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Switzerland

∗Department of Mathematics, University of Tennessee, Knoxville, TN 37996, U.S.A.,
email:xfeng@math.utk.edu



Rate of Convergence of Regularization Procedures and Finite
Element Approximations for the Total Variation Flow

X. Feng∗, M. von Oehsen and A. Prohl

Seminar für Angewandte Mathematik
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1. Introduction

This paper is the second in a series (cf. [12]) which devotes to mathematical and numerical
analysis of the gradient flow for the total variation functional

(1) Jλ(u) = |Du|(Ω) +
λ

2

∫

Ω
(u− g)2 dx

for a given bounded domain Ω ⊂ Rd (d ≥ 1), a function g and a nonnegative number λ. Where
|Du|(Ω) denotes the total variation of the function u defined by (cf. [2])

|Du|(Ω) := sup
{∫

Ω
−udivv dx ; v ∈ [C1

0 (Ω)]
d, ‖v ‖L∞ ≤ 1

}
,

and BV (Ω) will be used to denote the space of functions of bounded total variation.
Formally, total variation (TV) flow is described by the following initial boundary value problem

∂u

∂t
= div

( Du

|Du |

)
− λ

(
u− g

)
in ΩT ≡ Ω× (0, T ), T > 0,(2)

∂u

∂n
= 0 on ∂ΩT ≡ ∂Ω × (0, T ),(3)

u(·, 0) = u0(·) in Ω ,(4)

where Du, a vector-valued Radon measure, denotes the distributional gradient of u.
The best known application of the above gradient flow arises from image processing. The well-

known noise removal and image restoration model, which was proposed by Rudin, Osher and Fatemi
[17], and analyzed by Acar and Vogel [1], and Chambolle and Lions [10], seeks the minimizer of
the functional Jλ as the “best” restored image for a given noisy image g. Solving the minimization
problem by using the popular steepest descent method then motivates to consider the above gradient
flow. In such an application, the constant λ is known as a Lagrange multiplier which is determined
by the original constrained minimization problem (see [10] for a detailed exposition). In addition
to applications in image processing, the TV flow also appears in geometric measure theory for
studying the evolution of a set with finite perimeter without distortion of the boundary [6] and in
materials science for studying the crystalline flow [15].

Although the above TV flow has been addressed and approximated extensively in the literature
(see [10, 11, 9] and references therein), its rigorous mathematical analysis (for rough initial data)
only has appeared in the literature very recently. The first such work was done by Hardt and Zhou
in [14], which studied the gradient flow for a class of linear growth functionals with L∞ initial
values. A comprehensive study for the TV flow for λ = 0 with L1 initial data was carried out lately
by Andreu-Ballester-Caselles-Mazón in [3, 4, 5]. Existence of weak solutions was proved by using
Crandall-Liggett’s semigroup generation theory [10], on the other hand, uniqueness and stability of
entropy solutions were established using Kruzkov’s doubling variable technique originally proposed
for studying hyperbolic conservation law problems.

Very recently, we developed an L2-variational theory for the TV flow in [12], where a simpler
notion of weak solution was introduced, and well-posedness of the problem and regularities of the
weak solution were established using the energy method. The approach of [12] is based on carefully
analyzing the following regularized problem

∂uε

∂t
= div

(f ′
ε(|Duε |)Duε

|Duε |

)
− λ(uε − g) in ΩT ,(5)

∂uε

∂n
= 0 on ∂ΩT ,(6)

uε(·, 0) = uε0(·) in Ω ,(7)
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where fε(z) =
√
z2 + ε2, and on utilizing well-known results for the prescribed mean curvature

flow [13, 16]. This approach not only provides a characterization of the weak solution to (2)–(4),
depending on regularity properties of (u0, g ), but also allows to establish convergence of its finite
element approximations (cf. [12]).

Recall that (5)–(7) also can be interpreted as the gradient flow for the following regularized
functional

(8) Jλ,ε(u) =

∫

Ω
fε(|Du |) dx +

λ

2

∫

Ω
(u− g)2 dx ,

where for any u ∈ BV (Ω), the first term on the right hand side of (8) is defined as (cf. [2])
∫

Ω

√
|Du |2 + ε2 dx := sup

{∫

Ω

[
−udivv + ε

√
1− |v(x)|2

]
dx ; v ∈ [C1

0 (Ω)]
d, ‖v ‖L∞ ≤ 1

}
.

