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Abstract

This paper describes a novel quadrilateral edge element discretisation of
Maxwell’s equations in which the effects of dispersion are minimised. A
modified edge finite element stencil is proposed and it is subsequently shown
how this can be expressed in terms of new material coefficients thus allow-
ing us to incorporate both Dirchlet and Neumann boundary conditions in a
natural fashion. To demonstrate the success of the proposed procedure, we
include a series numerical examples. First we apply the approach to plane
and circular wave propagation problems. Secondly, we apply the approach
to a series of electromagnetic scattering problems. For the electromagnetic
scattering computations, we monitor the effect of the modified edge finite
element stencil on the scattering width output. We use a hp–edge element
code as a benchmark for all our electromagnetic scattering computations.
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1 Introduction

The aerospace industry is interested in electromagnetic scattering problems where the wavelength of
the wave is short compared to the length of the scatterer. This problems is made more complicated
as the scatterer may contain multi–materials and have many sharp corners. In fact, the primary
interest lies in the accurate evaluation of the scattering width distribution, which can be computed
directly as an output of the scattering problem. This output represents the far field pattern of the
scatterer and may be used for the radar detection of civilian and military vehicles.

TheH(curl) conforming finite elements first introduced by Nédélec [20, 21, 22] are well suited to
such problems as these elements can readily handle material interfaces and boundary conditions. In
addition, the spurious modes which are known to occur when components of the field variables are
discretised by nodal finite elements do not occur with H(curl) conforming finite elements [23, 19].
Within the engineering community, these elements have become better known as edge elements.
This is in part due to the fact that the lowest order H(curl) conforming approximation has a
degree of freedom associated with each edge of the element.

When finite element methods are employed to solve wave propagation problems numerical errors
often occur. These errors are composed of two parts: Firstly, an error occurs due to interpolation
of the continuous solution by discrete functions. Secondly, there is a pollution effect which is due to
a phase lag between the computed and exact solution [9]. The pollution effect is often attributed to
the difference between the computational and exact wave numbers, also known as the dispersion.

Considerable success at minimising dispersion was obtained when hp–version H(curl) con-
forming finite elements were used to discretise Maxwell’s equations [13, 12]. Indeed, for meshes
composed of squares one can directly quantify the dispersion for a given mesh spacing h and poly-
nomial order p [24, 1]. Another interesting approach was proposed in [14] where modified H(curl)
conforming finite elements incorporating plane wave expansions were used. However this approach
encounted problems when singularities were present in the domain.

In this paper we propose an alternative approach, in which the dispersion is minimised for all
wave directions. The idea for this comes from the work of Babuska, Sauter and coworkers [3, 2] who
proposed the so called generalised finite element method for Helmholtz equation. In this approach
they were able to eliminate the dispersion for one–dimensional problems whilst minimise it for
two–dimensional problems. This was achieved by modifying the finite element stencil which results
from using standardH1 conforming 4–noded quadrilaterals for a mesh composed of uniformly sized
square elements. Following their approach, we restrict ourselves to two–dimensional problems and
modify the finite element stencil for the lowest order quadrilateral edge element on a mesh of
uniformly sized squares. We then translate this modification in to a variation in the material
coefficients for Maxwell’s equations. This allows us to naturally incorporate both Dirchlet and
Neumann boundary conditions, something that was not possible with the approach of Babuska
and Sauter.

We first apply the scheme to wave propagation problems where we make comparisons with the
standard lowest order quadrilateral edge element scheme. Secondly, we apply the standard and
modified schemes to electromagnetic scattering problems set in two–dimensions where we use the
solutions provided by a hp–edge element code as a reference solution. Electromagnetic scattering
problems are set in an infinite domain and in order to make computations possible on a finite
computational domain, a perfectly matched layer (PML) [5] is used. We employ this approach due
to our previous successes with PML’s in the context of hp finite elements [13, 12]. To make an
efficient comparison of the electromagnetic scattering solutions we compare the scattering width
distributions that are obtained in each case.

The work proceeds as follows: In Section 2 we introduce the variational statement. In Section 3
the quadrilateral edge element discretisation and its accompanying dispersion relationship are
given. Then, in Section 4, we propose a modification to quadrilateral edge finite element stencil
which allows us to significantly reduce the dispersion. The modified edge finite element stencil
is subsequently translated in to new material coefficients allowing the natural incorporation of
boundary conditions. Section 5 shows numerical results for a series of wave propagation problems,
whilst Section 6 briefly describes the electromagnetic scattering problem and then gives a sequence
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of numerical experiments. The paper closes with some concluding remarks.

