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Abstract

The computation of the resonant frequencies for open and closed cavities is
not a trivial task: Multi–materials and sharp corners all give rise to highly
singular eigenfunctions. However, an approach using hp–finite elements is
well suited to such problems and, with the correct combination of h– and
p–refinements, it yields the theoretically predicated exponential rates of con-
vergence.

In this paper, we present a novel approach to the solution of axisym-
metric cavity problems which uses a hierarchic H1 and !H(curl) conforming
finite element basis. A selection of numerical examples are included and
these demonstrate that the exponential rates of convergence are achieved in
practice.
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1 Introduction

Our interest in this paper lies in the accurate evaluation of Maxwell eigenvalues for open and closed
cavity problems. The results are important for many applications such as the design of Microwave
devices and charged particle accelerators. However, the solution of these problems is far from
being a trivial task as realistic cavities often contain multi-materials, have small scale features and
contain many sharp corners all giving rise to highly singular eigenfunctions.

It is well known that the application of standard nodal finite elements to the solution of Maxwell
cavity problems is inappropriate as the resulting solution is polluted by so-called spurious modes
which relate to non-physical solutions [30, 21]. To overcome this problem, there has been much
interest in the application of H(curl) conforming applications first introduced by Nédélec [22, 23,
24]. These are known to eliminate the problems of spurious modes and allow easy incorporation of
material interfaces and boundary conditions. Amongst the engineering community these elements
are better known as edge elements, as in the case of the lowest order element, there is a degree
of freedom associated with each edge of the element. Over the last two decades there has been a
tremendous number of different H(curl) conforming elements proposed, for both two– and three–
dimensions e.g. [32, 14, 6, 17, 27, 32] . For a review of recent developments in two–dimensional
edge elements we refer to [2], whilst for a summary of three-dimensional developments we refer
to [3]. Of particular relevance to this work, are approaches which allow an arbitrary increase in
the polynomial order. Demkowicz and coworkers [12, 13] have development a two–dimensional
hybrid triangular/quadrilateral element package which allows for hp–refinement. More recently,
Ainsworth and Coyle have proposed an alternative hybrid discretisation with better conditioning
properties [2]. In three-dimensions, an approach employing anisotropic refinements and hierarchic
hexahedral elements has been proposed by Rachowicz and Demkowicz [26]. An alternative strategy,
which uses hierarchic tetrahedral elements has been proposed by Ainsworth and Coyle [3].

Ainsworth and Coyle [1] demonstrate that using the appropriate combinations of h– and p–
refinement, results in an exponential rate of convergence for the computed eigenvalues of a sequence
of challenging benchmark problems in two–dimensions. In related work, exponential rates of con-
vergence were demonstrated for the eigenvalues of a straight sided three-dimensional cavity problem
when a hierarchic tetrahedral discretisation was employed [4]. Furthermore, for three-dimensional
cavities with curved boundaries, exponential rates of convergence for the Maxwell eigenvalues have
also been observed [11].

In this work, we consider a special class of three-dimensional problems, which, through rota-
tional symmetry, allows their reduction to a sequence of two–dimensional problems. This class of
problems is of great interest, as it enables the solution of complete three–dimensional problems
with much reduced computational effort. Previous investigations of these axisymmetric eigenvalue
problems have employed only first or second order elements [16, 33, 15, 20, 25, 9, 8]. Of particu-
lar importance is the recent work by Chinellato et al. [9, 8] who demonstrated the superiority of
using second order elements over an approach using first order elements. In this work, we show
a novel approach to this problem which employs the two–dimensional hierarchical H(curl) and
H1 conforming discretisations of Ainsworth and Coyle, thus allowing for an arbitrary increase in
polynomial order.

