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1 Introduction

The numerical solution of problems with multiple scales has attracted increasing
attention in recent years. Roughly speaking, we are dealing with problems
where significant physical phenomena occur on length scales which differ by
several orders of magnitude so that their complete resolution within a single
numerical simulation is either impossible or extremely costly: if in a physical
domain Ω ⊂ Rd of unit diameter the fine scale of the solution has length ε, its
resolution by e.g. a Finite Element Method (FEM) with uniform mesh requires
N ≥ O(ε−d) degrees of freedom.

Most approaches to obtain computationally tractable models for such prob-
lems are based on scale separation: the ratio between fine and coarse scales
tends to zero asymptotically. Classical homogenization uses scale separation for
a-priori scale elimination, i.e. the analytical elimination of fine scales from the
mathematical model [7, 6]. This involves the derivation of the fine scales’ effect
on the macroscopic, coarse scales of the solution and the analytic derivation of
an ‘effective’ or ‘upscaled’ homogenized model equation prior to numerical solu-
tion. Numerous mathematical tools to achieve this have been developed, start-
ing with the classical two-scale asymptotic expansion technique [5, 7, 6, 16, 24]
for linear elliptic problems in divergence form to weak and Gamma conver-
gence techniques for fully nonlinear variational problems with multiple scales
(see [17, 11, 16] and the references there). The homogenized limiting problem
on the coarse scale can be solved numerically by standard methods. Numeri-
cal solutions of homogenized models do not allow directly to extract fine scale
information on the physical solution. This is only possible if additional ‘correc-
tor’ problems which are again of multiscale type are solved numerically. Their
numerical solution requires full resolution of the fine scales and is as complex
as the direct solution of the original problem.

One approach to avoid analytical homogenization is the direct FEM simu-
lation of the multiscale problem with a coarse mesh and to numerically probe
the fine scales of the data only in the set up of the element stiffness matrices.
If scales are separated and only solution behaviour on coarse scales is of inter-
est, this is achieved by the so-called Hierarchical Multiscale Methods proposed
recently in [12]. For elliptic homogenization problems, these methods use a dis-
cretization with N << O(ε−d) “macro” degrees of freedom, say, on the coarse
scale. “Probing” the fine scales in the FEM amounts to the numerical solution
of one elliptic “cell” problem for each macro degree of freedom. This is done
again by a suitable FE discretization of these cell problems. Sufficiently accu-
rate numerical “micro” (i.e. cell) solves then require again work algebraic in N
per cell. This gives an overall superlinear (in N) complexity of this approach.

If scale resolution is required, one can incorporate the solution’s fine scale
behaviour into the trial spaces of a coarse scale FEM, as proposed for example
in [14]. Here, problem adapted shape functions which incorporate the solution’s
fine scale behaviour must be precomputed. This allows for parallelization, but
still has complexity equal to that of a full scale resolution computation. An
error analysis is available for example in [14] for periodic two-scale problems –
its extension to diffusion problems with multiple scales remains yet to be done.

In the present paper, we propose and analyze an approach to the numerical
solution of elliptic multiple scale problems that is of log-linear complexity in N ,
the number of degrees of freedom in the discretization with respect to the “slow”
variable and which converges robustly in H1(Ω), i.e. the rate of convergence
is independent of ε. It is based on sparse FE discretization of an “unfolded”,
high-dimensional limit problem derived e.g. in [1, 2] or, more recently, in [9]. As
above, derivation of this limiting problem requires scale separation in the phys-
ical problem. Contrary to analytical homogenization, however, this approach,
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proposed first in [20], does not require the a-priori determination coefficients for
the homogenized macroscopic problem. Like the homogenized limiting problem,
the high-dimensional limit of [1, 2] is independent of the scale parameters, and
gives the correct homogenized solution. Moreover, this limit problem provides,
to leading order, the physical solution’s oscillations in Ω on all scales. Due to
the ellipticity of the limit problem, its FE solution is, in principle, straightfor-
ward, except for its high dimension: if the physical problem in Ω ⊂ Rd has
n + 1 length scales, the limit problem is elliptic and independent of the scale
parameters, but posed on a tensorized domain in R(n+1)d. Therefore, it can in
principle be solved robustly with a tensor product FEM in R(n+1)d; in practice,
however, this is unrealistic due to the high complexity of FEM in dimension
> 3.

As we show, this can be avoided by the use of so-called sparse tensor products
of FE-spaces also known in approximation theory as hyperbolic cross approxima-
tions. Such spaces were introduced into the FEM, after earlier work in numerical
integration [23] and approximation theory [25], by Zenger in [26].

Apart from a new approach to the numerical solution of elliptic multiscale
problems in divergence form, solving the high-dimensional limit problem nu-
merically is sometimes the only possible approach. For example, in the double
porosity problem considered in [4], a simple effective equation in R3 cannot be
deduced and the limit problem must be formulated in R6. This limit problem
was numerically solved by T. Arbogast in [3]. There, equations depending on x
and y in R3 and the time variable t are solved first as equations for y by fixing
the macro variable x ∈ R3 and then as equations for x. The high cost of this
approach was handled in [3] by massively parallel solution techniques, since, like
in the hierarchical multiscale methods, for each macroscropic degree of freedom,
a microscopic solution must be computed.

Using here sparse tensor products of standard FE spaces in each variable
gives, to leading order, a description of the solution’s fine scales: interpreting
e.g. a 2-scale solution u(x, x/ε) as a map from the slow variable x ∈ Ω into the
microscopic, or fast, variable y = x/ε ∈ Y , sparse tensor product Finite Ele-
ments resolve the x and y dependence of u(x, y) throughout Ω× Y and acount
for all scale interactions. As is well known from the approximation theory of
sparse tensor product spaces, this strategy is only successful if u(x, y) is, as map
Ω → Y from the slow into the fast scale, sufficiently smooth (see also [18]). We
show here (for scale-separated problems with any finite number of scales) that
for the high-dimensional one-scale problems arising in homogenization, this reg-
ularity holds. A wavelet based preconditioner then implies numerical solvability
in (memory and CPU) complexity comparable to that of fast elliptic one-scale
solvers in Rd and independent of the scale parameters (wavelet preconditioning
could be replaced by use of a hierarchical basis and a multilevel preconditioner
as e.g. in [15]).

We consider here only linear, scalar elliptic problems in divergence form
and assume full elliptic regularity; the idea of a numerically sparse full scale
resolution, however, is applicable to elliptic systems, problems with corners (see
[21] for sparse tensor product spaces of FEM with mesh refinement) – this shall
be dealt with elsewhere.

Throughout the paper, we employ standard notations: by Hk(Ω) we denote
the space of generalized functions on Ω whose derivatives of orders from 0 to
k belong to L2(Ω); Hk

#(Y ) denotes the subspace of functions in Hk
loc(R

d) that

are periodic with respect to the unit cell Y , and C1
#(Y ) denotes the space of

Y -periodic C1 functions.
The outline of the paper is as follows. In the next Section we state the elliptic

multiscale problem and we introduce the high dimensional limit equation, based
on notations and results on multiscale convergence from Allaire and Briane
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[2]. In Section 3, we define the hierarchic FE spaces in Subsection 3.1 and
introduce the tensor product FEM in Subsection 3.2. We prove that sparse
tensor product FEM can achieve convergence rates comparable to that of the full
tensor product FEM with a numberN of degrees of freedom that equals that of a
one-scale FEM in Rd, under the assumption of a certain multiscale regularity. In
Section 4 we prove that this multiscale regularity (which is necessary to obtain
optimal convergence rates with the reduced number of degrees of freedom of
the sparse FEM) typically holds for the multiscale limit equations, under mild
smoothness assumptions on the coefficients and on the domain. In Section 5,
we address the implementation of the sparse FEM. Due to the structure of
the basis, the stiffness matrix of the sparse FEM is rather densely populated
and its explicit formation and storage would require O(N2) memory. We show
how to generate this matrix in a factored form that requires essentially1 O(N)
memory and that allows to realize a matrix-vector multiplication in essentially
O(N) operations. Accordingly, the linear systems for the high dimensional limit
problem are solved iteratively, e.g. by cg or GMRES; we present a preconditioner
that gives uniformly bounded condition numbers and a solution algorithm for
the multidimensional problem of log-linear complexity. In Section 6 we report
simple numerical experiments confirming our theory.

2 Homogenization problem

We formulate the elliptic homogenization problem with n + 1 scales and state
the limiting problem as well as an error estimate between the solution of the
limiting problem and the solution of the physical problem.

2.1 Problem formulation

Let Ω ⊂ Rd be a bounded domain and let

A(x, y1, . . . , yn) ∈ L∞(Ω, C(Rnd))d×d

be a matrix function depending on n + 1 variables taking values in the space
Rd×d

sym; A is assumed periodic with respect to yi with period Y = [0, 1]d for
each i = 1, . . . , n (a different cell Yi on each scale would not cause any
difficulties). We assume that A is bounded and uniformly positive definite, i.e
there is a constant γ > 0 such that for all ξ ∈ Rd

γ|ξ|2 ≤ ξTA(x, y1, ..., yn)ξ ≤ γ−1|ξ|2, (1)

for all x ∈ Ω and yi ∈ Y , i = 1, . . . , n. For a scale parameter ε > 0 we consider
the Dirichlet problem

−divAε∇uε = f in Ω, uε = 0 on ∂Ω, (2)

with f ∈ L2(Ω). The d× d matrix Aε is assumed to depend on ε with multiple
scales in the following sense: there are n positive functions ε1, . . . , εn of ε that
converge to 0 when ε → 0 and are scale separated in the sense that

lim
ε→0

εi+1/εi = 0 (3)

for all i = 1, . . . , n− 1 and for all x ∈ Ω

Aε(x) = A

(

x,
x

ε1
, . . . ,

x

εn

)

.