Based on the work of [12], this paper addresses a number of issues which were not covered in
[12]. First, in Section 2 we study the long time behavior of the weak solution to (2)–(4), and
prove that as t → ∞ its weak solution indeed converges to the unique minimizer of the total
variation functional Jλ. Corresponding results have been obtained earlier by Hardt and Zhou
[14] and Vese [19] for initial data u0 ∈ Dom(∂Jλ,ε), ε ≥ 0, by nonlinear semigroup theory [7] in
combination with an abstract result of Bruck [8]; in contrast, our approach uses a simple energy
argument to study asymptotics as t → ∞ for u0 ∈ L2(Ω). Second, in Section 3 we establish rates of
convergence for various regularization procedures, corresponding to various choices of the density
function fε, for approximating the TV flow. Possible regularizations include those given in (8)
and [10]. Recall that in the case fε(z) =

√
z2 + ε2, it was proved in [12] that uε converges to

u in Lp for 1 ≤ p < d
d−1 , but no rate of convergence was given. Third, in Section 4 we revisit

the finite element method proposed in [12] for approximating (5)–(7) and (2)–(4), and establish
optimal rate of convergence for the finite element scheme for approximating the TV flow (2)–
(4). Again, we recall from [12] that only convergence in Lp for 1 ≤ p < d

d−1 was proved for the
finite element scheme for approximating the TV flow, although optimal rate of convergence was
proved for the finite element scheme for approximating the regularized problem (5)–(7). Fourth,
in Section 5 we provide some numerical experiments, which are especially designed to exemplify
our theoretical results for general regularization strategies, and to find explicit scaling laws which
relate regularization and discretization parameters in order to obtain optimal rate of convergence.
Finally, in Section 6 we propose an a priori (model) error analysis for the TV and other related
image denoising models. Specifically, for a given (pure) image function u, a blur operator A and
a noise n let g = Au + n be the “noisy image” and ũ denote a restored image using an image
denoising model such as the TV model, we are interested in estimating the error u− ũ in terms of
quantities u, ũ, n and parameters used in the image denoising model such as λ in the case of TV
model, and are able to obtain such an error bound, which depends on u and ũ through the energy
residual (see Section 6 for details), for the TV model and other related image denoising models.
This (model) error analysis provides a theoretical justification for a well observed fact that the TV
model is superior to other image denoising models.

2. Convergence of the total variation flow as t → ∞

In this section we show that as t → ∞ the solution to the TV flow (2)–(4) with any L2(Ω) starting
value u0 indeed converges to the minimizer of the total variation functional Jλ defined in (1). This
result immediately implies the convergence of the gradient descent method for approximating the
minimizer of Jλ. Hence, we provide a theoretical justification for using the TV flow as a means to
study and approximate the total variation denoising model.
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First, we recall the definition of weak solutions to the TV flow and quote some results of [12],
which will serve as the starting point of our analysis in this paper.

Definition 2.1. Let Ω ⊂ Rd (d ≥ 2) be a bounded open domain with Lipschitz boundary ∂Ω and
u0, g ∈ L2(Ω), a function u is said to be a weak solution to the initial boundary value problem
(2)–(4) if u ∈ L1

(
(0, T );BV (Ω)

)
∩C0

(
[0, T ];L2(Ω)

)
∩H1((0, T );H−1(Ω)), u(x, 0) = u0(x) for a.e.

x ∈ Ω, and satisfies for any s ∈ [0, T ]
∫ s

0

∫

Ω
vt(v − u) dxdt+

∫ s

0

[
Jλ(v) − Jλ(u)

]
dt ≥

1

2

[
‖ v(s)− u(s) ‖2L2 − ‖ v(0) − u0 ‖2L2

]
(9)

∀ v ∈ L1
(
(0, T );BV (Ω)

)
∩ L2(ΩT ) such that vt ∈ L2(ΩT ).

Theorem 2.1. (cf. Theorems 1.1–1.4 of [12]) Let Ω ⊂ Rd be a bounded Lipschitz domain, and
u0, g ∈ L2(Ω).

(i) There exists a unique weak solution to initial boundary value problem (2)–(4). Moreover,
suppose ui (i = 1, 2) are the weak solutions for the given data ui(0), gi (i = 1, 2), respectively, then,
there holds the following stability estimate

(10) ‖u1(s)− u2(s) ‖L2 ≤ ‖u1(0)− u2(0) ‖L2 +
√
λ‖ g1 − g2 ‖L2 ∀s ∈ [0, T ].

(ii) If u0 ∈ BV (Ω)∩L2(Ω), then the weak solution satisfies u ∈ L∞
(
(0, T );BV (Ω)

)
∩H1

(
(0, T );

L2(Ω)
)
and the inequality for any s ∈ [0, T ]

∫ s

0

∫

Ω
ut(v − u) dxdt+

∫ s

0

[
Jλ(v) − Jλ(u)

]
dt ≥ 0 ∀v ∈ L1

(
(0, T );BV (Ω)

)
∩ L2(ΩT ).(11)

(iii) If u0 ∈ W 1,1(Ω) ∩H1
loc(Ω), g ∈ L2(Ω) ∩ H1

loc(Ω), ∂Ω ∈ C2, then u ∈ L∞
(
(0, T );W 1,1(Ω)

)

∩L∞
(
(0, T );H1

loc(Ω)
)
.

