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1 Introduction

In asset pricing, models beyond the classical Black-Scholes (B-S) have been proposed for
the stochastic dynamics of the risky asset: we mention only stochastic volatility models
and ‘stochastic clocks’. The former lead to multivariate generalizations of the B-S equa-
tion with stochastic volatility (e.g. [25]) whereas the latter lead to so-called jump-diffusion
price processes: the Wiener process in the B-S model is replaced by a Lévy process (see e.g.
[38, 3, 21, 37, 15, 10, 11] and [7, 45] and the references there for background information on
Lévy processes). Such processes allow more flexible price dynamics than B-S models (see e.g.
[21]). The inclusion of jumps into the asset price dynamics has been investigated for several
years – let us mention here only [2] and the references there.

Originally, jumps in risky assets’ log-returns have been modelled as finite intensity pro-
cesses, i.e in any finite time interval only a finite number of large jumps occur (e.g. [40, 41]).
In the early 90ies, however, processes with infinite jump intensity and no diffusion component
have been proposed as models for the log-returns. We mention here the Variance Gamma
(VG) [38, 37], the extended Koponen family [11] (also referred to as KoBoL, temperated or
truncated tempered stable processes or truncated Lévy flights in physics and later used in [15]
under the name of CGMY-model), the Normal Inverse Gaussian process [4] and the Hyperbolic
processes [22, 23]. All these processes, together with the B-S model, are Markov processes of
Lévy type, or Lévy processes for short. Since their introduction, empirical evidence for their
superiority over B-S in modelling observed returns has been gathered (e.g. [23, 15]).

For pricing European Vanilla contracts on assets with Lévy price processes, the translation
invariance of the process’ infinitesimal generator implied by stationarity and explicitly avail-
able characteristic functions allow to apply Fourier-Laplace transformations for the numerical
pricing (e.g. [16]).

For American style contracts on assets with Lévy price processes, the analytical tool of Wiener-
Hopf factorization allows, at least for infinite horizon problems, to derive semi-analytical so-
lutions [12]. In the finite horizon case, even in the B-S setting, explicit analytical pricing
formulas are not available. Using Carr’s randomization method [14] which ends up with the
same algorithm as in the analytical method of lines, one can discretize the time period [0, T ]
into subperiods of length ∆t → 0 and approximations of the exercise boundary and of the
rational price can be derived analogously to the perpetual case by backwards induction and
by using the Wiener-Hopf factorization [13, Chapter 5]. Exact Wiener-Hopf factors are, ex-
cept for some particular cases, not known explicitly and are in general difficult to compute.
Approximate Wiener-Hopf factors for a large class of Lévy processes have been derived in [13].
These approximate factors are of the same form as the factors in the Gaussian case where
closed form expressions for the exercise boundary and for the rational price had already been
derived by Merton in 1973 [40]. These approximate, analytical methods, however, are not
directly applicable to time-dependent or local volatility models where stationarity and, hence,
translation invariance are absent.

The purpose of the present paper is the analysis and implementation of fast, convergent de-
terministic pricing schemes for American style contracts on assets driven by a class of Markov
processes which contains, in particular, Lévy processes. Our approach is based on a multilevel
finite element solution of the parabolic variational inequality formally associated with the opti-
mal stopping problem for these processes. This inequality involves the Dynkin operator of the
semigroup generated by the price process which, for the processes under consideration, is an
integro-differential operator with nonintegrable kernel stemming from the process’ jump mea-
sure. For infinite jump intensity, non-integrable, hypersingular integrals arise which must be
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interpreted in the sense of distributions. We account for this with a variational framework that
regularizes non-integrable kernels corresponding to price processes of infinite jump intensity.

We discretize the variational integro-differential inequality by ‘Canadization’, or backward
Euler, in time and by a piecewise linear, continuous wavelet Finite Element basis in the (log-
arithmic) price variable. This basis has two advantages: i) it allows to ‘compress’ the dense
and ill-conditioned moment matrices due to the nonlocal infinitesimal generator of the process
to sparse, well-conditioned ones while not affecting the accuracy of the computed prices and
ii) the wavelet basis allows to precondition the iterative solver for the associated Linear Com-
plementarity Problems (LCPs) in each time step. As we show, this preconditioning works for
vanishing diffusion component as well as for all jump intensities Y between 0 and 2.
The resulting algorithm allows the deterministic pricing of American style contracts on as-
sets for which the log price process is a general Markovian jump-diffusion price process that
may exhibit infinite jump activity and has possibly nonstationary increments as, e.g., in local
volatility models. It moreover allows for general, non-monotonic and non-smooth pay-off func-
tions, in particular for digital and compound options with an American style early exercise
feature. As we show, it is convergent, i.e. as in the simplest Finite Difference schemes for
the B-S equations, the computed prices will, upon mesh refinement, approach the exact prices
determined by the model.