1Throughout, “essentially” means up to powers of logN or of log h which will be made
precise in the proofs
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When n = 1 we have the classical two-scale homogenization problem

−divA

(

x,
x

ε

)

∇uε = f, (4)

which is dealt with thoroughly in the book by Bensoussan, Lions and Papani-
colaou [7]. The purpose of homogenization is to study the limit of uε when ε
converges to 0 and to get an asymptotic expansion of uε with respect to ε. The
original procedure presented in [7] is to perform a formal multiscale (two-scale
for the problem (4)) asymptotic expansion and then to justify the convergence
using the energy method due to L. Tartar [24]. This method has been widely
used for many homogenization problems involving two scales but for multiple
scales it can only solve a very narrow class of problems and becomes very compli-
cated (see [2] for details). The two steps, performing the asymptotic expansion
and using the energy method, can be incorporated into one single and quite ele-
gant method of two-scale convergence (for two-scale problems) originally due to
Nguetseng [19] and developed further by Allaire [1] and generalized to multiscale
convergence by Allaire and Briane [2]. The multidimensional limiting equation
derived in [2] contains, to leading order, complete information on the physical
solution’s oscillations on all length scales. We remark that recently Cioranescu
et al. [9] introduced the notion of unfolding homogenization that can also be
used to deduce the limiting equation and corrector results.

We review next some known results on this limiting equation for which we
develop below an efficient FEM.

2.2 High-dimensional Limit Problem

A key ingredient of homogenization of elliptic problems with multiple scales is
the notion of multiscale convergence. We present the definition here, based on
Allaire and Briane [2]. To this end, by Y1, . . . , Yn we denote n unit cells for
the n fast scales, and by C#(Y1 × . . . × Yn) the space of continuous functions
φ(y1, . . . , yn), which are Yk periodic with respect to yk for k = 1, . . . , n. For
simplicity of notation only, we assume here Yj = Y = (0, 1)d, j = 1, ..., n.

Definition 2.1 ([2] Definition 2.3) A sequence {uε}ε ⊂ L2(Ω) (n + 1)−scale
converges to u0(x, y1, . . . , yn) ∈ L2(Ω× Y1 × . . . Yn) if

lim
ε→0

∫

Ω
uεφ(x,

x

ε1
, . . . ,

x

εn
)dx =

∫

Ω

∫

Y1

. . .

∫

Yn

u0(x, y1, . . . , yn)φ(x, y1, . . . , yn)dxdy1 . . . dyn,

for any function φ ∈ L2(Ω, C#(Y1 × . . .× Yn)).

The relevance of this definition lies in the following compactness result.

Theorem 2.1 ([2] Theorem 2.5) Under the assumption (3) of scale separation,
from each bounded sequence in L2(Ω) we can extract a subsequence which (n+
1)−scale converges, as ε → 0, to a function u0 ∈ L2(Ω× Y1 × . . .× Yn).

For the variational formulation of the n+ 1-scale limit, we define the space

V = {(φ, {φi}) : φ ∈ H1
0 (Ω),φi ∈ L2(Ω×Y1× . . .×Yi−1, H

1
#(Yi)/R), i = 1, ..., n}

endowed with the norm

|||(φ, {φi})||| = ‖∇φ‖L2(Ω) +
n
∑

i=1

‖∇yiφi‖L2(Ω×Y1×...×Yi) (5)

for (φ,φ1, . . . ,φi) ∈ V. Then for the problem (2) we have the following result.
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Theorem 2.2 The solution uε of the problem (2) converges weakly to a function
u in H1

0 (Ω) and the gradient ∇uε (n+ 1)−scale converges to the limit

∇u(x) +
n
∑

i=1

∇yiuk(x, y1, . . . , yi),

where (u, u1, . . . , un) is the unique solution in the space V of the variational
problem

B(u, {ui};φ, {φi})

=

∫

Ω

∫

Y1

. . .

∫

Yn

A

(

∇xu+
n
∑

i=1

∇yiui

)

.

(

∇xφ+
n
∑

i=1

∇yiφi

)

dxdy1 . . . dyn(6)

=

∫

Ω
fφdx ∀(φ, {φi}) ∈ V.

The bilinear form B is continuous and coercive in V: there are c1, c2 > 0
independent of ε such that

∀(φ, {φi}) ∈ V : B(φ, {φi};φ, {φi}) ≥ c1|||(φ, {φi})|||2, (7)

∀(u, {ui}), (v, {vi}) ∈ V : B(u, {ui}; v, {vi}) ≤ c2|||(u, {ui})|||.|||(v, {vi})|||. (8)

For a proof, we refer to ([2] Theorem 2.11, equation (2.9)).

Remark 2.1 The limit problem (6) is independent of the scale parameter ε,
and formulated in terms of the coefficient A of the physical problem (2). We
can also deduce a limiting equation for u(x) only and express ui in terms of u
and of the solutions of appropriate cell problems. This will be done in Section 4
ahead. For example, for a two-scale problem, n = 1 and equation (6) becomes

∫

Ω

∫

Y
A(x, y)

(

∇xu+∇yu1

)

·
(

∇xφ+∇yφ1

)

dxdy =

∫

Ω
fφdx (9)

for all φ ∈ H1
0 (Ω) and φ1 ∈ L2(Ω, H1

#(Y )/R). This limit problem is derived in
[1].

Next we mention a corrector result to illustrate how uε can be approximated
in the physical domain Ω in terms of u0, u1, . . . , un.

Theorem 2.3 ([2] Theorem 2.14) Assume that the solution (u, u1, . . . , un) of
problem (6) is sufficiently smooth, say u ∈ C1(Ω) and ui ∈ C1(Ω, C1

#(Y1× . . .×
Yi)) for all i = 1, . . . , n. Then, as ε → 0,

uε(x) −

[

u(x) +
n
∑

i=1

εiui

(

x,
x

ε1
, . . . ,

x

εi

)
]

→ 0

strongly in H1(Ω).

Remark 2.2 If the data A,Ω, f are smooth then the functions u, ui are all
smooth. We can also pass to the limit for certain classes of nonsmooth matrices
A. This leads to lower regularity of uk but nevertheless a corrector can always
be found using the ‘inverse unfolding operator’ due to Cioranescu et al. [9].
Details about which matrices A are “admissible” may be found in [2] and [9].

3 Finite Element Discretization

We present FE discretizations of the limit problem (6). Since this problem is
elliptic and posed in the product domainΩ×Y1×...×Yn, it is natural to discretize
(6) with tensor product finite elements. We treat the full tensor product and
the sparse tensor product space separately to highlight their differences. Error
estimates follow then straightforwardly from approximation properties of FE
spaces in Ω and in the unit cells Yk.
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3.1 Hierarchic FE spaces

For the construction of the sparse tensor product FE spaces in Ω×Y1× ...×Yn,
we require hierarchic sequences of FE spaces in the component domains. We
sketch exemplarily two constructions of such subspace sequences. Consider a
sequence {V l}∞l=0 of subspaces of H1(Ω) and a sequence {V l

#}∞l=0 of subspaces

of H1
#(Y ) such that V l ⊂ V l+1 and V l

# ⊂ V l+1
# for all l = 0, 1, . . .. Assuming

that Ω is a bounded Lipschitz polyhedron with plane sides, we divide Ω into
simplices (triangles in dimension d = 2 and tetrahedra in dimension d = 3). For
each l each element of V l restricted to each of these simplices is a polynomial.
Similarly Y is divided to simplices; and each element of V l

# restricted to each
of these simplices is a polynomial. We consider the following cases:

Example 3.1 (h-FEM) Let {T l}∞l=0 be a nested sequence of regular simplices
of Ω: Ω is divided into a regular family T 0 = {T } of simplices; then we define
T l recursively by dividing each simplex in T l−1 into 4 congruent triangles for
d = 2 and 8 congruent tedrahedra for d = 3. The nested sequence {T l

#}∞l=0 of
regular simplices distributed periodically in Y is defined similarly. For p ≥ 1
a polynomial degree, and l ≥ 0 a refinement level, we define the finite element
spaces

V l = {u ∈ H1(Ω) : u|K ∈ Pp(K) ∀K ∈ T l},

V l
# = {u ∈ H1

#(Y ) : u|K ∈ Pp(K) ∀K ∈ T l
#},

V l
0 = {u ∈ H1

0 (Ω) : u|K ∈ Pp(K) ∀K ∈ T l}

where Pp(K) denotes the set of polynomials of total degree at most p in K.
For these spaces, we recall the approximation properties. Let hl = O(2−l)

denote the meshwidth. Then, for all t ≥ 0 we have (e.g. [8])

inf
v∈V l

‖u− v‖H1(Ω) ≤ chmin(t,p)
l ‖u‖Ht+1(Ω), (10)

inf
v∈V l

‖u− v‖L2(Ω) ≤ chmin(t,p)+1
l ‖u‖Ht+1(Ω), (11)

for all u ∈ Ht+1(Ω) and

inf
v∈V l

#

‖u− v‖H1(Y ) ≤ chmin(t,p)
l ‖u‖Ht+1(Y ), (12)

inf
v∈V l

#

‖u− v‖L2(Y ) ≤ chmin(t,p)+1
l ‖u‖Ht+1(Y ). (13)

for all u ∈ Ht+1
# (Y ). Here, c = c(t, p).

