff type plate models. This generalizes what has
been known for triangular meshes [27].

Moreover, the results are not limited to geometric meshes of type a), b) and c) – in fact, our
proof technique gives exponential rates of convergence also on geometric mesh families with a
mixture of any of the above element types, as e.g. triangles and bilinearly mapped quadrilater-
als, of triangles and affine quadrilaterals with hanging nodes. Our concept of ‘semi-reference
elements’ allows also to treat curved boundaries for domains which are parametrized by a fixed
number of analytic patch maps stemming, for example, from NURBS-type CAD models of the
computational domain. This is confirmed by numerical experiments in [22].

8 Appendix: polynomial interpolants and trace liftings

We gather in this section the technical material relating to projection operators and trace liftings
in polynomial spaces necessary for the proof of the previous results. This material mainly comes
from [27, 32].

8.a Polynomial approximation results in one dimension

Let �� ' � � � � � � and �+� ) be a polynomial degree and � 	 the set of all polynomials of degree
at most � in �� . We have the following basic approximation result [32], Theorem 3.3.
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Lemma 8.1 i) Every � 	 � � ���� � can be written as Legendre series

� ����� ' �C
� E ! � � & � ����� � � � '

� � � �
�

 ,
� ,
� ����� & � ����� ��� � (8.1)

which gives sense to the operator ��	 defined as the truncated Legendre series

� � 	 � � ����� ' 	C
� E ! � � & �!� ��� 	 � 	 � (8.2)

ii) If � 	 + � ���� � , � � � integer, then there holds the estimate

�/� � � 	 � � � �  � �� 
 � � � � � � � � �
� � � � � � � � �/� � � 
 � � �  � �� 
 � ) � �"� � � � � (8.3)

Let
� � ) be an integer. We need a projection operator � 	 � which is stable in + � J , norm

(and satisfies error estimates for this norm too) and which keeps unchanged the traces in
� � up

to the order
�

. We start by defining the restriction . � 	 � of � 	 � to + � J ,! � ���� . We recall that� � 	 + � J ,! ���� ��
�� ; $ ��� � � � � ' )�� ! ' )���� ��� � � � (8.4)

Since � � � J , 
 	 � � � �� � we can define .� 	 � � as

� .� 	 � � � ������
 '  �
� ,

 � �
� ,
��� �  �

�
� ,

� 	 � � � , � � � J , 
 ��� � J , ����� � J , ��� � � ������� , � (8.5)

It is obvious that � ; $ . � 	 � � � � � � � ' ) for
! ' )������ � � � . Integrating by parts on �� and using

(8.4) we find that � � � J , 
 is orthogonal to �
�
, therefore, if � � � � � � �

, �!	 � � � , � � � J , 
 is also
orthogonal to �

�
. Integrating by parts in (8.5) with � ' � , we can deduce that � .� 	 � � � � � � ' ) .

We prove similarly that the other derivatives in � are zero:� � 	 + � J ,! � �� � 
 � ; $ .� 	 � � � � � � � ' )�� ! ' ) ������� � � � (8.6)

We reduce � 	 + � J , ���� � to a function + � J ,! ���� � by means of the Hermite type interpolant + � :

Lemma 8.2 Let
� � ) be an integer. For every � 	 + � J , � �� � there exists a unique + � � 	 � � � J ,

such that
� ; $ + � ��� � � � � ' � ; $ ��� � � � � � ! ' )���� ��� � � � (8.7)

The operator + � is stable in + � J , norm:

� + � � � > � � � � �� 
 � � � �/� � > � � � � �� 
 � (8.8)

This follows directly from the unisolvency of the conditions (8.7) for interpolation in � � � J , .
Let � 	 + � J , � ���� . We set for �+��� � � � :

� 	 � � 
 ' + � ��� .� �	 ��� � + � ��� � (8.9)
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Let us denote �"� + � � by .� for short. Since .� belongs to + � J ,! � �� � , .�"� . � 	 � .� also belongs to
+ � J ,! � �� � and the Poincar é inequality yields

��; $ � .� � .� 	 � .��� � �  � �� 
 � � � � .� � � J , 
 � � .� 	 � .��� � � J , 
 � �  � �� 
 � ! ' )�������� � � � � � (8.10)

Thus we find that for a constant � � independent of � there holds

��; $ � .� � . � 	 � .��� � � �  � �� 
 � � �� � .� � � J , 
 � � 	 � � � , � .� � � J , 
 � � � �  � �� 

� � �� � � �

� � ��� �
� � � � � � � � � .� � � J � J , 
 � � �  � �� 
 (8.11)

for ) � � � � � �
, where we used (8.3) with .� � � J , 
 in place of � and � � � � � in place of � .