When one’s interest lies in the simulation of open cavities then one must also approximate the
infinite region of free space which surrounds the cavity. A suitable approach for doing this must be
found. Perfectly matched layers (PML’s) were introduced by Berenger [7] as a means of truncating
the infinite free space domain which occurs when performing electromagnetic scattering problems
with time domain finite difference methods. The use of PML’s has since been extended to include
electromagnetic scattering simulations by finite element methods, both in the time and frequency
domain. For example, in [19] a PML was successfully used in conjunction with hierarchic H(curl)
conforming basis for the solution of electromagnetic scattering problems. Whilst, in recent work
by Streiff Witzig and Fichtner [28] a PML was used to simulate open cavity problems. These
problems are particularly challenging for absorbing boundary conditions as the frequency of the
wave to be absorbed is not known a priori. In view of this and following our previous success with
scattering simulations we adopt the PML for the truncations of domains which involve open cavity
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resonators.
The presentation of the work proceeds as follows: In Section 2 we present the problem for-

mulation for the axisymmetric eigenvalue problem. Then, in Section 3 we give an overview of
Ainsworth and Coyle’s hierarchic H(curl) and H1 conforming basis functions. Issues related to
the computational procedure are discussed in Section 4. Whilst Section 5 describes a series of
numerical examples which demonstrate the performance of the proposed procedure. The article
closes with some concluding remarks.

2 Problem formulation

Let us first consider the Maxwell eigenvalue problem that is set in the bounded domain Ω ⊂ R3

which involves identifying the non-trivial electric fieldE and the corresponding resonant frequencies
ω ∈ C \ {0} that satisfy

curl
(

µ−1curlE
)

− ω2εE = 0 in Ω (1)

n ∧E = 0 on ∂Ω (2)

where (1) is the vector–wave equation and n is the outward unit normal to ∂Ω. The permeability µ
and the permitivity ε, which may be complex valued, are determined by the material properties of

Ω. Standard variational arguments incorporating (1) and (2) require that we seekE ∈ H
(3)
0 (curl;Ω)

and ω ∈ C \ {0} such that

(µ−1curlE, curlF )Ω − ω2 (εE,F )Ω = 0 (3)

for every F ∈ H
(3)
0 (curl;Ω) where

H(3)(curl;Ω) =
{

u ∈ (L2(Ω))
3, curlu ∈ (L2(Ω))

3
}

H
(3)
0 (curl;Ω) = {u ∈ H(curl;Ω), n ∧ u = 0 on ∂Ω}

and (·, ·)Ω is the usual L2 inner product over Ω. For the discrete solution, a proof exists which show
that a finite element discretisation of equation (3) which uses only the lowest order H(3)(curl;Ω)
conforming elements, leads to a spurious free solution. The proof is not yet available for higher order
H(3)(curl;Ω) conforming approximations, although numerical experiments confirm that spurious
modes are not produced in this case either.

2.1 Axisymmetric problems

We now restrict consideration to problems which are axisymmetric. The derivation of the weak
variational statement has already been extensively described in previous works [16, 33, 15, 20, 25,
9, 8], and so we summarise only the key elements. Firstly, we introduce the set of cylindrical
coordinates so that the electric field in cylindrical coordinates Ẽ has components Ẽr, Ẽθ and Ẽz .
The benefits of this approach become clear when it is assumed that the material tensors ε and µ
have no variation in the θ direction. A Fourier series expansion of the field is performed, so that

Ẽ =
∞
∑

m=0

Ẽ
(c)
m cos (mθ) + Ẽ

(s)
m sin (mθ) (4)

where Ẽ
(c)
m = [E(c)

m,r, E
(c)
m,θ, E

(c)
m,z]T and Ẽ

(s)
m = [E(s)

m,r, E
(s)
m,θ, E

(s)
m,z]T are functions only of r and

z. It is beneficial to introduce the notation Ẽ
(c)
m,p = [Ẽ(c)

m,r, Ẽ
(c)
m,z]T and Ẽ

(s)
m,p = [Ẽ(s)

m,r, Ẽ
(s)
m,z]T to

describe the in–plane components of Ẽ
(c)
m and Ẽ

(s)
m , respectively. Applying these definitions to

the variational statement given in equation (3), together with the appropriate definition of the
curl in cylindrical coordinates, leads to a sequence of two–dimensional eigenvalue problems. In the
following the subscript m has been omitted to improve the clarity of the presentation.
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The first problem states that, for a given angular wave number m, find Ẽ
(c)
p ∈ H