Example 3.2 (p-FEM) Let Ω and Y be divided into simplices T and a set
of periodically distributed simplices T#, respectively. Let p = 1, 2, . . . be the
polynomial degree. We define

V p = {u ∈ H1(Ω) : u|K ∈ Pp(K) ∀K ∈ T },

V p
# = {u ∈ H1

#(Y ) : u|K ∈ Pp(K) ∀K ∈ T#},

V p
0 = {u ∈ H1

0 (Ω) : u|K ∈ Pp(K) ∀K ∈ T }.

Then we also have similar approximation properties as in (10), (11), (12) and
(13).
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3.2 Tensor product FEM

To approximate ui(x, y1, . . . , yi) we need FE subspaces of L2(Ω × Y1 × . . . ×
Yi−1, H1

#(Yi)). Since

L2(Ω× Y1 × . . .× Yi−1, H
1
#(Yi)) ∼= L2(Ω)⊗L2(Y1)⊗ . . .⊗L2(Yi−1)o×H1

#(Yi),

a natural choice of a FE space is the tensor product FE space

VL = {(uL, {uL
i }) : uL ∈ V L

0 , uL
i ∈ V L

i , i = 1, . . . , n} (14)

where
V L
i = V L ⊗ V L

# ⊗ . . .⊗ V L
#

︸ ︷︷ ︸

i times

. (15)

To investigate the convergence rate of the tensor product FE spaces V L
i , we

quantify the solution’s regularity. To describe it, we introduce the space Ht
i

of functions w = w(x, y1, . . . , yi) ∈ L2(Ω × Y1 × . . . × Yi−1, H1+t(Yi)) that are
periodic in yj for j = 1, . . . , i such that w ∈ L2(Y1 × . . . × Yi, Ht(Ω)) and
w ∈ L2(Ω × Πj &=kYj , Ht(Yk)) for all k = 1, . . . , i − 1. We equip Ht

i with the
norm

‖w‖Ht
i
= ‖w‖L2(Y1×...×Yi,Ht(Ω))+‖w‖L2(Ω×Y1×...×Yi−1,H1+t(Yi))+

i−1
∑

k=1

‖w‖L2(Ω×Πj "=kYj ,Ht(Yk)).

Lemma 3.1 If w ∈ Ht
i then

inf
v∈V L

i

‖w − v‖L2(Ω×Y1×...×Yi−1,H1(Yi)) ≤ chmin(t,p)
l ‖w‖Ht

i
.

Proof We first define the following orthogonal projections in the norm ofH1(Y ),
L2(Y ) and L2(Ω) respectively

P l1
# : H1

#(Y ) −→ V l
#,

P l0
# : L2(Y ) −→ V l

#,

P l0 : L2(Ω) −→ V l.

For simplicity of notation, in the following inequalities we denote by L2
i the

space L2(Ω× Y1 × . . .× Yi−1, H1(Yi)). We then have

inf
v∈V L

i

‖w − v‖L2
i

≤ ‖w − id⊗ P l1
#w‖L2

i
+ ‖id⊗ P l1

#w − id⊗ P l0
# ⊗ P l1

#w‖L2
i
+

. . . + ‖id⊗ P l0
# ⊗ . . .⊗ P l0

# ⊗ P l1
#w − P l0 ⊗ P l0

# ⊗ . . .⊗ P l1
#ω‖L2

i

≤ chmin (t,p)
l ‖w‖Ht

i

due to the approximation properties (10) - (13) and to the boundedness of the
projection operators.!

The finite element approximation of (u, {ui}) reads: find (uL, {uL
i }) ∈ VL

such that

B(uL, {uL
i };φL, {φL

i }) =
∫

Ω
fφLdx ∀(φL, {φL

i }) ∈ VL. (16)

By (7), (8), it satisfies the quasi optimal error estimate

|||(u− uL, {ui − uL
i })||| ≤ c inf

(vL,{vL
i })∈VL

|||(u− vL, {ui − vLi })|||. (17)

We have immediately from Lemma 3.1
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Proposition 3.1 If u ∈ H2(Ω) and ui ∈ H1
i for i = 1, .., n, then with the full

tensor product finite element spaces in Example 1

|||(u − uL, {ui − uL
i })||| ≤ chL

(

‖u‖H2(Ω) +
n
∑

i=1

‖ui‖H1
i

)

(18)

Remark 3.1 If the solution has regularity u ∈ Ht+1(Ω) and ui ∈ Ht
i for t ≥ 0,

|||(u− uL, {ui − uL
i })||| ≤ chmin(t,p)

L

(

‖u‖Ht+1(Ω) +
n
∑

i=1

‖ui‖Ht
i

)

. (19)

Remark 3.2 For all p ≥ 1 holds NL = dimVL = O(h−(n+1)d
L ).

3.3 Sparse tensor product FEM

The full tensor product FE space is natural for the numerical solution of the lim-

iting problem (6). However, since its number of degrees of freedom isO(h−(n+1)d
L ),

its use is prohibitive in practice, especially in dimension d = 3 and for more than
two scales. In this section we develop the sparse FEM, and prove that its con-
vergence rate is essentially the same as that of the full tensor product FEM but
its number of degrees of freedom is essentially that of a one scale problem in
Rd.

To do so, we define the following increment, or “detail” spaces

W l = (P l0 − P (l−1)0)V l, W l0
# = (P l0

# − P (l−1)0
# )V l

#, W l1
# = (P l1 − P (l−1)1)V l

#;

Then
V l =

⊕

0≤i≤l

W i, V l
# =

⊕

0≤i≤l

W i0
# =

⊕

0≤i≤l

W i1
# .

The full tensor product space V L
i defined in (15) can then be written as

V L
i =

⊕

0≤jk≤L
k=0,1,...,i

W j0 ⊗W j10
# ⊗ . . .⊗W ji−10

# ⊗W ji1
# .

and the corresponding sparse tensor product FE spaces are defined by

V̂ L
i =

⊕

0≤j0+...+ji≤L

W j0 ⊗W j10
# ⊗ . . .⊗W ji−10

# ⊗W ji1
# .

The sparse FE space for the approximation of (6) is then given by

V̂L = {(ûL, {ûL
i }) : ûL ∈ V L

0 , ûL
i ∈ V̂ L

i }. (20)

Using V̂L, we approximate the solution (u, {ui}) of the problem (6) by: find
(ûL, {ûL

i }) ∈ V̂L such that

B(ûL, {ûL
i }; φ̂L, {φ̂L

i }) =
∫

Ω
f φ̂L ∀(φ̂L, {φ̂L

i }) ∈ V̂L. (21)

By (8), we have here the quasi optimal error estimate

|||(u− ûL, {ui − ûL
i })||| ≤ c inf

(φ̂L,{φ̂L
i })∈V̂L

|||(u − φ̂L, {ui − φ̂L
i })|||, (22)

where c is independent of ε and of L.
To derive an error estimate for V̂L in terms of hL, we need suitable approx-

imation results. To state them, we denote for a positive integer t by Ĥt
i the
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space of functions w(x, y1, ..., yi) that are Y -periodic in yj for j = 1, . . . , i and
that are such that for all α = (α0, . . . ,αi) with 0 ≤ αj ≤ t for j = 0, . . . , i− 1
and 0 ≤ αi ≤ t+1 holds ∂|α|/(∂α0x∂α1y1 . . . ∂αiyi) ∈ L2(Ω×Y1× . . .×Yi). We
equip Ĥt

i with the norm

‖w‖Ĥt
i
=

∑

0≤αi≤t+1
0≤αj≤t (0≤j≤i−1)

‖
∂|α|

∂α0x∂α1y1 . . . ∂αiyi
w‖L2(Ω×Y1×...×Yi).

The definition for non integer t is as usual by interpolation.

Lemma 3.2 If w ∈ Ĥt
i then

inf
v∈V̂ L

i

‖w − v‖L2
i
≤ c(L+ 1)i/2hmin(t,p)

L ‖w‖Ĥt
i

,

where we denote, as in Lemma 3.1, by L2
i the space L

2(Ω×Y1×. . .×Yi−1, H1(Yi)).

Proof We define the sparse interpolant ŵL of w by

ŵL =
∑

0≤j0+...+ji≤L

(P j0−P j0−1)⊗(P j10
# −P (j1−1)0

# )⊗. . .⊗(P ji−10
# −P (ji−1−1)0

# )⊗(P ji1
# −P (ji−1)1

# )w,

where P−1 = P (−1)0
# = P (−1)1

# = 0. Then we have

‖w − ŵL‖2L2
i

= ‖
∑

j0+...+ji≥L+1

(P j0 − P j0−1)⊗ . . .⊗ (P ji1
# − P (ji−1)1

# )w‖2L2
i

≤
∑

j0+...+ji≥L+1

‖(P j0 − P j0−1)⊗ . . .⊗ (P ji1
# − P (ji−1)1

# )w‖2L2
i

≤ c
∑

j0+...+ji≥L+1

(hj0−1 . . . hji−1)
2min(t,p)‖w‖2

Ĥt
i

≤ c4imin(t,p)
∑

j0+...+ji≥L+1

2−2(j0+...+ji) min(t,p)‖w‖2
Ĥt

i

≤ c(L+ 1)i2−2Lmin(t,p)‖w‖2
Ĥt

i
.