(iv) Suppose that uε0 ∈ L2(Ω) and g ∈ L2(Ω), then for each ε > 0 the regularized problem (5)–
(7) has a unique weak solution uε ∈ L1

(
(0, T );BV (Ω)

)
∩ H1

(
(0, T );H−1(Ω)

)
which satisfies that

uε(·, 0) = uε0(·), and for any s ∈ [0, T ]
∫ s

0

∫

Ω
vt(v − uε) dxdt+

∫ s

0

[
Jλ,ε(v) − Jλ,ε(v)

]
dt ≥

1

2

[
‖ v(s) − uε(s) ‖2L2 − ‖ v(0) − uε(0) ‖2L2

]
(12)

∀v ∈ L1
(
(0, T );BV (Ω)

)
∩ L2(ΩT ) such that vt ∈ L2(ΩT ).

In addition, the corresponding stability estimate to (10) holds for the weak solution uε. Furthermore,
suppose that uε0 = u0, then there also holds

(13) lim
ε→0

‖u− uε ‖L1((0,T ),Lp(Ω)) = 0 ∀p ∈
[
1,

d

d− 1

)
.

To analyze the long time behavior of the weak solution u, a simple but important observation is
the following alternative formulation for (9).

Lemma 2.1. Let u0 ∈ L2(Ω) and g ∈ L2(Ω), then for every s0 > 0 the weak solution u to (2)-(4)
satisfies u ∈ L∞((s0, T ), BV (Ω)) ∩H1((s0, T ), L2(Ω)) and

∫ s

s0

∫

Ω
ut(w − u) dxdt +

∫ s

s0

[
Jλ(w)− Jλ(u)

]
dt ≥ 0 ∀w ∈ L1

(
(0, T );BV (Ω)

)
∩ L2(ΩT )(14)

for all s ∈ [s0, T ]. Hence, the weak solution u also satisfies
∫

Ω
ut(t)(w − u(t)) dx + Jλ(w) − Jλ(u(t)) ≥ 0 ∀w ∈ BV (Ω) ∩ L2(Ω) and a.e. t ∈ (s0, T ).(15)
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Proof. For almost every s0 > 0, notice that u(s0) ∈ BV (Ω). Consider the TV flow which starts at
t = s0 with the starting value u(s0), let û denote the solution. From (ii) of Theorem 2.1 we know
that û ∈ L∞((s0, T );BV (Ω)) ∩H1((s0, T );L2(Ω)). Define the function

̂̂u(·, t) =






u(·, t) for 0 ≤ t < s0,

û(·, t) for s0 ≤ t ≤ T.

It is easy to check that ̂̂u is a weak solution of (2)–(4) with initial datum u0. By uniqueness of

weak solutions (cf. (i) of Theorem 2.1), we have ̂̂u = u on [0, T ]. Hence, u ∈ L∞((s0, T );BV (Ω))∩
H1((s0, T );L2(Ω)).

Now, inequality (14) immediately follows from setting

v(·, t) =






u(·, t), for 0 ≤ t ≤ s0,

w(·, t), for s0 < t ≤ T

in (9), for any w ∈ L1
(
(0, T );BV (Ω)

)
∩L2(ΩT ). Inequality (15) follows from (14) and the Lebesgue

Differentiation Theorem (cf. [2]). The proof is complete. !

Remark 2.1. The above lemma can be regarded as a smoothing property of the TV flow, it says
that starting with any L2 initial datum at t = 0, the solution of the TV flow is a BV function at
every later time t > 0.

We are now ready to state the first main result of this paper.

Theorem 2.2. Suppose u0 ∈ L2(Ω) and g ∈ L2(Ω), let u(x, t) denote the weak solution to (2)-(4)
and u ∈ BV (Ω) denote the unique minimizer of Jλ. Then,

(16) lim
t→∞

‖u(t)− u ‖Lp(Ω) = 0 ∀p ∈
[
1,

d

d− 1

)
.

Proof. Existence and uniqueness of u was proved in [10]. Let s0 > 0 be any time incidence such
that u(s0) ∈ BV (Ω). Taking w(t) = u(t − τ) for τ > 0 in (14) with s = T , dividing the resulted
inequality by −τ and then setting τ → 0 yields

∫ T

s0

‖ut(t) ‖2L2 dt+ Jλ(u(T )) ≤ Jλ(u(s0)) < ∞ for any s0 ≤ T < ∞.

Hence, there exists a sequence {tj} with tj → ∞ as j → ∞ such that

lim
j→∞

‖ut(tj) ‖L2 = 0,(17)

‖u(tj) ‖BV (Ω)∩L2(Ω) < C uniformly for j ≥ 1.(18)

By compactness of BV (Ω) (cf. [2]), there exists a subsequence of {u(tj)} (still denoted by the same
notation) and û ∈ BV (Ω) ∩ L2(Ω) such that u(tj) converges to û weak∗ in BV (Ω), strongly in
Lp(Ω) for 1 ≤ p < d

d−1 , and weakly in L2(Ω) as j → ∞.
Finally, setting j → ∞ in (15) after choosing t = tj and using the fact that Jλ is lower semi-

continuous with respect to weak∗ topology in BV (Ω) (cf. [2]) we get

Jλ(w) ≥ Jλ(û) ∀w ∈ BV (Ω) ∩ L2(Ω),

which implies that û is a minimizer of Jλ. Then, the uniqueness of the minimizer implies û = u
and that the whole sequence {u(·, t)} converges to u as t → ∞. The proof is complete. !

