
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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We present a systematic study of how to take into account external excitation
in the eddy current model. Emphasis is put on mathematically sound varia-
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1 Introduction

In order to obtain computationally tractable models of electric devices often one considers the
full field equations only for parts, whereas a lumped circuit description is used for the remainder.
This makes it necessary to couple both models. In other words, we have to figure out how to
link the quantities used in circuit models, currents and voltages, with electromagnetic fields.

We investigate this issue in the case of (weak) variational formulations of the magneto-quasistatic
eddy current model. We can distinguish between two basically different weak formulations,
voltage or current excitation, and local or non-local excitation. We aim to give a systematic
treatment of all these cases leading to stable variational formulations that can serve as the basis
for finite element discretization schemes.

Our presentation is part of brisk recent research in this area: without even pretending to give an
exhaustive list of references, we would like to mention the pioneering contributions of P. Dular
[DGL99, DLN98, DHL99] and, in particular, [Dul01]. Other researchers have considered the field
equations after discretization, viewing them as small-scale circuit equations, see e.g. [RTV02].
Moreover, it has been realized that non-local excitation is intimately linked to topological issues
[Ket01, Bos00].

It is important to note, that a true lumped parameter excitation is not feasible for the eddy
current model, e.g. there is no canonical way to impose a current or voltage without additional
modeling information on the distribution of the sources. Even in the case of the so-called non-
local excitations, that rely on topological concepts, additional information will be necessary if a
coupling to a circuit model shall be established.

1.1 Eddy Current Model

In the sequel we consider an open and connected “computational domain” Ω ⊂ R3 with exterior
unit normal vector field n on its boundary ∂Ω. Let Ω be partitioned into two disjoint open
subsets, that is Ω = ΩC ∪ ΩI , where ΩC represents the conductors and ΩI the insulating air
region. Generically, we have Ω = R3, but introducing an artificial cut-off boundary will render
it bounded. Thus, throughout the remainder of the paper, we can restrict ourselves to bounded
Ω. We adopt the notation ΓC = ∂ΩC ∩ ∂ΩI and write Γi for the boundaries of the connected
components of ΩC , ΓC = ∪iΓi.

The complete eddy current model reads [AFV01]

curl e = − d
dtb in Ω (Faraday’s law) , (1a)

curl h = j in Ω (Ampere’s law) , (1b)

divb = 0 in Ω (magnetic Gauß’ law) , (1c)

b = µh in Ω , (1d)

j = jG + σ e in Ω (Ohm’s law) , (1e)

where e and h stand for the electric and magnetic field, respectively, b denotes the magnetic
induction, j the current density, and jG = jG(x, t) is an imposed current density (generator
current). We assume that supp jG is bounded and that jG depends continuously on time. The
material parameter σ ∈ L∞(Ω) describes the electric conductivity, and satisfies σ > σ0 > 0
in ΩC , σ ≡ 0 in ΩI . The coefficient µ ∈ L∞(Ω), µ > µ0 > 0 everywhere in Ω, is the magnetic
permeability. We will also make use of the dielectric constant ε ∈ L∞(Ω), ε > ε0 > 0 everywhere.

These equations have to be supplemented by suitable boundary conditions on the (artificial)
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boundary ∂Ω. Below we impose electric boundary conditions

n× e = f

on the part ∂Ωe ⊂ ∂Ω of the boundary, and magnetic boundary conditions

n× h = g

on ∂Ωh ⊂ ∂Ω, where ∂Ω = ∂Ωe ∪ ∂Ωh, ∂Ωe ∩ ∂Ωh = ∅. Both f and g depend on space and time
and are assumed to be eligible tangential traces of fields.

We point out that in the case of unbounded Ω we have to demand a decay of the fields according
to h(x) = O(|x|−2), e(x) = O(|x|−1) as |x| −→ ∞. In variational formulations we need to use
suitable weighted spaces [Hip02b, Sect. 2]. Then all arguments employed in the case of bounded
Ω remain valid.

We also stress, that non-linear, in particular ferromagnetic, materials are admitted, that is, µ is
allowed to depend on b. Though not incorporated in the above formulation, tensorial material
parameters can be easily accommodated, too. We opted for a treatment in the time domain, but
most results carry over to the frequency domain after replacing d

dt with iω, ω > 0 the angular
frequency.

Equation (1b) implies a compatibility condition for for jG in ΩI : For any sub-domain V ⊂ ΩI

must hold ∫

∂V

jG · n dS = 0 .

This implies div jG = 0 in ΩI . Note that (1c) has to be enforced at initial time only, since
d
dt divb = 0 follows from (1a).

The eddy current model represents a magneto-quasistatic approximation to Maxwell’s equations:
it is reasonably accurate for slowly varying fields, for which the change in magnetic field energy
is dominant, see [ABN00, Dir96]. Slowly varying, means that

√
εµ

l

δt
, 1 (2)

where l is the characteristic size of the region of interest and δt the smallest relevant time-scale.
This means that ΩC has to be small compared to the wavelength of electromagnetic waves,
which makes it possible to ignore wave propagation. If this cannot be done, the issue of voltage
and current excitation becomes far more tricky and might not make much sense any more. This
is beyond the scope of this paper.

There is a second condition for the validity of the eddy current approximation, which requires
that the typical time-scale is long compared to the relaxation time for space charges, that is,
the conductivity must be large enough to make

ε

σ δt
, 1 (3)

hold true. This implies that no space charges need to be taken into account.