Note that hl = c2−l; we set h−1 = 1. The last inequality is proved as follows:
∑

j0+...+ji≥L+1

2−2(j0+...+ji)min(t,p) =
∑

j0,...,ji−1≥0

2−2(j0+...+ji−1)min(t,p)
∑

ji≥max(L+1−
(j0+...+ji−1),0)

2−2ji min(t,p)

=
1

1− 2−2min(t,p)

∑

j0,...,ji−1≥0

2−2max((L+1),j0+...+ji−1)min(t,p)

=
1

1− 2−2min(t,p)

∑

j0+...+ji−1≤L+1

2−2(L+1)min(t,p) +

1

1− 2−2min(t,p)

∑

j0+...+ji−1≥L+1

2−2(j0+...+ji−1)min(t,p)

≤
(L + 1)i2−2(L+1)min(t,p)

1− 2−2min(t,p)
+

1

1− 2−2min(t,p)

∑

j0+...+ji−1≥L+1

2−2(j0+...+ji−1) min(t,p)

≤
(L + 1)i2−2(L+1)min(t,p)

1− 2−2min(t,p)
+

(L+ 1)i−12−2(L+1)min(t,p)

(1− 2−2min(t,p))2
+

1

(1− 2−2min(t,p))2

∑

j0+...+ji−2≥L+1

2−2(j0+...+ji−2)min(t,p)

. . .

≤ ci(L+ 1)i2−2(L+1)min(t,p).
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where the constant c may depend on t but does not depend on L. !
From this we have the following estimate for the error.

Proposition 3.2 If the solution (u, {ui}) of the problem (6) satisfies u ∈ H2(Ω)
and ui ∈ Ĥ1

i for i = 1, . . . , n then

|||(u− ûL, {ui − ûL
i })||| ≤ c(L+ 1)n/2hL

(

‖u‖H2(Ω) +
n
∑

i=1

‖ui‖Ĥ1
i

)

.

Remark 3.3 If u, {ui} possess higher regularity i.e. u ∈ H1+t(Ω) and ui ∈ Ĥt
i

then we will have hmin(t,p)
L in place of hL in the previous estimate.

Remark 3.4 The number of degrees of freedom of the spaces V l and V l
# are

O(hd
l ) = O(2ld) so the numbers of degrees of freedom of W l, W l0

# and W l1
# are

O(2ld). The number of combinations (j0, . . . , ji) such that j0 + . . . + ji ≤ L is
O(Li). From this we deduce that the number of degrees of freedom of the sparse
FE space V̂L is O(2ldLn) = O(h−d

L | log hL|n) which equals, up to logarithmic
terms, the number of degrees of freedom for the one-scale problem when n = 0.

3.4 Convergence in physical variables for two scales

We estimate the error between the solution uε of the physical problem (2) in
terms of the FE approximations of the limit problem (6). We base this on an
explicit error estimate between uε and the correctors for the two scale case (i.e.
n = 1). To this end, we recall

Proposition 3.3 Assume that A(x, y) ∈ C∞(Ω̄, C∞
# (Y ))d×d

sym and that the ho-
mogenized solution u(x) belongs to H2(Ω). Then

‖uε − (u(x) + εu1(x,
x

ε
))‖H1(Ω) ≤ Cε1/2. (23)

The constant C is independent of ε but depends on u and u1.

Remark 3.5 This two-scale result is well known. Most of the existing literature
([7, 16]) presents error estimates for the case where A depends only on y. Section
1.4 of [16] presents a concise proof under the assumption that the coefficients
are smooth, the homogenized solution u is in C2(Ω̄) and the correctors wk are
in W 1,∞(Y ) (this will be shown in the next section). The error estimate for the
case where A also depends on x can be shown simply by following this proof
line by line. We need A to depend on x in a smooth manner. A close look
at the proof of [16] shows that once the coefficients are assumed to be smooth,
it is enough to consider u ∈ H2(Ω) as in Chapter 1 of [7]; this holds as long
as f ∈ L2(Ω) and Ω is a convex polyhedron. However for Theorems 3.1 and
3.2 we will need sufficient smoothness of the function u(x) so we will assume
f to be smooth. The smoothness conditions imposed in this section can be
reduced (with a consequence that the estimates we obtain may be weaker) but
for simplicity we do not present this here. The order of convergence in L2(Ω) is
O(ε).

An error estimate like (23) for more than two scales is still to be established;
since this is not the main focus of this paper, we confine ourselves in this section
to the two scale case.

The norms of the FE solutions uL
1 and ûL

1 can be unbounded in C0,1(Ω,W 1,∞(Y ))
when the mesh size hL → 0, so an estimate of the form (23) in terms of these
functions is not possible in general. We therefore “postprocess” the FE approx-
imation of u1 using the “folding” operator Uε introduced in [9].
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Definition 3.1 For Φ ∈ L1(Ω× Y ) we define

Uε(Φ)(x) =

∫

Y
Φ
(

ε
[x

ε

]

+ εz,
{x

ε

})

dz

where [x/ε] denotes the “integer” part of x/ε with respect to Y and where
{x/ε} := x/ε− [x/ε].

We have the following properties of Uε from [9]:

Lemma 3.3 For Φ ∈ L1(Ω× Y ),
∫

Ω
Uε(Φ)(x)dx =

∫

Ω×Y
Φ(x, y)dxdy.

Proof Let I be a subset of Zd such that Ω ⊂
⋃

m∈I ε(m + Y ) and extend the
function Φ by 0 outside Ω. Then

∫

Ω

∫

Y
Φ
(

ε
[x

ε

]

+ εz,
{x

ε

})

dzdx =
∑

m∈I

∫

Y

∫

εm+εY
Φ
(

εm+ εz,
{x

ε

})

dxdz

= εd
∑

m∈I

∫

Y

∫

Y
Φ (εm+ εz, y)dzdy =

∫

Ω×Y
Φ(x, y)dxdy. !

Lemma 3.4 If Φ ∈ C1(Ω̄, C#(Y )) then there is C(Φ) such that
∫

Ω
|Φ(x,

x

ε
)− Uε(Φ)(x)|2dx ≤ Cε2 holds for 0 < ε ≤ 1.

Proof Since Φ ∈ C1(Ω̄, C#(Y )) we have for all x ∈ Ω and z ∈ Y
∣
∣
∣Φ
(

x,
x

ε

)

− Φ
(

ε
[x

ε

]

+ εz,
x

ε

)∣
∣
∣ ≤ Cε

where C depends on Φ. Then
∫

Ω

∣
∣
∣

∫

Y

(

Φ(x,
x

ε
)− Φ

(

ε
[x

ε

]

+ εz,
x

ε

))

dz|2dx ≤ Cε2. !

We can now prove an estimate between the physical solution uε and the “folded”
FE solution of the multidimensional limit problem.

Theorem 3.1 Assume that A(x, y) and f are smooth and Ω is a convex poly-
hedron. With the full tensor product of the FE spaces in Example 1 with degree
p = 1, we have the asymptotic error estimate

‖∇xu
ε(x)−

[

∇xu
L(x) + Uε(∇yu

L
1 )(x)

]

‖L2(Ω) ≤ c(ε1/2 + hL). (24)

Proof Since A and f are smooth and Ω is convex, u(x) and u1(x, y) are
smooth (see the next section). From Lemma 3.4 and (23) we have

‖∇xu
ε(x)−∇xu(x)− Uε(∇yu1)(x)‖L2(Ω) ≤ cε1/2.

For all the function Φ ∈ L2(Ω× Y ) we have

(Uε(Φ)(x))2 ≤ Uε(Φ2)(x).

From Lemma 3.3 we have then

‖Uε(∇yu1)(x)−Uε(∇yu
L
1 )(x)‖L2(Ω) ≤ ‖∇yu1(x, y)−∇uL

1 (x, y)‖L2(Ω×Y ) ≤ chL.

The result then follows. !
One main result of the paper is that for the sparse FE space we have a

completely analogous error estimate:
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Theorem 3.2 Assume that A and f are smooth and that the homogenized so-
lution u(x) belongs to H2(Ω). Then with the sparse tensor product FE space
from Example 1 it holds

‖∇xu
ε(x) −

[

∇xû
L(x) + Uε(∇yû

L
1 )(x)

]

‖L2(Ω) ≤ c(ε1/2 + L1/2hL). (25)

The proof is analogous to that of Theorem 3.1 if we use that the solution (u, {ui})
has H2(Ω), Ĥ1

i -regularity. Sufficient conditions for this will be given in the next
section.

Remark 3.6 Theorem 3.2 was stated only for elements of degree p = 1. Under
suitably strong regularity assumptions for the limiting problem (6), e.g. u ∈
Hp+1(Ω), we get for p > 1 the asymptotic error bound

‖∇xu
ε(x) −

[

∇xû
L(x) + Uε(∇yû

L
1 )(x)

]

‖L2(Ω) ≤ c(ε1/2 + L1/2hp
L).

Remark 3.7 The proofs of Theorems 3.1 and 3.2 are based on the asymptotic
regularity (23) of the exact solution; use of (23) is the source of the term ε1/2 in
the error bounds (24) and (25). With a more refined two-scale regularity theory
which is not based on formal asymptotics (as e.g. in [18] for A = A(y)), this
term can likely be avoided.

3.5 Convergence in physical variables for multiple scales

For problems with more than two scales, an error estimate in the form (23)
appears not to be available so we can not obtain an error bound which is explicit
in ε like (24) or (25). However we can construct a numerical corrector for the
case where εi/εi+1 is an integer for all i = 1, . . . , n−1 and establish convergence
in H1(Ω). Generalizing the notation of [9], we define:

Definition 3.2 The “unfolding” T ε
n : L1(Ω) → L1(Ω × Y1 × . . . × Yn) of a

function φ at the scales ε1, ..., εn is defined as

T ε
n (φ)(x, y1, . . . , yn) = φ

(

ε1
[ x

ε1

]

+ ε2
[ y1
ε2/ε1

]

+ . . .+ εn
[ yn−1

εn/εn−1

]

+ εnyn
)

where φ is extended by zero outside Ω.

