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Abstract

In this work we study standard Euler updates for simulating stopped diffu-
sions. As an immediate application we discuss the computation of first exit
times of diffusions from a domain. We focus on one dimensional situations and
show how the ideas for the simulation of killed diffusions can be adapted to
this problem. In particular, we give a fully implementable algorithm to com-
pute the first exit time from an interval numerically. The Brownian motion
case is treated in detail and extensions to general diffusions are given.
Special emphasis is given to numerical experiments: For every ansatz, we in-
clude numerical experiments confirming the conjectured accuracy of our meth-
ods. Our algorithm is of weak order one in a weak sense. Comparisons with
other algorithms are shown. Results that are superior to those obtained with
other methods are presented. When approximating a first hitting time distri-
bution the results obtained with our algorithm are much better than those
achieved with other methods.
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1 Introduction

1.1 Motivation

The simulation of a stopped diffusion with high accuracy is of significant
interest in many applications. Often, a good approximation of the first exit
time of a stochastic process from a domain is needed to get good convergence
in numerical simulation. A typical application is the probabilistic solution of
Dirichlet problems in bounded domains. There, applying the Feynman-Kac
formula to get a probabilistic representation of the solution, the first exit
time plays a crucial role. Roughly speaking, a simulation procedure works
as follows: A path (a trajectory of a stochastic process) connected to the
differential operator of the partial differential equation is simulated and one
integrates along this path. The integration procedure has to be stopped when
the path leaves the domain for the first time, and the boundary condition is
evaluated at this first exit point. Approximating the mathematical expectation
by a finite mean over a (large) sample then yields the (point-wise) Monte-Carlo
approximation to the solution of the Dirichlet problem.
We recall this formulation briefly and introduce some notation. Let D be
a bounded domain in n-space with smooth boundary ∂D and consider the
following boundary value problem (BVP). For simplicity, we focus on Poisson’s
equation:

1

2
4 u(x) + g(x) = 0, x ∈ D, u(x) = ψ(x), x ∈ ∂D. (1)

Consider the stochastic process

Xx(t) = x +
∫ t

0
dW (s), x ∈ D, (2)

where the integral is a stochastic integral in the sense of Itô and therefore
(Xx(t))t≥0 is a Brownian motion starting at x [1,2]. We introduce the first exit
time of (Xx(t))t≥0 from D:

τ(x) = inf{t > 0 : Xx(t) 6∈ D} = inf{t > 0 : Xx(t) ∈ ∂D}. (3)

The connection to the BVP (1) is given by the following version of the Feynman-
Kac formula: The solution u(x) has the stochastic representation (under some
regularity and smoothness conditions on g, ψ and D, see [3])

u(x) = E
[
ψ(Xx(τ(x))) +

∫ τ(x)

0
g(Xx(s)) ds

]
. (4)

Sometimes we find it more convenient to write u(x) = Ex[ψ(X(τ)) + f(τ)]
where df = g(X(t)) dt with f(0) = 0. In this notation, the expectation is
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taken with respect to the measure Px connected to the solution of dX = dW
with X(0) = x (and implicitly τ = τ(x)).

Clearly, the Feynman-Kac formulation (4) reveals its full strength in numer-
ical simulations mainly (but not only) in high dimensions. Nevertheless, we
concentrate on one dimensional settings here, because: (i) the simple one di-
mensional situation is already interesting in its own right and contains the
main difficulties, and, (ii) we hope to be able to apply a big part of the ideas
presented here also in higher dimensions. If n becomes large, the domains D
are usually smooth with boundaries. Near to the boundary it looks flat. There,
locally, the problem of a random walk approaching the boundary resembles
to some extent that of the one dimensional situation. However, for domains
with corners the situation becomes more complex – but this topic will not be
addressed here.

The algorithm we will construct exploits the fact that the stochastic differen-
tial equations (SDEs) need only be approximated numerically in a weak sense
with a finite summation arithmetic mean approximating the expectation.

1.2 Difficulties in numerical simulation

At a first glance the numerical approximation of u(x) using (2,4) involves only
the numerical solution of SDEs and averaging over a large sample (Monte-
Carlo method [4]). This is nowadays a standard procedure in many applica-
tions, see [5,6]. Nevertheless, if boundaries are involved, the situation is much
more subtle.