We point out an important difference between the full Maxwell equations and the eddy current
equations (1). Whereas in the former there is a perfect symmetry between electric and magnetic
quantities, this symmetry is broken in the case of the eddy current model. This is a consequence
of dropping the displacement currents.
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It is important to note that the equations (1) do not completely determine the electric field
in ΩI . There it is unique only up to a curl-free “electrostatic component”. In order to restore
uniqueness of e everywhere in Ω we may demand the gauge condition

div(ε e) = 0 in ΩI ,

and that all total conductor charges will vanish. For an in-depth discussion in the time-harmonic
case and with homogeneous electric (n×e = 0 on ∂Ω) and magnetic (n×h = 0 on ∂Ω) boundary
conditions on ∂Ω we refer to [AFV01].

However, the electric field in ΩI is of little interest in many applications. It might not even make
much physical sense, for instance close to inductor coils that are described by a given current
density distribution. In this case an ungauged formulation makes perfect sense.

1.2 Variational Formulations

Corresponding to primal and dual ways to cast second-order elliptic boundary value problems
into weak form, we can distinguish between two different variational formulations of (1), which
use one of the equations (1a) or (1b) in strong form (“pointwise”) and the other in weak form
(“averaged”) [Bos85].

h-based formulation

This formulation retains the magnetic field h as primary unknown. The variational problem
relies on the function spaces

V(jg,g) := {h′ ∈ H(curl;Ω), curl h′ = jg in ΩI ,n× h′ = g on ∂Ωh} (4)

and
V0 := V(0, 0) . (5)

For definitions and properties of function spaces likeH(curl;Ω) the reader is referred to [GR86,
Ch. 1]. Then, the variational formulation describing the evolution of the magnetic field from
t = 0 to t = T , T > 0 fixed, reads:

Find h ∈ C1([0, T ],V(jg,g)) 1, h(0) = h0 ∈ V(jg(0),g(0)), such that for all h′ ∈ V0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx =

∫

ΩC

1

σ
jG · curl h′ dx+

∫

∂Ωe

(n× e︸ ︷︷ ︸
=f

) · h′ dS . (6)

This equation contains Ampere’s law (1b) in strong form, Faraday’s law (1a) in weak form.

a-based formulation

Since (1c) is true in all of R3, we can write b = curl a. Then e = − d
dta−gradv with v standing

for a scalar potential. To fix a we can rely on the so-called “temporal gauge”, which sets v = 0,
that is e = − d

dta. We introduce the space

W(f) := {a′ ∈ H(curl;Ω),n× a′ = −
∫

f dt on ∂Ωe}

1The requirement that h is continuously differentiable w.r.t. time can be relaxed, cf. [RR93, Sect. 10.1]. Then
excitations that jump in time can be accommodated.
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and arrive at the following variational formulation:

Find a ∈ C1([0, T ],W(f)), a(0) = a0 ∈ W(f(0)), such that for all a′ ∈ W(0)

∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx =

∫

Ω

jG · a′ dx−
∫

∂Ωh

(n× h︸ ︷︷ ︸
=g

) · a′ dS . (7)

The reader should be aware that this is an ungauged formulation, since extra conditions are
needed to determine a in ΩI uniquely. Such ungauged formulations will be used throughout
this paper. Coulomb type gauges enforcing the orthogonality of a to all gradients in ΩI are
straightforward.

It turns out that these two variational formulations possess vastly different properties as far as
lumped parameter excitation is concerned. Therefore, we will discuss different kinds of current
and voltage excitation separately for the h- and a-based equations. To begin with, we will
ruminate about the meaning of “current” and “voltage” in the next section. Then, we treat
different cases of excitations and we will show how to incorporate them into the variational
equations (6) and (7).

As soon as a variational formulation is established a conforming Galerkin finite element dis-
cretization based on a given mesh of Ω is readily available:H(curl;Ω)-conforming edge elements
[Hip02a, Sect. 3] can be used to approximate both a and h and the corresponding test spaces,
whereas piecewise polynomial globally continuous Lagrangian finite elements have to be used for
scalar potentials. Skirting issues of boundary fitting and numerical quadrature, this instantly
yields systems of equations that represent the discretized problem. In light of this canonical
procedure, we will not address discretization below, unless special provisions have to be taken.

2 Fundamentals of Excitation

It is straightforward how to obtain the global current I flowing in a loop of the conductor or
through a contact from the eddy current solution: the current through an oriented surface Σ is
readily available from

I =

∫

Σ

j · n dS .

Conversely, it is difficult to give a meaning to the concept of voltage. To begin with, it is only
meaningful related to an oriented path γ via the formula

Uγ =

∫

γ

e · d's . (8)

Obviously, U is not only a function of the endpoints of γ, because curl e -= 0. On the other hand,
circuit modeling assumes a unique voltage between two nodes. Using (8), coupling of fields and
circuits cannot be accomplished.

We recall, that the voltage between two nodes of a circuit measures the difference in potential
energy of charge carriers. This suggests that we define voltage based on power flux. Seen from
the circuit the field domain is a network component with one or more ports. If there is only one
port and P denotes the total power fed into the field domain, we can use the formula

P := U · I
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to define the voltage drop U between the two contacts. Summing up, we rely on the conservation
of current and power to establish the coupling of the eddy current model with circuit equations.

If there are several ports, the situation is not so clear, because it will be only the total power
consumed in the field region that is accessible. However, it will turn out that the methods
devised to realize voltage excitation possess some inherent locality, which makes it easy to relate
a voltage to contacts on inductor loops. Using a pragmatic superposition principle, we give a
meaning to individual voltages for each of the several ports of the field region.

From (1) we deduce the following power balance, cf. Poynting’s theorem,

Pmag + POhm = P = PΩ + P∂Ω (9)

where

Pmag :=

∫

Ω

d
dtb · h dx , POhm :=

∫

ΩC

σ |e|2 dx

PΩ := −
∫

Ω

e · jG dx , P∂Ω = −
∫

∂Ω

(e× h) · n dS .