(2)
0 (curl;Ω)

and Ẽ(s)
θ ∈ H1

0 such that

(µ−1
θ r curlp Ẽ

(c)
p , curlp F̃ p)Ω + (µ−1

p r−1 ∇p(rẼ
(s)
θ ),∇p(rF̃θ))Ω +m2(µ−1

p r−1 Ẽ
(c)
p , F̃ p)Ω+

+m(µ−1
p r−1 ∇p(rẼ

(s)
θ ), F̃ p)Ω +m(µ−1

p Ẽ
(c)
p , r−1 ∇p(rF̃θ))Ω =

= ω2(εpr Ẽ
(c)
p , F̃ p)Ω + ω2(εθr Ẽ

(c)
θ , F̃θ)Ω (5)

for all F p ∈ H
(2)
0 (curl;Ω) and F̃θ ∈ H1

0 . The second problem is find Ẽ
(s)
p ∈ H

(2)
0 (curl;Ω) and

Ẽ(c)
θ ∈ H1

0 such that

(µ−1
θ r curlp Ẽ

(s)
p , curlp F̃ p)Ω + (µ−1

p r−1 ∇p(rẼ
(c)
θ ),∇p(rF̃θ))Ω +m2(µ−1

p r−1 Ẽ
(s)
p , F̃ p)Ω−

−m(µ−1
p r−1 ∇p(rẼ

(c)
θ ), F̃ p)Ω −m(µ−1

p Ẽ
(s)
p , r−1 ∇p(rF̃θ))Ω =

= ω2(εpr Ẽ
(s)
p , F̃ p)Ω + ω2(εθr Ẽ

(c)
θ , F̃θ)Ω (6)

for all F p ∈ H
(2)
0 (curl;Ω) and F̃θ ∈ H1

0 . In the above, the subscript p on gradient and curl
operations refers to differentiation with respect to the in-plane components (r, z).

The space H
(2)
0 (curl;Ω) introduced above is defined as

H
(2)
0 (curl;Ω) =

{

u ∈ H(2)(curl;Ω),n ∧ u = 0 on∂Ω
}

where

H(2)(curl;Ω) =
{

u ∈ (L2(Ω))
2, curlp u ∈ (L2(Ω))

}

Note that the second weak variational statement may be obtained from the first by a simple change

of variables, ie. Ẽ
(s)
p = Ẽ

(c)
p and Ẽ(c)

θ = −Ẽ(s)
θ . Therefore it suffices to consider the solution of

only one of the two given variational statements, of which we choose the first.

2.2 Application of boundary conditions at the radial axis

There has been much discussion about the appropriate boundary conditions that should be imposed
on the radial axis r = 0 [16, 33, 15, 20, 25, 9, 8]. These are usually performed on a discrete level,
and often lead to conditions which are difficult to impose and unnatural to the finite element
approach.

In this work, we propose an alternative strategy for obtaining boundary conditions which is
performed on the continuous level. Consider the evaluation of the H(2)(curl;Ω) norm

‖Ẽ‖2 =

∫

z

∫

r

∫ 2π

0
|Ẽ|2 + |curl Ẽ|2 rdθdrdz (7)

for the case of angular wave number m = 1, which can be expressed as

‖Ẽ‖2 = π

∫

z

∫

r

1

r
Ẽ2

z+r

(

∂Ẽθ

∂z

)2

+r

(

∂Ẽr

∂z
−

∂Ẽr

∂r

)2

+
1

r

(

∂

∂r
(rẼθ)

)2

+r(2Ẽ2
r+Ẽ2

θ+Ẽ2
z )drdz (8)

We require that all terms which involve 1/r must tend to zero at the radial axis r = 0. In
numerical experiments it has been observed that if numerical quadrature of sufficient degree is
employed for evaluating the integrals then bounded-ness of the integrands can be achieved without
employing any special conditions. We hope to give a full theoretical justification of this in future
work.
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Figure 1: Reference elements used in Ainsworth and Coyle’s [2] hierarchic basis

Entity Quadrilateral Triangle

Vertices

ψ̂1 = 1
4 (1− ξ)(1− η)

ψ̂2 = 1
4 (1 + ξ)(1− η)

ψ̂3 = 1
4 (1 + ξ)(1 + η)

ψ̂4 = 1
4 (1− ξ)(1 + η)

ψ̂1 = λ̂1 = 1
2
√
3
(
√
3 +

√
3ξ − η)

ψ̂2 = λ̂2 = η
√
3

ψ̂3 = λ̂3 = 1
2
√
3
(
√
3−

√
3ξ − η)