4



Remark 2.2. (a) The proof clearly relies on the smoothing property of the TV flow.
(b) It is easy to see that the conclusion of Theorem 2.2 also holds for the solution of the regularized

flow (5)–(7) for each ε > 0, that is, uε(·, t) converges to the unique minimizer uε of Jλ,ε strongly in
Lp(Ω) for 1 ≤ p < d

d−1 as t → ∞.

3. Rate of convergence of the regularized flow as ε → 0

From (iv) of Theorem 2.1 we know that the solution of the regularized flow (5)–(7) converges to
the solution of the TV flow (2)–(4) strongly in Lp(Ω) for 1 ≤ p < d

d−1 as ε → 0. However, it does
not tell how fast it converges. We will address the issue in this section by establishing a rate of
convergence (in powers of ε). Moreover, we will consider more general regularization procedures by
stating some structural assumptions for Jλ,ε, which cover commonly used regularization procedures;
in particular, they include Jλ,ε defined in (8) and a modified regularization procedure introduced
by Chambolle and Lions in [10].

Theorem 3.1. Suppose that u0, uε0 ∈ L2(Ω) and g ∈ L2(Ω). Let u, uε be the weak solutions of
(2)–(4) and (5)–(7), respectively. Assume there exist two positive constants α, C0(T ) such that Jλ,ε
satisfies

(19)

∫ T

0
|Jλ,ε(v)− Jλ(v) | dt ≤ C0(T )ε

α ∀ v ∈ L1((0, T );BV (Ω)) ∩ L2(ΩT ),

then, there holds

ess sup
t∈[0,T ]

‖u(t)− uε(t) ‖L2(Ω) ≤ ‖u0 − uε0 ‖L2(Ω) + 2
√

C0(T ) ε
α
2 .(20)

Proof. For any f ∈ L2(Ω) and ρ / 1, let (f)ρ := Mρ ∗ f ∈ C∞(Ω) denote its mollification. Here
Mρ can be chosen as any well-known mollifier.

Let uρ and uερ denote the weak solutions of (2)–(4) with initial datum (u0)ρ and (5)–(7) with
initial datum (uε0)ρ, respectively, then from Theorem 2.1 we know that uρ and uερ satisfies

∫ s

0

∫

Ω
uρt(v − uρ) dxdt+

∫ s

0

[
Jλ(v) − Jλ(uρ)

]
dt ≥ 0 ∀v ∈ L1

(
(0, T );BV (Ω)

)
∩ L2(ΩT ),(21)

∫ s

0

∫

Ω
uερt(v − uερ) dxdt+

∫ s

0

[
Jλ,ε(v)− Jλ,ε(u

ε
ρ)
]
dt ≥ 0 ∀v ∈ L1

(
(0, T );BV (Ω)

)
,(22)

and

‖u(s)− uρ(s) ‖L2 ≤ ‖u0 − (u0)ρ ‖L2 ∀s ∈ [0, T ],(23)

‖uε(s)− uερ(s) ‖L2 ≤ ‖uε0 − (uε0)ρ ‖L2 ∀s ∈ [0, T ].(24)

Choosing v = uερ in (21), v = uρ in (22), and adding the resulting inequalities yield

−
∫ s

0

∫

Ω
(uρ − uερ)t(uρ − uερ) dx dt +

∫ s

0

{[
Jλ(u

ε
ρ)− Jλ,ε(u

ε
ρ)
]
+

[
Jλ,ε(uρ)− Jλ(uρ)

]}
dt ≥ 0,

which and (19) imply that

‖uρ(s)− uερ(s) ‖2L2 ≤ ‖uρ(0)− uερ(0) ‖2L2 + 2

∫ s

0

{[
Jλ(u

ε
ρ)− Jλ,ε(u

ε
ρ)
]
+

[
Jλ,ε(uρ)− Jλ(uρ)

]}
dt

≤ ‖ (u0)ρ − (uε0)ρ ‖2L2 + 4C0(T ) ε
α ∀s ∈ [0, T ].(25)

Finally, it follows from (23)-(25) and the triangle inequality that

‖u(s)− uε(s) ‖L2 ≤ ‖u(s)− uρ(s) ‖L2 + ‖uρ(s)− uερ(s) ‖L2 + ‖uερ(s)− uε(s) ‖L2

≤ ‖u0 − (u0)ρ ‖L2 + ‖ (u0)ρ − (uε0)ρ ‖L2 + 2
√

C0(T ) ε
α
2 + ‖uε0 − (uε0)ρ ‖L2 .