As is well known, e.g [13, Chapter 6.3], the smooth pasting condition for the price of an
American Put in the B-S setting may not hold for a pure jump process. Our approach does
not impose any pasting condition a-priori and, indeed, our numerical experiments demonstrate
failure of the smooth pasting condition for certain pure jump processes.

The outline of the paper is as follows: in Section 2, we present the admissible price processes.
Section 3 contains the formulation of the American style pricing problem and the derivation
of the price as solution of a parabolic integro-differential inequality. Section 4 discusses the
discretization of the inequality – here, we show that the moment matrix due to the nonlocal
part of the parabolic integrodifferential operator can be compressed to an approximate, sparse
matrix while still having bounded condition number. Some a-priori error bounds for the
numerical solution are also stated and we have included in the Appendix B a convergence
proof which justifies our method and shows that the computed prices converge, as h, k → 0, to
the exact prices delivered by the model. In Section 5, we address the numerical solution of the
large linear complementarity problems in each time-step. We develop a fixed point iteration in
wavelet basis and prove that it converges at a rate independent of the discretization parameter.
We also give a generalization of Cryer’s algorithm in the wavelet basis to locate the exercise
boundary. Section 6 contains numerical results obtained with our approach. They indicate in
particular the failure of the smooth fit principle for certain pure jump, bounded variation price
processes.

2 Price Processes

2.1 Lévy processes

Let (Ω,F , (Ft)0≤t<∞,P) be a filtered probability space satisfying the usual hypothesis. Let
X = (Xt)0≤t<∞ withX0 = 0 a.s. be a Lévy process, i.e., a process with stationary, independent
increments that is stochastically continuous [7, 45].

The Lévy-Khintchine formula describes explicitly a Lévy process in terms of its Fourier trans-
form EQ[e−iuXt ] under a chosen equivalent martingale measure Q:

EQ[e
−iuXt ] = e−tψ(u) (2.1)
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for some function ψ called the Lévy exponent of X. It has the following representation

ψ(u) =
σ2

2
u2 + iαu

+

∫

|x|<1
(1− e−iux − iux)νQ(dx) +

∫

|x|≥1
(1− e−iux)νQ(dx) (2.2)

for some σ,α ∈ R and for a measure νQ on R\{0} satisfying
∫

R

min(1, x2)νQ(dx) < ∞. (2.3)

The Lévy measure νQ(dx) measures the arrival rate of jumps of size x. The Lévy-triple
(σ,α, νQ) completely determines Xt and the characteristic exponent ψ is related to the symbol

of the nonlocal operator L = LQ
X which is the infinitesimal generator of the transition semi-

group of Xt under the chosen equivalent martingale measure Q [45, 7]

L[ϕ](x) := −σ2

2
ϕ′′(x) +

(
σ2

2
− r

)
ϕ′(x) +Ajump[ϕ](x), (2.4)

with the integral operator Ajump given by

Ajump[ϕ](x) = −
∫

R

(
ϕ(x+ y)− ϕ(x)− (ey − 1)ϕ′(x)

)
νQ(dy). (2.5)

We assume here that the equivalent martingale measureQ has been chosen by some procedure,
we refer to [19, 20, 24, 17] and the references therein for various results in this direction.
Let µ(dx,dt) denote the integer valued random measure (the jump measure) that counts the
number of jumps of Xt in space-time. By stationarity of Lévy processes, the compensator of
the measure µ(dx,dt) has the form νQ(dx)× dt, with dt being the Lebesgue measure. In the
following we will assume that the Lévy measure νQ(dx) has a density kQ, the Lévy kernel, with
respect to Lebesgue measure so that νQ(dx) = kQ(x)dx and we will drop the subscript Q. The
Lévy density k(·) describes the activity of jumps in the sense that jumps of sizes in the set A
occur according to a Poisson process with parameter

∫
A k(x)dx. In our analysis and numerical

treatment we need the following assumptions on the Lévy density k:

(A1) the characteristic function ψ0 of the pure jump part of the Lévy process satisfies: there
exist constants c, C+ > 0 and Y < 2 such that

|ψ0(ξ)− icξ| ≤ C+(1 + |ξ|2)Y/2 ∀ ξ ∈ R. (2.6)

(A2) (exponential decay) there are constants C > 0, G > 0 and M > 1 such that

∀ |x| > 1 : k(x) ≤ C

{
e−G|x| if x < 0,
e−M |x| if x > 0.