We see that two types of power sources occur in the eddy current model, which compensate
the Ohmic losses POhm and the magnetic power Pmag, that includes a change in the magnetic
energy and magnetic losses: Firstly, sources PΩ due to impressed currents, which push charges
against the electric field e. Secondly, sources P∂Ω due to boundary conditions. We have chosen
the signs in a way that renders PΩ, P∂Ω positive, if the sources fed power into the eddy current
model.

Remark 1. In the frequency domain power balance (9) has to be stated as

iω
2

∫

Ω

µ |h|2 dx+ 1
2

∫

ΩC

σ |e|2 dx = −1
2

∫

Ω

e · j∗G dx− 1
2

∫

∂Ω

(e× h∗) · n , (10)

where all fields are complex amplitudes (phasors) and ∗ labels complex conjugates. The real part
of eq. (10) states the balance of the so called active power, which is the mean value of the
power with respect to one period that compensates losses. The imaginary part of eq. (10) states
the balance of the so called reactive power which is the maximum value of the change in the
magnetic energy.

Topological preliminaries

Here, we give a cursory description of topological concepts indispensable for the understanding of
lumped parameter excitation. More information can be found in [Kot87, Bos98a, Bos00, Ket01]
and textbooks about homology theory.

First, we recall the notion of an orientable l-dimensional piecewise (p.w.) smooth manifold in a
generic open bounded domain Ω ⊂ R3. For l = 1 these are directed paths, for l = 2 the reader
may think of surfaces equipped with a crossing direction. We appeal to geometric intuiting to
introduce the concept of a boundary ∂Σ of an l-dimensional piecewise smooth manifold Σ ⊂ Ω.
The boundary carries an induced orientation and is itself an l − 1-dimensional p.w. smooth
manifold.

We call an l-dimensional piecewise smooth oriented manifold ⊂ Ω an l-cycle, l = 1, 2, if its
boundary is empty. Two l-cycles are said to be homologous, if their union (after a possibly
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change of orientation) is the boundary of an l + 1-dimensional manifold, which is a proper
subset of Ω. This defines an equivalence relation on the set Zl(Ω) of l-cycles. An l-dimensional
manifold Σ ⊂ Ω is called a relative l-cycle, if ∂Σ ⊂ ∂Ω. Two relative l-cycles are homologous,
if their union supplemented by a part of ∂Ω bounds an l + 1-dimensional manifold ⊂ Ω. This
introduces an equivalence relation on the set Zl(Ω, ∂Ω) of relative l-cycles.

The equivalence classes of homologous, non-bounding 1-cycles in Ω are called loops. There are
β1(Ω) such loops, where β1(Ω) denotes the first Betti number of Ω, which is a fundamental
topological invariant. Crudely speaking, β1(Ω) is equal to the number of holes piercing Ω. A
loop can be described by a representative in the form of a closed non-bounding oriented path.
Moreover, by cuts of Ω we refer to the homology equivalence classes in Z2(Ω, ∂Ω), which can
be represented by β1(Ω) disjoint p.w. smooth oriented surfaces. These cuts are also known as
Seifert surfaces. We remark that cuts and loops are dual to each other (Poincaŕe duality): we can
find representatives for loops and cuts such that they form pairs of paths/surfaces that intersect
each other.

If Σ1, . . . ,ΣN , N := β1(Ω) stands for a complete set of cuts, then all 1-cycles in Ω\(Σ1∪. . .∪ΣN )
are bounding. In particular, every curl-free vectorfield in Ω\(Σ1∪. . .∪ΣN) agrees with a gradient
of a scalar function.

If we consider a curl-free vectorfield in all of Ω, it need not be a gradient. However there is
a finite-dimensional co-homology space H1(Ω) ⊂ H(curl;Ω) that satisfies dimH1(Ω) = β1(Ω)
such that

{u ∈ H(curl;Ω), curl u = 0} = gradH1(Ω)⊕H1(Ω) .

3 Excitation by Generator Current Distributions

The generator currents jG play the role of right hand sides in the eddy current equations. As
such they are natural candidates for realizing an excitation.

Prescribed generator currents jG can be put into two different categories:

(a) (see Fig. 1, left) Closed current loops (stranded inductors in the parlance of [Dul01]) in
ΩI , that is supp jg ⊂ ΩI and β1(supp jg) = 1, which model coils with known currents.

(b) (see Fig. 1, right) Current sources adjacent to conductors, i.e., supp jg∩ΩC -= ∅. Note that
supp jg ∪ΩC should have an additional loop compared to ΩC .

In both cases we end up with the same variational formulations.

We mainly restrict ourselves to the case of one port so that we have to take into account either
one total current I or one voltage U . In addition, we make the assumption supp jg ⊂ ΩI and
use homogeneous electric boundary conditions n × e = 0 on ∂Ω. The case supp jG ⊂ ΩC is
not completely irrelevant, as it represents a source with internal resistivity, but it can be easily
modeled on the circuit level.

3.1 h-based formulation

Current excitation

A prescribed total current is implied by the choice of jG. In the situation (b), see Fig. 1, this
fixes the total current in the conducting loop as a consequence of Ampere’s law, which is present
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(a)

jG

ΩI

ΩC

(b)

jG

ΩI

ΩC

Figure 1: Two typical situations encountered in the case of prescribed jG: left (a): closed inductor
loop detached from ΩC ; right (b): current source adjacent to ΩC

.

in the variational formulation in strong form.

Choose hG ∈ C1([0, T ],H(curl;Ω)) such that curl hG = jG in ΩI for all times. In situation
(a) we could use the Biot-Savart law to compute such a hG, but for practical computations the
support of hG should be as small as possible, which can be achieved by techniques, presented,
for instance, in [DHR+97]. Please note that Ampere’s law usually rules out supphG = supp jG.