Since � � � 	 � � ' .� � .� 	 � .� , we then obtain for
� � �"� � � �

:

��; $ ��� � � 	 � ��� � � �  � �� 
 ' ��; $ � ��� � + � ��� � .� 	 � ��� � + � ��� � � � �  � �� 

� � �� � � �

� � � � �
� � � � � � � � ��; � J � J , ��� � + � ��� � � �  � �� 


� � �� � � �
� � � � �

� � � � � � � � �/� � � J � J , 
 � � �  � �� 

since � � � � � and ; � � J � + � � -) . We have shown

Theorem 8.3 Let
� �) . Then, for any � such that ��� � � � � there exists an interpolant � 	 �

from + � J , ���� � into ��	 such that

; $ � � 	 � � � � � � � ' ; $ � � � � � � ! ' ) ������� � � (8.12)

and such that there hold the error estimates any � such that
� � �"� � � �

�/� � � 	 � � � � > � � � � �� 
 � � �� � � �
� � ��� �

� � � � � � � � �/� � � J � J , 
 � � �  � �� 
 � (8.13)

We finally record a stability bound for the interpolant � 	 � .

Proposition 8.4 For �+��� � � � there is � � � ) independent of � such that

� � 	 � � � >�� � � � �� 
 � � � �/� � >�� � � � �� 
 � (8.14)

PROOF. Thanks to (8.9) we obtain

� � 	 � � � > � � � � �� 
 ��� � .� 	 � ��� � + � � � � > � � � � �� 
 � (8.15)

Moreover (8.8) gives us

�/� � + � � � > � � � � �� 
 � � � � � ,� ���/� � > � � � � �� 
 � (8.16)
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Since .� 	 � ��� � + � ��� 	 + � J ,! ���� � , we get with the help of the Poincar é inequality

� .� 	 � ��� � + � ��� � > � � � � �� 
 � � �� ��; � J , .� 	 � ��� � + � ��� � �  � �� 

' � �� � � 	 � � � , � ; � J , ��� � + � ��� � � �  � �� 

� � �� ��; � J , ��� � + � ��� ���  � �� 
 � � �� �/� � + � � � >�� � � � �� 
 �

We conclude with inequalities (8.15) and (8.16).

8.b Polynomial approximation in two dimensions

Polynomial approximations in two dimensions will be obtained by tensor product construction:
Set �� ' �� , # �� � in what follows and denote by � 	 � � , , � 	 � � � the interpolation operators in (8.9)
applied with respect to � , ��� � . Define also for � � )

� 	 ' � �9
 + � � 7 , � $ � �-) � +�� ! � � ��'�� 	 ���� , � � � 	 ���� � �
and the Sobolev spaces 0 � � �� � of functions with mixed highest derivative, 
 ' � 
 , � 
 � � ,

+ � ���� � ' � � 	 � � � �� ��
 ; � � 	 � � � �� � � �-) � � 7 � 
�7���� (8.17)

equipped with the norm �/� � � > � � �� 
 ' � !� � �  � � ��; � � � � �  � �� 
 �
Obviously, for every integer 
 � ) , we have the embeddings + � � � �� � � + � � � � �� � � + � � �� � �

and for 
 � � we have the continuity property + � � � � �� �%�  ��� , � �� � .
We define for � 	 + � J , � � J , ���� � and � ��� � � �

� 	 � � 
 ' � � 	 � � , � � 	 � � � ��� 	 � 	 � (8.18)

Then we have

Theorem 8.5 For any
� � ) , ��� � � � � , � 	 � is well defined and bounded from + � J , � � J , � �� �

into � 	 . Moreover, for ) � ! , � ! � � �
holds

� ; � $ � � $  
 � 	 � ��� � � � � � � � ' � ; � $ � � $  
 ��� � � � � � � � � (8.19)

and we have for any � , � � � such that
� � � , � � � � � � �

and for any � 	 + � � J � J , � �  J � J , � �� �
the following error estimates with a constant � � independent of � , � � � and of � :

�/� � � 	 � � � � >�� � � � � � � � �� 
 � � �
� � � � � � � , � �� � � � � � , � � �  � � J

� J ,, � � � > A � � � � � �� 

� � � � � � � � � �
� � � � � � � � � �  �

 J � J ,� � � � >�� � � � A ���� 
�� � (8.20)
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PROOF. By (8.18), we may write for
! ' � ! , � ! � � such that

!
, �
! � � � � � (with � 4 � denoting

the
� � � �� � norm) and using the univariate bounds (8.13) and (8.14)