(2.7)

(A3) (smoothness)

∀α ∈ N0 ∃C(α) > 0 : ∀x )= 0 : |k(α)(x)| ≤ C(α)|x|−(1+Y +α)+ . (2.8)

If σ = 0 we assume 0 ≤ Y < 2 and in addition

(A4) (boundedness from below): there exists C− > 0 such that

∀ 0 < |z| < 1 : k(z) + k(−z) ≥ C−
1

|z|1+Y
. (2.9)

Remark 2.1 Assumption (A3) is required in the analysis of the wavelet compression of the
moment matrix of k(x); however, it only needs to be satisfied for a finite range of α. If the Lévy
process is of finite activity we assume σ > 0 and that k(x) satisfies (A1)–(A3) with Y < 0.
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2.2 Markov-Processes

The numerical method developed below applies also when the log-price process Xt is a Markov
process with increments Xt −Xs that are no longer independent of Xs for s < t [39]. Instead
of the translation invariant infinitesimal generator L one can consider a more general operator

L[ϕ](x) := −σ(x)2

2
ϕ′′(x) +

(
σ(x)2

2
− r

)
ϕ′(x) +Ajump[ϕ](x), (2.10)

with

Ajump[ϕ](x) = −
∫

R

(
ϕ(x+ y)− ϕ(x)− (ey − 1)ϕ′(x)

)
k(x, y)dy.

Unless explicitly stated otherwise, we assume 0 < σ0 ≤ σ(x) ≤ σ1 and that k(x, y) satisfies
the assumptions (A1)–(A2) uniformly with respect to x and, in place of (A3), the following
Calderón-Zygmund estimates: for all β, γ ∈ N0, there holds

|∂γ
x∂

β
y k(x, x− y)| ≤ C(γ,β)|x − y|−(1+Y+β+γ). (2.11)

In the case σ = 0, we require (A4) for k(x, z) uniformly with respect to x.

2.3 Examples

Practically all price processes used in Lévy market models have densities which satisfy (A1)–
(A3). Let us mention here a few of them.

In the classical Merton model [41] it is assumed that Xt = σWt +
∑Nt

i=1 Yi where {Yi}i are
i.i.d. with normal distribution function fM with mean µM and variance σM and Nt being a
Poisson process of intensity λ. Merton’s jump-diffusion process is of finite activity with Lévy
density k(x) = λfM(x), fM(x) = (

√
2πσM )−1exp (−(x − µM )2/(2σ2

M )) satisfying (A1)–(A3)
with Y = −∞. Another finite activity Lévy process has been proposed by Kou [34] with
fKou(x) = p+Mexp (−Mx)χ{x>0}+p−Gexp (Gx)χ{x<0}, p++p− = 1 satisfying (A1)–(A3) for
Y = −1.

We also mention here the extended Koponen family [11] (also referred to as KoBoL, tem-
perated or truncated tempered stable processes or truncated Lévy flights in physics and later
used in [15] under the name of CGMY-model). The CGMY process can have both finite or
infinite activity and finite or infinite variation. Specifically, the Lévy density of the CGMY
process is given by

kCGMY (x) = C






e−G|x|

|x|1+Y
if x < 0

e−M |x|

|x|1+Y
if x > 0,

(2.12)

where C > 0, G,M > 0 and Y < 2. The case Y = 0 is the special case of the variance
gamma process [38, 37]. The parameter C is related to the overall level of activity, G and
M control the exponential rate of decay at ∓∞ of the Lévy density and lead to skewed jump
distributions if they are unequal. If G = M one obtains Lévy processes from the Koponen
family [32]. Empirical evidence however indicates that the probability density functions of
returns are almost symmetric at the origin but that the left tails are fatter than the right ones,
accounting for different distribution of large negative resp. positive price jumps which can be
aacounted for in (2.12) by G < M , The parameter Y is related to the jump intensity of Xt.
The density (2.12) satisfies (A1)–(A4). The characteristic function of the CGMY process is
available in closed form [13, 15].

Further examples are the Normal Inverse Gaussian process (Y = 0) [4] and the generalized
hyperbolic motion [22, 23] which satisfies the assumptions with Y = 1.
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3 American Option Pricing

Our purpose is the valuation of American-style options, i.e., options that can be exercised at
any time up to the expiration date T , on an underlying with price process Xt. Most listed
stock options, including those on European exchanges, are American-style options. The early
exercise feature makes their valuation more complex than that of European-style options in
a Black-Scholes world. It also implies higher prices for an American-style option than for
a European contract with the same price process. We formulate the pricing problem of an
American-style contract as optimal stopping problem for Xt and express prices as solutions of
parabolic variational integro-differential inequalities. To accomodate general pay-off functions
which may grow polynomially at infinity, these inequalities are set in Sobolev spaces with
exponential weights. Their numerical solution is prepared by a localization of admissible log-
returns from (−∞,∞) to a finite domain ΩR = (−R,R) with sufficiently large R > 0 which is
the basis for numerical solution methods in the next sections.