2 Problem formulation

Let us consider Maxwell’s equations expressed in the frequency domain for a source free medium

curlE = −iµωH curlH = iεωE (1)

where E and H are the electric and magnetic field intensity vectors, ε and µ are material param-
eters, the frequency is such that ω2 > 0 and i2 = −1. Initially, we wish to consider domains Ω
which are bounded. On the boundary of this domain we apply either Neumann conditions

n ∧
1

µ
curlE = n ∧ g (2)

on ΓNEU or Dirchlet conditions
n ∧E = n ∧ h (3)

on ΓDIR. Later, when scattering problems are considered, it will be necessary to also include a
radiation condition, however, in order to make the presentation more straightforward at this stage
this has been omitted.

Combining the Maxwell’s curl equations (1) we obtain the vector wave equation for the electric
field

curl
1

µ
curlE − ω2εE = 0 (4)

We note that a similar elimination procedure could also be followed for the magnetic field. However,
we wish to focus on the solution of the electric field in this paper and recover, when required, the
magnetic field from equation (1). In addition, for the two–dimensional problems in consideration
here, we assume that the electric field has components E = [Ex, Ey]T .

With a finite element procedure in mind, we give the weak the variational statement. Find
E ∈ Hd(curl;Ω) such that

(µ−1curlE, curlW )Ω − ω2(εE,W )Ω = #(W ) ∀W ∈ H0(curl;Ω) (5)

where (·, ·)Ω denotes the standard L2 inner product performed over Ω and # is a linear form defined
as

#(W ) = −

Z

ΓNEU

W · g ds (6)

The function spaces Hd(curl;Ω) and H0(curl;Ω) introduced above are defined as

Hd(curl;Ω) = {v, v ∈ H(curl;Ω) n ∧ v = n ∧ h, on ΓDIR}

H0(curl;Ω) = {v, v ∈ H(curl;Ω) n ∧ v = 0, on ΓDIR}

with

H(curl;Ω) = {v ∈ (L2(Ω))2, curlv ∈ L2(Ω)}

Following a Galerkin finite element procedure, we replace the continuous spaces with discrete
subspaces XH

d ⊂ Hd(curl;Ω) and XH
0 ⊂ H0(curl;Ω) and solve for discrete solutions EH ∈ XH

d .
The discrete weak variational statement is then: Find EH ∈ XH

d such that

(µ−1curlEH , curlWH)Ω − ω2(εEH ,WH)Ω = #(WH) ∀WH ∈ XH
0 (7)

In the next section we discuss the discretisation which leads to an approximate solution of this
equation.
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3 Two–dimensional edge elements on squares

For the purposes of this paper we restrict ourselves to discrete functions based on square elements.
These functions are identical to the lowest order quadrilateral edge element basis functions that
can be found for example in [1]. Figure 1 shows a square element whose sides are each of length
h, the basis functions associated with edges of this element are given as

φ1 =
(n+ 1)− y/h

0
φ2 =

y/h− n
0

(8)

φ3 =
0

(m+ 1)− x/h
φ4 =

0
x/h−m

(9)

Using these basis functions, an approximation to the electric field inside this element is given by

EH =
4X

i=1

αiφi (10)

where the parameters α1, α2, α3 and α4 represent the degrees of freedom associated with the
tangential moments of the field EH on the element edges.

x

y

mh (m+1)h

nh

(n+1)h

1

2

3 4

Figure 1: Square edge element with sides of length h.

Let us now assume that the material coefficients of our domain are unit valued and consider
the case of elements whose edges do not touch the boundaries of our domain. We wish to form the
typical equations which occur in the global stiffness matrix for vertical and horizontal edges. Due
to the local support of the basis functions, we are required to consider only elements adjacent to
the particular edge in question. Figure 2 shows two typical edges, labelled 1 and 3 and displayed
in bold together with their respective neighbouring elements: L and M for the vertical edge and
K and M for the horizontal edge. Introducing the notation

a(EH ,WH)Ω = (curlEH , curlWH)Ω − ω2(EH ,WH)Ω (11)

and then choosing WH = φ3 with integration performed over K and L gives

a(φ3,φ3)K∪Lα3 + a(φ8,φ3)Lα8 + a(φ9,φ3)Lα9 + a(φ10,φ3)Lα10

+ a(φ2,φ3)Kα2 + a(φ4,φ3)Kα4 + a(φ1,φ3)Kα1 = 0 (12)
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9

10

8

2

4

6

5

7

x

y

(m!1)h mh (m+1)h

 (n+1)h

(n!1)h

nh

M

L
3

K

1

Figure 2: 3 Typical square elements, with edges in consideration for horizontal and vertical stencils
shown in bold. The dotted lines show the linkages for a vertical stencil whereas the dashed–dotted
lines show the linkages for a horizontal stencil.

where the basis functions for edges 5, 6, 7, 8, 9 and 10 are given in a similar manner to those
presented in equations (8) and (9). The choice of WH = φ1 in equation (11) and integration over
K and M yields

a(φ1,φ1)K∪Mα1 + a(φ3,φ1)Kα3 + a(φ2,φ1)Kα2 + a(φ4,φ1)Kα4

+ a(φ6,φ1)Mα6 + a(φ5,φ1)Mα5 + a(φ7,φ1)Mα7 = 0 (13)

¿From equations (12) and (13) one can determine the vertical and horizontal stencils for square
edge elements. After performing integration of the various terms, one obtains the following patterns

2

6
6
6
6
6
6
4

−1 1
. . . . .