5



The desired estimate (20) follows from setting ρ → 0 in the above inequality. The proof is complete.
!

For readers’ convenience, we now verify the assumption (19) for some commonly used regular-
ization procedures.

Example 3.1. For any 1 < q < ∞, define

(26) Jλ,ε,q(u) :=

∫

Ω
fε,q(|Du|) dx +

λ

2

∫

Ω
(u− g)2 dx,

where fε,q is given by

f ′
ε,q(z) =

z
q
√
zq + εq

.

Note that fε,2(z) = fε(z) =
√
z2 + ε2, this case was studied in great details in [12].

For any u ∈ C1(ΩT ), a direct calculation yields

∣∣Jλ,ε,2(u)− Jλ(u)
∣∣ =

∫

Ω

[√
|Du|2 + ε2 − |Du|

]
dx =

∫

Ω

ε2√
|Du|2 + ε2 + |Du|

≤ |Ω| ε.(27)

Since C∞(ΩT ) is dense in L1((0, T );BV (Ω))∩L2(ΩT ), it follows from above estimate and a standard
density argumentation that (19) holds with C0(T ) = |Ω|T , and α = 1.

Remark 3.1. The above estimate gives the worst scenario. In the case that |Du| has a positive low
bound almost everywhere, that is, {|Du| ≥ c0} ≈ Ω, we have α = 2. Hence, we get linear rate of
convergence in ε.

Example 3.2. The following regularization procedure is a modification of the one proposed and
analyzed by Chambolle and Lions in [10]

(28) Jλ,ε,CL(u) :=

∫

Ω
φε(|Du|) dx +

λ

2

∫

Ω
(u− g)2 dx,

where φε is given by

φε(z) :=






1

2ε
z2 if 0 ≤ z ≤ ε,

z −
ε

2
if z ≥ ε.

For any u ∈ C1(ΩT ), a direct calculation gives

∣∣Jλ,ε,CL(u)− Jλ(u)
∣∣ =

∣∣∣∣∣

∫

{|Du|≤ε}
|Du|

[ 1

2ε
|Du|− 1

]
dx−

∫

{|Du|≥ε}

ε

2
dx

∣∣∣∣∣

≤ |Ω| ε+
|Ω|
2

ε ≤
3

2
|Ω| ε,

which and a standard density argumentation imply that (19) holds with C0(T ) =
3
2 |Ω|T , and α = 1.

4. Rate of convergence of finite element approximations

A fully discrete finite element method for the regularized flow (5)–(7) was proposed in [12], and
optimal order error estimates were established. In addition, it was shown that the finite element
solution converges to the solution of the TV flow (2)–(4) as the mesh sizes and the parameter ε all
tend to zero. On the other hand, no rate of convergence was given there.

In this section, we first propose and analyze a semi-discrete (in time) scheme to approximate the
weak solution of the TV flow (2)–(4). In particular, we verify error estimates for the semi-discrete
scheme. Then, we revisit the fully discrete finite element method developed in [12], and establish
a rate of convergence for using the method to approximate the TV flow.
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4.1. An implicit time discretization for the TV flow. Let {tm}Mm=0 be an equidistant partition
of [0, T ] of mesh size k ∈ (0, 1), and dtum := 1

k (u
m − um−1). Our semi-discrete in time scheme

for approximating the TV flow (2)–(4) is defined as follows: Given u0 ∈ BV (Ω) ∩ L2(Ω), find
{um}Mm=1 ∈ BV (Ω) ∩ L2(Ω) such that

(29)

∫

Ω
dtu

m(w − um) dx+ Jλ(w) − Jλ(u
m) ≥ 0 ∀w ∈ BV (Ω) ∩ L2(Ω), m = 1, 2 · · · ,M.

Summing over m from 1 to ( (1 ≤ ( ≤ M) after taking w = um−1 in (29) leads to the following
a priori estimate for {um}Mm=1

(30) k
%∑

m=1

‖ dtum ‖2L2 + Jλ(u
%) ≤ Jλ(u

0) ∀( ≤ M.

Well-posedness of problem (29) can be shown by following the proof of (11) in [12]. Convergence
behavior depends on regularity of initial data: if u0 ∈ Dom(∂Jλ), optimal order rate of convergence
follows from a general result of Rulla [18] for the backward Euler time-discretization of differential
inclusions ut + A(u) 1 0 with a maximal monotone operator A = ∂Jλ. In case of more general
initial data u0 ∈ Dom(∂Jλ) ≡ BV (Ω) ∩ L2(Ω), we prove suboptimal order rate of convergence for
the semi-discrete scheme.

Theorem 4.1. (i) Suppose that g ∈ L2(Ω) and u0 ∈ BV (Ω) ∩ L2(Ω). Let u, {um}Mm=0 be the
solutions of (11) and (29), respectively. Define

u
k
(·, t) :=

t− tm−1

k
um(·) +

tm − t

k
um−1(·) ∀t ∈ [tm−1, tm].

