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1 Introduction

In recent years hp finite element methods have gained an increasing popularity
in various engineering application fields. These methods are found to be partic-
ulary useful when high or extremely high accuracy is needed and when minimal
dissipation and dispersion errors in the discrete system are required. Among
others, we mention three-dimensional simulations in fluid dynamics (computa-
tion of high Reynolds turbulent flows by Direct Numerical Simulation or Large
Eddy Simulation [26, 39]), in fluid-structure interaction (vibration of a non-
linear cable [25, 45]) or in electromagnetics (scattering of electromagnetic waves
in a waveguide [54], radiation from a dipole [21]). Indeed the main reason for
the interest in hp finite element methods is that they achieve exponential rates
of convergence for both regular and singular solutions [48, 60]. In presence of
singularities or boundary layers, suitably graded meshes, geometrically refined
towards corners, edges and/or faces have to be employed to achieve such an ex-
ponential rate of convergence [48, 60]. Thus highly stretched meshes with huge
aspect ratios are obtained in practice. Consequently, the condition number of
the stiffness matrix severely deteriorates: an exponential growth in the spectral
polynomial degree is obtained for the condition number of the stiffness matrix.
Hence robust iterative solvers are mandatory especially for three-dimensional
applications.

In this work, solvers based on domain decomposition methods of iterative
substructuring type [53, 64] will be considered. They are among the most pop-
ular domain decomposition methods for the iterative solution of algebraic sys-
tems arising from the finite element approximation of elliptic partial differential
equations. Moreover they can provide parallel scalable solvers; see, e.g., [17]
for recent works in computational mechanics. We note that the same ideas of
substructuring methods were already employed in [32], where preconditioned
interface problems for mixed problems, involving function traces or fluxes, were
constructed by solving local Dirichlet and Neumann problems on the subdo-
mains. Several works on domain decomposition have been proposed for higher
order approximations [2, 3, 4, 36, 41, 43, 50] and more recently [42] (see also
the references therein). Unfortunately, the performance of iterative substruc-
turing methods might be severely compromised if very thin elements and/or
subdomains or general non quasiuniform meshes are employed.

The goal of this paper is to present a numerical study on some domain de-
composition methods of iterative substructuring type for hp finite element ap-
proximations of some scalar three-dimensional problems. In [66, 68], we showed
that the Balancing Neumann-Neumann [46] and one-level Finite Element Tear-
ing and Interconnecting (FETI) [28] methods can be successfully devised for
some particular anisotropic meshes commonly used for hp finite element ap-
proximations of two-dimensional problems. Indeed, these meshes are highly
anisotropic, but of a particular type:
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1. they are obtained by refining an initial shape-regular mesh (macromesh);

2. refinement is only carried towards the boundary of the computational do-
main.

These properties allowed us to obtain condition number bounds for the corre-
sponding preconditioned operators that only grow polylogarithmically with the
polynomial degree, as is the case of p approximations on shape regular meshes
[51]. Our understanding and analysis was confirmed by numerical experiments
[68]. Following similar ideas, we have been able to extend these results to three-
dimensional problems in [67]. The main theoretical result of that work is that
certain Balancing Neumann-Neumann methods provide condition numbers in-
dependent of the aspect ratio of the mesh and of potentially large jumps of
the coefficients, still retaining a polylogarithmic growth in the number of un-
knowns. This analysis has been developed on a simple diffusion problem and few
numerical experiments on a purely diffusive problem defined on a geometrically
refined mesh have also been provided confirming the polylogarithmic growth of
the condition number of the preconditioned operator in the polynomial degree.
In this paper we will treat more general diffusion problems with possibly large
jumps in the coefficients or reaction-diffusion problems of singularly perturbed
type and present extensive results for six different cases. While results for large
systems up to 2 millions degrees of freedom will be analyzed, our main focus
will be to investigate the robustness of the preconditioner with respect to the
mesh aspect ratio. This last feature is of particular importance before tack-
ling more involved three-dimensional applications that may be defined on more
complicated geometries.

The remainder of this paper is organized as follows: in section 2, we intro-
duce the model problem for our proposed numerical study, the hp finite element
approximations and finally a class of geometrically refined meshes. The pro-
posed Balancing Neumann-Neumann domain decomposition preconditioner is
described in section 3. An extensive numerical study is presented in section 4.
We end this work by mentioning some perspectives and future developments in
section 5.

2 Problem setting and hp finite element approx-

imations

2.1 Model problem

We consider a linear, elliptic problem on a bounded polyhedral domain Ω ⊂ R3

of unit diameter, formulated variationally as:
Find u ∈ H1

0 (Ω), such that

a(u, v) =

∫

Ω
(ε ρ(x)∇u ·∇v + c u v) dx = f(v), v ∈ H1

0 (Ω), (1)
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where c, ε are non-negative real coefficients. As usual, H1(Ω) is the space of
square summable functions with square summable first derivatives, and H1

0 (Ω)
its subspace of functions that vanish on ∂Ω. The functional f(·) belongs to the
dual space H−1(Ω). Here x = (x, y, z) denotes the position vector.

The coefficient ρ(x) > 0 can be discontinuous, with very different values
for different subregions of Ω, but we allow it to vary only moderately within
each subregion. Without decreasing the generality of our results, we will only
consider the piecewise constant case i.e. ρ(x) = ρi, x ∈ Ωi.

Note that the purely diffusion problem derived from (1) has been used in
[67] as a model problem to derive the condition number bound for the Balancing
Neumann-Neumann preconditioner. This bound will be recalled without proof
in subsection 3.4.

2.2 hp finite element approximations

We now specify a particular choice of finite element spaces. Let T be a mesh
consisting of affinely mapped cubes. Given a polynomial degree k ≥ 1, we
consider the following finite element spaces:

X = Xk(Ω; T ) =
{

u ∈ H1
0 (Ω) | u|K ∈ Qk(K), K ∈ T

}

. (2)

Here Qk(K) is the space of polynomials of maximum degree k in each variable
on K. In the following, we may drop the reference to k, Ω, and/or T whenever
there is no confusion.

In this work, interpolating Lagrange polynomials on Gauss-Lobatto nodes
are used as a particular nodal basis of Xk(Ω; T ). The set of Gauss-Lobatto
pointsGLL(k) is the set of (distinct and real) zeros of (1−x2)L′

k−1(x), with Lk−1

the Legendre polynomial of degree k − 1 (cf. [14, Sect. 3]) and the quadrature
formula based on GLL(k) has order 2k − 1. In this work, quadrature formulas
based on GLL(k) are chosen. Given the nodesGLL(k)3 on the reference element
Q̂ = (−1, 1)3, our basis functions on Qk(Q̂) are defined as tensor products of
k-th order Lagrange interpolating polynomials on GLL(k). More details on
spectral element methods can be found in, e.g., [14].

In this paper, we always assume that the meshes are regular, i.e., the inter-
section between neighboring elements is either a vertex, or an edge, or a face
that is common to both elements.

A finite element approximation of (1) consists of finding u ∈ X , such that

a(u, v) = f(v), v ∈ X. (3)

2.3 Geometric boundary layer meshes

We now introduce a class of geometrically graded meshes. They are determined
by a mesh grading factor σ ∈ (0, 1) and a refinement level n ≥ 0. The number
of layers is n+1 and the thinnest layer has a width proportional to σn. Robust
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Level 2

Level 1

2(1!") 2"

Figure 1: Hierarchic structure of a boundary layer mesh T n,σ
bl , with σ = 0.5 and

n = 3 on the reference element Q̂ = (−1, 1)3.

exponential convergence of hp finite element approximations is achieved if n
is suitably chosen. For singularity resolution, n is required to be proportional
to the polynomial degree k; see [5, 7]. For boundary layers, the width of the
thinnest layer mesh needs to be comparable to that of the boundary layer; see
[47, 61, 62].