It is easy to see that
∫

Ω
φdx =

∫

Ωε1

∫

Y
ε2/ε1
1

. . .

∫

Y
εn/εn−1
n−1

∫

Yn

T ε(φ)dyn . . . dy1dx, (26)

where Ωε1 is the 2ε1 neighbourhood of Ω and Y εi+1/εi
i is the 2εi+1/εi neigh-

bourhood of Yi. As in [9], one can show that, as ε → 0, for the solution uε of
the multiscale problem (2) with the scale separation (3), it holds

T ε
n (∇uε) ⇀ ∇xu+∇y1u1 + . . .+∇ynun in L2(Ω× Y1 × . . .× Yn). (27)

We next define the operator Uε
n which “folds” a function Φ of several separated

scales.

Definition 3.3 Assume (3). For Φ ∈ L1(Ω× Y1 × . . .× Yn) define

Uε
n(Φ)(x) =

∫

Y1

. . .

∫

Yn

Φ
(

ε1
[ x

ε1

]

+ ε1z1,
ε2
ε1

[ε1
ε2

{ x

ε1

}]

+
ε2
ε1

z2, . . . ,
εn

εn−1

[εn−1

εn

{ x

εn−1

}]

+

εn
εn−1

zn,
{ x

εn

})

dzn . . . dz1.
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With the folding operator Uε
n we can state a multiscale analog to (23) which

shows that the functions u1, ..., un in (27) describe, to leading order, oscillations
of the sequence {uε} as it approaches its weak limit u(x).

Lemma 3.5 For the multiscale problem (2) with scale separation (3) holds

lim
ε→0

‖∇uε − Uε
n(∇xu+∇y1u1 + . . .+∇ynun)‖L2(Ω) = 0.

Proof Consider
∫

Ω

∫

Y1

. . .

∫

Yn

T ε(Aε)(T ε(∇xu
ε)− (∇xu+∇y1u1 + . . .+∇ynun)).

(T ε(∇xu
ε)− (∇xu+∇y1u1 + . . .+∇ynun))dyn . . . dy1dx.

Using (2), (6), (26) and (27) it is easy to see that this expression converges to 0
when ε → 0 so the convergence (27) is indeed strong. A similar argument as in
the proof of Lemma 3.3 shows that for all functions Φ ∈ L1(Ω× Y1 × . . .× Yn)
holds ∫

Ω
Uε
n(Φ)(x)dx =

∫

Ω

∫

Y1

. . .

∫

Yn

Φdyn . . . dy1dx.

Furthermore, for all functions Φ ∈ L2(Ω× Y1 × . . .× Yn) we have
∫

Ω
|Uε

n(Φ)(x)|2dx ≤
∫

Ω
Uε
n(Φ

2)(x) =

∫

Ω

∫

Y1

. . .

∫

Yn

Φ2dyn . . . dy1dx.

From this we deduce, as ε → 0, that

‖Uε
n(T ε(∇uε))− Uε

n(∇xu+∇y1u1 + . . .+∇ynun)‖L2(Ω)

≤ ‖T ε
n (∇xu

ε)− (∇xu+ . . .+∇ynun)‖L2(Ω×Y1×...×Yn) → 0.

The conclusion follows as Uε
n(T ε

n (Φ)) = Φ for all functions Φ(x). !

Remark 3.8 When the solution (u, u1, . . . , un) is smooth, this result can be
inferred from the corrector result in Theorem 2.3.

From these facts, we have the following convergence result for the “folded”
tensor product finite element solutions. As the corrector result Lemma 3.5 does
not give a rate in ε, we abandon also the FE convergence rates in the next results.
They hold without any additional regularity assumptions on the solutions of the
limiting problem (6).

Theorem 3.3 For the multiscale problem (2), with the full tensor product FE
approximation in Example 1 of the limit problem (6), we have

lim
ε→0
L→∞

‖∇xu
ε(x)− Uε

n(∇xu
L +∇y1u

L
1 + . . .+∇ynu

L
n)‖L2(Ω) = 0. (28)

Proof As the FE spaces are dense in V, we find from (17)

‖Uε
n(∇xu+ . . .+∇ynun)− Uε

n(∇xu
L + . . .+∇ynu

L
n)‖L2(Ω)

≤ |||(∇xu+ . . .+∇ynun)− (∇xu
L + . . .+∇ynu

L
n)||| = o(1) as L → ∞,

so from Lemma 3.5 we get the conclusion. !

Since V [L/n]
n ⊆ V̂ L

n , the sequence of sparse tensor product FE spaces is, as
L → ∞, also dense in V. Hence, the same argument as before establishes also

Theorem 3.4 For the multiscale problem (2), with the sparse tensor product
FE approximation of the high dimensional limit problem (6), we have

lim
ε→0
L→∞

‖∇xu
ε(x)− Uε

n(∇xû
L +∇y1 û

L
1 + . . .+∇yn û

L
n)‖L2(Ω) = 0. (29)
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4 Multiscale Regularity

From Proposition 3.2 and Theorem 3.2 we see that it is possible to approximate
the solution of the high dimensional limit problem (6) at an essentially optimal
convergence rate, provided that the functions ui exhibit joint regularity in each
fast variable yk, i.e. ui ∈ Ĥp

i . In this section we show that this regularity for
(u, {ui}) typically holds under mild regularity conditions on the coefficients A.

Theorem 4.1 Assume that A(x, y1, . . . , yn) ∈ C0,1(Ω, C0,1
# (Y1, . . . , C

0,1
# (Yn) . . .))

i.e A is Lipschitz with respect to each x, y1, . . . , yn, and is symmetric. Assume
Ω has a smooth boundary and f = f(x) ∈ L2(Ω). Then the solution (u, {ui}) of
the limit problem (6) satisfies u ∈ H2(Ω) and ui ∈ Ĥ1

i for each i = 1, . . . , n.

Proof From (6) we have that

un = wnl

(
∂u

∂xl
+

∂u1

∂y1l
+ . . .+

∂un−1

∂y(n−1)l

)

(the repeated index l indicates summation from 1 to d) where wnl ∈ L2(Ω ×
Y1 × . . .× Yn−1, H1

#(Yn)) is the solution of the variational problem

∫

Ω

∫

Y1

. . .

∫

Yn

A(el +∇ynwnl).∇ynφndxdy1 . . . dyn = 0

for φn ∈ D(Ω×Y1 × . . .×Yn) where el is the lth unit vector in Rd. Substituting
this form of un back into (6) we have

∫

Ω

∫

Y1

. . .

∫

Yn

A(I +∇ynwn)(∇xu+
n−1
∑

k=1

∇ykuk).∇yn−1φn−1dxdy1 . . . dyn−1 = 0

where wn denotes the vector (wn1, . . . , wnd) and I is the unit matrix. Then

un−1 = w(n−1)l

(
∂u

∂xl
+

∂u1

∂y1l
+ . . .+

∂un−2

∂y(n−2)l

)

where w(n−1)l ∈ L2(Ω× Y1 × . . .× Yn−2, H1
#(Yn−1)) is the solution of the vari-

ational problem
∫

Ω

∫

Y1

. . .

∫

Yn−1

An−1(el +∇yn−1w(n−1)l).∇yn−1φn−1dxdy1 . . . dyn−1 = 0,

where

An−1 =

∫

Yn

A(I +∇ynwn)dyn =

∫

Yn

A(I +∇ynwn).(I +∇ynwn)dyn.

With An = A, this formula allows to define recursively Ai for all i and we have

ui = wil

(
∂u

∂xl
+ . . .+

∂ui−1

∂y(i−1)l

)

where wil ∈ L2(Ω× Y1 × . . .× Yi−1, H1
#(Yi)) is the solution of the problem

∫

Ω

∫

Y1

. . .

∫

Yi

Ai(el +∇yiwil).∇yiφidxdy1 . . . dyi = 0, (30)

for all φi ∈ D(Ω× Y1 × . . .× Yi). The matrix Ai is defined as

Ai(x, y1, . . . , yi) =

∫

Yi+1

Ai+1(I +∇yi+1wi+1).(I +∇yi+1wi+1)dyi+1 (31)
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for i < n. Finally the effective diffusivity is

A0(x) =

∫

Y1

A1(I +∇y1w1).(I +∇y1w1)dy1

and we have the following “effective” problem for u:
∫

Ω
A0(x)∇xu.∇xφ =

∫

Ω
fφ,

for all φ ∈ D(Ω). The functions ui are then determined by

ui = wi.(I +∇yi−1wi−1) . . . (I +∇y1w1)∇xu. (32)

Since the matrix A0 is Lipschitz with respect to x and the domain Ω is con-
vex, u ∈ H2(Ω). Furthermore since Ai are Lipschitz with respect to x, y1, . . . , yi,
wil ∈ C0,1(Ω, C0,1

# (Y1, . . . , H2
#(Yi) . . .)) (see Gilbarg and Trudinger [13]). From

(32) we have ui ∈ Ĥ1
i .!

Remark 4.1 If the coefficient A is smooth, we solve the cell problems (30) as
parametric equation for yi in Rd for many points in (x, y1, . . . , yi−1) ∈ Rid. The
sparse FE scheme developed in the previous section is applicable to solve these
cell problems with reduced complexity.