The Euler scheme (or Euler-Maruyama scheme), due to its simplicity, is of
great interest. Applied to above situation with a fixed time step of size h, it
takes the form [5,6] X0 = x, f0 = 0 and

Xk+1 = Xk + ∆Wk and fk+1 = fk + g(Xk)h, for k = 0, 1, . . . . (5)

Here, an n-vector ∆Wk = W (tk+1)−W (tk) of i.i.d. normal random variables
with mean 0 and variance h (Gaussian random variables) is generated in each
time step. We denote this distribution by the symbol N (0, h), ∆Wk ∼ N (0, h).
The main difficulty presents itself: When should the (numerical) integration be
stopped? In other words: How shall X(τ) and in particular τ be approximated?
We shall concentrate on the approximation of τ in this article, corresponding
to a constant boundary condition ψ in (1).

For a simple exposition of the main concepts, we consider D = (−∞, b) with
x < b in what follows. The naive approach is to stop as soon as Xk ≥ b and to
take as an approximation for the first hitting time of level b either τ ≈ (k−1)h,
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τ ≈ kh or a certain value between these two values. The drawback of this ap-
proach is the loss of accuracy: Although the Euler scheme is of weak order one
for a fixed final time T with M + 1 discretization points (giving h = T/M in
our notation), the rate of convergence (even in the weak sense) in the pres-
ence of a boundary reduces to O(

√
h), i.e., it is of weak order one half [7]. The

use of exact Gaussian random variables for the increments of the Brownian
motion in (5) causes the following important drawback: The resulting discrete
time random walk is no longer restricted to the closure of the domain under
consideration. In particular, (X(t))t≥0 (which we try to approximate) might
become larger than b within any temporal discretization subinterval: Although
the discrete random walk resulting from the Euler approximation (5) is exact
in distribution sense, it gives the process values only at discrete tk = kh. In
between, for tk < t < tk+1, we have no information on the behaviour of the
continuous process X(t) that we wish to approximate. It is well known [8,9,7]
that in numerical simulation one has to take into account the fact that any-
where near the boundary the process might have left D and come back within
step h: Even if both Xk and Xk+1 < b, it is not unlikely that X(t) ≥ b for some
t ∈ (tk, tk+1) – the process X(t) might follow an excursion within h, implying
τ < tk+1. Obviously, the trivial stopping procedure (stopping only if Xk ≥ b)
will overestimate τ , as no intermediate excursions are monitored.

1.3 An exit probability approach for killed diffusions

To overcome this problem, instead of the unbounded increments ∆Wk ∼
N (0; h), bounded approximations can be used [10,11], or a quantization ap-
proach is adequate, see [12] and references therein.
Nevertheless, applying the usual Euler scheme (with ∆Wk ∼ N (0, h)) can
have its advantages as well. To restore usual first order convergence (in the
weak sense), a simple hitting test was introduced by various authors, see [8,9]
and references therein. This test has to be performed after each time step
with Xk+1 < b. It estimates the probability that an excursion occurred within
(tk, tk+1) if both Xk, Xk+1 < b and leads to improved statistics.
We summarize the principal idea of this approach for killed diffusions: Let a
fixed T <∞ be given and suppose that we are interested in the approximation
of Ex[F (X(T ))1T<τ ] for some measurable F : Paths that reach level b up to
(and including) time T are killed, that is, they do not contribute to the expec-
tation. If we have, after an Euler step tk → tk+1 = tk + h < T , that Xk+1 ≥ b
then, obviously, τ < T and the corresponding path is killed. To take into ac-
count a possible excursion across level b if Xk+1 < b one proceeds as follows:
At the time the test is performed (after a step), Xk+1 is known. Therefore, the
bridge process [13, p.67] pinned in time-space coordinates at (tk, Xk) and at
(tk+1, Xk+1) has to be considered (and will be denoted by XXk,h,Xk+1

(s)). To
check for a possible excursion, an i.i.d. random number distributed uniformly
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in (0, 1) (denoted by u ∼ U) is generated and the path is killed if

u ≤ P
[

sup
tk≤s≤tk+1

XXk,h,Xk+1
(s) ≥ b

]
= e−

2
h

(b−Xk)(b−Xk+1), u ∼ U . (6)

Gobet proved that first order weak convergence can be obtained for the Eu-
ler scheme when applying this test for killed diffusions in the presence of a
boundary [7], see also [14].