Geometric boundary layer mesh T = T n,σ
bl are obtained as tensor products

of meshes that are geometrically refined towards the faces. Figure 1 shows the
construction of a geometric boundary layer mesh T n,σ

bl .
The mesh T n,σ

bl is built from an initial shape-regular macro-triangulation
T 0, possibly consisting of just one element, which is successively refined (Figure
1, level 1). Every macroelement can be refined isotropically or anisotropically
as face, edge, or corner patch (Figure 1, level 2 from the left to the right). A
refinement towards a corner is shown in Figure 5. We refer the reader to [66, 67]
for more details on the construction of these meshes. Note that the mesh aspect
ratio is equal to σ−n ∼ σ−k since n needs to be comparable to k for exponential
convergence.

A geometric boundary layer mesh T satisfies the following two properties:

Property 2.1 T is obtained from an initial shape-regular coarse mesh T 0 (macromesh)
by local isotropic or anisotropic refinement.

Property 2.2 Anisotropic refinement is always performed towards the bound-
ary ∂Ω of the computational domain Ω and never towards the interior.

Figure 5 highlights these features. Both properties appear so far to be essen-
tial for the analysis; see [67] for more details. However good numerical results
are obtained for more general situations; see section 4.5.
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3 Balancing Neumann-Neumann method

Given a geometric boundary layer mesh T and a spectral polynomial degree
k, a function u ∈ Xk(Ω; T ) is expanded using the basis functions described in
section 2.2. The finite element approximation of Problem (1) thus leads to a
linear system

Au = b ,

with A symmetric, positive-definite. The condition number of A can be huge for
large values of k and n (see section 4 for some numerical results) and efficient
and robust preconditioners are therefore often mandatory. In this work, we
investigate the Balancing Neumann-Neumann [46] iterative method. We refer
the reader to [67] for a detailed derivation. More general information on domain
decomposition methods can be found in the monographs [53, 64].

3.1 Subdomain partitions

Iterative substructuring methods rely on a non-overlapping partition of Ω, T DD =
{Ωi}, into substructures. Let M denote the number of substructures with Hi

the diameter of Ωi and H = max(Hi) the maximum of their diameters. A sub-
domain Ωi is called floating if the intersection of ∂Ωi with ∂Ω is empty. We
define the boundaries Γi = ∂Ωi \ ∂Ω and the interface Γ as their union. The
sets of Gauss-Lobatto nodes and the corresponding degrees of freedom on ∂Ωi,
Γi, Γ, and ∂Ω are denoted by ∂Ωi,h, Γi,h, Γh, and ∂Ωh, respectively.

In this work, the main geometric assumption on the substructures is that
they be shape-regular. This property appears to be essential to obtain the
condition number bound presented in section 3.4. Indeed, Property 2.1 allows
us to fulfill this condition easily by choosing the macromesh as the subdomain
partition:

T DD = T 0.

A consequence of Property 2.2 is then that, when two substructures share an
interior vertex, the local meshes are shape-regular in the neighborhood of this
vertex, since anisotropic refinement is only performed towards the boundary
∂Ω. This property also appears to be essential to obtain the condition number
bound in section 3.4.

3.2 Derivation

After subassembling, the stiffness matrix A is reordered according to the domain
decomposition partitioning. The nodal points interior to the substructures (sub-
set I) are ordered first, followed by those on the interface Γ (subset Γ). Similarly,
for the local stiffness matrix relative to a substructure Ωi, we have

A(i) =

(

A(i)
II A(i)

IΓ

A(i)
ΓI A(i)

ΓΓ

)

.
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First, the unknowns in the interior of the substructures are eliminated by
block Gaussian elimination. Unknowns on ∂Ωi ∩ ∂Ω are treated as interior and
they are also eliminated. In this step, the Schur complement S = SNN with
respect to the interior variables is formed. The resulting linear system for the
nodal values on Γ can be written as

SNN uΓ = gΓ. (4)

Given the local Schur complement associated to the substructure Ωi

Si = A(i)
ΓΓ −A(i)

ΓIA
(i)−1

II A(i)
IΓ (5)

and the local right-hand side

gΓi
= bΓi

− A(i)
ΓIA

(i)−1

II b(i)I ,

the global Schur complement can be written as

S = SNN =
M
∑

i=1

RT
i SiRi (6)

and the corresponding right-hand side gΓ as

gΓ =
M
∑

i=1

RT
i gΓi

, (7)

where the restriction matrix Ri is a matrix of zeros and ones which extracts the
variables on the local interface Γi from a vector of nodal values on Γ.

The Balancing Neumann-Neumann preconditioner Ŝ−1 [46] provides a pre-
conditioned operator PNN of the following form

PNN = Ŝ−1SNN = P0 + (I − P0)(
M
∑

i=1

Pi)(I − P0). (8)

Here P0 is associated to a low dimensional global coarse problem, whereas each
operator Pi is associated to one substructure. More precisely, the local operators
Pi are defined as:

Pi = RT
i DiS

†
iDiRiSNN , (9)

where the matrices Di are diagonal and S†
i denotes either the inverse of Si, if Si

is non-singular as for subdomains that touch ∂Ω, or a pseudoinverse of Si, if Si

is singular as for floating domains. In order to define the matrices {Di}, we need
to introduce a scaling function δ†i , which is a finite element function defined on
the boundary ∂Ωi; cf. [23, 24, 46, 51, 58] . In order to define it it is enough

6



to assign its values at the nodes in Γi,h. It is defined for γ ∈ [1/2,∞) and, is
determined by a sum of contributions from Ωi and its relevant next neighbors,

δ†i (xl) =

(

a(i)ll

)γ

∑

j∈Nxl

(

a(j)ll

)γ , xl ∈ Γi,h , (10)

where a(i)ll denotes the l-th element of the diagonal of the local stiffness matrix
A(i) andNxl

, xl ∈ Γh, is the set of indices j of the subregions such that xl ∈ Γj,h.
We have chosen γ = 1 for our numerical experiments. Let Di be the diagonal
matrix with elements δ†i (x) corresponding to the nodes in Γi,h.

The coarse space is defined as

V0 = span{RT
i δ

†
i },

where the span is taken over at least the floating subdomains. We denote by
RT

0 the prolongation from the coarse to the global space. In analogy with (9),
the coarse operator P0 is defined as:

P0 = RT
0 S

−1
0 R0SNN , (11)

where S0 = R0SNNRT
0 denotes the restriction of SNN to that coarse space. We

refer the reader to [67] for more details.

3.3 Algorithm

Since P0 is a projection, a decomposition of the exact solution u of PNNu =
Ŝ−1gΓ can be found as

u = P0u+ w, P0u = RT
0 S

−1
0 R0gΓ, (12)

with w ∈ Range(I−P0). The Balancing Neumann-Neumann method reduces to
a projected preconditioned Conjugate Gradient method in the space Range(I−
P0) with an initial guess u0 = P0u+ w̃, with w̃ ∈ Range(I−P0). The algorithm
is given in Figure 2, where 〈·, ·〉 denotes the Euclidean inner product.

We remark that the matrices SNN and S†
i do not need to be calculated in

practice. The action of SNN on a vector requires the solution of a Dirichlet

problem on each substructure (application of the inverse of A(i)
II ), while the

action of S†
i can be calculated by applying a pseudoinverse of A(i) to a suitable

vector, corresponding to the solution of a Neumann problem; see [64, Chap
4.]. One step of the algorithm in Figure 2 therefore requires the solution of
one Neumann and two Dirichlet problems on each substructure and one coarse
problem.