.

−1 · · · · · · 2 · · · · · · −1

. .
. . . .

1 −1

3

7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
4

0 0
. . . . .

.

1

6
· · · · · · 2

3
· · · · · · 1

6

. .
. . . .

0 0

3

7
7
7
7
7
7
5

(14)
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for the vertical stencil and

2

6
6
6
6
6
6
6
6
6
6
6
6
4

−1

−1
... 1

. . .
... . .

.

2

. .
. ...

. . .

1
... −1
−1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1

6

0
... 0

. . .
... . .

.

2

3

. .
. ...

. . .

0
... 0
1

6

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(15)

for the horizontal stencil. Furthermore, if one assumes that the discrete solution is the interpolant
of the plane wave

EH = E0 exp {i(ξxx+ ξyy)} (16)

then the solution coefficients can be written in terms of either α1 or α3, as follows

α2 = α1 exp {iξyh} α4 = α3 exp {iξxh}
α5 = α1 exp {−iξyh} α6 = α3 exp {−iξxh}
α8 = α1 exp {−iξxh} α7 = α3 exp {ih(ξx − ξy)}
α10 = α1 exp {ih(ξy − ξx)} α9 = α3 exp {−iξxh}

(17)

Following the approach described by Ainsworth and Coyle [1] we first consider the horizontal edge,
then, after inserting the relevant solution coefficients, we obtain the requirement that

Pα1 +Qα3 = 0 (18)

In this expression, P and Q take the form

P = 2(1− cos (hξ2)−
ω2h2

3
(2 + cos (hξ2)) (19)

Q = −1 + exp {iξxh}+ exp {−iξyh}− exp {ih(ξx − ξy)} (20)

Following a similar procedure for the vertical edge leads to the requirement that

Q∗α1 +Rα3 = 0 (21)

where ∗ denotes the complex conjugate and R is given by

R = 2(1− cos (hξ1)−
ω2h2

3
(2 + cos (hξ2)) (22)

Equations (18) and (21) admit a non–trivial solution α1, α3 only if the determinate of the matrix
P Q
Q∗ R

vanishes. It then follows that that the discrete dispersion relation is given by

ω2 −
6

h2

1− cos (hξx)

2 + cos (hξx)
−

6

h2

1− cos (hξy)

2 + cos (hξy)
= 0 (23)

Assuming that hξx and hξy are small the expansion

ω2 − ξ2x + ξ2y +
1

12
h2(ξ4x + ξ4y) = O(h4|ξ|6) (24)

with ξ = (ξx, ξy)T may be obtained which allows a quantification of the magnitude of the dispersion.
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4 Modified edge finite element stencil

Before describing our modified finite element stencil, we first propose two conditions on our mod-
ifications

1. Convergence. We wish that the modified finite element stencil, retains the same structure,
sparsity and convergence properties as our original finite element stencil as h → 0;

2. Implementation. We would like to interpret our modified stencil in terms of modified material
properties, thereby allowing us to incorporate Dirchlet and Neumann boundary conditions
in a natural way.

By restricting ourselves to modified finite element stencils which have the same structure and
sparsity of the original finite element stencils, it implies that

2

6
6
6
6
6
6
4

−b b
. . . . .

.

−b · · · · · · e · · · · · · −b

. .
. . . .

b −b

3

7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
4

0 0
. . . . .

.

c · · · · · · d · · · · · · c

. .
. . . .

0 0

3

7
7
7
7
7
7
5

(25)

is the form of the vertical stencil and

2

6
6
6
6
6
6
6
6
6
6
6
6
4

−b

−b
... b

. . .
... . .

.

e

. .
. ...

. . .

b
... −b
−b

3

7
7
7
7
7
7
7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
6
6
6
6
6
6
4

c

0
... 0

. . .
... . .

.

d

. .
. ...

. . .