1.4 Outline

The purpose of this work is to modify these ideas to the case of stopped (rather
than killed) diffusions. In this case, we try to approximate expectations of the
form Ex[F (X(τ), τ)] (see (4)). Our interest is hence in the actual value of
τ rather than being satisfied by the assertion that (or if) τ < T for some
predefined (deterministic) T . In other words, one wants to know (again in a
statistical sense) when the first exit time actually took place – in contrast to
asking only if the exit did already occur. To accomplish this task, we construct
in a first stage the density of τ of the bridge process under consideration
and sample in a later stage a random number from it. We show how a new
interpretation of the exit probability of the bridge process (6) as a distribution
leads to more accurate results (yet of the same order) for exactly the same
computational cost. We then further improve our algorithm for the case that
a discrete Xk+1 falls outside D. In that case, clearly τ ≤ tk+1. Nevertheless,
we show how to find an approximation for τ ∈ (tk, tk+1].
We start with the Brownian motion case in Section 2. The simplicity of this
process will allow us to present our ideas precisely without obscuring details
of notation. We then extend these ideas to general autonomous diffusions in
Section 3. We always consider the two possible cases after a step: (i) Xk+1 ∈ D
(in Sections 2.1 and 3.1 respectively) and (ii) Xk+1 6∈ D (in Sections 2.2 and 3.2
respectively). We show results from numerical experiments in Section 4 where
we first discuss a statistical study comparing various algorithms (section 4.1)
and later show results of some applications to the Feynman-Kac formulation
(section 4.2). We conclude in Section 5.

2 The Brownian motion case

To simplify notation we write y = Xk and z = Xk+1. Recall that for a Brow-
nian motion application of the Euler scheme with step size h > 0 means that
z = y + ξ with ξ ∼ N (0, h). In what follows we denote the corresponding
Brownian bridge pinned at (tk, y) and at (tk + h, z) by Xy,h,z(s) and its law
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by Py,h,z[·]. Additionally, τ denotes the first hitting time of level b.

2.1 Inside: y, z < b (test for an excursion)

Recalling (6) we find the distribution, F , of the first hitting time τ = τ(y)
wrt. Brownian bridge measure for t > 0 as

F (t) ≡ Py,h,z[τ ≤ t] = e−
2
t
(b−y)(b−z) . (7)

The idea is now to generate a random variable T1 with distribution (7). To
this end, invert (7) [5, p.12],

T1 = −2(b− y)(b− z)
log u

, u ∼ U . (8)

The path hit b between tk and tk + h if T1 ≤ h (in a statistical sense). In
that case, b was hit for the first time at t = tk + T1 and we approximate
τ ≈ (k − 1)h+ T1.
The application to the approximation of f(τ) using (5) (for example) is now
straightforward and we show it only for this variant of our algorithm:

f(τ)
(5)≈ h

k−1∑

i=0

g(Xi) + T1g(Xk). (9)

In what follows we will not write down these approximations explicitly but
only show how to generate the last summand (i.e. its length of integration).

2.2 Outside: y < b ≤ z (compute first exit time)

We first construct the needed density. Using absolute continuity of the mea-
sures Py and Py,h,z we have [13, p.67]

Py,h,z[τ ∈ dt] = p(h; y, z)−1p(h− t; b, z)Py[τ ∈ dt]

where p(t; x, y) denotes the Gaussian transition density: p(t; x, y) dy = Px[Wt ∈
dy]. Inserting [13, (1.2.0.2),p.198] for Py[τ ∈ dt] gives with y < b

Py,h,z[τ ∈ dt] =
b− y√

2πt3

√
h

h− t exp

(
− (z − b)2

2(h− t) +
(z − y)2

2h
− (b− y)2

2t

)
dt

(10a)
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and after some algebra

Py,h,z[τ ∈ dt] = (b− y)

√
h

2πt3(h− t) exp

(
−((b− y)h− t(z − y))2

2ht(h− t)

)
dt.

(10b)

We remark that some simple manipulations in the exponent show that this
formula reduces for h = 1 and y = 0 to [15, formula (2.1), Lemma 3].