7



1. Initialize
u0 = RT

0 S
−1
0 R0gΓ + w̃, w̃ ∈ Range(I − P0)

q0 = gΓ − SNN u0

2. Iterate j = 1, 2, · · · until convergence

Project: wj−1 = (I − PT
0 )qj−1

Precondition: zj−1 =
M
∑

i=1
RT

i DiS
†
iDiRi wj−1

Project: yj−1 = (I − P0)zj−1

βj = 〈yj−1, wj−1〉/〈yj−2, wj−2〉 [β1 = 0]

pj = yj−1 + βjpj−1 [p1 = y0]

αj = 〈yj−1, wj−1〉/〈pj, SNN pj〉
uj = uj−1 + αj pj

qj = qj−1 − αjSNN pj

Figure 2: Balancing Neumann-Neumann algorithm.

3.4 Condition number bound

In the case of purely diffusive problems corresponding to c = 0 in (1), a bound
for the condition number of the preconditioned operator PNN restricted to the
subspace Range(I −P0), to which the iterates are confined, has been proven in
[67] for the case of exact solvers for Neumann and Dirichlet problems. We have:

κ(PNN ) ≤ C (1 − σ)−6

(

1 + log

(

k

1− σ

))2

, (13)

where the constant C is independent of the spectral polynomial degree k, the
level of refinement n, the mesh grading factor σ, the coefficients ε and ρ, and the
diameters of the substructures Hi. We note that κ(PNN ) does not depend on
the number of substructures or the aspect ratio of the mesh and only depends
polylogarithmically on the spectral polynomial degree k as in the p version on
shape-regular meshes [51]. Finally, we remark that σ is bounded away from one
and zero in practice.

3.5 Inexact variant

The inexact variant of the domain decomposition preconditioner is derived when
solving only approximately the local Neumann and Dirichlet problems [64, Sect.
4.4]. Indeed the Dirichlet and Neumann problems that we need to solve (cf.
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Si and S†
i ) can be potentially very large. Approximate local solvers can be

employed for iterative substructuring methods (see, e.g., [40] and [64, Sect. 4.4])
and some have been proposed in [41, 42] for hp approximations. For the local
solvers, preconditioned conjugate gradient solvers have been used here, which
are stopped after a reduction of the initial residual of a factor of 10−4 or after
400 iteration steps. In practice we have found numerically that far less than
400 iterations steps were needed to reach this reduction in most of the cases.
This may be due to the quality of the preconditioner we employed. However for
certain applications this can be an expensive strategy in term of computational
times. A cure will be proposed in section 4.3.3.

Dirichlet and nonsingular Neumann local problems In our numerical
experiments, we have employed a conjugate gradient iteration with a factorized
sparse approximate inverse (FSAI) as a preconditioner [10]. We refer to [6] for
a general introduction to sparse approximate inverse preconditioners. Given
a symmetric positive definite matrix B, this approach based on an incomplete
biconjugation process builds a factorized sparse approximate inverse of the form:

M = ZDZT ≈ B−1 (14)

where Z is a sparse unit upper triangular matrix and D is diagonal. Sparsity
is preserved by dropping small elements in Z. A drop tolerance of 0.1 has
been used here. Note that this construction is known to be breakdown-free
for symmetric positive definite matrices [10]. As for incomplete factorization
methods, the performance of approximate inverse preconditioners in factorized
form is sensitive to the ordering of the matrix. As advised in [9], we have
used a symmetric minimum degree reordering to reduce fill-in in the inverse
factor Z and to improve the performance of the preconditioner. We refer to
[19] for an effective construction of the preconditioner and [11, 12] for extensive
numerical experiments. To analyze the memory requirements needed by the
FSAI preconditioner, we define its sparsity ratio τ as:

τ =
nnz(Z) + nnz(D)

nnz(B)
(15)

where nnz(B) denotes the number of non-zero entries of matrix B. In our
domain decomposition framework, we will derive the minimum and maximum
values of the sparsity ratio over the subdomains for Dirichlet (τDmin, τ

D
max) and

Neumann problems (τNN
min , τ

NN
max) respectively.

Neumann local problems on floating subdomains For Neumann local
problems defined on floating subdomains, we have to solve a singular system of
size n× n:

Bx = b (16)

9



where B is symmetric and the index of the zero eigenvalue of B is equal to
1. Note that due to the balancing procedure [46], this system is consistent
i.e. b ∈ Ker(B)⊥ = Range(B). A common approach consists in finding a
pseudoinverse solution defined as:

x = B†b. (17)

A pseudoinverse B† can be explicity computed by performing a singular value
decomposition of B and using the Moore-Penrose formulation [33]. However
if the size of the singular matrix B is large, or if the number of substructures
is important, the computation of these pseudoinverses can be prohibitive both
in term of memory requirement and computational time. Thus a second route
based on an iterative process is proposed. Theorem 1.2.10 in [18] characterizes
the pseudoinverse solution (17) as the least-squares solution x of (16) (i.e. x ∈
Rn for which ‖b−Bx‖2 is minimal) such that ‖x‖2 is minimal. We note that in
our case the minimum is zero. Theorem 2 in [38] ensures that a solution to the
singular system (16) can be found using a Krylov subspace method. We recall
that GMRES [56] minimizes the same residual ‖b−Bx‖2 over a Krylov subspace.
Since system (16) is consistent and Ker(B) = Ker(BT ), then Theorem 2.4 in
[20] assures that applying GMRES to (16) with xo ∈ Range(B) as starting
vector will converge to the pseudoinverse solution.

4 Numerical experiments

In this section, we provide a comparison between the condition number κ(PNN )
obtained numerically with the inexact variant of the preconditioner and the
corresponding theoretical bound (13) obtained in case of exact solvers on small,
medium and large size problems. We will devote a special attention to problems
defined on highly stretched meshes, since they are generally challenging for
iterative methods partly due to the bad condition numbers of the resulting
matrices. In [67] a first small set of results has been already presented. A
comparison between inexact and exact variants of the Balancing Neumann-
Neumann preconditioner was provided for a Laplace problem on a boundary
layer mesh (see Problem III in section 4.3). Here we will only consider inexact
solvers for the local Neumann and Dirichlet problems. For large size problems,
this is a common practice to reduce computational costs by a significant amount.

We follow the same methodology as in our previous paper on numerical ex-
periments for two-dimensional problems [68]. The first two test cases (Problems
I, II) are recognized as standard test problems for domain decomposition precon-
ditioners; see [46, 52, 64]. These problems defined on shape-regular and uniform
meshes have been chosen here as a first evaluation step before tackling more in-
volved problems. Problems III, IV, V and VI are defined on highly anisotropic
meshes. Whereas Problems III and V have been chosen as a natural extension of
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Problems I and II approximated on highly anisotropic meshes, Problem IV in-
vestigates the influence of the mesh grading factor σ on the condition number of
the preconditioned operator. Problem VI investigates the behaviour of the Bal-
ancing Neumann-Neumann preconditioner for a singularly perturbed problem
of reaction-diffusion type.

It is known that hp-finite element discretizations lead to sparse matrices with
more non-zero entries than classical h-finite element methods. In the tables we
will report the size of the global matrix and the corresponding number of non-
zero entries denoted by size and nnz respectively. Using these quantities the
number of operations involved in a global matrix vector product operation can
be easily derived. In addition, the condition number estimates are obtained by
computing the eigenvalues of the tridiagonal symmetric Lanczos matrix built by
the Conjugate Gradient (CG) iterative process; see [8] for details. The minimum
and maximum eigenvalues (λmin and λmax, respectively) are also reported. The
number of iterations It to reduce the Euclidean norm of the residual ‖r‖2 by
twelve orders of magnitude

‖rIt‖2/‖r0‖2 ≤ 10−12 (18)

is also reported. This rather strict stopping criterion allows a possible com-
parison between the proposed Balancing Neumann-Neumann preconditioner
and preconditioners derived from the FETI framework [27] (since the primal
solution in the one-level FETI formulation is only continuous at convergence).
Memory requirements and solution time needed by the Balancing Neumann-
Neumann preconditioner will be also partially detailed. Thus a comparison
with direct solvers is also possible. As initial guess, a zero initial field is used
for all problems.