3.1 Optimal stopping problem

Consider the price f(St, t) of an American option with expiry date (maturity) T when the
risk-neutral dynamics of the risky asset St are given by

St = S0e
(r+c−σ2/2)t+Xt . (3.1)

Here Xt is a Lévy process of the form Xt = σWt + Yt, with Wt denoting the Brownian motion
and Yt being a quadratic pure jump Lévy process independent of Wt as in Section 2. The
parameter c in (3.1) is determined so that the mean rate of return on the asset is risk-neutrally
r, i.e. that e−ct = EQ[eYt ]. Let g(S) denote a pay-off function of the option (conditions on
g shall be discussed below). The problem of optimal exercising is equivalent to an optimal
stopping problem for St and the value f(St, t) of the contract is given by

f(St, t) = supt≤τ≤TEQ[e
−r(τ−t)g(Sτ )|Ft], (3.2)

where the supremum is taken over all stopping times τ on the probability space generated by
the asset price process. Equation (3.2) means that the owner chooses the optimal exercise
policy to maximize the expected discounted pay-off.

Remark 3.1 For the American put g(S) = (K − S)+, with K > 0 being the strike price,
and for each t there exists a critical value S∗

t such that for all St ≤ S∗
t the value of the

American put option is the value of immediate exercise, i.e., f(t, St) = g(St), while for St > S∗
t

the value exceeds the immediate exercise value. The curve S∗
t is referred to as the critical

exercise boundary, the region C = {(t, S)|S > S∗
t } is called the continuation region and the

complement E of C is the exercise region. For the detailed study of the free boundary problem
for the American put in the B-S case, see e.g. [47], Karatzas and Shreve (1998) [31], Musiela
and Rutkowski (1997) [42].

Remark 3.2 By (3.1), (2.1)–(2.2) and by EQ[St] < ∞ we obtain that EQ[eXt ] = e−tψ(i) < ∞,
with ψ being the Lévy exponent in (2.2). As a consequence, the Lévy density k has to satisfy
both the integrability condition (2.3) and

∫
|x|≥1 e

xk(x)dx < ∞. For the CGMY-model (2.12)
these integrability conditions imply Y < 2 and M > 1.
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3.2 Parabolic integro-differential inequality

For sufficiently regular g and for σ )= 0 the price f in (3.2) is known to satisfy the following
parabolic integro-differential inequality (see, e.g. [6])

∂f

∂t
(t, S) +

σ2

2
S2 ∂

2f

∂S2
(t, S) + rS

∂f

∂S
(t, S)− rf(t, S)

+

∫

R

[f(t, Sex)− f(t, S)− S
∂f

∂S
(t, S)(ex − 1)]ν(dx) ≤ 0

f(t, S) ≥ g(S) (3.3)

(f(t, S)− g(S))

(
∂f

∂t
(t, S) +

σ2

2
S2 ∂

2f

∂S2
(t, S) + rS

∂f

∂S
(t, S)− rf(t, S)

+

∫

R

[f(t, Sex)− f(t, S)− S
∂f

∂S
(t, S)(ex − 1)]ν(dx)

)
= 0

f(T, S) = g(S).

We also mention [12] for theoretical results on the relation between the solution of the free
boundary value problem and that of the optimal stopping for the case of the perpetual Amer-
ican put, i.e., when T = ∞.

For numerical treatment, we change to logarithmic price x = ln(S) ∈ R and time to maturity
τ = T − t and introduce u(τ, x) = f(T − τ, ex). If we denote by ψ(x) = g(ex), the resulting
parabolic integro-differential inequality for the value function u reads

∂u

∂τ
+AB−S[u] +Ajump[u] ≥ 0 in (0, T )× R (3.4)

u(τ, x) ≥ ψ(x) a.e. in [0, T ]× R (3.5)

(u(τ, x) − ψ(x))

(
∂u

∂τ
+AB−Su+Ajump[u]

)
= 0 in (0, T )× R (3.6)

u(0, x) = ψ(x), (3.7)

where the infinitesimal generator (or Dynkin operator) of the transition semi-group of Xt is
given by

A = AB−S +Ajump (3.8)

with

AB−S[ϕ] = −σ2

2

d2ϕ

dx2
+ (

σ2

2
− r)

dϕ

dx
+ rϕ,

Ajump[ϕ] = −
∫

R

(
ϕ(x+ y)− ϕ(x)− (ey − 1)

dϕ

dx
(x)

)
k(y)dy.