We now show how to sample from (10). To simplify notation, we set y = 0
and h = 1. We say that a random variable X follows the inverse Gaussian
distribution with parameters γ > 0, δ > 0 (and write X ∼ IG(γ, δ)) if it has
the density [16]

P[X ∈ dx] =

√
γ

2πx3
exp

(
−γ(x− δ)2

2δ2x

)
dx, x > 0.

The basic observation is that if X ∼ IG(b2, b/(z − b)) then t = X/(1 + X) is
a random variable with density (10) (with h = 1, y = 0).
To see this, define p(t) for 0 < t < 1 as P0,1,z[τ ∈ dt] = p(t)10<t<1 dt (see
(10)). By the substitution x = t/(1− t) ≥ 0 with dt = dx/(1 + x)2 we find

p(t) dt =
b√
2π

(1 + x)2

x
√
x

exp

(
−(b− xz/(1 + x))2

2x/(1 + x)2

)
dx

(1 + x)2

=
b√

2πx3
e−

b2

2x(1− z−b
b
x)

2

dx.

The claim now follows immediately with γ = b2 and δ = b/(z − b).
For the general bridge, we find analogously that if X ∼ IG((b − y)2/h, (b −
y)/(z−b)), then the random variable t = hX/(1+X) has density (10). Michael
et al. presented an algorithm to generate random variables Xs following the
inverse Gaussian distribution [17, p.89].

In the case that z = Xk+1 > b we therefore generate X ∼ IG((b− y)2/h, (b−
y)/(z − b)) using [17], set T2 = hX/(1 + X) and stop integration at tk + T2

(analogously to (9)).

3 Extension to general diffusions

We now expand the ideas presented for Brownian motion in Section 2 to
general diffusions given by (compare with (2))

Xx(t) = x +
∫ t

0
µ(Xx(s)) ds+

∫ t

0
σ(Xx(s)) dW (s), σ(·) > 0, (11)

6



i.e., Xx(t) solves the (autonomous) SDE dX = µ(X) dt + σ(X) dW with
X(0) = x. The Euler approximation with step size h > 0 then reads (compare
with (5))

X0 = x and Xk+1 = Xk + µ(Xk)h+ σ(Xk)∆Wk, for k = 0, 1, . . . (12)

with corresponding continuous-time approximation (frozen coefficient approx-
imation)

X(t) = Xk + µ(Xk)(t− tk) + σ(Xk)(W (t)−W (tk)), t ∈ [tk, tk+1).

To derive our formulae we therefore consider the constant coefficient diffusion

Xµ,σ
x (t) = x + µt+ σW (t), t > 0.

We further write Xµ,σ
y,h,z for the corresponding bridge pinned at y and z with

length h and denote its law by Pµ,σy,h,z.

Remark 1 In the context of approximating killed diffusions it was pointed out
that this frozen coefficient approximation gives incorrect asymptotics and that
more sophisticated approximations should be used [18,19]. The application of
these ideas to stopped diffusions remains a topic of ongoing research.

3.1 Inside (test for an excursion)

Consider the function f(u) = u/σ and define D(t) = f(Xµ,σ
x (t)). By Itô’s

formula [13,2], D satisfies dD = µ/σ dt+ dW with D(0) = x/σ, i.e. (D(t))t≥0

is a Brownian motion with drift ν = µ/σ (starting at x/σ), see [13, I.IV.5.
and II.2.]. As before let τ be the first hitting time of level b > y. Obviously,

Pµ,σy,h,z [τ ≤ h] = P
[(

sup
0≤t≤h

Xµ,σ
y,h,z(t)

)
≥ b

]
= P

[(
sup

0≤t≤h
Df(y),h,f(z)(t)

)
≥ f(b)

]
,

where Df(y),h,f(z) denotes the version of D which is pinned at f(y) and f(z)
and has length h. Now (we set v = f(y), w = f(z) and c = f(b))

P
[

sup
0≤t≤h

Dv,h,w(t) ≥ c

]
= Pv

[
sup

0≤t≤h
D(t) ≥ c;D(h) ∈ dw

]

=
Pv
[
sup0≤t≤hD(t) ≥ c,D(h) ∈ dw

]

Pv [D(h) ∈ dw]
.

Inserting [13, (2.1.0.6),p.250 and (2.1.1.8), p.251] yields

Pµ,σy,h,z [τ ≤ t] = e−
2
tσ2 (b−z)(b−x), (13)
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which is equivalent to [7, p.169]. Inverting (13) we get (compare with (8))

T1 = −2(b− y)(b− z)
σ2 log u

, u ∼ U , (14)

where (we recall that) σ = σ(y).