Remark 4.2 If the coeffientA is in Ct−1,1 with respect to each variable x, y1, . . . , yn
and f ∈ Ht−1(Ω) then u ∈ Ht+1(Ω) and ui ∈ Ĥt

i for i = 1, . . . , n.

5 Implementation

The sparse tensor product FE discretization (21) of the limit problem (6) leads
to solving a linear system

ŜCL
u = CL

f , (33)

where the stiffness matrix Ŝ has dimension

N̂L :=
n
∑

i=0

dLi

with dL0 = dimV L
0 = O(h−d

L ) and dLi = dimV̂ L
i = O(h−d

L | log hL|i).
Due to the large support of the basis functions in the sparse tensor product

space, the matrix Ŝ is non sparse. Storing it requires memory which grows
superlinearly in the number of degrees of freedom. In order to build a solution
algorithm of log-linear complexity, we solve (33) iteratively and avoid forming
the matrix explicitly. Rather, we form the matrix out of blocks corresponding to
one-scale problems which can be written in terms of tensor products of smaller,
banded matrices. We will show that this is possible in memory and work that
grows essentially linear in the number of degrees of freedom for the one-scale
problem, dL0 .

To simplify the exposition, we consider the case where each entry of the
matrix Ŝ is a finite sum of terms of the form a0(x)a1(y1) . . . an(yn). Specifically,
we work with the case where A is isotropic and of the form

A = a0(x)a1(y1) . . . an(yn)I, (34)

where I is the d×d identity matrix. Assumption (34) is used below in factoring
the stiffness matrix Ŝ to derive a linear complexity matrix vector multiplication.
If the matrix A is smooth, but not of product form, it can be approximated by
sums of products (34) and our matrix vector multiplication algorithm as well as
our complexity estimates can still be applied.
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Remark 5.1 If A is anisotropic then it is necessary to deal with each single
entry of A separately and to add up the resulting matrices Ŝ. The result for a
single entry of A is achieved when the matrix I in (34) is not the identity matrix
but has only one entry as 1 and others are zero. This can be done by a similar
procedure as the one we are going to present below. We note that if A is of the
form (34) the cell problem (30) reduces to a problem in Rd without parameters
but if A is more complicated, e.g

A = (a0(x)a1(y1) . . . an(yn) + b0(x)b1(y1) . . . bn(yn))I,

this is no longer the case.

To simplify the presentation, we assume in (34)
∫

Y
ai(y)dy = 1 for i = 1, . . . , n.

5.1 Multilevel FE space and preconditioning

It is most convenient to use the wavelet preconditioning procedures to establish
bases for W l, W l0

# and W l1
# . We make the

Assumption 5.1 i) For each j ∈ N0
d there is a set of indices Ij ⊂ N0

d and a
family of functions ψjk ∈ H1(Ω), k ∈ Ij such that {ψjk : |j|∞ ≤ l} is a basis for
V l. There are two constants 0 < c1 < c2 such that if ψ =

∑

|j|∞≤l,k∈Ij ψjkcjk ∈
V l then

c1
∑

|j|∞≤l

k∈Ij

|cjk|2 ≤ ‖ψ‖2L2(Ω) ≤ c2
∑

|j|∞≤l

k∈Ij

|cjk|2.

ii) For each j ∈ N0
d there is a set of indices Ij0 ⊂ N0

d and a family of
functions ψjk

0# ∈ H1
#(Y ), k ∈ Ij0 such that {ψjk

0# : |j|∞ ≤ l} is a basis for

the linear space V l
#. There are two constants 0 < c3 < c4 such that if ψ =

∑

|j|∞≤l,k∈Ij
0
ψjk
0#cjk ∈ V l

# then

c3
∑

|j|∞≤l

k∈I
j
0

|cjk|2 ≤ ‖ψ‖2L2(Y ) ≤ c4
∑

|j|∞≤l

k∈I
j
0

|cjk|2.

iii) For each j ∈ N0
d there is a set of indices Ij1 ⊂ N0

d and a family of
functions ψjk

1# ∈ H1
#(Y )/R, k ∈ Ij1 such that {ψjk

1# : |j|∞ ≤ l} is a base for

the linear space V l
#/R. There are two constants 0 < c5 < c6 such that if

ψ =
∑

|j|∞≤l,k∈Ij cjkψ
jk
1# ∈ V l

#/R then

c5
∑

|j|∞≤l

k∈I
j
1

|cjk|2 ≤ ‖ψ‖2H1(Y )/R ≤ c6
∑

|j|∞≤l

k∈I
j
1

|cjk|2.

We give some examples of hierarchical Finite Element wavelet bases in one
dimension that we will use later. For analogous multivariate constructions we
refer to [10].

Example 5.1 i) Consider the case Ω = (0, 1). The hierarchical base for L2((0, 1))
can be taken as follows. At level 0, we choose three continuous, piecewise linear
functions in (0, 1): ψ01 takes values (1,0) at (0,1/2) and 0 in (1/2,1), ψ02 is
the hat function φ taking values 0, 1, 0 at 0, 1/2, 0 and ψ03 takes values (0,1) at
(1/2,1) and 0 in (0,1/2). For other level j, we consider the piecewise linear func-
tion ψ taking values (0,-1,2,-1,0) at (0,1/2,1,3/2,2) and 0 outside (0,2), the left
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boundary piecewise linear function ψleft taking value (-2,2,-1,0) at (0,1/2,1,3/2)
and the right boundary piecewise linear function ψright taking value (0,-1,2,-
2) at (1/2,1,3/2,2). We choose the index set Ij = {1, 2, . . . , 2j}, the function
ψj1(x) = 2−j/2ψleft(2jx), the functions ψjk(x) = 2−j/2ψ(2jx − k + 3/2) for

k = 2, . . . , 2j − 1 and ψj2j = ψright(2jx − 2j + 2). These functions satisfy
Assumption 1i)

ii) For Y = (0, 1), the base can be taken as the one defined in i) above
excluding the piecewise linear function ψ01 and ψ02 and also at other levels
we consider the left boundary functions taking values (0,2,-1,0) at (0,1/2,1,3/2)
and the right boundary function taking values (0,-1,2,0) at (1/2,1,3/2,2) (note
that the functions are now defined within an additive constant). We can also
consider the piecewise linear hat function φ in R taking values 0, 1, 0 at 0, 1/2, 0
and vanishing outside (0, 1). The set of indices Ij = {1, 2, . . . , 2j}. The wavelet
functions ψjk(x) = 2−j/2φ(2jx− i+ 1) satisfy Assumption 5.1, iii).

From the norm equivalences in Assumption 1 it is obvious that the quantity
(
∑

c2jk)
1/2 defines an equivalent norm in L2(Ω), L2(Y ) and H1(Y )/R in V l,

V l
# and V l

#/R respectively. From the coercivity (7) and the continuity (8) of
the form B and the norm equivalences in Assumption 1 we have immediately a
result on multilevel preconditioning:

Proposition 5.1 The condition number of the stiffness matrix Ŝ for the sparse
grid discretization of the one-scale limit problem has uniformly bounded condi-
tion number as L → ∞.

In these multilevel bases, the increment spaces can be explicitly represented
as

W l = Span{ψjk : |j|∞ = l},
W l0

# = Span{ψjk
0# : |j|∞ = l},

W l1
# = Span{ψjk

1# : |j|∞ = l}.

For i ≥ 1, let j be an (i + 1) × d index matrix of rows j0, . . . , ji and k be an
(i + 1) × d index matrix of rows k0, . . . , ki where k0 ∈ Ij0 and kν ∈ Ijν0 for

ν = 1, . . . , i − 1 and ki ∈ Iji1 . Denoting by ψjk = ψj0k0ψj1k1

0# . . .ψjiki

1# we can
write

V̂ L
i = Span{ψjk :

i
∑

ν=0

|j(ν)|∞ ≤ L}

where j(ν) denotes the νth row of the (i + 1)× d matrix j.
The algebraic excess (or detail space) of V̂ L

i is then defined as

ŴL
i = Span{ψjk :

i
∑

ν=0

|j(ν)|∞ = L} =
⊕

l∈Ni+1,|l|=L

W l
i ,

where
W l

i = Span{ψjk : |j(ν)| = lν}.

We denote by Ψl
i,Ψ

l0
#,Ψ

l1
#,Ψ

L the column vectors containing the bases of W l
i ,

W l0
# , W l1

# and V L
0 , respectively.

To obtain a log-linear complexity solution algorithm, we make the following
assumptions.

Assumption 5.2 There exists a number p > 0 such that
i) For all k ∈ Ij and j′ ∈ Nd, the set supp(ψjk)∩ supp(ψj′k′

) has nonempty

interior for at most pd.Πd
q=1 max(1, 2j

′
q−jq ) values of k′.
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ii) For all k ∈ Ij, the set supp(ψjk) ∩ supp(ψL
k′) where {ψL

k′} is the basis of

V L
0 has nonempty interior for at most pd

∑

0≤|j′|≤LΠd
q=1 max(1, 2j

′
q−jq ) values

of k′.

iii) For all k ∈ Ij0 and j′ ∈ Nd, the set supp(ψjk
0#)∩supp(ψj′k′

0# ) has nonempty

interior for at most pd.Πd
q=1 max(1, 2j

′
q−jq ) values of k′.

iv) For all k ∈ Ij0 and j′ ∈ Nd, the set supp(ψjk
0#)∩supp(ψ

j′k′

1# ) has nonempty

interior for at most pd.Πd
q=1 max(1, 2j

′
q−jq ) values of k′.

v) For all k ∈ Ij0 and j′ ∈ Nd, the set supp(ψjk
1#)∩ supp(ψj′k′

1# ) has nonempty

interior for at most pd.Πd
q=1 max(1, 2j

′
q−jq ) values of k′.