Given hG we get:

Seek h ∈ hG + C1([0, T ],V0)2 such that for all h′ ∈ V0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx = 0 . (11)

Obviously the choice of hG has no impact on the solution h, because for two different excitation
fields hG and h′

G we have hG − h′
G ∈ V0.

As explained above, the voltage is defined through power. According to (9) the power injected
into the eddy current domain is equal to

P =

∫

ΩC

1

σ
| curl h|2 dx+

∫

Ω

d
dt(µh) · h dx

=

∫

ΩC

1

σ
curl h · curl(hG + h′) dx+

∫

Ω

d
dt(µh) · (hG + h′) dx

=

∫

ΩC

1

σ
curl h · jG dx+

∫

Ω

d
dt(µh) · hG dx =

∫

Ω

d
dt(µh) · hG dx ,

where h′ := h− hG. The bottom equality is justified, because we assume supp jG ∩ ΩC = ∅.

Thus, the voltage is given by

U · I =

∫

Ω

d
dt(µh) · hG dx . (12)

2For the sake of brevity initial conditions will be dropped in the sequel.
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Let Σ be a cut associated with a loop in the conductor in the sense of Poincaré duality. Using
a normalized generator current scaled by the yet unknown total current

jG = I j0 ,

∫

Σ

j0 · n dS = 1 , (13)

we can write (12)

U =

∫

Ω

d
dt(µh) · h0 dx , (14)

provided that curl h0 = j0. Here, the normal of Σ has to be oriented in such a way that we get
I U > 0 if power is fed into the eddy current model.

Remark 2. In the case of multiple ports, we assume that the associated generator currents have
disjoint supports. Thus, (14) gives a voltage for each port.

Voltage Excitation

Voltage excitation can be achieved by imposing (14) as constraint and using the total current
as Lagrangian multiplier, which yields the variational formulation:

Seek h ∈ C1([0, T ],V0) and I ∈ C1([0, T ]) such that for all h′ ∈ V0
∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µ(h+ I h0)) · h′ dx=0

∫

Ω

d
dt(µh) · h0 dx =U .

(15)

Here h0 ∈ C1([0, T ],H0(curl;Ω)) has to satisfy curl h0 = j0 with j0 as in (13). In the case of
multiple ports localization is performed as in Rem. 2 above.

3.2 a-based formulation

Current Excitation

As in the case of the h-based formulations, the total current I is fixed by specifying jG. In situ-
ation (b), see Fig. 1, Ampere’s law, which is weakly incorporated into the a-based formulation,
ensures that the total current I will flow in the entire conducting loop. The ungauged variational
equation is straightforward:

Seek a ∈ C1([0, T ],H0(curl;Ω)) such that for all a′ ∈ H0(curl;Ω)
∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx =

∫

Ω

jG · a′ dx . (16)

Again, we use the power

P =

∫

Ω

1

µ
curl a · curl d

dta dx+

∫

ΩC

σ d
dta · d

dta dx =

∫

Ω

jG · d
dta dx = I

∫

Ω

j0 · d
dta dx

to define the voltage

U = P/I =

∫

Ω

j0 · d
dta dx . (17)
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Voltage Excitation

Again, a constraint equation can be used to impose a voltage:

Seek a ∈ C1([0, T ],H0(curl;Ω)) and I ∈ C1([0, T ]) such that for all a′ ∈ H0(curl;Ω)
∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx− I

∫

Ω

j0 · a′ dx= 0

∫

Ω

j0 · d
dta dx = U .

(18)

4 Excitation through Boundary Conditions (Contacts at ∂Ω)

Another kind of excitation is supplied by currents imposed at contacts Σ = ΩC ∩ ∂Ω on the
boundary ∂Ω. For the sake of simplicity we will only consider two contacts Σ = Σ+∪Σ− on ∂Ω,
as sketched in Fig. 2. Two situations can be distinguished.

(a) The contacts are located where ΩC meets the exterior artificial boundary, see Fig. 2, left.

(b) The contacts Σ+,Σ− and Θ bound a volume Ω∗, the electromotive region, in which the
laws of electrodynamics are not in effect, cf. [Dul01, Sect. 3.3]. Adding Ω∗ to ΩC creates
a new loop and both Σ+ and Σ− are cuts for this loop, which are supposed to be disjoint.
In particular Σ+ ∪ Σ− is the relative boundary of Ω∗ in ΩC ∪ Ω∗.

(a)

Σ+

ΩI ΩC

∂Ω

Θ

(b)

Σ−
Σ+Ω∗

Θ

Figure 2: Situation (a): excitation through “exterior” boundary conditions. Situation (b) Bound-
ary conditions on surface of “hole in the universe” Ω∗, Ω = R3 \ Ω∗,Θ = ∂Ω∗ ∩ ∂ΩI

4.1 h-based formulation

Voltage excitation

Voltage excitation is realized by means of boundary conditions for the electric field

n× e = 0 on ∂Ω \Θ (19)

n× e = −U(t)gradΓ v on Θ , (20)
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where
v|Σ+ = 1 , v|

∂Ω\(Θ∪Σ+) = 0 , v ∈ H
1
2 (∂Ω) . (21)

Hence, the zone Θ ⊂ (∂Ω ∩ ΩI) is the surface through which power is injected. Incorporating
conditions (19)–(21) into the boundary term in (6) yields

∫

∂Ω

(n× e) · h′ dS = U

∫

∂Ω

gradΓ v · (n× h′) dS =

= U

∫

Θ

v curl h′ · n dS + U

∫

∂Θ

v h′ · d's = U

∫

γ+

h′ · d's ,

where γ+ = ∂Σ+. Here we have integration by parts on the surface. The variational formulation
taking into account voltage excitation reads:

Seek h ∈ C1([0, T ],V0) such that for all h′ ∈ V0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx = U

∫

γ+

h′ · d's . (22)

Note that by Ampere’s law we have

I = −
∫

γ+

h · d's ,

as the conductor is penetrating the loop γ+. Moreover, γ+ ⊂ ΩI and curl h′ = 0 in ΩI , which
renders h′ 0→

∫
γ+ h′ · d's a continuous functional on V0.