3.2 Outside (compute first exit time)

For y < b < z we proceed similarly to Section 2.2. We have for 0 ≤ t < h the
density [20, (3.7), p.371]

Pµ,σy,h,z[τ ∈ dt] =
pµ,σ(h− t; b, z)
pµ,σ(h; y, z)

Pµ,σy [τ ∈ dt] (15)

where pµ,σ(t; x, y) denotes the transition density of the solution to dX =
µ dt+ σ dW . Solving Kolmogorov’s forward equation one finds

pµ,σ(t; x, y) =
exp

(
− (y−µt−x)2

2tσ2

)

√
2πtσ2

.

To find the density of the first hitting time one solves for α > 0 the differential
equation [13, p.18]

[
σ2

2

d2

dx2
+ µ

d

dx
− α

]
u(x) = 0.

and combines the increasing and decreasing solutions (denoted by u↑ and u↓

respectively) to get the Laplace transform of τ

Eµ,σy
[
e−ατ

]
=




u↑(y)/u↑(b), y ≤ b

u↓(y)/u↓(b), y ≥ b





= e
µ

σ2 (b−y)−
√
µ2+2ασ2

σ2 |b−y| .

Inverting it (using [13, Appendix]) we get the density (recall that b > y)

Pµ,σy [τ ∈ dt] =
b− y√
2πt3σ2

e−
(b−µt−y)2

2tσ2 dt.

Inserting everything into (15) yields

Pµ,σx,h,z [τ ∈ dt] =

b− y√
2πσ2t3

√
h

h− t exp

(
− 1

2σ2

(
(z − b)2

(h− t) −
(z − y)2

h
+

(b− y)2

t

))
dt.

Recalling (10) we thus generate X ∼ IG((b− y))2/(hσ2), (b− y)/(z− b)) and
set T2 = hX/(1 +X) (where again σ = σ(y)).
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4 Numerical experiments

We show results of extensive tests performed with the algorithm derived in
the previous Sections. For weak approximations, path wise convergence is
not required, but a good approximation of the distribution is important. In
our case, special emphasis is on the computation of first exit times. We thus
start (in Section 4.1) with a statistical test where we compare the numerically
obtained density of a simple first hitting time (i.e. a histogram) with the
known analytical density. We compare our algorithm with a variety of other
approaches. At a later stage (in Section 4.2), we show the performance of our
algorithm when applied to the numerical solution of some one dimensional
Dirichlet problems via the stochastic representation of the solution.

4.1 Approximating the density of the first hitting time: a statistical compar-
ison

We compute numerically the first hitting time (denoted by τ) of level b = 1
of a Brownian motion. The corresponding density is

P0 [τ ∈ dt] =
e−

1
2t√

2πt3
dt, t > 0. (16)

It has its maximum at t = 1
3

where it forms a non-symmetrically shaped peak,
and it has a very long tail. We performed two tests checking the approximation
of the peak and of the tail respectively (peak test and tail test).

4.1.1 Setup

We briefly describe the precise setup for the statistical tests. As E0[τ ] = ∞
and P0[τ ∈ dt] ≈ 0 for t ≈ 0 we compute a histogram only for t ∈ [T0, T1] with
0 ≤ T0 < T1 <∞ fixed. If the size of the bins is very small, we choose T0 > 0
such that every bin is hit with sufficiently high probability. If a simulated
path ran longer than T1 it was stopped and thus contributes only to the tail
of the corresponding histogram (which was not included into the χ2-test). To
measure the quality of the approximations we performed a χ2-test over two
different sets of (equidistant) time intervals (the bins of the histogram). As a
measure of approximation we computed [21]

χ2 =
Nb−1∑

i=0

(Ni −Npi)2

Npi
(17)
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where Nb denotes the number of bins, N the sample size, Ni the number of
trials that fell in bin i and pi the relative expected frequency of bin i. Asymp-
totically, χ2 has a χ2-distribution with Nb − 1 degrees of freedom (DOFs).
For the peak (tail) test we have chosen the bins 0.05, 0.06, . . . , 1.0 (0, 1, . . . , 250)
and the sample size N = 1e5 (1e6).