Edges

ψ̂j
1 = 1

2*j(ξ)(1− η)
ψ̂j
2 = 1

2*j(−ξ)(1 + η)
ψ̂j
3 = 1

2*j(−η)(1− ξ)
ψ̂j
4 = 1

2*j(η)(1 + ξ)

j = 2, · · · , p
ψ̂j
1 = λ̂1λ̂2ϕj−2(λ̂2 − λ̂1)

ψ̂j
2 = λ̂2λ̂3ϕj−2(λ̂3 − λ̂2)

ψ̂j
3 = λ̂3λ̂1ϕj−2(λ̂1 − λ̂3)

j = 2, · · · , p

Interiors ψ̂I
j,k = *j(ξ)*k(η) j, k = 2 · · · p ψ̂I

j,k = λ̂1λ̂2λ̂3Lj(λ̂1 − λ̂3)Lk(2λ̂2 − 1)
0 ≤ j, k, j + k ≤ p− 3

Table 1: Ainsworth and Coyle’s [2] hierarchic H1 conforming basis functions.

3 Hierarchic discretisation

In this section we provide a brief summary of Ainsworth and Coyle’s [2] hierarchic basis func-
tions which will be used to provide a discrete approximation to the continuous functional spaces
H(2)(curl;Ω) and H1(Ω).

First, let us consider the basis functions for H1. It turns out that these can be decomposed in
to functions associated with the vertices, edges and interior of the element. We follow Ainsworth
and Coyle and introduce the reference square [−1, 1]2 and the reference triangle with vertices
(1, 0), (0,

√
3) and (−1, 0), as illustrated in Figure 1. On each of the two diagrams shown in this

figure, the numbering given relates to vertex and edge numbers. The hierarchic basis functions for
the triangles and quadrilaterals is shown in Table 1. In this table *j is the integrated Legendre
polynomial of degree j, Lj is the Legendre polynomial of degree j and the polynomial ϕj is defined
as

ϕj(s) =
−4

(j + 2)(j + 1)
Lj(s) (9)

This polynomial is introduced to ensure compatibility of the edge basis functions on edges between
neighbouring triangular and quadrilateral elements.

In Table 2 we present Ainsworth and Coyle’s H(2)(curl;Ω) conforming hierarchic basis func-
tions. These functions reside on the edges and the interiors of the quadrilateral and triangular
elements. For these basis functions the Jacobi polynomials Pα,β

j of degree j are also required.
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Entity Quadrilateral Triangle

Edges
(p = 0)

φ̂
0

1 = 1
2 (1− η)

(

1
0

)

φ̂
0

2 = 1
2 (1 + η)

(

−1
0

)

φ̂
0

3 = 1
2 (1− ξ)

(

0
−1

)

φ̂
0

4 = 1
2 (1 + ξ)

(

0
1

)

φ̂
0

1 = λ̂1∇̂λ̂2 − λ̂2∇̂λ̂1

φ̂
0

1 = λ̂2∇̂λ̂3 − λ̂3∇̂λ̂2

φ̂
0

1 = λ̂3∇̂λ̂1 − λ̂1∇̂λ̂3

Edges
(p = 1)

φ̂
1

1 = 1
2 (1− η)L1(ξ)

(

1
0

)

φ̂
1

2 = 1
2 (1 + η)L1(−ξ)

(

−1
0

)

φ̂
1

3 = 1
2 (1− ξ)L1(−η)

(

0
−1

)

φ̂
1

4 = 1
2 (1 + ξ)L1(η)

(

0
1

)

φ̂
1

1 = λ̂1∇̂λ̂2 + λ̂2∇̂λ̂1

φ̂
1

1 = λ̂2∇̂λ̂3 + λ̂3∇̂λ̂2

φ̂
1

1 = λ̂3∇̂λ̂1 + λ̂1∇̂λ̂3

Edges
(p ≥ 2)

φ̂
j

1 = 1
2 (1 − η)Lj(ξ)

(

1
0

)

φ̂
j

2 = 1
2 (1 + η)Lj(−ξ)

(

−1
0

)

φ̂
j

3 = 1
2 (1 − ξ)Lj(−η)

(

0
−1

)

φ̂
j

4 = 1
2 (1 + ξ)Lj(η)