As additional information, we have also reported the condition number of
the global matrix A noted κ(A) obtained by an iterative eigenvalue solver of
Jacobi-Davidson type [29, 63]. Finally for certain problems, we have reported
the computation time in seconds (denoted by T ) required to satisfy the reduction
criterion (18).

To obtain the numerical results presented here, we have built a code using a
mixed-language programming approach based on Python and C following [31].
Mesh generation, mesh decomposition, input and output routines, e.g., are im-
plemented in Python, whereas the time-critical tasks (mainly sparse algebra,
iterative solvers and preconditioners) are implemented in C and integrated into
Python. Indeed we have extended the library Pysparse developed by Roman
Geus 1 to build our Python domain decomposition library. The main computa-
tions have been done on one processor of a 64-bit Sun machine with 32 Gb of
main memory (CPU 900 Mhz).

1http://people.web.psi.ch/geus/pyfemax/pysparse.html
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4.1 Problem I: a Laplace problem

We have first considered the Laplace operator with homogeneous Dirichlet
boundary conditions:

−∆u = 1, in Ω,
u = 0, on ∂Ω.

(19)

The unrefined T mesh is of Cartesian type and consists of N3 cubes. Since in
Problems I and II unrefined meshes are used, T DD and T are identical. The
total number of substructures is N3.

The results are shown in Table 1. In the upper half of this table, the number
of substructures is kept fixed (N3 = 83), while the spectral polynomial degree
k is varying from 2 to 10. In the lower half the spectral degree k is fixed to
10, while the number of substructures increases from 23 to 113. The first two
columns report the size of the problem and the number of non-zeros in the
global matrix. The next four columns report the iteration counts required to
satisfy the stopping criterion (18), the maximum and minimum eigenvalues,
and the condition number of the Balancing Neumann-Neumann preconditioned
operator.

The iteration count for preconditioned CG appears to be bounded indepen-
dently of N3; see lower parts of Table 1. The condition numbers κ(PNN ) are
plotted in Figure 3 versus the spectral polynomial degree k. As expected, the
growth is quadratical in log(k).

2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Spectral degree

C
o
n
d
it
io

n
 n

u
m

b
e
r

Estimated condition number and quadratic log fit (BNN)

Condition number
Quadratic log fit

Figure 3: Laplace problem. Estimated condition numbers (circles) and least-
square second order logarithmic polynomial fit (solid line) versus the spectral
degree for the Balancing Neumann-Neumann preconditioned operator (results
from Table 1).
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Fixed number of substructures (N = 8)

k size nnz It λmax λmin κ(PNN ) T (s)

2 4913 20051 10 1.3214 1.0000 1.3214 24
3 15625 84589 14 1.7511 1.0002 1.7508 76
4 35937 246495 17 2.2880 1.0001 2.2877 167
5 68921 574505 20 2.8559 1.0002 2.8553 326
6 117649 1200331 22 3.3573 1.0002 3.3565 575
7 185193 2326341 24 3.8386 1.0000 3.8388 988
8 274625 3778583 26 4.2805 1.0003 4.2794 1607
9 389017 12152929 28 4.7005 0.9998 4.7014 2651
10 531441 32192187 30 5.0922 0.9980 5.1021 5553

Fixed spectral degree k = 10

N size nnz It λmax λmin κ(PNN ) T (s)

2 9261 411837 17 3.9177 0.9996 3.9193 31
3 29791 1522372 25 4.6553 0.9999 4.6557 184
4 68921 3771671 27 4.8795 0.9997 4.8808 494
5 132651 7561518 28 4.9787 0.9994 4.9815 1045
6 230731 13293697 29 5.0341 0.9960 5.0543 1921
7 363167 21369992 29 5.0689 0.9945 5.0970 3260
8 531441 32192187 30 5.0922 0.9980 5.1021 5553
9 753571 46162066 30 5.1087 0.9975 5.1217 8753
10 1030301 63681413 31 5.1209 0.9965 5.1388 18462
11 1367631 85152012 31 5.1303 0.9958 5.1518 28108

Table 1: Laplace problem. Conjugate Gradient method for the global system
with Neumann-Neumann preconditioner: size of the problem, number of non-
zeros in the global matrix, iteration counts, maximum and minimum eigenvalues,
condition numbers, and solution time in seconds versus polynomial degree and
N , respectively. The total number of substructures is N3.

The case k = 10 and N = 11 is actually one of the largest problems we
have solved and deserves some comments. For this case, the hp finite element
discretization leads to a global matrix of size 1367631 with approximately 85.15
millions of non-zero entries. This requires a storage of 1.3 Gb only for this
matrix. The total amount of storage for the factorized approximate inverses

of A(i)
II (needed during the solution of Dirichlet problems) is about 73.5 Mb.

Indeed the minimum and the maximum sparsity ratio are τDmin = 0.0989 and
τDmax = 0.1097 respectively. On the other hand, the total amount of storage for
the factorized approximate inverses of AII (required for the solution of Neu-
mann problems on non-floating subdomains) is about 62.8 Mb (τNN

min = 0.1033
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and τNN
max = 0.1194). These values of sparsity ratio confirm that these FSAI

preconditioners in general have low-memory requirements, while showing effi-
ciency close to preconditioners coming from incomplete factorization methods.
This was our main motivation for adopting them in this work. For the Neumann
problems defined on floating subdomains, note that the computation of only one
pseudoinverse is needed. Indeed the floating subdomains can only be internal
ones where no refinement takes place. Since the same polynomial degree k is
used throughout the mesh, only one pseudoinverse calculation is required. This
induces an additional cost in storage of 27 Mb for this pseudoinverse. For this
case, the ratio of the memory to store the domain decomposition preconditioner
over the memory required to store the global matrix is about 0.2. As a conse-
quence, the whole domain decomposition preconditioner is also attractive from
a memory requirement point of view.

4.2 Problem II: a Laplace problem with jump coefficients

The theoretical bound for the condition number provided in (13) is independent
of arbitrary jumps on the coefficients between the substructures. The purpose
of this test case is to check this property. The following problem has been
considered:

−∇ · (ρ∇u) = 1, in Ω,
u = 0, on ∂Ω,

(20)

where the coefficient ρ possibly changes between the substructures by many or-
ders of magnitude. Given a partition of Ω = (0, 1)3 into N3 cubic substructures
(T = T 0 = N ×N ×N), a checkerboard distribution is considered for ρ which
is equal to either ρ1 or ρ2 as in [46].

4.2.1 Fixed jumps between the substructures

For a fixed partition into substructures with N = 3 and for fixed jumps between
the substructures with ρ1 = 10−3 and ρ2 = 103, we have investigated the
behaviour of the condition number of the preconditioned operator versus the
spectral polynomial degree k.