0
... 0
c

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(26)

is the form of the horizontal stencil, where the coefficients b, c, d and e must be chosen.
We wish to interpret the modified edge finite element stencil as new material material param-

eters. To do this, we evaluate the two–dimensional elemental curl–curl stiffness matrix, SK
ij =

(µ−1curlφi, curlφj) for an element K with constant material coefficient µ

SK = µ−1

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

(27)

As there is only one free parameter in this matrix, it implies that µ−1 = b = e/2 in the stiffness
part of the the modified finite element stencils. The ε tensor is a 2× 2 matrix of the form given
below

ε =
ε11 ε12
ε21 ε22

(28)

We may also evaluate a typical elemental mass matrix MK
ij = (εφi,φj)K for an element K with

constant material coefficient tensor ε as

MK = h2

ε11
3

ε11
6

ε21
4

ε21
4ε11

6

ε11
3

ε21
4

ε21
4ε12

4

ε12
4

ε22
3

ε22
6ε12

4

ε12
4

ε22
6

ε22
3

(29)



R. Hiptmair and P.D. Ledger 7

By comparing entries in the elemental mass matrix and the mass part of the modified edge finite
element stencil, we can make the following observations: In order to retain the structure of the
modified edge finite element stencil, the off–diagonal terms of the ε tensor should be set to zero.
In addition, as the vertical and horizontal stencils have a similar pattern, we recover the fact that
ε11 = ε22. Performing the assembly of elements required for the horizontal and vertical stencils
and comparing entries leads to the conclusion that

ε =
3d/2 0
0 3d/2

=
6c 0
0 6c

(30)

Taking all this information in to account, we obtain the following expression

2

6
6
6
6
6
6
4

−b b
. . . . .

.

−b · · · · · · 2b · · · · · · −b

. .
. . . .

b −b

3

7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
4

0 0
. . . . .

.

c · · · · · · 4c · · · · · · c

. .
. . . .

0 0

3

7
7
7
7
7
7
5

(31)

for the vertical stencil and the expression

2

6
6
6
6
6
6
6
6
6
6
6
6
4

−b

−b
... b

. . .
... . .

.

2b

. .
. ...

. . .

b
... −b
−b

3

7
7
7
7
7
7
7
7
7
7
7
7
5

− ω2h

2

6
6
6
6
6
6
6
6
6
6
6
6
4

c

0
... 0

. . .
... . .

.

4c

. .
. ...

. . .

0
... 0
c

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(32)

for the horizontal stencil. For these stencils, the discrete dispersion expansion becomes

ω2 −
b

h2

2− 2 cos (hξx)

4c+ 2c cos (hξx)
−

b

h2

2− 2 cos (hξy)

4c+ 2c cos (hξy)
= 0 (33)

which, for the choice of b = 1 and c = 1/6 one recovers the discrete dispersion relationship for the
standard stencil. For small hξx and hξy one can write the expansion

ω2 −
b

6c
(ξ2x + ξ2y) +

6bc

12(4c+ 2c2)
(h2ξ4x + h2ξ4y) = O(h4|ξ|6) (34)

which allows a quantification of the dispersion for the modified edge finite element stencil. Using
this approach, we are now able to incorporate Dirchlet and Neumann boundary conditions in a
natural way as modifications to the edge finite element stencil have been translated in to new
material coefficients.

4.1 Selection of the coefficients

In order that the modified edge finite element stencil tends to the original edge finite stencil as the
mesh spacing h → 0, we choose the coefficients b and c as power series expansions of the following
form

b =
NX

i=0

biω
4ih4i c =

NX

i=0

ciω
2ih2i (35)

Convergence of the modified edge finite element stencil is then ensured by selecting b0 = 1 and
c0 = 1/6 and assuming that ωh is small. A hint as to the correct powers of ωh were provided by
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Babuska and Sauter et. al [3, 2] who used similar powers in their modified stencil for the Helmholtz
equation.

There now exists some degree of freedom in choosing the parameters bi and ci for 1 ≤ i ≤ N . In
the approach of Babuska and Sauter they consider a combined stiffness and mass 9 noded stencil
based on a bilinear quadrilateral discretisation of for Helmholtz equation and determine coefficients
based on theoretical arguments. Here they attempt to minimise the distance between the exact and
stencil behaviour of solutions to the Helmholtz equation. However, by following their approach,
it is no longer possible to interpret the modification of the finite element stencil in terms of new
material coefficients.

In this work, we adopt a different approach where we choose the coefficients bi and ci based on
minimising

ω2 −
b

h2

2− 2 cos (hξx)

4c+ 2c cos (hξx)
−

b

h2

2− 2 cos (hξy)

4c+ 2c cos (hξy)
(36)

assuming that ξx = ω cosφ and ξy = ω sinφ. The procedure we propose is numerical and attempts
to minimise this function at a discrete number of wave directions. Further details of the procedure
are given below:

Let us assume that a mesh of uniform spacing h has been generated and the true wavenumber
of the problem ω has been specified. The strategy we propose is as follows:

1. Set i = 0, b0 = 1, c0 = 1/6 and N = 4;

2. i = i+ 1;

3. Let

b̃ =
iX

j=0

bjω
4jh4j c̃ =

iX

j=0

cjω
4jh4j

where bi and ci are unknown coefficients;

4. Determine bi and ci such that

max
j

ω2 −
b̃

h2

2− 2 cos (hω cosφj)

4c̃+ 2c̃ cos (hω cosφj)
−

b̃

h2

2− 2 cos (hω sinφj)