4.1.2 Results

To get an impression of what can be expected with the chosen setup of the test
and the random number generator used, we started by sampling N random
numbers directly from the density (16). Inspired by the Box-Muller-method
to generate two normally distributed i.i.d. random numbers [5, p.13] we define
for u, v ∼ U and b 6= 0

s(u, v) =

(
b√

−2 ln u sin(2πv)

)2

, t(u, v) =

(
b√

−2 ln u cos(2πv)

)2

(18)

with 0 < s, t < ∞. It is easy to see that for b = 1 the random variables s, t
are i.i.d. with density (16).

We obtained the results shown in Table 1 when running the two tests.

Table 1
χ2 per DOF obtained when sampling directly (using (18)) from (16) for various
sample sizes N .

N = 1e4 N = 1e5 N = 1e6 N = 1e7

peak test 0.945 1.01 1.08 1.03

tail test 1.10 1.12 0.897 1.00

From the results in Table 1 we see that a χ2 per DOF of the order of unity
can be expected.

In order to thoroughly motivate the need for an exit test we start with the
results for the Euler method without any exit test, i.e. we stop (only) if Xk+1 ≥
1 and set τ = tk in this case.

Table 2
χ2 per DOF obtained with the Euler method without any exit test for various step
sizes h = 1/2k.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

peak test 7.62e3 5.89e3 4.15e3 2.51e3 1.29e3 5.57e2 1.60e2

tail test 6.29e2 3.85e2 2.31e2 1.35e2 7.56e1 4.18e1 2.22e1

From Table 2 we see that the simple Euler scheme gives very poor results. In
particular, it completely fails to resolve the peak at t = 1/3. In addition, the
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approximation of the tail is far from satisfactory. The poor resolution becomes
especially apparent, if we compare the results from Table 2 with the results
we obtained when applying our algorithm to the same test problem, see Table
3.

Table 3
χ2 per DOF obtained with our algorithm for various step sizes h = 1/2k .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

peak test 6.38e1 9.38e1 1.99e1 2.16 1.58 1.34 1.14

tail test 1.02 1.03 0.973 1.05 1.02 0.920 0.964

From Table 3 we see that our algorithm gives very good results: The tail of
(16) is approximated perfectly, independent of the chosen step size h, and the
approximation of the peak of this same density becomes better and better
as h is reduced (k increases). Note that the barrier is at b = 1 whereas the
peak of the density is at t = 1/3. Therefore, good approximation can only be
expected when (i)

√
h� 1 and (ii) h� 1/3 – and from Table 3 we see, that

a step size as big as h = 1/8 already gives reasonable results.

We next compare our algorithm with other approaches. To demonstrate the
superiority of our algorithm we show the ratio obtained when dividing the
χ2-value of the alternative approaches by the corresponding value of the ad-
vocated algorithm (the larger a value the poorer the corresponding result).
We start with algorithms applying a killing test. These perform the test (6)
if z = Xk+1 < 1 and stop (if the test evaluates successfully or if z ≥ 1) at tk,
tk+1/2 = tk + h/2 or at tk+1. Results from the peak test are in Table 4 and
those from the tail test in Table 5.

Table 4
Comparison of results of the peak test between various algorithms applying a killing
test and our algorithm (for various h = 1/2k).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

τ = tk 1.81e2 1.11e2 3.90e2 2.09e3 1.32e3 5.69e2 1.70e2

τ = tk+1/2 3.96e2 1.54e2 4.14e2 1.85e3 1.13e3 5.43e2 1.68e2

τ = tk+1 6.83e2 1.84e2 4.15e2 1.79e3 1.12e3 5.38e2 1.66e2

From Table 4 we see, that our algorithm gives much better results in the peak
test. We further note that for smaller step sizes (larger k) the other algorithms
show very similar (yet poor) results.
From Table 5 we see that for the approximation of the tail, stopping at tk or at
tk +h/2 is satisfactory whereas stopping at tk+1 deteriorates results especially
for large step sizes.