(

0
1

)

j = 2, · · · , p

φ̂
j

1 = 1−2j
j Lj−1(λ̂2 − λ̂1)φ̂

1

1 −
j−1
j Lj−2(λ̂2 − λ̂1)φ

0
1

φ̂
j

2 = 1−2j
j Lj−1(λ̂3 − λ̂2)φ̂

1

2 −
j−1
j Lj−2(λ̂3 − λ̂2)φ

0
2

φ̂
j

3 = 1−2j
j Lj−1(λ̂1 − λ̂3)φ̂

1

3 −
j−1
j Lj−2(λ̂1 − λ̂3)φ

0
3

j = 2, · · · , p

Interiors

φ̂
Iξ

j,k = Lj(ξ)*k(η)

(

1
0

)

φ̂
Iη

j,k = Lj(η)*k(ξ)

(

0
1

)

j = 0, · · · , p
k = 2, · · · , p+ 1

φ̂
PI

1,j = λ̂1λ̂2∇̂λ̂3Lj(λ̂2 − λ̂1)

φ̂
PI

2,j = λ̂2λ̂3∇̂λ̂1Lj(λ̂3 − λ̂2)

φ̂
PI

3,j = λ̂3λ̂1∇̂λ̂2Lj(λ̂1 − λ̂3)
j = 0, · · · , p− 2

φ̂
GIξ

j,k = λ̂1λ̂2λ̂3(1− λ̂1)jP
2,2
j

(

λ̂1−λ̂3

1−λ̂2

)

P 2j+5,2
k (2λ̂2 − 1)

(

1
0

)

φ̂
GIη

j,k = λ̂1λ̂2λ̂3(1− λ̂1)jP
2,2
j

(

λ̂1−λ̂3

1−λ̂2

)

P 2j+5,2
k (2λ̂2 − 1)

(

0
1

)

0 ≤ j, kj + k ≤ p− 3

Table 2: Ainsworth and Coyle’s [2] hierarchic H(2)(curl;Ω) conforming basis functions.
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4 Computational procedure

The variational statement given in equation (5) is discretised using the basis functions given in

Section 3. Specifically, Ẽ
(c)
p is discretised by the H(2)(curl;Ω) conforming basis and Ẽ(s)

θ by the
H1 basis multiplied by 1/r. This choice is made so that the gradients of the H1 basis lie in the
space of the H(2)(curl;Ω) conforming elements.

Integrals are evaluated by employing Gauss numerical quadrature points residing only in the
interior of the triangular and quadrilateral elements. Elements which lie next to the r = 0 radius
axis have singular terms in the integrands. To ensure that these are resolved with sufficient accuracy
a Gauss integration scheme with at least 3(p+1) points in the radial direction has been implemented
for quadrilateral elements. As a numerical justification of this we consider the accuracy of the first
eigenvalue of a hollow cylindrical cavity when a discretisation consisting of a single quadrilateral
element is used in conjunction with polynomial orders p = 0, 1, 2, 3, 4, 5 in turn. For each case
Gauss integration schemes with p+ 1, 2(p+ 1), 3(p+ 1) and 4(p+ 1) points in the radial direction
are considered. A description of this problem appears later in this article, here, it suffices to say
that the example has an exact solution so that the relative errors may be computed. The results
of this investigation are shown in Figure 2. In this figure it is observed that when at least 3(p+1)
integration points are used in the radial direction the relative error reaches a plateau for which
further increases in the number of integration points do not effect the relative error obtained. For
the case of p = 5, the precision limit is reached and hence the plateau is not clearly displayed.
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0.0001
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Number of Integration Points
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Figure 2: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, the convergence of the relative error against number of integration points for the
first eigenvalue of the case of angular wavenumber m = 0 on a single quadrilateral meshes with
uniform polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.

When integrating in the non radial direction on quadrilateral elements, one can employ the
standard rule that an n point Gauss quadrature formula integrates a polynomial of degree 2n −
1, exactly. For the triangular elements, we employ a Gauss integration scheme with (3p + 1)2

points [29].

To map a vector valued H(2)(curl;Ω) conforming basis function φ̂ defined on the reference
element to a vector valued function φ defined on a general, possibly curved, element, a covariant
projection is employed. When curved boundaries are employed, an exact representation is achieved
using the linear blending function approach [31, 18]. With curved boundaries increased numbers
of integration points, depending on the curvature of the edges of the element, are used.