4c̃+ 2c̃ cos (hω sinφj)
→ min

where φj = (2jπ)/K with j = 1, · · · , K, and K = 20;

5. If i *= N goto 2.

There are, of course, many other strategies that could be adopted, including those which attempt
to minimise the dispersion over a range of frequencies. But, as the frequency is known for all the
examples we consider, it seams logical to adopt a procedure in which the coefficients bi and ci are
tailored to a given frequency. The procedure presented above is hierarchic in the sense that b1 and
c1 are first computed, followed by b2 and c2 and so forth. It is possible that a better choice of
parameters could be obtained if the coefficients bi, ci, i = 1, · · · , N were obtained simultaneously,
however this approach may be computationally less advantageous. One could also chose to vary
K, the number of angles at which the minimisation procedure is performed and, N the number
of terms used in the minimisation procedure. However the choices made above were found to be
sufficient for all the computations reported in this work. In any case, we are only interested in
discretisations which satisfy ωh < 1, as for larger values of ωh, the assumption of ωh being small,
required to ensure the convergence properties of our scheme, is violated. For such cases, the results
given by the modified edge finite element stencil may be inaccurate.

To give an initial assessment of the improvement in performance that is obtained by using the
modified edge finite element stencil, we consider polar plots of the dispersion

ω2 −
b

h2

2− 2 cos (hξx)

4c+ 2c cos (hξx)
−

b

h2

2− 2 cos (hξy)

4c+ 2c cos (hξy)
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Modified Stencil
Standard Stencil

 

–0.03
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–0.008

–0.006

–0.004
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0.008
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h = λ/10 h = λ/20

Figure 3: Polar graphs which compare the dispersive behaviour of the modified and standard edge
finite element stencils as a function of angle for the case of ω = 1 and mesh spacings h = λ/10 and
h = λ/20.

where it is assumed that ξx = ω cosφ and ξy = ω sinφ. Note that in the case of a perfect scheme,
the above function would be zero. However neither the original edge finite element stencil or the
modified edge finite element stencil are perfect and therefore dispersion is expected in both cases.
To quantify the amount of dispersion, we consider the frequency ω = 2π/λ = 1 and mesh spacings
h = λ/10 and h = λ/20. Figure 3 shows the results obtained. For both h = λ/10 and h = λ/20
we observe that dispersion associated with the modified edge finite element is much smaller than
that associated with the standard edge finite element stencil. In the following sections we shall
consider numerical examples which show the advantages of using the modified edge finite element
stencil in actual finite element computations.

5 Wave propagation problems

We first consider the propagation of the plane wave

E =
ky
−kx

exp {i(kxx+ kyy)} (37)

for the case of kx = ky = 5 on the (0, 1)2 square domain. Note that ω2 = k2x + k2y for this example.
Solutions are computed with both Dirchlet and Neumann boundary conditions and on meshes
composed of square elements with uniform spacings h = 1/10, 1/12, 1/14, 1/16, 1/18, 1/20. The
field Re(Ex) which results from using the standard and modified edge finite elements stencils is
then compared with the known exact solution along a diagonal axis through the domain.

Let us consider the case of Dirchlet boundary conditions. These are easily accomplished by set-
ting the coefficients which represent the tangential components of the electric field on the boundary
to known values. The results obtained for the sequence of meshes described previously are shown in
Figure 4. In this figure, we observe that the dispersion is dramatically reduced when the modified
edge finite element stencil is employed, so that on spacings as coarse as h = 1/10 which represent
approximately 8 points per wave length, the wave is well represented. Using the standard edge
finite element stencil, one observes that the dispersion is large even when a mesh with spacing
h = 1/20 is used. Incidently, this represents a spacing with approximately 18 points per wave-
length. We also observe that in the range h = 1/10 to h = 1/20 the standard edge finite element
stencil is in the pre–asymmtopic region where we observe both increases and decreases in the error
as the spacing is refined.

Now let us consider the same problem but now solved with Neumann boundary conditions.
These boundary conditions are accomplished by discretising equation (6). The results of this
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Figure 4: Comparison of the dispersive behaviour of the modified and standard edge finite element
stencils for the propagation of a wave with wavenumbers kx = ky = 5 on a sequence of meshes
with different spacings when Dirchlet boundary conditions are employed.
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investigation are shown in Figure 5. In this figure, we observe a similar behaviour to what has
already been obtained for the case of Dirchlet boundary conditions. The modified edge finite
element stencil has a low phase error at coarse mesh spacings whilst the standard edge finite
element stencil remains dispersive.