Now, replacing h′ in (22) with h reveals that P = U I. This means that the voltage U introduced
via the electric boundary conditions (19) matches the definition of voltage based on power, see
Sect. 2.

Remark 3. The right hand side of (22) is of the form U · f(h′), where f is a continuous
functional on V0 measuring the total current through a contact.

Remark 4. Note that in situation (a) of Fig. 2 the geometry of Θ does not enter the variational
formulation at all: it has no impact on h. Yet, the electric field e in ΩI will depend on Θ.

Another observation is that in situation (b), cf. Fig. 2, the path γ+ can be any closed path winding
around that loop of the conductor that is cut by Σ+/Σ−. In a sense, the excitation possesses a
non-local character. On the other hand, the location of the contacts still enters the variational
formulation via the domain Ω.

Remark 5. Consider situation (b) and assume that Σ+ and Σ− are parallel with distance δ.
We point out that a “limit” of the magnetic field when δ → 0 will not agree with the solution of
the variational problem when Ω∗ is ignored altogether. To see this note that even for a general
geometry of the loop there is never a magnetic flux through Σ±, no matter how close they are.
It is also worth noting that the energy of the electric field solution will blow up as δ → 0.

Remark 6. The generalization of (22) to the multiport setting is obvious, because all occurring
surfaces and paths are clearly associated with a particular contacts. In situation (a) one contact
would be assigned the role of ground and the others would be treated like Σ+ in the previous
considerations.
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Remark 7. As has become clear, topological concepts pervade the discussion. A comprehensive
discussion of excitation through boundary conditions from a topological point of view is given in
the landmark paper [Bos00]. It is worth mentioning that also in this paper a consistent energy
balance is a key point.

Current excitation

In the situations depicted in Fig. 2 a total current I ∈ C1([0, T ]) is imposed by prescribing the
normal component of a suitable current density j on the contacts

I+ =

∫

Σ+

j · n dS , I− =

∫

Σ−

j · n dS .

Charge conservation requires
I+ = −I− .

The orientation of Σ+ and Σ− is induced by the orientation of ∂Ω. To obtain I U > 0 if power
is fed into the eddy current model we set

I := I− = −I+ .

Furthermore, we chose hjn ∈ C1([0, T ],H(curl;Ω)) such that

divΓ(hjn× n) = curl hjn· n = (j · n)/I on ∂Ω, curl hjn= 0 in ΩI

and define

V
+
0 := {h′ ∈ H(curl;Ω); curl h′ = 0 in ΩI , divΓ(h

′ × n) = 0 on ∂Ω} .

This leads to the following variational formulation:

Seek h ∈ I hjn+ C1([0, T ],V+
0 ) such that for all h′ ∈ V

+
0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx = 0 . (23)

Note that power is injected through Θ ∪Σ.

Besides the prescribed normal components of the current density on the contact, the variational
formulation implies the boundary condition

d
dtb · n = 0 .

This can be seen by testing (23) with gradients.

Parallel to (14) voltage has to be defined through power. Thus, we get

U =
P

I
=

∫

ΩC

1

σ
curl h · curl hjndx+

∫

Ω

d
dt(µh) · hjndx . (24)

Remark 8. Another option for enforcing a particular total current through the contacts is by
means of a constraint. This approach could be pursued in the case of the h-based formulation,
but we will elucidate it for the a-based scheme in the next section.
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4.2 a-based formulation

Voltage excitation

Again, we use the electric boundary conditions from (19) based on the potential v from (21). We
denote by ṽ a H1(Ω)-extension of v and point out that grad ṽ /∈ H0(curl;Ω). These boundary
conditions lead to the following variational formulation:

Seek a ∈
∫
U dtgrad ṽ + C1([0, T ],H0(curl;Ω)) such that for all a′ ∈ H0(curl;Ω)

∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx = 0 . (25)

Looking at the power balance, we find that the voltage satisfies P = U I:

P =

∫

Ω

1

µ
curl a · d

dt curl a dx+

∫

ΩC

σ d
dta · d

dta dx

= U

∫

Ω

1

µ
curl a · curl grad ṽ dx+ U

∫

ΩC

σ d
dta · grad ṽ dx = U

∫

Σ+

σ d
dta · n dS = U I ,

because the functional F (a) =
∫

Σ+

σ d
dta · n dS = I actually provides the total current through

the contact Σ+, cf. Rem. 3.

Current Excitation

We first study prescribed normal components j · n = jn of the current density at contacts. We
introduce the space

W
+
0 := {a′ ∈ H(curl;Ω); divΓ(a

′ × n) = 0 on ∂Ω} .

Then, any a′ ∈ W
+
0 can be written as

a′ = a′0 + grad v′ with a′0 ∈ H0(curl;Ω) , v
′ ∈ H1(Ω) , (26)

since ∂Ω has been assumed to be simply connected. In contrast to the h-based formulation, the
boundary condition b · n = 0 on ∂Ω is incorporated strongly by virtue of the construction of
W

+
0 , because curl a = b. On the other hand the normal component jn = j · n of the current

density is imposed only weakly: using (26), the surface integral on the right hand side of the
variational formulation (7) can be expressed by

−
∫

∂Ω

(n× h) · a′ dS =

∫

∂Ω

(h× n) · gradΓ v
′ dS =

∫

∂Ω

v′divΓ(h× n) dS =

∫

∂Ω

v′ jn dS .