Remark 3.3 Unless explicitly stated otherwise, we assume in the following that the price
process has a non-zero diffusion component, i.e. σ )= 0.

3.3 Variational formulation

Of particular interest will be American Put contracts where the pay-off is g(S) = (K − S)+.
The pay-off in log-price variable x = log(S) is given by

ψ(x) = (K − ex)+. (3.9)
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We note in passing that all our results apply to more general pay-off functions ψ(x) with
polynomial growth as |x| → ∞ as well.

Our pricing algorithm will be based on a Galerkin discretization of (3.4)–(3.7) in the logarithmic
price x = log(S). This Galerkin discretization will be based on a variational formulation of
(3.4)–(3.7). Since in logarithmic returns the pay-off ψ may grow exponentially as |x| → ∞, we
use Sobolev spaces with exponential weights, see also [29] for this technique in the Brownian
case: for ν−, ν+ > 0 define

η(x) :=

{
ν−x if x < 0
ν+x if x > 0.

(3.10)

The weighted Sobolev spaces with exponent η are given by

Hj
η(R) := {v ∈ L1

loc(R) |
dkv

dxk
eη ∈ L2(R) ∀ k = 0, 1, . . . , j}.

We introduce the bilinear form aη(·, ·) corresponding to the space operatorA: for ϕ,φ ∈ C∞
0 (R)

we define

aη(ϕ,φ) = aηB−S(ϕ,φ) + aηjump(ϕ,φ) :=

∫

R

A[ϕ](x)φ(x)e2η(x)dx

= −σ2

2

∫

R

(
d2ϕ

dx2
(x)− dϕ

dx
(x)

)
φ(x)e2η(x)dx− r

∫

R

(
dϕ

dx
(x)− ϕ(x)

)
φ(x)e2η(x)dx

−
∫

R

∫

R

{
ϕ(x+ y)− ϕ(x) − dϕ

dx
(x)(ey − 1)

}
k(y)φ(x)e2η(x)dydx. (3.11)

The following theorem implies the well-posedness of the integro-differential inequality (3.4) -
(3.7) if the price u is sought in the weighted spaces H1

η (R) × H1
η (R). Its proof is given in

Appendix A.

Theorem 3.4 Assume that the Lévy density k(y) satisfies the assumptions (A1)–(A3) and
that the exponent η in (3.10) satisfies ν+ < ν− and

∫
R
e−η(y)|y|k(y)χ{|y|≥1}dy < +∞. Then

aη(·, ·) can be extended continuously to a bounded bilinear form on H1
η (R)×H1

η (R). Moreover,
aη(·, ·) is coercive on H1

η (R)×H1
η (R). More precisely, there exist αη, βη > 0 and Cη > 0 such

that

|aη(ϕ,φ)| ≤ Cη‖ϕ‖H1
η (R)

‖φ‖H1
η (R)

∀ϕ,φ ∈ H1
η (R) (3.12)

aη(ϕ,ϕ) ≥ αη‖ϕ‖2H1
η (R)

− βη‖ϕ‖2L2
η(R)

∀ϕ ∈ H1
η (R). (3.13)

In what follows we identify the bilinear form in (3.11) with its extension to H1
η (R) ×H1

η (R).
Note that ψ ∈ H1

η (R) for all ν−, ν+ > 0.

Admissible solutions for the variational formulation of (3.4) –(3.7) will be sought in the convex
cone

Kψ := {v ∈ H1
η (R) | v ≥ ψ a.e. x}.

The variational formulation of the parabolic integro-differential inequality (3.4)–(3.7) reads:

Find u ∈ L2(0, T ;H1
η (R)),

∂u

∂τ
∈ L2(0, T ;L2

η(R)) such that u(τ, ·) ∈ Kψ almost everywhere in

(0, T ) and such that for all v ∈ H1
η (R) ∩Kψ

(
∂u

∂τ
, v − u)L2

η(R)
+ aη(u, v − u) ≥ 0 a.e. in (0, T ), (3.14)

u(0, ·) = ψ. (3.15)
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If the pay-off ψ is such that Aψ ∈ L2
η, by (3.12) and (3.13) the variational inequality (3.14)–

(3.15) admits a unique variational solution u (see [26], Chapter 6, Section 2) and it holds

u,
∂u

∂t
∈ L2(0, T ;H1

η ) ∩ L∞(0, T ;L2
η). (3.16)

Since u ∈ H1
η (R) with η as in (3.10), u decays exponentially at +∞. Heuristically, at −∞ the

exact boundary condition is ψ(−∞) = K.