Secondly we consider the propagation of a circular wave, in the form of a Bessel function Jα of
order α. The wave we consider is specified as follows

E =
∂h
∂y

−∂h
∂x

h = Jα(ωr) cosαθ (38)

where (r, θ) denote the cylindrical coordinates. We again consider the (0, 1)2 square domain and
monitor the accuracy of the solution, by computing the H(curl) norm of the error

‖e‖ = ‖EH −E‖ =

Z

Ω

|e|2 + |curl e|2 dΩ (39)

A sequence of meshes of square elements with uniform spacings h = 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3,
1/2 are considered. We show results obtained with applying Neumann boundary conditions, al-
though similar results can also be obtained by using Dirchlet conditions. Figure 6 shows the
convergence of ‖e‖ obtained for the cases of ω = 5 and α = 0, and ω = 5 and α = 2/3. The
first case represents an example with a smoothly varying field whilst the latter case represents an
example case with a singularity at the origin (0, 0). For the case of the smoothly varying field we
observe that for coarse mesh spacings the error obtained for the modified edge finite element stencil
is worse than than that for the standard stencil. However, when these spacings are considered with
respect to the wavelength we observe that they are much coarser than those considered for the plane
wave propagation example. In fact, the spacings for which the modified stencil gives worse results
represent approximately 6 points per wavelength or coarser. For such spacings the assumption of
ωh < 1 is no longer valid and hence an improvement in the error can not be expected. For smaller
mesh spacings the error measured in the H(curl) norm is similar to that obtained for standard
stencil. A similar convergence behaviour is also observed for the example with a singularity at the
origin.

One may of expected that on the basis of the plane wave propagation results, the modified
edge finite element stencil should give a substantially lower error than the standard stencil for the
propagation of circular waves. However, this extension is not automatic, as the dispersion analysis
is carried out for plane waves and not circular waves and hence a reduction in the error for circular
waves can not necessarily be expected. Nevertheless, we shall consider the modified stencil for
electromagnetic problems which include both behaviour which is similar to both plane and circular
waves.

6 Electromagnetic scattering problems

An interesting engineering application of the quadrilateral edge element with minimum dispersion
is the electromagnetic scattering problem. Here, the interest lies in the accurate evaluation of the
scattering width output which represents the far field pattern of the scattered field. It is hoped
that if the dispersion is sufficiently well resolved then the resulting scattering width distribution
will be accurately predicted. However, it is expected that for problems with strong singularities,
further refinement of the mesh will be needed to accurately resolve the scattering width.

Following the approach described in [13, 12] it is convenient to split the electric field in to
incident and scattered fields as

E = Ei +Es (40)

where Ei is a known plane wave which satisfies Maxwell’s equations and Es is the scattered field.
By linearity, the unknown scattered field also satisfies Maxwell’s equations, and this is what should
be determined. The scatterer is assumed to be either a perfect electrical conductor (PEC) or a
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Figure 5: Comparison of the dispersive behaviour of the modified and standard edge finite element
stencils for the propagation of a wave with wavenumbers kx = ky = 5 on a sequence of meshes
with different spacings when Neumann boundary conditions are employed.
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Figure 6: Comparison of the dispersive behaviour of the modified and standard edge finite element
stencils for the propagation of a circular wave with ω = 4 and α = 0, 2/3 on a sequence of meshes
with different spacings when Neumann boundary conditions are employed.

perfect magnetic conductor (PMC). Although the method we propose is directly extendible to the
case where the scatterer contains multi-materials. In the case of a PEC the boundary condition

n ∧Es = n ∧Ei (41)

is applied on the boundary of the scatterer, ΓSCAT , whilst in the case of a PMC the condition

n ∧ curlEs = n ∧ curlEi (42)

is imposed on ΓSCAT .
As mentioned briefly in the introduction, this problem is set in an infinite domain and in

order to produce a finite domain for our solution procedure a method of truncation is required.
There exist a number of alternatives for accomplishing this, these include absorbing boundary
conditions [4], infinite elements [6, 7], the Dirchlet to Neumann map [10], coupling with boundary
elements [11] and the use of a perfectly matched layer (PML) [5] The merits of these various
approaches are discussed in [13]. For this work we choose to adopt the PML approach due to
ease of implementation and previous successes with this approach. As our formulation is based on
square elements, it is natural that we choose a rectangular PML. Figure 7 shows a diagram of the
scattering problem.

Within the PML layer, modified material parameters are employed to absorb the outgoing
scattered wave with minimum reflection. Specifically, we employ

µ = d1d2 ε =
d2

d1
0

0 d1

d2

(43)

in ΩPML where dj = 1 − iσj(xj)/ω [17]. We adopt a quadratic profile for the grading of σj so
that σj = σ(ej/t)2 where ej is the distance measured from the PML/ free space interface to a
point within the PML in a given coordinate direction xj and t is the PML thickness. Cohen [8]
proposes a good choice for t and σ, he selects t = 1λ and σ = 6 and we adopt these values for the
computations presented here.