Standard continuity requirements are enforced between elements for the H1 and H(2)(curl;Ω)
conforming elements. This results in application of tangential continuity of the edge basis functions
between neighbouring elements for the H(2)(curl;Ω) space, and continuity of the vertex and edge
basis functions between neighbouring elements for the H1 space. Finally, after application of
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boundary conditions, one arrives at the matrix eigenvalue problem
[

Kpp Kpθ

KpθT Kθθ

] [

ˆ̃
Ep
ˆ̃
Eθ

]

= ω2

[

Mpp 0
0 M θθ

]

[

ˆ̃
Ep
ˆ̃
Eθ

]

(10)

with typical entries

K
pp
ij =

∫

Ω
µ−1
θ rcurlp φi · curlp φj dΩ+m2

∫

Ω
µ−1
p r−1φi · φjdΩ (11)

K
pθ
ij = m

∫

Ω
µ−1
p r−1φi ·∇pψjdΩ (12)

Kθθ
ij =

∫

Ω
µ−1
p r−1∇pψi ·∇pψjdΩ (13)

M
pp
ij =

∫

Ω
εprφi · φjdΩ (14)

M θθ
ij =

∫

Ω
εθr

−1ψi · ψjdΩ (15)

Note that the entries in the vectors ˆ̃
Ep and ˆ̃

Eθ correspond to the unknown coefficients, which when

combined with a linear combination of the basis functions provides an approximation of Ẽ
(c)
p and

Ẽ(s)
θ , respectively. Henceforth we shall denote λ = ω2 as the eigenvalues of this eigenvalue problem.

A numerical solution to this eigenvalue problem is computed using the FORTRAN subroutine set
EISPACK of LAPACK.

5 Numerical examples

In this section we present a series of numerical examples which demonstrate the computational
performance of the proposed procedure. A series of challenging test cases were proposed by Chinel-
lato et al. [9] for testing their computational approach. In this work, we repeat these benchmark
calculations and report our findings for the hp–finite element approach described above.

The first benchmark consists of determining the resonant modes for a hollow cylindrical cavity
whose contents are empty and walls assumed to be PEC’s. Next, an example consisting of two
concentric spheres with differing material properties is considered. The third and final benchmark
is that of a dielectric sphere situated in free space. This is a particular challenging example as one
is required to simulate the infinite region of free space surrounding the sphere.

5.1 A hollow cylindrical cavity

This cavity is assumed to be empty so that ε = µ = I are the identity tensor and the cavity is
assumed to have PEC walls. The height and radius of the cavity are assumed to be of unit length.
The eigenmodes of this cavity have an analytical solution and their values can be found in [9].

We first consider a discretisation employing quadrilateral elements. Meshes with uniform spac-
ing and containing 1,4,16 and 64 elements were generated, illustrations of these meshes can be
found in Figure 3. Initially we consider the case of angular wavenumber m = 0. On each of these
meshes, computations employing uniform polynomial orders of p = 0, 1, 2, 3, 4, 5 were considered
in turn, and eigenvalues were computed. In Figure 4, we show the convergence of the first three
eigenvalues. Each curve represents a mesh, and the points along the curves represent increasing
polynomial order. For each eigenvalue, we show the convergence of the relative error with respect
to number of degrees of freedom (Ndof) and with respect to (Ndof)1/2.

In previous two–dimensional studies, it was observed that the convergence of eigenvalues was
exponential with respect to (Ndof)1/2 when the solution is analytic, i.e.

|λ̃i − λi|/λi ≤ C exp {−αNdof1/2} (16)
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where C and α are constants. This was further confirmed by theoretical investigations by Ainsworth
and Pinchedez [5], under certain assumptions about the regularity of the solution. We plot the
logarithm relative error against (Ndof)1/2 as we believe that the error should converge exponentially
fast with increasing p on each of the meshes.

But first, let us consider the convergence of the error with respect to Ndof. For the first
eigenvalue, we observe that increasing the polynomial order on the coarsest mesh leads to a fast
convergence of the error. We observe that the convergence behaviour for the other meshes is similar
so that a family of convergence curves is produced. Indeed, a similar pattern is observed for the
other two eigenvalues shown in Figure 4, with each case showing a family of convergence curves
for increasing p–refinement on each of the meshes.