3.4 Localization

For the numerical solution, we localize (3.14)–(3.15) to a bounded domain ΩR = (−R,R),
R > 0 being the truncation parameter, and impose homogeneous essential boundary conditions
at ±R. To prepare the localization of (3.14)–(3.15), we introduce the excess to pay-off function

U = u− ψ ∈ K0 := {v ∈ H1
η (R) | v ≥ 0 a.e. x}. (3.17)

We also restrict the range of admissible prices to a bounded domain ΩR = (−R,R), with R > 0
sufficiently large. Then, in the triple V ↪→ H ∼= H∗ ↪→ V ∗ with V := H1

0 (ΩR), H := L2(ΩR),

solve for UR(τ, ·) ∈ K0, UR ∈ L2(0, T ;V ),
∂UR

∂τ
∈ L2(0, T ;H) such that

(
dUR

dτ
, v − UR)L2(ΩR) + a(UR, v − UR) ≥ −a(ψ, v − UR) (3.18)

a.e. in (0, T ), ∀ v ∈ V ∩K0

UR(0, ·) = 0 (3.19)

where the bilinear form a(ϕ,ψ) is, for all ϕ,φ ∈ C∞
0 (ΩR), given by

a(ϕ,φ) = −σ2

2

∫

ΩR

(
d2ϕ

dx2
(x)− dϕ

dx
(x)

)
φ(x)dx

− r

∫

ΩR

(
dϕ

dx
(x)− ϕ(x)

)
φ(x)dx

−
∫

ΩR

∫

R

{
ϕ(x+ y)− ϕ(x)− dϕ

dx
(x)(ey − 1)

}
k(y)φ(x)dydx

=
σ2

2
(ϕ′,φ′)L2(ΩR) +

(
σ2

2
− r

)
(ϕ′,φ)L2(ΩR) + r(ϕ,φ)L2(ΩR)

︸ ︷︷ ︸
aB−S(ϕ,φ)

−
∫

ΩR

∫

ΩR

{ϕ(x) − ϕ(y)− ϕ′(y)(ex−y − 1)}φ(y)k(x − y)dydx

︸ ︷︷ ︸
ajump(ϕ,φ)

.

Since the latter form of a(ϕ,φ) is continuous on V × V , we may extend a(·, ·) to V × V . From
now on a(·, ·) shall denote this extension. To simplify the notation, we drop in what follows
the superscript R from UR, i.e., we denote by U = UR.

Proposition 3.5 Theorem 3.4 holds with aη replaced by a and H1
η (R) replaced by V = H1

0 (ΩR).
Moreover, there exists a positive constant C = C(R) > 0 such that for all ϕ ∈ H1

0 (ΩR)

aB−S(ϕ,ϕ) ≥ Cσ2‖ϕ‖2H1(ΩR), ajump(ϕ,ϕ) ≥ 0.
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For a proof, see e.g. Remark 3.6 in [39]. Due to these properties, (3.18)–(3.19) admits a unique
solution, see also [26]. For the pure jump case σ = 0, the form ajump(·, ·) still has eigenvalues
with positive real part, so that our solution algorithm below remains stable also in this limiting
case.

3.5 Pure jump case σ = 0

If σ = 0, the natural space V for the variational inequality problem (3.18), (3.19) is notH1
0 (ΩR)

anymore, but the fractional Sobolev space H̃Y/2(ΩR) which is defined for 0 ≤ Y ≤ 2 by

H̃Y/2(ΩR) := {u|ΩR : u ∈ HY/2(R) and u|R\ΩR
= 0}.

For Y = 0 we have H̃Y (ΩR) = L2(ΩR), for Y = 2 we have H̃Y (ΩR) = H1
0 (ΩR). In the case

0 < Y < 2, Y )= 1 it holds H̃Y/2(ΩR) = HY/2
0 (ΩR) which is the closure of C∞

0 (ΩR) with respect
to the norm in HY/2(ΩR):

H̃Y/2(ΩR) := C∞
0 (ΩR)

‖·‖
H̃Y/2(ΩR)

‖v‖2
H̃Y/2(ΩR)

:= ‖v‖2L2(ΩR) +

∫

ΩR

∫

ΩR

(v(x) − v(y))2

|x− y|1+Y
dxdy.

(3.20)

For Y = 1 which occurs if Xt is a generalized hyperbolic or a Normal Inverse Gaussian process
(e.g. [5, 21, 46]), using the norm (3.20) would give the space H1/2(ΩR) which is different from

H̃1/2(ΩR): in fact H̃1/2(ΩR) = H1/2
00 (ΩR) and

‖v‖2
H̃1/2(ΩR)

= ‖v‖2L2(ΩR) +

∫

ΩR

∫

ΩR

|v(x)− v(y)|2

|x− y|2
dx dy +

∫

ΩR

|v(x)|2

R2 − x2
dx.