The variational statement for the electromagnetic scattering problem then follows along similar
lines to that presented in Section 2. Further details for the interested reader can be found in [13,
12]. We discretise the resulting variational statement using the standard and modified edge finite
element stencils and obtain Es

H . Following the finite element solution procedure, one can then
proceed to determine scattering width output given by

χ(φ) =
ω

4

Z

Γc

n ∧Es
H · V + n ∧ curlEs

H · Y dΓ′

2

(44)
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where Γc is a collection surface which is chosen to completely surround the scatterer and the value
of the scattering width measured in Decibels is given by 10 log (χ(φ)). The vectors V and Y are
functions of the viewing angle φ and are defined as

V =
0
0
−1

exp {iω(x′ cosφ+ y′ sinφ)} Y =
1

iω

sinφ
− cosφ

0
exp {iω(x′ cosφ+ y′ sinφ)}

(45)
It is important that the scattering width is calculated carefully, otherwise it is possible that gains
in accuracy made with the modified edge finite element stencil may be lost. To this end, we
employ the technique proposed by Monk [18, 16], who suggests using the variational statement
to approximate the flux term n ∧ curlEs

H . Further details of its implementation may be found
in [12, 15].

6.1 Numerical examples

In this section we present a series of numerical examples to demonstrate the success of using
the quadrilateral edge element with minimum dispersion for electromagnetic scattering problems.
First we consider a square scatterer of electrical length 3λ, with both PEC and PMC boundaries.
We consider an incident wave which is propagated at 45 degrees to the horizontal axis for these
examples. Then, we consider a 4λ U shaped cavity rotated through 90 degrees with PEC and
PMC boundaries. For these examples, we consider incident plane waves with normal incidences.

First, let us consider scattering by a 3λ PEC square. We consider a domain consisting of
a 2λ thick region of free space, backed by a 1λ thick PML. Meshes with uniform spacing h =
λ/7,λ/8,λ/10,λ/13 were generated to discretise this problem. An example mesh with spacing
h = λ/17 is shown in Figure 8. On this sequence of meshes we compare the scattering width
distributions which result from using the modified and standard edge finite element stencils with
that of a benchmark solution. For the benchmark solution, we use a hp edge element code [13,
12, 15], with computations undertaken with a sufficiently small h and high p so as to resolve the
problem accurately. Whilst for the comparison, we compute the error in Decibels as the difference
between the benchmark and stencil solutions. The results in Figure 9 show that the modified edge
finite element stencil is generally more accurate than the standard stencil for the mesh with spacing
h = λ/7. Although, at certain viewing angles, similar errors are obtained for both the modified and
standard edge finite element stencils These angles correspond to locations with strong singularities.
For finer spacings, the modified edge finite element stencil continues to offer some improvements
over the standard stencil. Coarser mesh spacings were not considered, as the assumption hω < 1
would be violated and for such meshes we expect the solutions using the modified edge finite
element stencil to be inaccurate. In Figure 10, a contour plot of Re(Hs

z ) is shown alongside the
actual scattering width distribution computed on a mesh with spacing h = λ/13.

Secondly, we consider scattering by a 3λ PMC square. We employ the same sequence of meshes
that were used for the PEC square. The error in the resulting scattering width distributions for the
modified and standard edge finite element stencils are shown in Figure 11. In a similar manner to
the PEC scatterer, we observe that the modified edge finite element stencil offers some benefits on
the coarser meshes. In Figure 12, a contour plot of Re(Hs

z ) is shown alongside the actual scattering
width distribution computed on a mesh with spacing h = λ/13.

Next we consider scattering by a U shape cavity rotated through 90 degrees. The geometry
of this cavity is as follows: the thickness of the walls of the cavity are denoted g and the outer
dimensions are given by e + g in the x direction and f + 2g in the y direction. The implication
is that the inner cavity has dimensions e and f . We consider the particular which is defined by
the specific values e = 4λ, f = λ and g = 0.2λ,. The domain we consider has a 1λ thick region of
freespace backed by a 1λ thick PML. We discretise this domain using a sequence of meshes with
spacings h = λ/10,λ/15,λ/20,λ/25. A typical mesh with spacing h = λ/10 is shown in Figure 13.
On each of the meshes we compute the error in the scattering width output for the modified and
standard edge finite element stencils when compared with the benchmark solution. The results of
these computations can be found in Figure 14. As in the case of the square scatterer we take the
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Figure 7: Digram of the electromagnetic scattering problem showing the scatterer, the free space
region ΩFS and the PML ΩPML.