Then, there holds

(31) ess sup
t∈[0,T ]

‖u(t)− u
k
(t) ‖L2(Ω) ≤ ‖u0 − u0 ‖L2(Ω) + C

√
k
√

Jλ(u0) + Jλ(u0).

(ii) If u0 ∈ Dom(∂Jλ), there holds

(32) ess sup
t∈[0,T ]

‖u(t) − u
k
(t) ‖L2(Ω) ≤ ‖u0 − u0 ‖L2(Ω) +Ck ‖ (∂Jλ)0(u0) ‖L2 ,

where (∂Jλ)0(u0) is the unique element of minimal norm from the closed and convex set ∂Jλ(u0).

Proof. Since (ii) follows from Theorem 5 of [18], it suffices to prove (i). Notice that (29) can be
rewritten as∫

Ω
u
k
t (w − uk) dx+ Jλ(w)− Jλ(u

k) ≥ 0 ∀w ∈ BV (Ω) ∩ L2(Ω), t ∈ (0, T ),(33)

where uk(·, t) := um(·) for t ∈ (tm−1, tm]. Now, choosing w = uk in (15) with s0 = 0 and w = u in
(33) we get

∫

Ω
ut(u

k − u) dx+ Jλ(u
k)− Jλ(u) ≥ 0 ,

∫

Ω
u
k
t (u− uk) dx+ Jλ(u)− Jλ(u

k) ≥ 0 .

Adding the above two inequalities and using the notation

e(·, t) := u(·, t)− uk(·, t), e(·, t) := u(·, t) − u
k
(·, t) ∀ t ∈ (tm−1, tm] ,

we get

1

2

d

dt
‖ e ‖2L2 ≤ −

∫

Ω
et(u

k − uk) dx .(34)

7



It follows from a direct calculation and (30) that for any 1≤ ( ≤ M

∫ t"

0
‖uk − u

k ‖2L2 dt =
%∑

m=1

‖ dtum ‖2L2

∫ tm

tm−1

(t− tm−1)
2 dt =

k3

3

%∑

m=1

‖ dtum ‖2L2 ≤ C k2,

which, together with (30), then leads to

∣∣∣
∫ t"

0

∫

Ω
et(u

k − uk) dxdt
∣∣∣ ≤

{∫ t"

0
‖ut ‖2L2 dt+ k

%∑

m=1

‖ dtum ‖2L2

} 1

2

{∫ t"

0
‖uk − u

k ‖2L2 dt
} 1

2

≤ C k.(35)

Finally, the desired estimate (31) follows from integrating (34) from 0 to t% and appealing to (19)
and (35). The proof is complete. !

Efficient control of spatial discretization effects requires additional regularity properties of solu-
tions which is another motivation for us to come back to a fully discrete version of the discretization
(5)–(7) in the next subsection.

4.2. A fully discrete finite element method for the TV flow. Let Th be a quasiuniform
triangulation of Ω with mesh size h ∈ (0, 1), and V h denote the continuous, piecewise linear finite
element space associated with Th, that is,

V h :=
{
vh ∈ C0(Ω); vh

∣∣
K
∈ P1(K), ∀K ∈ Th

}
.

We recall that the fully discrete finite element method of [12] for the gradient flow (5)–(7) is defined
as follows: Given U0 ∈ V h, find {Um}Mm=1 ∈ V h such that

(36)
(
dtU

m, vh
)
+

(f ′
ε(|∇Um |)
|∇Um |

∇Um,∇vh
)
+ λ

(
Um − g, vh

)
= 0 ∀ vh ∈ V h ,

where (·, ·) stands for the standard L2(Ω) inner product, and fε(z) =
√
z2 + ε2.

Define the linear interpolation of {Um}Mm=0 in time as

U
ε,h,k

(·, t) :=
t− tm−1

k
Um(·) +

tm − t

k
Um−1(·) ∀ t ∈ [tm−1, tm] .(37)

If u0 ∈ W 1,1(Ω) ∩H1
loc(Ω) and g ∈ L2(Ω) ∩H1

loc(Ω), it was shown in Theorem 1.6 of [12] that

(38) lim
ε→0

lim
h,k→0

‖u− U
ε,h,k

‖L∞(0,T );Lp(Ω)) = 0 , 1 ≤ p <
d

d− 1
,

provided that limh→0 ‖u0 − U0 ‖L2 = 0.

We now state a theorem which provides a rate of convergence for the error u− U
ε,h,k

.