Returning to the question of whether exponential convergence is in fact obtained. In the graphs
of Figure 4 which show the logarithm of the relative error against (Ndof)1/2 we observe a similar
pattern for each eigenvalue. The convergence with p–refinement on each of the meshes, produces
a curve which approximately resembles a straight line until a precision of approximately 10−8 is
reached. This value represents the finite precision of the method. Therefore, during the linear
portion of the curve, the convergence of these eigenvalues can be regarded as exponential. The
gradients of these lines becomes shallower as the number of elements in the mesh is increased.
A similar behaviour has also been observed for smooth two–dimensional problems and so this
behaviour should be expected for axisymmetric case also.

Next we consider the case with an angular wavenumber m = 1. The convergence of the first
three eigenvalues, when computed on the sequence of quadrilateral meshes with polynomial orders
p = 0, 1, 2, 3, 4, 5 in turn, is shown in Figure 5. These exhibit a similar convergence behaviour to
that found for the case of m = 0.

The second set of results employ a discretisation consisting only of triangular elements. To
obtain the triangular discretisation, each of the quadrilateral elements shown in the meshes given
Figure 3 was subdivided in to two triangular elements. This resulted in a sequence of meshes
with 2,8,32 and 128 triangular elements. On each of these meshes, the relative error of the first
three eigenvalues was computed for angular wavenumber m = 0 using uniform polynomial orders
of p = 0, 1, 2, 3, 4, 5 in turn. The resulting convergence curves are shown in Figure 6.

The convergence of the first three eigenvalues for angular wavenumber m = 1 for the triangular
discretisation is shown in Figure 7.

5.2 Two concentric dielectric spheres

The next example we consider is that of two concentric dielectric spheres, of which an illustration
can be found in Figure 8. For this example we assume that the radius of the first sphere is a = 1
and the radius of the second sphere is b = 2. The latter radii being a PEC boundary. The material
properties of the inner sphere are εa = 10, µa = 1 and those of the outer sphere are εb = 1 = µb = 1.
The exact eigenvalues for this problem may be computed, a description of which is given in [9].

A sequence of hybrid quadrilateral/triangular meshes were constructed to discretise this prob-
lem. The meshes contain 2 triangles and 2 quadrilaterals, 4 triangles and 12 quadrilaterals, 6
triangles and 30 quadrilaterals and 8 triangles and 56 quadrilaterals, respectively. An illustration
of the hybrid meshes is given in Figure 9. To obtain the representation of the curved boundaries
on these relatively coarse meshes, a blending function approach was implemented [31, 18]. Using
this approach, allows us to align the edges of the elements with the true geometry of the problem.

Uniform polynomial orders of p = 0, 1, 2, 3, 4, 5 were considered, in turn, on each of the four
hybrid meshes. The convergence of the relative errors for the first three eigenvalues for angular
wavenumber m = 0 is shown in Figure 10. In this figure, we observe that, even on the coarsest
mesh, relative errors of the order of 10−8 are obtained for the eigenvalues when p–refinement is
performed. This indicates that the blending function approach combined with a high p is capable of
accurately resolving the eigenmodes on very coarse meshes for cases when the boundary is curved
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1 element 4 elements

16 elements 64 elements

Figure 3: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, a sequence of four quadrilateral meshes with uniform h–refinement

and when discontinuous material coefficients are employed. Families of similar curves are obtained
when the finer meshes are employed.

When the relative error is plotted with respect to Ndof1/2 the curves obtained resemble straight
line plots until the precision limit is reached, thus indicating that the convergence of the eigenvalues
is exponential for p–refinement. The gradients of these lines decreases as the number of elements
in the mesh is increased in a similar manner to that already found for the case of the hollow
cylindrical cavity.

5.3 Dielectric sphere in free space

We now consider the example of a dielectric sphere situated in free space. The radius of the sphere
is a = 1 and its material properties are ε = 10, µ = 1. As the sphere is situated in free space, one
must also include this region in the simulation. In this work, this achieved approximately through
the truncation of the otherwise infinite domain and the application of absorbing sponge layer to
the truncated domain. An illustration of the resulting configuration is given in Figure 11. We
adopt a PML which has been derived in cylindrical coordinates [15]. The material tensors in the
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Figure 4: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, the convergence of the relative error against Ndof and (Ndof)1/2 for the first three
eigenvalues of angular wavenumber m = 0 on a sequence of quadrilateral meshes with uniform
polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.
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Figure 5: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, the convergence of the relative error against Ndof and (Ndof)1/2 for the first three
eigenvalues of angular wavenumber m = 1 on a sequence of quadrilateral meshes with uniform
polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.
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Figure 6: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, the convergence of the relative error against Ndof and (Ndof)1/2 for the first
three eigenvalues of angular wavenumber m = 0 on a sequence of triangular meshes with uniform
polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.
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Figure 7: Axisymmetric eigenvalue calculations for a hollow cylindrical cavity of unit height and
radius showing, the convergence of the relative error against Ndof and (Ndof)1/2 for the first
three eigenvalues of angular wavenumber m = 1 on a sequence of triangular meshes with uniform
polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.
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Figure 8: Axisymmetric eigenvalue calculation for an example containing two dielectric spheres of
radii a = 1 and b = 2 respectively, showing the geometry of the problem