The assumptions i), iii), iv) and v) hold for the wavelet basis given in the
examples above and also for similar wavelet constructions in polygons [10]. As-
sumption ii) holds when for example we assume a wavelet hierarchical basis for
H1

0 (Ω).

5.2 Matrix-vector multiplication

To achieve a complexity that is essentially linear in dL0 , the stiffness matrix Ŝ
is never formed explicitly and hence, iterative solution methods are needed for
the solution of the linear system (33). In our approach, Ŝ will be generated in
factored form and only certain building blocks of the matrix Ŝ will be computed
and stored.

To this end, we define certain block matrices: we denote by A0 the stiffness
matrix with respect to a0(x) and the basis Ψ of V L

0 ; by Ai
l,l′ (i = 1, . . . , n) the

stiffness matrix describing the interaction betweenW l1
# and W l′1

# with respect to

ai(y), by M0
l,l′ the mass matrix with respect to a0(x) describing the interaction

between W l and W l′ , by M i
l,l′ (i = 1, . . . , n) the mass matrix describing the in-

teraction between W l0
# and W l′0

# with respect to ai(y), and by Biα
l (i = 1, . . . , n,

α = 1, . . . , d) the row matrix defined by

(Biα
l )1,ν =

∫

Y
ai(y)

∂Ψl1
#ν

∂yα
dy,

where Ψl1
#ν is the νth function in the base of W l1

# . We further require Ci
l

(i = 1, . . . , n− 1), the row matrix defined by

(Ci
l )1,ν =

∫

Y
ai(y)Ψ

l0
#νdy,

where Ψl0
#ν is the νth function in the base of W l0

# ; and D0α
l (α = 1, . . . , d) the

matrix defined by

(D0α
l )µ,ν =

∫

Ω
a0(x)

∂Ψµ

∂xα
Ψl

ν(x)dx

where Ψµ is the µth function in the base of V L
0 and Ψl0

ν is the νth function in
the base of W l; Diα

l,l′ (i = 1, . . . , n− 1, α = 1, . . . , d) is the matrix defined by

(Diα
l,l′)µ,ν =

∫

Ω
ai(y)

∂Ψl1
#µ

∂yα
Ψl′0

#ν(x)dx

where Ψl1
#µ is the µth function in the base of V l1

# and Ψl′0
#ν is the νth function

in the base of W l′0
# .

From assumption 5.2, it it simple to see that

nnz(M0
l,l′) ≤ pd(min(l, l′) + 1)d−12dmax(l,l′)
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so the memory needed to store all matrices M0
l,l′ for 0 ≤ l, l′ ≤ L is bounded by

L∑

l,l′=0

(min(l, l′) + 1)d−12dmax(l,l′) " (L + 1)d−12dL.

Similar results are readily seen to hold also for the other matrices, so that
the total memory needed to store the matrices A, B, C, D and M grows as
O(Ld−12dL).

We proceed to derive the matrix vector multiplication algorithm. To this
end, we express the bilinear form B(·, ·) on V̂L × V̂L in terms of the wavelet
basis.

To this end, we write ûL = xu0 ·ΨL, ûL
i = xl

ui ·Ψ
l
i, φ̂

L = x0 ·ΨL, φ̂L
i′ = xl′

i′ ·Ψ
l′

i′

where l ∈ N
i+1
0 and l′ ∈ N

i′+1
0 and |l|, |l′| ≤ L. Then the bilinear form for the

limit problem (6) has the matrix representation

B(ûL, {ûL
i }; φ̂, {φ̂L

i }) =
(

A0xu0 +
n
∑

i=1

∑

0≤|l|≤L

d
∑

α=1

D0α
l0

i−1
⊗

ν=1

Cν
lν

⊗

Biα
li
xl
ui

)

.x0 +

n
∑

i′=1

∑

0≤|l′|≤L

(
d
∑

α=1

(D0α
l′ )*

i′−1
⊗

ν=1

(Cν
l′ν
)*
⊗

(Bi′α
l′i

)*xu0 +

i′−1
∑

i=1

∑

0≤|l|≤L

d
∑

α=1

i−1
⊗

ν=0

Mν
l′ν lν

⊗

(Diα
lil

′
i
)*

i′−1
⊗

ν=i+1

(Cν
l′ν
)*
⊗

(Bi′α
l′
i′
)*xl

ui +

∑

0≤|l|≤L

i′−1
⊗

ν=0

Mν
l′ν lν

⊗

Ai′

l′
i′
li′
xl
ui′ +

n∑

i=i′+1

∑

0≤|l|≤L

d∑

α=1

i′−1⊗

ν=0

Mν
l′ν lν

⊗

Di′α
l′
i′
li′

i−1⊗

ν=i′+1

Cν
lν

⊗

Biα
li
xl
ui

)

.xl′

i′ .

We see that Ŝ is formed from tensor products of the ‘elementary’ matrices A,
B, C, D and M defined above.

The algorithm for applying Ŝ to a vector with the optimal number of floating
point operations is based on [21] and [22].

Step 1: Vector multiplication D0α
l0

⊗i−1
ν=1 C

ν
lν

⊗

Biα
li
xl
ui.

Let Rij be the row matrix C1
l1

⊗

. . .
⊗

Biα
li
. The number of nonzero entries of

this matrix is bounded by

(l1 + 1)d . . . (li + 1)d2d(l1+...+li) " (|l|+ 1)id2d(|l|−l0).

Let Idl0l0 be the identity matrix whose dimension is dimW l0 . The multiplication

is performed as D0α
l0
(Idl0l0

⊗

Rij)x
j
i , which requires a number of floating point

operations bounded by nnz(D0α
l0
)+nnz(Idl0l0

⊗

Rij). From Assumption 5.2, we
get

nnz(D0α
l0
) "

L
∑

l=0

(min(l, l0) + 1)d−1.2dmax(l0,l) " (|l|+ 1)d−1L2dL.

We also have dimW l0 ∼ (l0 + 1)d2dl(0). Thus the floating point operations
needed to perform this step over all i and l is bounded by

n
∑

i=1

L
∑

l=0

∑

|l|=l

(l+ 1)(i+1)d2ld + (l+ 1)d−12LdL "
n
∑

i=1

L(i+1)d+i2Ld " L(n+1)d+n2Ld
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(note that the number of vectors l ∈ N
i+1
0 such that |l| = l is at most O(li)).

Step 2: Multiplication (D0α
l′0
)*
⊗i′−1

ν=1 (C
ν
l′ν
)*
⊗

(Bi′α
l′
i′
)*xu0.

This multiplication is performed as ((Rij)*
⊗

Idl′0l′0)(D
0α
ul′0

)*xu0. Similarly as

above, the number of floating point operations needed to perform this step over
all i′, l′ is bounded by L(n+1)d+n2Ld.

Step 3: Matrix vector multiplication

i−1⊗

ν=0

Mν
l′ν lν

⊗

(Diα
lil

′
i
)*

i′−1⊗

ν=i+1

(Cν
l′ν
)*
⊗

(Bi′α
l′
i′
)*.xl

ui,

(1 ≤ i ≤ i′ − 1 and α = 1, . . . , d). We regard lν = 0 for ν = i + 1, . . . , i′. From
[22] Lemma 5.8, there is a permutation σ of (0, . . . , i′) such that

∀0 ≤ q ≤ i′ :
q
∑

ν=0

lσ(ν) +
i′
∑

ν=q+1

l′σ(ν) ≤ max(
i
∑

ν=0

lν +
i′
∑

ν=0

l′ν).

Let Tl,l′,q =
⊗i′

ν=1 Uν(l, l
′, q) where

Uν(l, l
′, q) =























Idlν ,lν , ν ∈ {σ(0), . . . ,σ(q − 1)

Mσ(q)
l′σ(q)lσ(q)

, ν = σ(q) ≤ i − 1

(Diα
lil

′
i
)*, ν = σ(q) = i

(Cσ(q)
l′σ(q)

)*, i < ν = σ(q) < i′

(Bi′α
l′
i′
)*, ν = σ(q) = i′

Idl′ν ,lν , ν ∈ {σ(q + 1), . . . ,σ(i′)}

where Id00 = 1, Idl0,l0 is the identity matrix of size dimW l0 , Idlν lν is the identity

matrix of size dimW
lν0
# if 0 < ν < i and of size dimW

li1
# if ν = i; Idl′ν l

′
ν
is defined

similarly (we replace i by i′ in the definition). Then

i−1
⊗

ν=0

Mν
l′ν l

′
ν

⊗

(Diα
lil

′
i
)*

i′−1
⊗

ν=i+1

(Cν
l′ν
)*
⊗

(Bi′α
l′
i′
)*.xl

ui = Tl,l′,1 . . . Tl,l′,i′ .x
l
ui.