Table 2 shows the results. The behaviour of the condition number of the
precondtioned operator is shown in Figure 4, right, and is consistent with the
quadratic bound (13). We have also reported the condition number of the global
matrix κ(A) in Table 2; see also Figure 4 left. As expected a linear growth in
log(k) is obtained for log(κ(A)). We have found numerically that κ(A) behaves
as k2.2 for this problem.
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Fixed number of substructures (N = 3)

k size nnz κ(A) It λmax λmin κ(PNN )

2 343 886 1.20E+06 6 1.2783 1.0000 1.2783
3 1000 3544 3.24E+06 10 1.7755 1.0000 1.7756
4 2197 10495 6.28E+06 12 2.0722 1.0000 2.0722
5 4096 25060 10.26E+06 12 2.3092 1.0000 2.3093
6 6859 53476 15.33E+06 14 2.4965 1.0000 2.4966
7 10648 105976 21.44E+06 15 2.6546 1.0000 2.6546
8 15625 174163 28.62E+06 15 2.7892 1.0000 2.7892
9 21952 571804 36.86E+06 16 2.9070 1.0000 2.9071
10 29791 1522372 46.21E+06 16 3.0113 1.0000 3.0114

Table 2: Laplace problem with jump coefficients. Case of ρ1 = 10−3 and

ρ2 = 103. Conjugate Gradient method for the global system with Neumann-
Neumann preconditioner: size of the problem, number of non-zeros in the global
matrix, condition number of the global matrix, iteration counts, maximum and
minimum eigenvalues, and condition numbers versus polynomial degree. The
total number of substructures is N3.
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Figure 4: Laplace problem with jump coefficients. Case of ρ1 = 10−3

and ρ2 = 103. Fixed partition 3 × 3 × 3. Dependence of the logarithm of the
condition number of the global matrix on the logarithm of the spectral degree,
left. Estimated condition numbers (circles) and least-square second order log-
arithmic polynomial (solid line) versus the spectral degree for the Balancing
Neumann-Neumann method, right. Results from Table 2.

4.2.2 Variable coefficient jumps

Here the spectral polynomial degree k is fixed to 8. For four different partitions
of type N3 with N = 2, N = 3, N = 4 and N = 5, we have investigated
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the influence of the jump ρ2/ρ1 on the convergence behaviour of the Balancing
Neumann-Neumann method. In this experiment, ρ1 is fixed to 1, whereas ρ2 is
varying from 1 to 106. A checkerboard distribution has also been used.

The results are presented in Table 3. For each case, the size of the global
matrix (size) and the number of non-zero entries (nnz) in this matrix are also
reported. The number of preconditioned CG iterations in order to satisfy the
stopping criterion (18) is bounded independently of the ratio ρ2/ρ1, in agreement
with the bound (13) for the case of exact solvers. For the solution of Neumann
problems on floating domains (that exist here only forN > 2), we have employed
the iterative version based on the preconditioned GMRES(m) solver described
in section 3.5. The size of the singular matrix is (k + 1)3 with k = 8 in this
case. As a preconditioner, the FSAI approach is used (see also [13] for using
this kind of preconditioner in case of singular systems). We have observed that
a low number of iterations is required to reach convergence. Finally note that
the case (N = 3, ρ1 = 1, ρ2 = 106) of Table 3 is in good agreement with the
result obtained for (k = 8, ρ1 = 10−3, ρ2 = 103) in Table 2.

So far, we have only considered model problems on uniform meshes and
shown that the numerical experiments are in agreement with the theoretical
bound (13).

4.3 Problem III: a Laplace problem on a boundary layer
mesh

Problem III is a Laplace problem with homogeneous Dirichlet boundary condi-
tions defined on a boundary layer mesh.

−∆u = 1, in Ω,
u = 0, on ∂Ω.

(21)

Geometric refinement is performed towards the corner located in (0, 0, 0),
with σ = 0.5 in each direction; see Figure 5. We note that this is a genuine
hp approximation. As shown in [5, 7, 47, 61], in order to obtain exponential
convergence in presence of singularities in polyhedral domains, the number of
layers n must be at least equal to the spectral degree k, thus better accuracy
is achieved by simultaneously increasing the polynomial degree and the number
of layers. In our experiments we have chosen n = k.

4.3.1 Fixed spectral degree

Here the spectral polynomial degree k is fixed to 4. Given a uniform macromesh
T 0 of size N3, we consider refinements with 4 layers in each direction (see Figure
5, left). The non-uniform geometrically refined grid T contains (N+4)3 elements
(see Figure 5, left, for a partition with N = 5), whereas the subdomain partition
T DD has N3 substructures.
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N = 2 N = 3

size = 4913 nnz = 46031 size = 15625 nnz = 174163

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PNN )
1 15 3.2705 0.9995 3.2722 21 3.9101 1.0001 3.9098
10 13 2.9242 0.9994 2.9259 19 3.2379 1.0001 3.2377
102 12 2.6059 0.9996 2.6069 16 2.8014 1.0000 2.8015
103 11 2.5651 0.9997 2.5658 15 2.7475 1.0000 2.7475
104 11 2.5609 0.9997 2.5616 15 2.7420 1.0000 2.7420
105 11 2.5605 0.9997 2.5614 15 2.7891 1.0000 2.7891
106 12 2.5676 0.9997 2.5683 15 2.7892 1.0000 2.7892

N = 4 N = 5

size = 35937 nnz = 436119 size = 68921 nnz = 879719

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PNN )
1 23 4.1030 1.0001 4.1026 25 4.1874 1.0001 4.1868
10 21 3.4385 1.0001 3.4380 22 3.4420 1.0001 3.4415
102 19 3.0660 1.0000 3.0659 20 3.0671 1.0000 3.0671
103 18 3.0115 1.0000 3.0115 19 3.0029 1.0000 3.0031
104 18 3.0065 1.0000 3.0066 19 2.9994 1.0000 2.9995
105 18 2.9844 1.0000 2.9844 18 2.9899 1.0000 2.9900
106 18 3.0063 1.0000 3.0063 19 2.9947 0.9999 2.9949

Table 3: Laplace problem with jump coefficients. Case of k = 8 and

ρ1 = 1. Conjugate Gradient method for the Balancing Neumann-Neumann
method: iteration counts, maximum and minimum eigenvalues, and condition
numbers versus ρ2. The total number of substructures is N3.

Table 4 shows the results for different partitions T DD of type N ×N ×N .
The iteration counts are uniformly bounded as the number of macroelements
(subdomains) grow.

4.3.2 Fixed partition

We now fix a macromesh with N = 3 and investigate the dependence of the
condition number κ(PNN ) on the spectral polynomial degree. The geometrically
refined grid T contains (3+k)3 elements; see Figure 5, right, for the case k = 6.
Table 5 shows the results. In the last column of this table referenced as Exact,
we have reported - when available - estimates of the condition number of the
Balancing Neumann-Neumann preconditioner, when an exact variant of the
preconditioner was used. These results for the exact variant have been already
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Figure 5: Geometric refinement towards one corner (N = 5, σ = 0.5, and n = 4),
left and (N = 3, σ = 0.5, and n = 6), right.