Theorem 4.2. In addition to the assumptions of Theorem 4.1, suppose that u0 ∈ C2(Ω), g ∈
L∞

(
(0, T ); W 1,∞(Ω)

)
, ∂Ω ∈ C3, and fε(z) =

√
z2 + ε2. Then, under the following starting value

and mesh constraints

‖uε0 − U0 ‖L2 ≤ Ch2 and k = O(h2),

there holds the error estimate

(39) ess sup
t∈[0,T ]

‖u(t)− U
ε,h,k

(t) ‖L2(Ω) ≤ ‖u0 − uε0 ‖L2 + 2
√

|Ω|T
√
ε+ C1(ε)k + C2(ε)h

2 ,

where Ci(ε) for i = 1, 2 are positive constants which depends on ε−1 in some low polynomial order.
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Proof. (39) follows immediately from the triangle inequality

‖u− U
ε,h,k

‖L2 ≤ ‖u− uε ‖L2 + ‖uε − U
ε,h,k

‖L2 ,

and appealing to (20) and Theorem 1.7 of [12]. The proof is complete. !

Remark 4.1. (a). Assumptions in Theorem 4.2 require data (u0, g ) to be regular, and (39) suggests
that any (smooth) approximation ( ũ0, g̃ ) of (u0, g ) satisfying

‖u0 − ũ0 ‖L2(Ω) + ‖ g − g̃ ‖L2(Ω) = O(
√
ε)

should be sufficient.
(b). The coefficients C1(ε) and C2(ε) in (39) depend on ε−1 in some low polynomial orders,

and no sharp bounds are available from the analysis. In Section 5, we will provide computational
evidences for appropriate scalings for k and h with respect to ε in order to obtain optimal order
convergence.

5. Numerical experiments

We present some numerical experiments for the regularization procedures (26) and (28), and
numerically identify scaling laws between mesh sizes h, k and regularization parameter ε. In all
our numerical tests, we solve the nonlinear (algebraic) equations at each time step using a fixed-
point iteration, where the diffusivity is evaluated at the previous iterate. This algorithm performs
remarkably well, for all regularizations we obtained good approximations after only few iterations.
Furthermore, the number of iterations required to trigger the stopping criteria is essentially inde-
pendent of the regularization procedures. In that sense, we found that all regularization strategies
lead to efficient numerical schemes of the same quality.

Our first set of numerical experiments studies the temporal discretization effect and its relation-
ship with the regularization effect. Figure 1 shows the given image g, and two smoothened samples
using the TV flow with λ = 0. Figure 2 gives L2-errors at t = 5·10−3 for different scalings ε = O(kr)
for r = 0, 1/2, 1, 3/2, which validates a proper scaling law ε = O(k), for fε = fε,2; this scaling law is
better compared to the theoretically predicted one in Theorem 4.2, which may be explained by the
‘pessimistic’ crucial last bound in (27) in situations where {|Du | > c} almost covers Ω. Figure 3
displays corresponding results for the regularizations fε,q, for q = 1.5 and 5; Analogous experiments
for the case fε,CL-regularization are shown in Figure 5, which again evidence an optimal scaling
ε = O(k).

Spatial discretization effect in the case fε,2-regularization is reported in Figure 5 using initial
data of different regularities (see Figure 4). We observe a decrease in rate of convergence when
using rough initial data (cf. Theorem 4.2).

Finally, we examine the regularization procedures using fε,CL and fε,q for q = 1, 2, 100. Figure 6
plots the diffusivity function f ′

ε,∗(s)/s of each regularization. We remark that the regularization
procedure of Chambolle and Lions [10] amounts to applying the heat equation (constant diffusivity)
in regions of small gradients and using the TV flow at places where the gradient is big. For large
q, the fε,q-regularization has the similar properties. However, for small q the diffusivity of fε,q is
large for small gradients and small for large gradients where the edges reside. For two-dimensional
image denoising applications, our numerical tests indicate that all these regularization strategies
essentially perform equally well. Figures 7 and 8 depict three samples of the regularized flow with
fε,2. Corresponding tests with the Chambolle-Lions regularization fε,CL and the regularizations
fε,q for q 3= 2 produce results which do not differ qualitatively from those of Figures 7 and 8.
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Figure 1. Computed solutions of the regularized flow at t = 0, 10−3, 5 · 10−3 using
fε,2-regularization with (ε, k, h) = (10−10, 5 · 10−8, 10−3) and λ = 0.

6. Error estimate for the TV and other image denoising models

In this final section, we derive an a priori model error estimate for the total variation image
denoising model of Rudin-Osher-Fatemi [17] and for other related image denoising models. Specif-
ically, given a (pure) image u : Ω → R, a (linear and injective) blur operator A, and some noise
n : Ω → R. Let g = Au + n be the given “noisy image”, and ũ : Ω → R denotes a recovered
image using an image denoising model such as the TV model. We now ask for an estimate of
the model error u− ũ in terms of the known quantities u, ũ, n and parameters used in the image
denoising model such as λ in the case of TV model. We will show that the error depends on u and
ũ through the energy residual for each image denoising models. This model error estimate provides
a theoretical explanation for the good performance of the TV model in image denoising.
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Figure 2. L2-error at t = 5 · 10−3 using fε,2-regularization with different scaling
laws ε = O(kr).
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Figure 3. L2-error at t = 5 · 10−3 using fε,q-regularization with different scaling
laws ε = O(kr). q = 1.5 (left), q = 5 (right).
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Figure 4. Piecewise polynomial initial data with discontinuities in the s-th deriv-
ative for s = 0, 1, 2.
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Figure 5. L2-error at t = 10−3 using fε,2-regularization. ε = 10−3, k = 10−6, and
the initial data of Figure 4 are used in the tests.
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Figure 6. The diffusivity for fε,q, q = 1, 2, 100 and for fε,CL.