Hence, an a-based variational formulation using prescribed j·n to effect current excitation reads:

Seek a ∈ C1([0, T ],W+
0 ) such that for all a′0 ∈ H0(curl;Ω) and all v′ ∈ H1(Ω)

∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx =

∫

∂Ω

v′ jn dS . (27)
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In the spirit of Sect. 2 voltage is defined through power. To this end, consider a splitting of the
solution of (27) a = a0 + grad v according to (26). This will be plugged into the expression for
the power.

P =

∫

Ω

1

µ
curl a · curl d

dta dx+

∫

ΩC

σ d
dta · d

dta dx =

∫

∂Ω

v jn dS ,

which means

U =
P

I
=

∫

∂Ω

v jn dS

I
.

As far as finite element discretization of (27) is concerned, we recommend that the decomposition
(26) is taken into account by discretizing a′0 by means of edge elements in H0(curl;Ω), whereas
v′ is approximated in the space of continuous scalar shape functions associated with nodes on
the boundary. This will yield a direct splitting in the semi-discrete setting.

Second, we consider a contact touching an exterior PEC boundary and want to prescribe a total
current I. Temporarily, we abandon the temporal gauge and set for the electric field

e = − d
dta− U grad ṽ ,

where ṽ is an arbitrary H1(Ω)-extension of v ∈ H
1
2 (∂Ω). As in the case of voltage excitation,

we demand that v = 1 on Σ+, v = 0 on Σ−, and a ∈ H0(curl;Ω). This means that the current
through a suitably oriented cut Σ′ is given by

I =

∫

Σ′

j · n dS = −
∫

Σ+

ṽ j · n dS .

Since
j · n = 0 on ΓC and div j = 0 in ΩC

holds in a weak sense, we arrive at

I = −
∫

∂ΩC

ṽ j · n dS = −
∫

ΩC

j · grad ṽ dx =

∫

ΩC

σ( d
dta+ U grad ṽ) · grad ṽ dx .

Using this expression for the current, an a-based variational formulation with current excitation
can be recast into a formulation with unknown voltage U and a constraint enforcing the current:

Seek a ∈ C1([0, T ],H0(curl;Ω)) and U ∈ C1([0, T ]) such that for all a′ ∈ H0(curl;Ω)
∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx+ U

∫

ΩC

σ grad ṽ · a′ dx= 0

∫

ΩC

σ d
dta · grad ṽ dx + U

∫

ΩC

σ |grad ṽ |2 dx = I .
(28)

Checking the power balance confirms that U gives the voltage as defined in Sect. 2.

Theorem 9. For the variational problems (25) and (28) we find b = curl a and, thus, e|ΩC

independently of the choice of ṽ.

Proof. Plug ṽ = ṽ1 and ṽ = ṽ2 into (25) and (28), respectively, and set

δv :=

∫
U dt (ṽ1 − ṽ2) in ΩC .
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I

Σ+

Σ−

ΩC

Figure 3: A nonzero current through a separated contact violates Ampere’s law.

Then there is δa ∈ H0(curl;Ω), such that

δa|ΩC
= grad δv .

As δv|Σ+ = δv|Σ− = 0, we find an H1(Ω)-extension δ̃v of δv|ΩC
. Setting

δa := grad δ̃v

we can conclude: if a1 is a solution belonging to ṽ1, then a2 = a1+ δa is a solution for the choice
ṽ2. This shows

curl a1 = curl a2 .

Remark 10. It is tempting to remove the contacts from ∂Ω and put “contact layers” on parts
of ∂ΩC . However, the eddy current model cannot accommodate a current flowing out of ΩC into
ΩI as in Fig. 3. The reason is that this will violate Ampere’s law: The assumption I > 0 leads
to a contradiction as can be seen by integrating (1b) over Σ+. In short, there is no meaningful
way to take into account separate contacts inside Ω in eddy current computations.

0 -= I =

∫

Σ+

j · n dS =

∫

∂Σ+

h · d's =
∫

∂Σ−

h · d's =
∫

Σ−

j · n dS = 0

5 Non-Local Excitations

In the case of eddy current simulation it is not unusual that the geometric CAD model does not
contain information on the location of contacts on the surface of massive inductors. Nevertheless,
there are ways to impose total currents and voltages.

5.1 h-based formulation

Voltage Excitation

Examining voltage excitation in Sect. 4.1 we saw, that in situation (a) (contacts on ∂Ω, see
Fig. 2) the magnetic field solution h turned out to be independent of the location of the surface
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Θ through which exciting power was supplied (see Fig. 2). Also in situation (b) excitation gave
rise to a right hand side functional that did no longer contain geometric information about the
electromotive region Ω∗.

a)

ΩI ΩC

∂Ω

Σ

Ξ

b)

ΩI

ΩCΞ

Σ

Figure 4: Non-local excitation: (a) Conductor touching ∂Ω. Cutting surface Ξ in ΩI is depicted.
(b) Conducting loop away from ∂Ω, closed by Seifert surface Ξ in ΩI and cut by surface
Σ inside ΩC .

This suggests that in both situations (a) and (b) Θ is completely removed from the variational
formulation (22). In situation (b) of Fig. 2 this means that we incorporate Ω∗ into ΩC , that is,
we alter the computational domain Ω (see Fig. 4). Thus, we arrive at the following variational
formulation that is compliant with Rem. 3.

Seek h ∈ C1([0, T ],V0) such that for all h′ ∈ V0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx = U

∫

γ+

h′ · d's . (29)

Note that U plays the role of a circulation voltage, as will be explained in Sect. 5.3. An extension
to the multiport case is straightforward, if ports are associated with loops of ΩC .