We next want to show that our test (see Section 2.1) already resolves the most
severe problems in approximating the peak of the density (16). We therefore
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Table 5
Comparison of results of the tail test between various algorithms applying a killing
test and our algorithm (for various h = 1/2k).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

τ = tk 1.02 1.07 0.971 1.03 0.919 1.22 1.06

τ = tk+1/2 1.02 1.07 0.971 1.03 0.919 1.22 1.06

τ = tk+1 2.25e3 5.93e2 1.15e2 2.30e1 6.58 2.73 1.55

applied our test (section 2.1) and stopped at T1 if T1 ≤ h. In the case that
z = Xk+1 ≥ 1 we stopped at tk or at tk+1/2 = tk + h/2 respectively. For
comparison we include further results when applying our test in conjunction
with Mannella’s approach [9] when z ≥ 1. We limit ourselves to the results of
the peak test, see Table 6.

Table 6
Comparison of results of the peak test between our algorithm and various algorithms
that generate T1 to test for an excursion (for various h = 1/2k).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

τ = tk if z ≥ 1 4.48e1 2.91e1 9.82e1 5.19e2 3.28e2 1.41e2 42.1

τ = tk+1/2 if z ≥ 1 1.00e2 3.86e1 1.06e2 4.67e2 2.79e2 1.37e2 4.17e1

τ from [9] if z ≥ 1 2.14 1.20 2.82 1.07e1 9.59 6.53 2.22

From Table 6 we see, that results are improved significantly when the test
from Section 2.1 is applied, yet none of the approximations when Xk+1 ≥ 1
reaches the quality of the algorithm that samples T2 (as derived in Section
2.2).

We conclude this Section by showing the comparison with results obtained
when applying the method of exponential time stepping [22,23]. This method
allows a killing test similar to (6). We approximated τ by k/λ, (k + 1)/λ or
by (k + u)/λ where the random time step is exponentially distributed with
parameter λ > 0 (the expected length of a time step is 1/λ) and u ∼ U . The
last approach is motivated by the fact that the first hitting time is independent
of the length of a time step. To compare with our algorithm we set λ = 1/h.
See Table 7 for the peak test and Table 8 for the tail test.
From Table 7 we see that the exponential time stepping method has problems
in approximating the peak of (16) if τ is approximated by the expected value of
either the beginning or the end of the time step. We speculate that this is due
to the smearing (around this expectation). Including additional randomness,
however, leads to much better results.
From Table 8 we see that all the variants of the exponential time stepping
method in discussion fail in approximating the tail of (16) for large step sizes
(small λ). Increasing λ, however, gives results that are comparable to the ones
obtained with our algorithm.
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Table 7
Comparison of results of the peak test between our algorithm and exponential time
stepping methods (for various λ = 2k = 1/h).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

τ = k/λ 2.00e2 9.81e1 3.08e2 1.75e3 1.60e3 5.91e2 1.74e2

τ = (k + 1)/λ 3.98e2 1.34e2 3.38e2 1.59e3 1.10e3 5.26e2 1.64e2

τ = (k + u)/λ 4.38 3.42 1.42e1 4.60e1 2.25e1 1.02e1 6.82

Table 8
Comparison of results of the tail test between our algorithm and exponential time
stepping methods (for various λ = 2k = 1/h).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

τ = k/λ 1.22e2 4.51e1 1.60e1 5.27 2.00 1.46 1.20

τ = (k + 1)/λ 2.16e3 6.97e2 2.02e2 4.76e1 1.24e1 4.26 1.97

τ = (k + u)/λ 1.22e2 4.51e1 1.60e1 5.27 2.00 1.46 1.20

4.2 Application to the Feynman-Kac representation

We show results when applying our method to the solution of ((·)′ = d/ dx(·))

σ(x)2

2
u′′(x)+µ(x)u′(x)+g(x) = 0, x ∈ D = (a, b), u(a) = u(b) = 0, (19)

with −∞ < a < b < ∞, σ(·) > 0, using the Feynman-Kac formulation (4)
with Xx(t) given by (11).

We apply the usual half-space approximation [7,24], i.e. an excursion test is
applied only to the closest boundary. If y (z) denotes the Euler approximation
at the beginning (end) of a step, and z ∈ D, this is the boundary point which
minimizes the sum of the distances to y and z. If this choice is not unique, we
simply choose b. If z 6∈ D, we choose b (a) to be the closest boundary if z ≥ b
(z ≤ a) in order to sample T2.