Figure 7. The initial noisy image and two smoothed samples at times t = 5 ·
10−4, 10−3 using fε,2-regularization. ε = 10−5, k = 10−5, h = 2−8 and λ = 0 are
used in the test.
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Figure 8. The initial noisy image and two smoothed samples at times t = 5 ·
10−4, 10−3 using fε,2-regularization. ε = 10−5, k = 10−5, h = 2−8 and λ = 0 are
used in the test.

Let us consider a class of image selection functionals of the form

Eλ(v) := E(v) +
λ

2
‖Av − g ‖2L2 ∀v ∈ V ≡ BV (Ω) ∩ L2(Ω),(40)

E(v) :=

∫

Ω
ϕ(|Dv|) dx,(41)

where λ ≥ 0 is a given constant, and ϕ(z) is a Lipschitz continuous function of z ∈ R. Then the
recovered image ũ is defined by

(42) ũ := argmin
v∈V

Eλ(v).

Remark 6.1. Recall that the total variation image denoising model of Rudin-Osher-Fatemi [17] uses
ϕ(z) = z and the harmonic image denoising model has ϕ(z) = z2.

We are now ready to state the main result of this section.

Theorem 6.1. For a given image function u, let ũ be defined by (42). Then, there holds the
following error estimate

‖u− ũ ‖2A ≤ ‖ g −Aũ ‖2L2 +
2

λ

[
Eλ(u)− Eλ(ũ)

]
−

2

λ
Q(u, ũ) ,(43)

where ‖ v ‖A := ‖Av ‖L2 , and Q(u, ũ) is defined by

(44) Q(u, ũ) := E(u) −E(ũ)− E′(ũ)(u− ũ) ,

where E′(ũ) denotes the Fréchet derivative of E at ũ.

Proof. It is easy to check that the Euler-Lagrange equation for ũ is given by

−div

(
ϕ′(|Dũ|)
|Dũ|

Dũ

)
+ λA∗(Aũ− g) = 0,

where A∗ stands for the adjoint operator of A with respect to L2(Ω) inner product. Rewrite the
above equation as

A∗A(ũ− u) = A∗(g −Au) +
1

λ
div

(
ϕ′(|Dũ|)
|Dũ|

Dũ

)
,
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then test is against ũ− u and use the relation (44) to get

‖ ũ− u ‖2A =
(
g −Au,A(ũ− u)

)
+

1

λ

(
ϕ′(|Dũ|)
|Dũ|

Dũ ,D(u− ũ)

)

≤
1

2
‖ ũ− u ‖2A +

1

2
‖ g −Au ‖2L2 +

1

λ

[
E(u)− E(ũ)−Q(u, ũ)

]

=
1

2
‖ ũ− u ‖2A +

1

λ

[
Eλ(u)−E(ũ)−Q(u, ũ)

]
.

Hence,

‖ ũ− u ‖2A ≤ ‖ g −Aũ ‖2L2 +
2

λ

[
Eλ(u)− Eλ(ũ)

]
−

2

λ
Q(u, ũ) .(45)

The proof is complete. !

Remark 6.2. (a). The three terms on the right hand side of (45) clearly show sources of the total
error in the recovered image ũ. The first term can be regarded as the fidelity error for ũ. The
second term, which is positive, measures how far the energy Eλ(u) from the minimum energy
Eλ(ũ), hence, it can be regarded as energy residual error. The third term, which does not have a
fixed sign in general, adds a contribution to the global error if Q(u, ũ) is negative (which is the case
for nonconvex density function ϕ), but reduces the global error Q(u, ũ) if it is nonnegative (which
occurs when ϕ is convex).

(b). Although both TV model and harmonic model have convex density function ϕ, which results
in nonnegative Q(u, ũ), harmonic model gives much larger energy residual error in general.
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tions on Lévy Driven Assets

03-05 M. Becheanu, R.A. Todor On the Set of Diameters of Finite Point-Sets
in the Plane

03-04 C. Schwab, R.A. Todor Sparse finite elements for stochastic elliptic
problems - higher order moments

03-03 R. Sperb Bounds for the first eigenvalue of the
elastically supported membrane on convex
domains

03-02 F.M. Buchmann Computing exit times with the Euler scheme
03-01 A. Toselli, X. Vasseur Domain decomposition precondition-

ers of Neumann-Neumann type for hp-
approximations on boundary layer meshes in
three dimensions

02-26 M. Savelieva Theoretical study of axisymmetrical triple
flame
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