Current excitation

The constraint that curl h′ = 0 in ΩI built into the space V0 defined in (5) can be taken into
account by means of scalar potentials together with so-called co-homology vector fields:

V0 1 h′|ΩI
= gradφ+

L∑

i=1

qi , φ ∈ H1(ΩI) , (30)

where qi is a basis of the first co-homology spaceH1(ΩI), and L stands for the first Betti number
of ΩI , see Sect. 2. Using the Seifert surfaces of ΩI we can easily construct the fields qi [ABDG98].
For the situation illustrated in Fig. 4, that is, for L = 1, a possible co-homology field q := q1

can be obtained as the (generalized) gradient of a function in H1(ΩI \Σ) that has a jump of
height 1 across the cut Ξ

q := g̃rad θ , θ ∈ H1(ΩI \ Ξ) , [θ]Ξ = 1 . (31)
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Let q̃ be an extension of q ∈ H(curl;ΩI) to a function in H(curl;Ω). Then, based on the varia-
tional formulation (6), the total current through Σ+ can be prescribed by fixing the contribution
to V0 from q̃. Accordingly, we define

Ṽ0 := {h′ ∈ V0 ,

∫

γ

h′ · d's = 0} ,

where γ := ∂Σ (see Fig. 4). Then we get the following variational formulation that includes
non-local current excitation by a temporally varying total current I:

Seek h ∈ Iq̃+ C1([0, T ], Ṽ0) such that for all h′ ∈ Ṽ0

∫

ΩC

1

σ
curl h · curl h′ dx+

∫

Ω

d
dt(µh) · h

′ dx = 0 . (32)

Recovery of voltages can formally be done according to (24), where hjn has to be replaced with
the extended co-homology vector field q̃, that is,

U =
P

I
=

∫

ΩC

1

σ
curl h · curl q̃ dx+

∫

Ω

d
dt(µh) · q̃ dx . (33)

Again, U plays the role of a circulation voltage, see 5.3.

If a current should be imposed on more than one loop, the contributions of other basis functions
of the co-homology space to h have to be fixed. Assignment of voltages to loop is straightforward
then by plugging different extended co-homology vector fields into (33).

Inconsistencies in the case of non-local excitations

In Sect. 2 we pointed out that power can be delivered to the eddy current domain either by
a generator current jG or by non-homogeneous boundary conditions on ∂Ω. In (29) and (32)
none of these possibilities is implemented. The question is where the power necessary to sustain
currents in ΩC comes from. This motivates some doubts on the physical relevance of non-local
excitation.

It turns out that the variational problems (29) and (32) are not completely consistent with the
eddy current model: they do not allow the recovery of a valid electric field in ΩI that fits h. In
other words, there is no electric field e that solves

n× e = n× eC on ΓC , (34a)

n× e = 0 on ∂Ω \ ΓC (only situation (a)) , (34b)

curl e = − d
dt(µh) in ΩI , (34c)

div(ε e) = 0 in ΩI , (34d)
∫

Γi

ε e · n dS = 0 , (34e)

where eC = 1
σ curl h in ΩC . The reason is that, by Stokes’ theorem applied to ∂Ξ, the right

hand sides in (34a), (34b), and (34c) have to satisfy the compatibility condition
∫

∂Ξ

eC · d's = −
∫

Ξ

d
dt(µh) · n dS . (35)
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This is Faraday’s law on the Seifert surface Ξ. However, the fields used in the variational formu-
lation are not regular enough (e is merely in L

2(Ω)) to allow the evaluation of the path integral
(35). Hence, we have to consider (35) in weak form (see [AFV01]):

∫

∂ΩC

1

σ
(curl h× n) · q̃ dS +

∫

ΩI

d
dt(µh) · q̃ dx = 0 (36)

Theorem 11. Solutions of (29) or (32) violate (36).

Proof. Testing (29) with h′ ∈ V0 and (32) with h′ ∈ Ṽ0, respectively, where

h′ =

{
h′|ΩC

∈ C
∞
0 (ΩC)

h′|ΩI
≡ 0

,

we see that every solution h satisfies

curl
1

σ
curl h+ d

dt(µh) = 0 in ΩC

in the sense of distributions. Integration by parts applied to (32) yields
∫

∂ΩC

1

σ
(curl h× n) · h′ dS +

∫

ΩI

d
dt(µh) · h′ dx = 0 .

Since q̃ /∈ Ṽ0 the equality (36) is not implied! For (29) we may use h′ = q̃ ∈ V0 and obtain
∫

∂ΩC

1

σ
(curl h× n) · q̃ dS +

∫

ΩI

d
dt(µh) · q̃ dx = U -= 0 ,

which contradicts (36).

The bottom line is that we have to sacrifice some of the conditions in (34) in order to obtain a
candidate for the “electric field” in ΩI . For instance, we can give up the continuity [n×e]ΓC

= 0,
which means that we condone e /∈ H(curl;Ω).

If we do so, it will become clear where the energy comes from that feeds the eddy current
problem: The jump [n×e]ΓC

results in a jump of the normal component of the Poynting vector
S := e× h along ΓC . The right hand side of the power balance (9) has to be augmented by the
term

PΓC
:=

∫

ΓC

h · [n× e]ΓC
dS .

5.2 a-based formulation

Again, we consider the arrangement of Fig. 4. As explained above, non-local excitations may
rule out e ∈ H(curl;Ω). Therefore, with a function U : [0, T ] 0→ R, we set

e = − d
dta− U p̃ , (37)

where we have use an extension by zero

p̃ :=

{
p in ΩC ,

0 in ΩI .
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In situation (a) p is given by

p := grad θ , θ ∈ H1(ΩC) , θ|Σ+ = 1 , θ|Σ− = 0 . (38)

Please note that there is no curl-free extension of p to H0(curl;Ω).

In situation (b) we chose p as a representative of the first co-homology spaceH1(ΩC) constructed
according to

p := g̃rad θ , θ ∈ H1(ΩC \ Σ) , [θ]Σ = 1 . (39)

Thus, (37) defines a field e /∈ H(curl;Ω) whose tangential components are discontinuous across
ΓC . After we have given up the continuity of tangential components of e, we can state a-based
variational formulations that allow non-local excitations.