Fixed spectral degree k = 4

N size nnz It λmax λmin κ(PNN ) T (s)
2 15625 98443 15 2.6415 0.9998 2.6421 47
3 24389 160679 21 3.9505 0.9999 3.9508 88
4 35937 244719 24 4.1081 0.9999 4.1084 130
5 50653 353827 24 4.1376 0.9999 4.1380 176
6 68921 491267 25 4.1490 0.9998 4.1497 244
7 91125 660303 26 4.1552 0.9997 4.1564 372
8 117649 864199 26 4.1305 0.9996 4.1321 553
9 148877 1106219 26 4.1609 0.9995 4.1629 822
10 185193 1389627 26 4.1633 0.9994 4.1659 1228

Table 4: Laplace problem on a boundary layer mesh with σ = 0.5
and n = 4. Conjugate Gradient method for the global system with Neumann-
Neumann preconditioner: size of the global matrix, number of non-zero entries,
iteration counts, maximum and minimum eigenvalues, condition number, and
solution time in seconds versus the number of subdomains. The total number
of substructures is N3.

presented (see Table 2 in [67]).
Figure 6 shows the behaviour of the condition number versus the polynomial
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Fixed number of substructures (N = 3)

Inexact Exact

k size nnz It λmax λmin κ(PNN ) T (s) κ(PNN )
2 1331 4.3E+03 13 1.8379 1.0000 1.8379 2.00E+00 1.6255
3 6858 3.3E+04 17 2.8163 1.0000 2.8163 1.20E+01 2.8161
4 24389 1.6E+05 21 3.9505 0.9999 3.9507 8.80E+01 3.9498
5 68921 5.7E+05 25 5.1505 0.9997 5.1518 7.85E+02 5.1493
6 166375 1.7E+06 29 6.3675 9.9916 6.3728 4.87E+03 6.3658
7 357911 4.6E+06 32 7.5067 0.9984 7.5184 2.03E+04 7.5065
8 704969 1.0E+07 34 8.5294 0.9973 8.5525 6.11E+04 8.5062
9 1297645 4.2E+07 36 9.4229 0.9969 9.4520 2.84E+05 -
10 2251235 1.4E+08 38 10.267 0.9967 10.301 1.30E+06 -

Table 5: Laplace problem on a boundary layer mesh with σ = 0.5 and

n = k. Conjugate Gradient method for the global system with the Balancing
Neumann-Neumann preconditioner: size of the global matrix, number of non-
zero entries, iteration counts, maximum and minimum eigenvalues, condition
numbers, and solution time in seconds versus the polynomial degree. The total
number of substructures is 33.
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Figure 6: Laplace problem on a boundary layer mesh. Estimated con-
dition numbers (circles) and least-square second order logarithmic polynomial
(solid line) versus the spectral degree for the Balancing Neumann-Neumann
(results from Table 5) preconditioned operator.
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degree. As expected a quadratical growth in log(k) is obtained. In a previous
paper (see Table 2 in [67]), we have made a similar analysis on the same problem
and compared inexact and exact variants of the Balancing Neumann-Neumann
preconditioner. An exact variant was derived, when solving all the local sub-
problems now up to machine precision with the same iterative solver as in the
inexact case. Condition numbers obtained in [67] for the inexact variant are re-
called in Table 7 (case σ = 0.5). Note that the stopping criterion that was used
in [67] was fourteen orders of magnitude of residual reduction explaining the
difference in iteration counts between Table 5 and Table 2 in [67]. As expected
the condition numbers are in good agreement. The slight differences on the
condition numbers between both inexact variants are due to a different stop-
ping criterion when solving inexactly Neumann and Dirichlet problems. The
condition numbers shown in Table 5 are closer to the ones of the exact variant.
This is mainly due to the fact that we have solved both Neumann and Dirichlet
local problems more accurately than in [67]. These improvments appear only
for k large i.e. as the size of the problem becomes larger and larger.

The case k = 10 leads to a matrix of size 2251235 with approximately 141.5
million non-zero entries. This requires a storage of 2.1 Gb. The total amount
of storage for the factorized approximate inverses needed during the solution of
Dirichlet and Neumann problems is about 3.9 Gb. An additional cost in storage
of 27 Mb for the pseudoinverse is also needed. For this case, the ratio of the
memory to store the domain decomposition preconditioner over the memory
required to store the global matrix is about 1.87. Note the difference with
respect to Problem I. However this ratio is still acceptable, since in practice it
should not exceed 2 or 3 as suggested in [57].

4.3.3 Computational times and improvments

We note that very large computational times are obtained for problems defined
on highly refined meshes (k ≥ 7) in Table 5. Indeed the sizes of the Neumann
local problems for the subdomain that touches the corner (0, 0, 0) are 185193,
389017, 735571 and 1367631 for k = 7, 8, 9, 10 respectively. For, e.g., k = 10 this
means that this subdomain contains 60 percent of the total number of degrees
of freedom. Moreover these local problems are also expected to be very bad
conditioned due to the mesh refinement procedure and the preconditioned CG
solver for the solutions of local Dirichlet and Neumann problems often requires
all of the 400 iterations that we require for the stopping criterion; see section
3.5. More efficient and robust local Dirichlet and Neumann solvers are therefore
needed. Multigrid and/or iterative solvers exploiting the tensor product type
of the geometry should be considered as fast solvers for this subdomain to
simultaneously improve the convergence rate of the local solver and decrease
the computational cost. Once this efficient local solver is found, the next step
is to consider parallelization to decrease substantially the total solution time.

Here we aim at reducing the computational times presented in Table 5 (now
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referenced as Tref ) by requiring less precision when solving approximately local
subproblems and consequently doing more outer iterations. We adopt a simple
strategy by choosing two new ingredients. First we modify the stopping criterion
for the inner solvers as follows: the maximal number of inner iterations is now
set to 15 instead of 400 and the tolerance is set to 10−1 instead of 10−4. Sec-
ondly we use a different preconditioner than that described in section 3.5 when
solving local Dirichlet or Neumann problems. This preconditioner still comes
from sparse approximate inverse techniques but it is based now on Frobenius
norm minimization [34]. An approximate inverse is derived by minimizing the
functional F (M) = ‖I − BM‖F subject to some sparsity constraints, where
‖.‖F denotes the Frobenius norm; see also [6, 9] for general comments. Instead
of a dynamical approach that may be very costly, we fix a priori the sparsity
constraints [22]. We select the pattern of the sparse approximate inverse as the
pattern of the matrix that retains only the strong connections in B (as done in
algebraic multigrid when coarsening [55]). Results are shown in Table 6. In this
table we have reported in the last column the ratio between the computational
times in Table 5 and those of this modified algorithm (Gain). A considerable
decrease in time is observed and thus attractive gains are obtained despite this
rather simple approach. We recall that the original system is solved with a
precision of 10−12. In practice smaller precisions are generally employed: if we
choose a value of 10−6 for the stopping criterion (18), we expect a reduction of
computational times by a factor of one half [6]. This means a computational
time of approximately 37 minutes for the case k = 8 in Table 6. This is a
reasonable result for this size of problem (704969 unknowns). For larger prob-
lems however a parallel implementation should be considered. Approximately
solving local problems with the new strategy leads as expected to an increase in
iteration counts. Note that the minimum eigenvalue is no any longer close to 1.

4.4 Problem IV: influence of the mesh grading factor

In Problem III the mesh grading factor σ was kept fixed to 0.5 in each direction.
In Problem IV we want to investigate the performances of the preconditioner
with respect to the mesh aspect ratio. The mesh grading factor will now be
variable and we only fix the total number of substructures. The polynomial
degree k will also vary and as already explained in Problem III, the number of
layers n will be equal to k. The same problem as in the previous section (21) is
solved. The numerical experiments of Problem IV have been partly carried out
in Matlab 6.1. Here we only present results for corner refinement as in Problem
III. The case of face and edge refinements shows a similar behaviour.

Given a partition of Ω = (0, 1)3 into N3 cubic substructures (T = T 0 =
N ×N ×N) with N = 3, we have considered a geometrical refinement towards
the corner located at (0, 0, 0). This kind of refined mesh has already been used
in Problem III (see Figure 5).