Figure 8: Scattering of plane wave by square of electrical length 3λ showing a mesh of 12800
quadrilateral elements.
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Figure 9: Scattering of plane wave by a PEC square of electrical length 3λ showing the error
in the scattering width distributions computed using the modified and standard edge finite ele-
ment stencils on meshes with spacings h = λ/7,λ/8,λ/10,λ/13 when compared to the benchmark
solution.
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Figure 11: Scattering of plane wave by a PMC square of electrical length 3λ showing the error
in the scattering width distributions computed using the modified and standard edge finite ele-
ment stencils on meshes with spacings h = λ/7,λ/8,λ/10,λ/13 when compared to the benchmark
solution.
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Figure 13: Scattering of plane wave by cavity of electrical length 4λ showing a mesh of 4240
quadrilateral elements.

benchmark solution to be that computed by a hp edge element approach with sufficiently fine h
and high p. For this scatterer, the modified edge finite element stencil gives a large enhancement
over the standard edge finite element stencil. With a mesh as coarse as h = λ/10 the error in
the scattering width obtained with the modified stencil is already much lower than that with
the standard stencil. Even for much finer mesh spacings such as h = λ/25 the standard edge
finite element stencil still gives large errors whilst the modified stencil gives accurate results. In
Figure 15, a contour plot of Re(Hs

z ) is shown alongside the actual scattering width distribution
computed on a mesh with spacing h = λ/25.

Finally we consider scattering by a 4λ PMC scatterer. For this case, we employ the same
sequence of meshes that were used for the PEC scatterer. We compute the error in the scattering
width distributions obtained using the modified and standard edge finite element stencils. The
results of these computations can be found in Figure 16. In this figure, we observe that on coarsest
mesh, with spacing h = λ/10, the error in the scattering width is much lower with the modified
edge finite element stencil compared to the standard stencil, and for meshes with spacings h = λ/15
or finer a very accurate prediction is obtained. In comparison, we observe that the standard edge
finite element stencil remains inaccurate even for the mesh with spacing h = λ/25. In Figure 17,
a contour plot of Re(Hs

z ) is shown alongside the actual scattering width distribution computed on
a mesh with spacing h = λ/25.

Concluding remarks

In the work we have proposed a novel quadrilateral discretisation which allows the magnitude of
the dispersion to be substantially reduced. For wave propagation problems it was observed the
phase error could be effectively be eliminated for meshes with spacing as coarse as 8 points per
wavelength, whereas the standard scheme still remains dispersive at 18 points per wavelength. For
circular waves, it was that for hω < 1, the error measured in the H(curl;Ω) norm was similar to
that for standard scheme.

For scattering problems, with discretisations satisfying hω < 1 accurate predictions of the
scattering width distribution were obtained with the modified stencil. The more complex the
scatterer, the clearer the benefits became. This was illustrated by the complex scattering which
occurs within a U shape scatterer rotated through 90 degrees. For this example, using the modified
edge finite element stencil and a coarse mesh of spacing h = λ/10 it was found that one can
accurately capture the scattering width distribution. Whilst, use of the standard edge finite element
stencil required much finer mesh spacings to give an accurate prediction.
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Figure 14: Scattering of plane wave by a PEC cavity of electrical length 4λ showing the error in
the scattering width distributions computed using the modified and standard edge finite element
stencils on meshes with spacings h = λ/10,λ/15,λ/20,λ/25 when compared with the benchmark
solution.
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Figure 15: Scattering of plane wave by a PEC cavity of electrical length 4λ showing a contour plot
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z ) and the scattering width distribution computed on a mesh with spacing h = λ/25.



20 A Quadrilateral Edge Element Scheme with Minimum Dispersion

0

1

2

3

4

5

6

-200 -150 -100 -50 0 50 100 150 200

R
C

S
 E

rr
o
r

phi

Modified Stecnil
Standard Stencil

0

1

2

3

4

5

6

-200 -150 -100 -50 0 50 100 150 200

R
C

S
 E

rr
o
r

phi

Modified Stecnil
Standard Stencil

h = λ/10 h = λ/15

0

1

2

3

4

5

6

-200 -150 -100 -50 0 50 100 150 200

R
C

S
 E

rr
o
r

phi

Modified Stecnil
Standard Stencil

0

1

2

3

4

5

6

-200 -150 -100 -50 0 50 100 150 200

R
C

S
 E

rr
o
r

phi

Modified Stecnil
Standard Stencil

h = λ/20 h = λ/25

Figure 16: Scattering of plane wave by a PMC cavity of electrical length 4λ showing the error in
the scattering width distributions computed using the modified and standard edge finite element
stencils on meshes with spacings h = λ/10,λ/15,λ/20,λ/25 when compared with the benchmark
solution.
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Figure 17: Scattering of plane wave by a PMC cavity of electrical length 4λ showing a contour
plot of Re(Es

z) and the scattering width distribution computed on a mesh with spacing h = λ/25.
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Th. Wihler

Energy norm a-posteriori error estimation
for mixed discontinuous Galerkin approxima-
tions of the Stokes problem

03-08 R. Hiptmair, A. Buffa Coercive combined field integral equations
03-07 R. Hiptmair, O. Sterz Current and Voltage Excitations for the Eddy

Current Model
03-06 A.-M. Matache,

P.-A. Nitsche, C. Schwab
Wavelet Galerkin Pricing of American Op-
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