Compared methods: We always compare the results obtained with the fol-
lowing methods (recall that z = Xk+1):
T: The trivial Euler method which stops integration only if z 6∈ D and

approximates then τ ≈ tk.
K: The method which tests for an excursion with the killing test (6). We

show results from three variants which differ by the choice of the approx-
imation for τ if an excursion is detected or if z 6∈ D:
Kb: τ ≈ tk (beginning of the corresponding time step).
Km: τ ≈ tk + h/2 (middle of the corresponding time step).
Ke: τ ≈ tk+1 (end of the corresponding time step).
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S: Our algorithm, which samples T1 (see (8), (14)) to test for an excursion
and T2 if z 6∈ D (based on the inverse Gaussian distribution). We stop
integration at tk + T1 if an excursion is detected and at tk + T2 if z 6∈ D.

Symbols in plots: In our plots (Figures 1–3) we use the symbols summa-
rized in Table 9. Individual results are connected with a dotted line to guide

Table 9
Symbols used in the plots in Figures 1, 2 and 3 for the different methods tested

method T Kb Km Ke S

symbol ’∗’ ’�’ ’+’ ’×’ ’◦’

the eye.
Parameters in simulations: For D = (a, b) we always evaluate numerically
u(x) at x = 0 (top), at x = 0.9 ·b (middle) and at x = 0.99 ·b (bottom). Due
to the small magnitude of the errors we had to take very large sample sizes
in order to observe the convergence of the systematic errors: We show plots
of the relative errors versus step size h for the two sample sizes N = 1.6 e 7
(left) and N = 6.4 e 7 (right).

4.2.1 Brownian motion case

We start with the Brownian motion case, i.e. we set σ(x) ≡ 1 and µ(x) ≡ 0.
Then (19) reduces to Poisson’s equation (1) and Xx(t) is given by (2).

We show results for two variants, namely

D = (−1, 1), g(x) ≡ 1 =⇒ u(x) = Ex[τ ] (exit problem), (20a)

and

D =
(
−π

2
,
π

2

)
, g(x) = cos(x) =⇒ u(x) = 2 cos(x). (20b)

The results are shown in Figure 1 for (20a) and in Figure 2 for (20b).

From the plots in Figure 1 we see that for the constant coefficient case the
proposed method S (symbol ’◦’) indeed gives very accurate results. On the
other hand, it is again obvious that the Euler method without any corrections
(T, symbol ’∗’) gives very poor results (and this remark carries over to the
other examples whose results are in Figures 2 and 3).
Compared to the other methods tested we consider method S overall most
satisfactory: The resulting errors are always among the smallest ones obtained.
Although, for example method Km (symbol ’+’) shows a comparable behavior
for x = 0 and x = 0.9, this method is much less accurate for x = 0.99 (very
close to the boundary). There, method Kb (symbol ’�’) gives small errors for
relatively large step sizes h albeit at the price of a lower convergence order.
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Fig. 1. Relative error vs. step size h for test problem (20a).

4.2.2 General test problem

In this Section we consider (19) with

σ(x) = 2 + sin(x), µ(x) = − cos(x)

(
2 +

sin(x)

2

)
and g(x) = 2 cos(x). (21)
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Fig. 2. Relative error vs. step size h for test problem (20b).

For D = (−π/2, π/2) the analytical solution is u(x) = cos(x). Results are
shown in Figure 3.

From the plots in Figure 3 we see that all the methods that apply an a posteri-
ori test of some kind to test for a possible excursion yield very similar results.
Sometimes errors resulting from method S are smaller than those obtained
with all the other methods we tested, whilst in other tests methods Km or
Ke show the best results. Note that method S is never considerably worse
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Fig. 3. Relative error vs. step size h for test problem (21).

than any of the other methods. Therefore this method is our preferred choice
for the simulation of stopped diffusions.
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5 Summary

In this work, we presented an algorithm which leads itself to an efficient imple-
mentation for the simulation of stopped diffusions. Our approach used stan-
dard Euler updates and it was based on a method for the simulation of killed
diffusions. Instead of simply checking if a path has reached a certain level
within or at the end of a time step, we constructed a true stopping time to
stop the integration. To achieve this goal, we sampled random numbers having
approximatively the right distributions. In the case of diffusions with constant
coefficients, these distributions are by construction exact. This allowed us to
add a final Euler step of corresponding length to the simulated path and con-
nected integrals. We think that this is the right approach for approximations
in the weak sense. Our numerical tests showed evidence that the resulting
distributions and thereof constructed weak approximations are of very high
quality.
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