Table 7 summarizes the results for various mesh grading factors (0.5, 0.2,
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Fixed number of substructures (N = 3)

Inexact Gain

k size nnz It λmax λmin κ(PNN ) T (s) Tref/T
2 1331 4.3E+03 11 1.6255 0.9999 1.6256 1.54 1.299
3 6858 3.3E+04 17 2.8097 0.9993 2.8114 7.80 1.792
4 24389 1.6E+05 22 3.0985 0.8723 3.5521 30.40 2.881
5 68921 5.7E+05 27 3.5098 0.6237 5.6272 121.70 6.452
6 166375 1.7E+06 33 3.8164 0.4700 8.1200 478.04 10.192
7 357911 4.6E+06 40 4.5206 0.3577 12.636 1557.94 13.017
8 704969 1.0E+07 49 4.7185 0.2880 16.381 4453.16 13.718
9 1297645 4.2E+07 62 5.1021 0.2012 25.258 20397.94 13.924

Table 6: Laplace problem on a boundary layer mesh with σ = 0.5 and

n = k. New strategy for the inner solvers resulting in considerable gains in term
of CPU time (same legend as in Table 5, here Tref stands for the CPU time
shown in Table 5).
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Figure 7: Refinement towards a corner. Dependence of the condition num-
ber of the global matrix κ(A) on the spectral degree (left, σ = 0.05). Dependence
of the condition number of the global matrix κ(A) on the mesh aspect ratio σ−k

(log-log scale, right, k = 4).

0.15, 0.1, 0.05 and 0.01). Note that to limit computational times and memory
requirements, we have only considered a polynomial degree k varying from 2
to 7. However this feature does not restrict our analysis. hp approximations
performed on highly stretched meshes do lead to huge condition numbers for the
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Refinement towards a corner (3× 3× 3 partition)

σ AS It κ(PNN ) AS It κ(PNN )

k = 2 k = 3

0.50 4.00E+00 15 1.8379 8.00E+00 20 2.8166
0.20 2.50E+01 15 2.0794 1.25E+02 21 3.2105
0.15 4.44E+01 15 2.1333 2.96E+02 21 3.2252
0.10 1.00E+02 15 2.1779 1.00E+03 21 3.2153
0.05 4.00E+02 15 2.2029 8.00E+03 20 3.1879
0.01 1.00E+04 15 2.2201 1.00E+06 20 3.1607

k = 4 k = 5

0.50 1.60E+01 25 3.9528 3.20E+01 29 5.1611
0.20 6.25E+02 26 4.3497 3.12E+03 29 5.3125
0.15 1.97E+03 26 4.3150 1.31E+04 29 5.2468
0.10 1.00E+04 25 4.2698 1.00E+05 28 5.1856
0.05 1.60E+05 25 4.2238 3.20E+06 28 5.1319
0.01 1.00E+08 25 4.1895 1.00E+10 28 5.0940

k = 6 k = 7

0.50 6.40E+01 34 6.3803 1.28E+02 38 7.5540
0.20 1.56E+04 33 6.1795 7.81E+05 35 6.9603
0.15 8.77E+04 32 6.0967 5.85E+05 35 6.8663
0.10 1.00E+06 31 6.0269 1.00E+07 34 6.7857
0.05 6.40E+07 31 5.9686 1.28E+09 34 6.7250
0.01 1.00E+12 31 6.0716 1.00E+14 35 6.6808

Table 7: Refinement towards a corner. Conjugate Gradient method for the
global system with the Balancing Neumann-Neumann preconditioner: mesh
aspect ratio (AS) i.e. σ−k, iteration counts, and condition numbers versus the
mesh grading factors and k. The total number of substructures is 33.

original global matrix A as shown in Figure 7, left, where e.g. κ(A) = 9.07 e+19
for σ = 0.05 and k = 7. As expected an exponential growth of κ(A) versus k is
obtained. This is also confirmed in Figure 7, right, where κ(A) is plotted versus
the mesh aspect ratio in a log-log scale for a fixed spectral degree k = 4.

Figure 8, right, shows the condition number of the Balancing Neumann-
Neumann preconditioned operator versus the polynomial degree for various
mesh grading factors (0.2, 0.15, 0.1 and 0.01). As expected, a quadratical
growth in log(k) is obtained whatever the choice of the mesh grading factor.
Note also that the number of iterations of preconditioned CG is practically in-
dependent of the mesh grading factor σ as shown in Figure 8, left. Moreover the
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Figure 8: Refinement towards a corner. Iteration counts versus the mesh
aspect ratio i.e. σ−k for different mesh grading factors (left). Estimated con-
dition numbers (circles) and least-square second order logarithmic polynomial
(solid line) versus the spectral degree for the Balancing Neumann-Neumann
preconditioned operator for different mesh grading factors (right). Results from
Table 7.

preconditioner performs well, even if the mesh aspect ratio is huge (see Table
7, case k = 7 and σ = 0.01 leading to a mesh aspect ratio of 1014 and Figure 8,
left). This is a very attractive feature when solving problems where boundary
layers and/or singularities occur. Note that the theory [48, 60] asserts that the
hp finite element method with any geometrically graded mesh gives exponential
convergence. A careful choice of σ can result in discretization errors which are
several orders of magnitude smaller than in the case σ = 0.5, even though the
number of degrees of freedom is the same. Thus in one dimension the optimal
mesh grading factor is σ# ≈ 0.15; see [35]. Although the optimal σ is not ex-
plicitly known in two or three dimensions, we expect it to be of approximately
the same order. We refer to [59] for a numerical illustration in two dimensions.
Table 7 shows that the preconditioner performs well for mesh grading factors
close to σ#.

4.5 Problem V: an interface problem

Singularities may sometimes occur not only in the neighborhood of boundaries
of polyhedral domains, as is investigated in Problems III and IV, but also at the
interfaces of regions with different material properties. For example, interface
problems in hydrology, reservoir modelling or nuclear waste management may
require highly refined meshes inside the computational domain. Such problems,
involving simultaneously jump coefficients and large aspect ratios of the mesh,
are extremely important in practice. Our interface problem is defined as in
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Problem II:
−∇ · (ρ∇u) = 1, in Ω,
u = 0, on ∂Ω.

(22)

We assume now that Ω is divided into eight equal cubes (see Figure 9)
and that the coefficient ρ has a checkerboard distribution, given by ρ1 = 104

and ρ2 = 1. The interface is thus made of the planes x = 1/2 y = 1/2 and
z = 1/2. As a subdomain partition T DD we choose that given by ρ. We then
have 2× 2× 2 substructures. In order to capture the interface effects, we have
employed a geometrically refined mesh towards both sides of the interface. Since
the purpose of this test case is to assess the properties of our preconditioners
if anisotropic refinement takes place in the interior of Ω, we have neglected
the effects of the singularities at ∂Ω. Figure 9 shows the refined mesh T . As in
Problem IV, the number of layers is determined only by the spectral polynomial
degree k. Thus the highly refined mesh T consists of (2+2k)3 hexahedrals, thus
providing an hp approximation of this problem. Mesh grading factors σx = 0.25,
σy = 0.25 and σz = 0.25 towards the interface have been considered in this
numerical experiment.
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Figure 9: Interface problem. Anisotropic mesh with interior refinement for
the case n = k = 4. Mesh grading factor σ = 0.25 towards the interface in each
direction.