Proposition 3.6 Assume σ = 0, i.e., Xt is a pure jump Lévy process with Lévy density k
satisfying (A1)–(A4) for some 0 < Y < 2. Then there exist positive constants α = α(R) > 0
and β = β(R) > 0 such that

∀u ∈ V := H̃Y/2(ΩR) : a(u, u) = ajump(u, u) ≥ α‖u‖2
H̃Y/2(ΩR)

− β‖u‖2L2(ΩR), (3.21)

i.e., the bilinear form a(·, ·) satisfies a G
◦
arding inequality in V = H̃Y/2(ΩR).

Proof. Without loss of generality, by (A2) and (A3) we may assume that R = 1/2 and, by
density, that u ∈ C∞

0 (ΩR). Then (u′, u) = 0. It holds that (see e.g. [39, Proposition 4.2])

a(u, u) = (Ajump[u], u) =
1

2

∫

ΩR

∫

ΩR

1

2
(k(x− y) + k(y − x))(u(x) − u(y))2dydx. (3.22)

Due to R = 1/2, x, y ∈ ΩR implies |x− y| < 1 and we obtain from (A4) and by (3.20) that

a(u, u) ≥ C−
1

2

∫

ΩR

∫

ΩR

(u(x)− u(y))2

|x− y|1+Y
dydx (3.23)

which implies (3.21).

By Propositions 3.5, 3.6 we obtain
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Corollary 3.7 If σ )= 0, there exist C1, C2 > 0 and C3 ≥ 0 independent of σ such that

∀u ∈ H1
0 (ΩR) : a(u, u) ≥ C1σ

2‖u‖2H1(ΩR) + C2‖u‖2H̃Y/2(ΩR)
− C3‖u‖2L2(ΩR). (3.24)

Remark 3.8 Our approach is valid for both, the jump diffusion as well as the pure jump case.
Both cases can be treated in a unified fashion, if the norm ‖ · ‖V is chosen to be

‖u‖2V = ‖σu′‖2L2(ΩR) + ‖u‖2
H̃Y/2(ΩR)

(3.25)

and if the order ρ of the operator A in (3.8) is defined by

ρ :=

{
2 if σ > 0,
Y else.

(3.26)

Proposition 3.9 Assume σ = 0 and let Xt be a Lévy process satisfying (A1)–(A4) with Y ∈
[1, 2). Then the bilinear form a(·, ·) = ajump(·, ·) is continuous on V ×V , with V := HY/2

0 (ΩR),

if 1 < Y < 2 and V := H1/2
00 (ΩR) if Y = 1, i.e., there exists a constant C > 0 such that

|a(u, v)| ≤ C‖u‖V ‖v‖V , ∀u, v ∈ V. (3.27)

Proof. With σ = 0 and with Xt being a Lévy process satisfying (A1)–(A4) there holds

A[u](x) = −
∫

R

u′′(x+ y)k(−2)(y)dy

+(c1 − r)u′(x) + (c0 + r)u(x), ∀u ∈ C∞
0 (ΩR).

(3.28)

The integral kernel k(−2) in (3.28) is defined as a finite part integral

k(−2)(x) = p.f.

∫ x

0
k(y)(x− y)dy

and

c1 = p.f.

∫

R

(ex − 1)k(x)dx, c0 = p.f.

∫

R

k(x)dx. (3.29)

For Y ∈ (1, 2), H̃Y/2(ΩR) = HY/2
0 (ΩR) and (u′, v) can be understood as duality between

HY/2−1(ΩR) ∼= (H1−Y/2(ΩR))∗ and H1−Y/2(ΩR), since H1−Y/2(ΩR) ←↩ HY/2
0 (ΩR). As a conse-

quence (3.27) holds, i.e., the bilinear form a(·, ·) is continuous on V × V with V = HY/2
0 (ΩR).

If Y = 1, H̃Y/2(ΩR) = H1/2
00 (ΩR) and (3.27) still holds.

Remark 3.10 For Y ∈ (0, 1), the ‘drift’ term can be removed such that the transformed
equation satisfies the continuity estimate (3.27) on V = H̃Y/2(ΩR), see also [39, Remark 3.3].
This transformation yields a parabolic inequality problem with time dependent right hand
side which does not satisfy the regularity requirements formulated in the standard literature
on variational inequalities [26]. Our numerical algorithm below, however, can handle all jump
intensities Y ∈ [0, 2) equally well, if the drift term has been removed.