absorbing layer take the form

ε = µ = Λ =





Λr 0 0
0 Λθ 0
0 0 Λz



 (17)

With the specific complex-valued entries of the tensor being given in [15]. Note that Λr,Λθ and
Λz are not constant, but a quadratic function of distance through the PML. A good choice of
thickness and absorption parameter is proposed by Cohen [10]. He suggests adopting a PML of
unit thickness together with a value σ = 6, and we adopt these choices for the simulations presented
here.

Due to the material parameters being complex, the solution of the problem becomes inherently
more computationally expensive. For this reason we report results for only a single mesh for
this case and this is shown in Figure 12. In Figure 13, we report the relative error for the real
and imaginary parts of the first eigenvalue for an angular wavenumber of m = 1 when uniform
polynomial orders p = 0, 1, 2, 3, 4, 5, 6 are used in turn. We only show convergence of the relative
error with respect to Ndof, as it obvious that, in this case, the convergence stagnates before
exponential convergence can occur. The stagnation observed, occurs due to the approximate
nature of the PML and manifests itself in both the real and imaginary parts of the first eigenvalue.

For greater levels of accuracy, one could attempt to design a better PML or use an alternative
far field condition. Although neither option is easily accomplished as the research in to absorbing
boundary conditions for open cavity problems is in its infancy.
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Figure 9: Axisymmetric eigenvalue calculations for an example containing two concentric dielec-
tric spheres of radii a = 1 and b = 2 respectively showing, a sequence of four hybrid quadrilat-
eral/triangular meshes with uniform h–refinement

6 Conclusions

This paper has shown an approach to solving axisymmetric eigenvalues which employs the hp finite
element discretisation of Ainsworth and Coyle [2]. For sequence of closed cavities, exponential
convergence of the eigenvalues has been demonstrated for quadrilateral, triangular and hybrid
discretisations, both with straight and curved boundaries. The solution of open cavities was also
shown to be possible with the approach, although a better far field condition is required to obtain
higher levels of accuracy. This remains an area of on–going research.
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Figure 10: Axisymmetric eigenvalue calculations for an example containing two concentric dielectric
spheres of radii a = 1 and b = 2 respectively showing, the convergence of the relative error against
Ndof and (Ndof)1/2 for the first three eigenvalues of angular wavenumber m = 0 on a sequence of
hybrid quadrilateral/triangular meshes with uniform polynomial orders p = 0, 1, 2, 3, 4, 5 in turn.
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Figure 11: Axisymmetric eigenvalue calculation for an example containing a dielectric sphere of
radius a = 1 located in free space, truncated with a PML at a distance of c = 1.25, showing the
geometry of the problem

Figure 12: Axisymmetric eigenvalue calculation for an example containing a dielectric sphere of
radius a = 1 located in free space, truncated with a PML at a distance of c = 1.25, showing the
mesh of 22 quadrilaterals and 4 triangles

0.01

0.1

1

10 100 1000 10000

R
e
la

ti
v
e

 E
rr

o
r

Ndof

Real(lambda_1)
Imag(lambda_1)

Figure 13: Axisymmetric eigenvalue calculation for an example containing a dielectric sphere of
radius a = 1 located in free space, truncated with a PML at a distance of c = 1.25, showing the con-
vergence of the relative error against Ndof for the first eigenvalue for an angular wavenumberm = 1
on a hybrid quadrilateral/triangular mesh with uniform polynomial orders p = 0, 1, 2, 3, 4, 5, 6 in
turn.
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[27] A.J. Ruiz-Genovés, L.E. Garćıa-Castillo, and M. Salazar-Palma. Third–order Nédélec tetrahe-
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