��; $ ��� � � 	 � ��� � � ' �  $ �,  $
� ��� � + � , � � 	 � � � � � + � , � � 	 � � � � � � 	 � � , � � 	 � � � ��� � �

� � � �  $ �, � � � 	 � � � �� $ �, ��� � � > A � �  ���� 
 ���  $ � � 	 � � � �  $ �, � �  $ �, � � 	 � � , ��� � � � �
� � ����+ � � � � 	 � � � � �� $ �, ��� � � > A � �  � �� 
 � � � � �  $ �, ��� � � 	 � � , ��� � � > A � � � � � �� 

� � �

� � � � � � � � � �
� � � � � � � � � �  $ �,  �

 J � J ,� � � � � � � � � � � , � �� � � � � � , � � � 
� J ,�  � � J � J ,, � � � �

which proves (8.20).

8.c Polynomial trace lifting in a square

We present polynomial trace liftings from [27]. The construction is based on the polynomials, � � 7 	 � � � J , introduced in (6.1).

Proposition 8.6 Let � ' � )�� � � � and 6 ' � ��� , � ) � 
 ) �(� , � � � . Let us fix an integer
� � )

and fix + , ) � + � �
. Let for �+��� � � � a polynomial 
�7 � � , � be given in ��	�� 6 � such that


 � $ 
7 ' ) on  6 ' � )�� � � � ) � ! � � � (8.21)

Then there exists a polynomial � 7 ��� , �.� � � of degree � in � , and of degree � � �� in � � such
that

 7� � 7 �� � ''
'7 �  $� � 7 �� � ' )�� �"! �' + � and  $� � 7 �� � � & � ' ) � �"! ' )���� ��� � � � (8.22)

Moreover, there is � � � ) independent of � such that the following estimate holds

� � 7 � > � � � � � 
 � � � � 
'7 � > � � � � � 
 � (8.23)

PROOF. We set � 7 ' , � � 7 � � � � 
'7 � � , � . Then (8.22) holds and (8.23) follows from the equality�  � � 7 � �  � � 
 ' �  � �, 
'7 � �  � � 
 �  �
� ,%7 � � � �  � � 
 �

8.d Polynomial Trace Lifting in a triangle

The lifting in a triangle is obtained as in [27].

Proposition 8.7 Let
� ' � � � , ��� � � 
 ) � � , � � � ) � � � � � , � and let 6 be its lower edge� ��� , � ) ��
 ) � � , � � � . For a fixed + , ) � + � �

let 
�7 	 � 	 � 6 � be given, � � �
�

, such that


 � $ 
7 � ) � ' ) for ) � ! ��� � � + (8.24)


 � $ 
7 � � � ' ) for ) � ! � � � (8.25)

Then there exist � 7 � � , ��� � � of degree � in � , and of degree � � � � in � � such that

 7� � 7 �� � ''
%7 �  $� � 7 �� � ' )�� �"! �' +�� and  $� � 7 �� � ��& � ' )�� �"! ' ) ������� � � � (8.26)
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and there is � � � ) independent of � such that

� � 7 � >�� � � � � 
 � � � � 
'7 � >�� � � � � 
 � (8.27)

PROOF. Set � 7���� , ��� � � ' � 7 , , � � 7 � � � � � 
'7���� , � . By (8.24), 
'7 � � 7 � ' � � � � 7 J ,, �'7 ��� , � for some��7 	 ��	 � � � J 7 � 6 � , and therefore � 7 ��� , ��� � � is a polynomial in � , and � � . The first part of (8.26)
is evident, and the second part follows from (6.1):

 $� � 7 �� � '  $� � 7 � � , ��� � � �� �  E ! ' � 7 , 
'7 � � , � � � $, , � $ 
� � 7 � ) � ' 
�7 $ � 7 � $, 
'7���� , � �
To show (8.27), note that for any ) � ! � � � �

�  $� � 7 ��� , �.� � � � �  � � 
 ' �#� 7 � $, , � $ 
7 < � �� , L 
'7���� , � �
�  � � 
 �

and similar expressions for any derivative  � � 7 . By (8.24), 
'7 	 + � J ,! � � � , and (8.27) follows
from Hardy’s inequality in + � J ,! ��� � .
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[6] I. BABUŠKA, B. Q. GUO. Regularity of the solution of elliptic problems with piecewise analytic
data. II. The trace spaces and application to the boundary value problems with nonhomogeneous
boundary conditions. SIAM J. Math. Anal. 20(4) (1989) 763–781.
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[8] I. BABUŠKA, M. SURI. The � - and � - � versions of the finite element method, an overview.
Comput. Methods Appl. Mech. Engrg. 80(1-3) (1990) 5–26.
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