The order of multiplication is essential here to get the following estimate on the
number of floating points operations needed. We have

nnz(Tl,l′,q) " Πq−1
ν=1(lν(q) + 1)d.(min(l′σ(q), lσ(q)) + 1)d−1.Πi′

ν=q+1(l
′
σ(ν) + 1)d

· 2d(
∑q−1

ν=1 lσ(ν)+max(l′σ(q),lσ(q))+
∑i′

σ=q+1 lσ(ν))

" (max(|l|, |l′|) + 1)d(i
′+1)2dmax(|l|,|l′|);

here we used that dimW l0, dimW l0
# and dimW l1

# 0 (l+1)2dl. Thus this matrix
vector multiplication needs at most

i′
∑

q=1

nnz(Tl,l′,q) " (max(|l|, |l′|) + 1)d(i
′+1)2dmax(|l|,|l′|)

floating point operations. The amount of memory needed to store these matrices
is bounded by " Ld(n+1)2dL. The number of floating point operations needed
to perform this step over all l, l′, |l| = l, |l′| = l′, i and i′ is bounded by

n
∑

i′=1

L
∑

l=0
l′=0

∑

|l′|=l′

∑

i<i′

∑

|l|=l

(max(|l|, |l′|) + 1)d(i
′+1)2dmax(|l|,|l′|)

"
L
∑

l,l′=1

lnl′
n
(max(l, l′) + 1)d(n+1)2dmax(l,l′) " L2n+d(n+1)2dL.
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Step 4: We perform the multiplication
⊗i′−1

ν=0 Mν
l′ν ,lν

⊗

Ai′

l′
i′
,li′

.xl
ui′ , simi-

larly: we find an appropriate permutation of (0, 1, . . . , i′) and we write this

multiplication in the form Tl,l′,1 . . . Tl,l′,i′ .x
l
i′ to get the same estimate as in Step

3 for the number of required floating point operations.

Step 5: We perform the multiplication
⊗i′−1

ν=0 Mν
l′ν ,lν

⊗

Di′α
l′
i′
li′

⊗i−1
ν=i′+1 C

ν
lν

⊗

Bαilix
l
i,

similarly as in step 3: we find a permutation σ of (0, 1, . . . , i) for the sets of in-
dices (l0, . . . , li) and (l′0, . . . , l

′
i′ , 0, . . . , 0) (i − i′ zeros). Then we have the same

estimate as in Step 3 for the number of floating point operations needed.
The matrix-vector multiplication is summarized in the following

Algorithm
Store A0, Ai

l,l′ , M
0
l,l′ , M

i
l,l′ , B

iα
l (i = 1, . . . , n, α = 1, . . . , d),

Ci
l (i = 1, . . . , n− 1), D0α

l , Diα
ll′ (all sparse), (x0,(x

l
i)l0+l1+...+li≤L).

initialize (Ŝx)0 = A0.x0

for i = 1, . . . , n, for l :
∑i

ν=0 lν ≤ L:

Step 1: y
0
=
∑d

α=1 D
0α
l0
.(Idl0l0

⊗

Rij).x
l
i, (Ŝx)0 = (Ŝx)0 + y

0
end , end

for i′ = 1, . . . , n, for l′ :
∑i′

ν=0 l
′
ν ≤ L

initialize (Ŝx)l
′

i′ = 0

Step 2: yl
′

i′ =
∑d

α=0(R
*
i′j′
⊗

Idl′0l′0)(D
0α
l′0
)*x0, (Ŝx)l

′

i′ = (Ŝx)l
′

i′ + yl
′

i′

Step 3: for i = 1, . . . , i′ − 1, for l :
∑i

ν=0 li ≤ L

yl
′

i′
=

d
∑

α=1

Tl,l′,1 . . . Tl,l′,i′ .x
i
l , (Ŝx)l

′

i′ = (Ŝx)l
′

i′ + yl
′

i′

end, end

Step 4: yl
′

i′ =
∑d

α=1 Tl,l′,1 . . . Tl,l′,i′ .xi
l, (Ŝx)l

′

i′ = (Ŝx)l
′

i′ + yl
′

i′

Step 5: for i = i′ + 1, . . . , n, for l :
∑i

ν=0 li ≤ L

yl
′

i′
=

d
∑

α=1

Tl,l′,1 . . . Tl,l′,i.x
l
i, (Ŝx)l

′

i′ = (Ŝx)l
′

i′ + yl
′

i′

end, end
end, end

We use the conjugate gradient (cg) method to solve the linear problem (33).
Due to the boundedness of the condition number of the matrix Ŝ, the number
of cg-steps required to compute the solution up to a prescribed accuracy is
bounded. The number of degrees of freedom equals N̂L = O(2dLLn). Analogous
resoning applies also to Finite Elements of polynomial degree p > 1. Thus we
have shown

Theorem 5.1 Assuming u ∈ Hp+1(Ω) and ui ∈ Ĥp
i , the multidimensional limit

problem (6) is numerically solvable by sparse tensor product Finite Elements of

degree p with relative accuracy O(N̂−p/d
L (log N̂L)n(1/2+1/d)) in the norm |||.|||

defined in (5) at a cost of at most O(N̂L(log N̂L)n+d(n+1)) floating point opera-
tions with at most O(N̂L(log N̂L)d(n+1)−n) words of memory.

Remark 5.2 So far, we performed the convergence and complexity analysis of
the sparse FEM for the numerical solution of the high dimensional limit problem
only under the strong regularity hypothesis that u ∈ Ht+1(Ω) and that ui ∈ Ĥt

i.
It is well-known, however, that for problems in polygonal domains the solution u
of the limiting problem may not even belong toH2(Ω), due to corner singlarities.
We emphasize that in such cases our convergence analysis is still valid, if the
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quasiuniform mesh in the FE space in Ω is replaced by a mesh with suitable
refinement toward the solution’s singular supports. Since we constructed the
members V̂ L

i of the sparse tensor product space (20) from full component FE
spaces with hierarchical basis, any type of mesh refinement in these component
FE spaces is admissible in order to resolve solution singularities while preserving
our error and complexity estimates; the regularity spaces Ĥt

i have to be replaced
by weighted spaces, however. See [21] for sparse grid convergence estimates for
component FE spaces with mesh refinement, in the case n = 1.

6 Numerical results

In this section, we illustrate the theoretical results presented above with numer-
ical experiments.

6.1 Two scale problem

We start with a simple one dimensional two scale problem where A(x, y) =
a0(x)a1(y), a0(x) = 1 + x and a1(y) = (2/3)(1 + cos2 2πy), f = −1 in the
domain Ω = (0, 1). The multiscale problem (2) becomes

d

dx
(
2

3
(1 + x)(1 + cos2(2π

x

ε
))
duε

dx
) = 1 in Ω, uε(0) = uε(1) = 0.

The two scale limiting equation (9) has the exact (homogenized) solution

u(x) =
3

2
√
2
(x−

log(1 + x)

log 2
),

and the scale interaction term

u1(x, y) =
3

2
√
2
(1−

1

(1 + x) log 2
)(

1

2π
tan−1(

tan 2πy√
2

)− y + C),

(note that fixing x, u1(x, y) is determined within an additive constant).
In the sparse FEM, we use the hierarchical base in example 3i) for L2(Ω) and

the hat function base in 3iii) for H1
#(Y )/R. The number of degrees of freedom

for the sparse FEM is (L+ 3)2L+1 − 2.
In Figure 1, we plot the energy error versus the mesh size h for the full tensor

product FE and the sparse tensor product.
We see that the full and sparse tensor product FE - errors, i.e. |||(u −

uFE, u1 − uFE
1 )|||2 and |||(u− ûFE , u1 − ûFE

1 )|||2, are roughly the same for the
same mesh size, which illustrates our result that the scale interaction functions
ui(x, y1, ..., yi) have sufficient regularity so as to allow a sparse approximation
without reducing the convergence rate, in terms of the meshwidth.

In Figure 2, we compare the energy error with the number of degrees of
freedom N . It is clear that the same energy error is obtained with a much
smaller number of degrees of freedom in the sparse tensor product FE case as
compared to the full tensor product case. We also see that the energy error for
the sparse tensor product FEM decreases of order O(N−2(logN)3) where N is
the number of degrees of freedom.

6.2 Three scale problem

Next we consider in Ω = (0, 1) the three scale problem

d

dx
(
4

9
(1 + x)(1 + cos2(2π

x

ε1
))(1 + cos2(2π

x

ε2
))
duε

dx
) = 1 in Ω,

uε(0) = uε(1) = 0.
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Figure 1: The energy error versus the mesh size h
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Figure 2: The energy error versus the number of degrees of freedom
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Figure 3: The energy error versus the number of degrees of freedom for three
scales

The three scale limiting problem (6) has the exact homogenized solution

u(x) =
9

8
(x −

log(1 + x)

log 2
),

and the scale interaction terms

u1(x, y1) =
9

8
(1 −

1

(1 + x) log 2
)(

1

2π
tan−1(

tan 2πy1√
2

)− y1 + C1),

u2(x, y1, y2) =
9

8
(1−

1

(1 + x) log 2
)(

1

2π
tan−1(

tan 2πy2√
2

)−y2+C2)

√
2

1 + cos2 2πy1
.

In Figure 3 the energy error is plotted versus the number of degrees of free-
dom. The predicted convergence behaviour of O(N−2(logN)6) is not visible
here since, in the range of N used for the computation, the logarithmic terms
in the convergence estimate still dominate the error. From our asymptotic con-
vergence analysis, we expect this effect to be even more pronounced for more
than three scales.
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tions on Lévy Driven Assets

03-05 M. Becheanu, R.A. Todor On the Set of Diameters of Finite Point-Sets
in the Plane

03-04 C. Schwab, R.A. Todor Sparse finite elements for stochastic elliptic
problems - higher order moments

03-03 R. Sperb Bounds for the first eigenvalue of the
elastically supported membrane on convex
domains

03-02 F.M. Buchmann Computing exit times with the Euler scheme
03-01 A. Toselli, X. Vasseur Domain decomposition precondition-

ers of Neumann-Neumann type for hp-
approximations on boundary layer meshes in
three dimensions

02-26 M. Savelieva Theoretical study of axisymmetrical triple
flame
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