The spectral polynomial degree k is varying from 2 to 5. Table 8 shows
the results. As in Problem IV note that the condition number κ(A) of the
global matrix is remarkably large already for small values of k and consequently
moderate values of the mesh aspect ratio. From the results of Table 8, it can
be checked that the growth of κ(A) versus the spectral polynomial degree is
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Fixed number of substructures (N = 2)

k size nnz κ(A) It λmax λmin κ(PNN )
2 2197 7429 2.9317E+06 5 1.0001 0.9998 1.002
3 15625 82573 1.3476E+08 7 3.8221 0.9999 3.8221
4 69407 489203 5.5162E+09 8 4.6456 0.9999 4.6456
5 227707 2003017 1.5236E+11 9 5.4089 0.9999 5.4089

Table 8: Interface problem. Conjugate Gradient method for the global sys-
tem with the Balancing Neumann-Neumann preconditioner: size of the global
matrix, number of non-zero entries, condition number of the global matrix, it-
eration counts, maximum and minimum eigenvalues, and condition numbers
versus the spectral polynomial degree. The total number of substructures is 23.

exponential. Robust preconditioners are therefore mandatory for this kind of
applications. As expected the obtained results for the Balancing Neumann-
Neumann preconditioner lead to a different behaviour for the condition number
of the preconditioned operator. Indeed Property 2.2 is not satisfied and the
bound (13) for the condition number of the preconditioned operator is no more
valid. Plotting κ(PNN ) versus the spectral degree k in a log-log plot does lead
to a linear behaviour, in contrast to all the other numerical experiments shown
in this paper. Numerically log(κ(PNN )) is found to grow like kp with p = 0.68.
Following section 6 in [68] we expected a quadratic bound

κ(PNN ) ≤ C

(

1 + log

(

kH

h

))2

∼ C
(

1 + log
(

kσ−n
))2 ≤ C k2,

with n ∼ k. Indeed, the results in section 4.5 are consistent with a linear
growth in k. Nevertheless this behaviour is already an improvment with respect
to the exponential growth of the condition number of the original problem.
Note also that an extremely small number of iterations is obtained to satisfy
the convergence criterion (18) and the constant C appears to be very small
in this case. The same behaviour has been also obtained on a two-dimensional
version of this problem [68]. As a further study it would be interesting to perform
some numerical experiments with other efficient multilevel preconditioners based
either on algebraic multigrid [55, 69] or on algebraic domain decomposition ideas
[57] among others. An efficient iterative solver may result in combining these
techniques with deflation [49].

4.6 Problem VI: a reaction-diffusion problem

So far we have only considered purely diffusive problems. We note that the
analysis provided in [66, 67] does not cover the case of reaction-diffusion prob-
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lems. However for two-dimensional problems, numerical experiments [66, 68]
have confirmed that the growth of the condition number of the preconditioned
operator was also quadratic in log(k) for this type of problems. Thus we finally
consider the following reaction-diffusion problem where ε is a possibly small real
coefficient:

−ε∇ · (∇u) + u = 1, in Ω,
u = 0, on ∂Ω.

(23)

The source term is not compatible with the boundary conditions and thus
boundary layers appear for ε small. Geometrically refined meshes are then
needed in order to achieve exponential convergence and robustness with respect
to ε; see, e.g., [47, 62]. Our main goal is here to analyse the convergence
behaviour of the preconditioner for different values of ε.

Since boundary layer effects are present, the size of the thinnest layer Hσk

should be comparable to the size of the boundary layer
√
ε; see [47, 62]. In

addition, singularity resolution requires that n be comparable to k. These as-
sumptions lead to the following relation to determine the level of refinement n
and the spectral polynomial degree k when ε < 1:

n = n(ε) =

[

log(
√
ε/H)

log σ

]

+ 1, k = k(ε) = n(ε),

where [x] denotes the integer part of x. For ε = 1, refinement - although not
needed - is performed (n = 2) and the spectral polynomial degree k is fixed
to 2. The macromesh T DD consists of 33 substructures (H = 1/3). Geometric
refinement is only performed towards the corner located in (0, 0, 0), with a mesh
grading factor σ = 0.5 as in Problem III. The refined grid T contains thus (3+k)3

elements. We stress the fact that ε determines both n and k, and that we have
here a genuinely hp approximation.

Table 9 shows the results for the Balancing Neumann-Neumann precondi-
tioner. We note that for ε = 0 the stiffness matrix A reduces to the mass
matrix but mass matrices arising from spectral elements are not necessarily
uniformly well-conditioned with respect to k even for shape-regular meshes.
For one single spectral element, their condition number is expected to grow as
k3 for three-dimensional problems; see [66]. The Balancing Neumann-Neumann
preconditioner leads to very satisfactory results and the convergence behaviour
is thus robust with respect to ε as well.

5 Perspectives

Many important issues remain to be partially or fully addressed:
As shown in the numerical experiments, hp finite element discretizations on

three-dimensional boundary layer meshes can lead to large problems with more
than two millions of degrees of freedom, even if the number of elements is mod-
erate. Thus in order to reduce computational times, parallelization should be
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Fixed number of substructures (N = 3)

ε k size nnz It λmax λmin κ
1 2 1331 4268 9 1.2481 1 1.2481

10−1 2 1331 4268 6 1.0446 1 1.0446
10−2 2 1331 4268 4 1.0017 1 1.0017
10−3 4 24389 160679 4 1.0043 1 1.0043
10−4 6 166375 1723426 4 1.0084 1 1.0084
10−5 7 357911 4614893 4 1.0017 0.9999 1.0017
10−6 9 1297645 41924491 4 1.0011 0.9999 1.0011

Table 9: Reaction-diffusion problem on a boundary layer mesh. Con-
jugate Gradient method for the global system with the Balancing Neumann-
Neumann preconditioner: spectral polynomial degree, size of the global matrix,
number of non-zero entries, iteration counts, maximum and minimum eigen-
values, and condition numbers versus ε. The total number of substructures is
33.

considered. In the domain decompositon framework, parallelization is gener-
ally achieved by using a domain partition of the refined mesh assigning to each
processor one subdomain such that each processor contains approximately the
same number of unknowns. Thus a well-balanced computation is expected. For
Problems I, II and V, this strategy leads to use the macro-mesh T 0 as domain
partition for the parallel computations. However this choice is clearly inappro-
priate for e.g. Problem III (corner refinement see Figure 5, right), since the
subdomain that touches the corner (0, 0, 0) will contain much more unknowns
than the other subdomains (see the comments in section 4.4). Thus one possible
idea is to use a ”macro-macro-mesh” deduced from T 0 to equilibrate the load
balancing. This simply means that possibly two or more subdomains could be
assigned to one processor. Given this suitable subdomain to processor mapping,
standard parallelization techniques by message passing can be used to build the
parallel solver. Note that the parallelization of the FSAI or SPAI solvers for
the Dirichet and Neumann local problems is straightforward since it involves
only matrix-vector products. The construction of the approximate solver is also
parallelizable [13, 34].

When solving (possily time-dependent) problems that may mix difficul-
ties (corner singularities, boundary layer effects), hp adaptivity is required
[21, 37, 54]. The elements can be subsected (isotropically and anisotropically)
and their orders can be enriched which permits non-uniform distribution of ele-
ment sizes h and orders p. Thus anisotropic polynomial degrees can be chosen in
the computational domain, whereas h-refinement may lead to non-conforming
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meshes with hanging nodes that involve fewer degrees of freedom and thus gives
smaller algebraic linear systems to solve than the ones we have obtained. We re-
fer to [30] for implementation issues of hp adaptivity. Therefore one crucial issue
to be addressed is the treatment of hanging nodes in the domain decomposition
framework. We refer to [66, 67] for more comments.

The estimates derived in [67] can be employed to prove condition number
bounds for certain type of FETI methods. It would be also interesting to an-
alyze numerically the behaviour of the equivalent FETI preconditioner on the
problems described in this paper. On two-dimensional problems this analysis
has been conducted in [68] for one-level FETI. Another topic of research is to
apply this analysis to convection-dominated convection-diffusion problems. We
note that the preconditioners proposed in [1, 65] can be applied as well.

Finally in this work we have considered iterative solvers based on domain
decomposition ideas. It would be interesting to perform a comparison in terms
of computational efficiency and robustness with respect to the mesh aspect ratio
with other solvers based either on multilevel ideas or fast solvers exploiting the
tensor product type of the mesh. As investigated in recent studies [15, 16, 42,
44], a clever combination of all these techniques could lead to an efficient and
robust solver for hp finite element approximations.
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