Remark 12. For practical computations it is more appropriate to chose a p with small support,
see [Dul01].

Voltage Excitation

In this case we can state the problem: seek a ∈ C1([0, T ],H0(curl;Ω)) such that for all a′ ∈
H0(curl;Ω) ∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx = −U

∫

ΩC

σp · a′ dx . (40)

Current Excitation

The appropriate variational problem reads: seek a ∈ C1([0, T ],H0(curl;Ω)) and U ∈
C1([0, T ],R) such that for all a′ ∈ H0(curl;Ω)

∫

Ω

1

µ
curl a · curl a′ dx+

∫

ΩC

σ d
dta · a′ dx+ U

∫

ΩC

σ p · a′ dx= 0

∫

ΩC

σ d
dta · p dx + U

∫

ΩC

σ |p|2 dx = I .
(41)

The expression for the power fed into the eddy current model in case of voltage as well as current
excitation reads P = U I, and U is a circulation voltage. The (weak) expression for the current
in the conductor ΩC is given in both cases by the second equation in (41).

5.3 Physical Interpretation of Non-Local Excitations

The bottom line is that the non-local excitations discussed above lead to electric fields that do
not belong to H(curl;Ω), since their tangential components have a jump across ΓC . How can
this “flaw” of the mathematical model be reconciled with physics?

We propose the following explanation: the jumps [n× e]ΓC
can be regarded as the effect of very

thin ideal coils that do not create an exterior magnetic field. What we have in mind is depicted
in Fig. 5. Letting the thickness of the coils tend to zero, they will only affect the electric field,
because any impact on the magnetic field is ruled out by the design of the coils. The fields
inside the coils are completely ignored. This causes inconsistency with Faraday’s law, because
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ΩI

ΩC

ΩG

γ

0 ← ε

jG

Figure 5: Thin coil endowed with current that does not create a magnetic field outside the coil
(To illustrate the current distribution the coil has been cut open.).

the variation of magnetic flux inside the thin coils is neglected. Eventually, it is a given generator
current in an extremely thin coil that is responsible for the non-local excitation.

Coils that do not generate any external magnetic field can easily be constructed theoretically:
their associated vector potential aG is given in analogy to the co-homology field q̃ from (32) (see
also [Bos98b, Exercise 8.5]): let ΩG be the domain occupied by the coil and Ω′

G its complement
Ω′
G := Ω \ ΩG. Denote by Ξ the corresponding Seifert surface such that the co-homology space

H1(Ω′
G \ Ξ) becomes trivial. Define

aG|Ω′

G
:= g̃rad θ , θ ∈ H1(Ω′

G \ Ξ) , [θ]Ξ = 1

and perform a H(curl;Ω)-extension to ΩG. Then, we have with bG := curl aG

bG ≡ 0 in Ω′
G .

On the other hand, given a temporally varying aG, the circulation
∫
γ −

d
dtaG ·d's along the closed

path γ ⊂ ΩC in Fig. 5 does not vanish. Hence, we get an inductive excitation of currents through
a field d

dtbG that vanishes outside the coil.

We conclude that the exact location of the thin coil does not affect the magnetic field. This
accounts for the term “non-local excitation”. However, in order to reconstruct the electric field
in the insulating region ΩI we need to know the location of the coil. If we want to get e, the
excitation has to be localized. This highlights the following fact: in order to recover the electric
field from the eddy current model everywhere in Ω we need extra information compared to what
is required for the computation of the magnetic field. Besides information about possible charge
densities in ΩI (which are usually assumed to be zero) we need to know the position of idealized
sources in the case of non-local excitation.

Remark 13. As in Sect. 3 one might try to start from the generic excitation by a thin coil
as described above, and then to derive variational formulations by passing to the limit ε →
0. However, this will lead to a sequence of vector potentials aG(ε) that does not converge in
H(curl;Ω).

Coupling to Circuit Equations

The interpretation of the excitation as an inductive one has an important consequence concerning
coupling to a circuit model: there is no reason for the terminal current in the circuit model Iterm
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and the current I in the conductor ΩC to be equal. The circuit current has to represent the
current in the coil that is not included in the eddy current model with a non-local excitation.
This means that coupling by conservation of current is ruled out here.

However, the change of the magnetic flux Φ hidden behind the jump [n×e]ΓC
is a good candidate

for a coupling quantity because it can be uniquely defined in both models. For the change of
magnetic flux inside a thin coil along any curve γ ⊂ ΓC circulating around the conductor loop
we get

− d
dtΦ =

∫

γ

[n× e]ΓC
· d's = U ,

which motivates the name “circulation voltage” for U . The fact that it does not depend on the
path γ is a consequence of the very design of the coil and is necessary, since otherwise it would
not be meaningful to talk about “the circulation voltage”. Thus, the induced terminal voltage
of the coil will be equal to the circulation voltage U in the eddy current problem (apart from
the number of windings N):

Uind = −N d
dtΦ = N U

The terminal current Iterm can be computed by the conservation of power if the self-inductance
L of the coil or the change of the magnetic energy Wcoil inside the coil are known:

Pterm = Uind Iterm = d
dtWcoil + P = d

dt(
1
2LI2term) + U I ,

where P is the (computationally available) power fed into the eddy current problem. We conclude
that even for coupling reasons we need additional information, reflecting the fact that we can
use different coils inducing the same resulting circulation voltage but with different terminal
voltages.
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02-21 D. Schötzau, C. Schwab,
A. Toselli

Mixed hp-DGFEM for incompressible flows
II: Geometric edge meshes

02-20 A. Toselli, X. Vasseur A numerical study on Neumann-Neumann
and FETI methods for hp-approximations on
geometrically refined boundary layer meshes
in two dimensions
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