By (3.21)–(3.27) then, if Ajump[ψ] ∈ L2(ΩR), there exists a unique solution

UR ∈ L2(0, T ; H̃Y/2(ΩR)) ∩ L2(0, T ;L2(ΩR))

of (3.18)–(3.19).
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4 Discretization

Since closed form solutions of (3.14), (3.15) are not available in general, numerical solutions of
the pricing problem are necessary. To this end, we discretize (3.18)–(3.19) by a Finite Element
(FE) method in ΩR and by the backward Euler scheme in time. This approach is closely
related to the ‘Canadization’ of the problem.

Since Ajump is nonlocal and unbounded, its stiffness matrix is densely populated and ill-
conditioned. Using a wavelet basis of the corresponding finite dimensional space, we show that
the matrix for Ajump can be ‘compressed’, i.e. approximated by a sparse and well conditioned
matrix without compromising accuracy.

4.1 Time stepping

Let k = T/M , with M ∈ N be a time step and denote by Um, m = 0, 1, . . . ,M the solution of
the following backward Euler discretization of (3.18)–(3.19):
Find Um+1 ∈ V ∩K0, m = 0, 1, . . . ,M − 1, such that

(∂Um, v − Um+1)L2(ΩR) + a(Um+1, v − Um+1) ≥ −a(ψ, v − Um+1) (4.1)

a.e. in (0, T ), ∀ v ∈ V ∩K0

U0 = 0. (4.2)

Here ∂ is the finite difference operator ∂Um := (Um+1 − Um)/k.

4.2 Space discretization

The sequence (4.1)–(4.2) of elliptic variational inequalities can be reduced to a sequence of
finite dimensional Linear Complementarity Problems (LCPs) by restricting V in (4.1)–(4.2) to
a finite dimensional subspace VN . We use spaces VN of continuous piecewise linear functions
with respect to a equidistant subdivision T : −R = x0 < x1 < · · · < xN+1 = R of the truncated
(log) price-domain ΩR:

VN = span
{
v(x) ∈ V : v|(xi−1,xi), xi ∈ T , is linear

}
.

Then the Finite Element (FE) discretization of (4.1)–(4.2) reads: find Um
N : (0, T ) → VN ∩K0

such that

(∂Um
N , v − Um+1

N )L2(ΩR) + a(Um+1
N , v − Um+1

N ) ≥ −a(ψ, v − Um+1
N ) (4.3)

a.e. in (0, T ), ∀ v ∈ VN ∩K0

U0
N = 0. (4.4)

Remark 4.1 The discretization (4.3), (4.4) is based on the “parabolic” nature of the gener-
alized B-S operator in (3.5). If σ = 0 and Y ∈ [0, 1), the operator ∂τ + Ajump is, in general,
hyperbolic since the drift term is then dominant. In this case, the “parabolic” discretization
(4.3), (4.4) may exhibit instabilities. However, then discontinuous wavelet approximations are
admissible and the drift term ∂xu can be stably discretized by an upwinding Finite Volume
Method (FVM). This will be not be elaborated here. Instead, we always assume that the drift
term has been removed (cf. Remark 3.10).
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4.3 Matrix LCPs

The sequence of finite dimensional variational inequalities (4.3)–(4.4) corresponds to a sequence
of matrix linear complementarity problems which we now derive.

Let B = {Φj}Nj=1 be a basis of VN , i.e. VN = SpanB. Denote by M the mass matrix with
respect to B and byA the stiffness matrix of a(·, ·) with respect to B, i.e., Mi,j = (Φi,Φj)L2(ΩR),
Ai,j = a(Φj,Φi). The matrix A is in general fully populated.
We further denote by F the load vector with components Fj = −a(ψ,Φj) and by v the
coefficient vector of the FE function v ∈ VN with respect to B.
Then coefficient vectors v of FE functions v in VN ∩ K0 are column vectors in RN satisfying
componentwise

Cv ≥ 0, (4.5)

where C stands for the change of basis from B into the canonical ‘hat’ function basis {Ψj}Nj=1
with Ψj(x) = max(0, 1 − |x− xj |/h). Therefore (4.3)–(4.4) is a sequence of matrix LCPs:

Find Um
N ∈ K0 := {v ∈ RN | Cv ≥ 0}, m = 0, 1, . . . ,M , such that

(v − Um+1
N ))(M+ kA)Um+1

N ≥ (v − Um+1
N ))(kF +MUm

N ) ∀v ∈ K0. (4.6)

4.4 Wavelet basis

Rather than the classical “hat” Finite Element shape functions Ψj(x) = max(0, 1− |x−xj |/h),
we choose as basis B of VN biorthogonal spline wavelets with a larger support. These slightly
more involved shape functions serve two purposes: first, in the wavelet basis the bilinear form
a(·, ·) will correspond to a matrix where most elements are negligible, yielding an approximate
bilinear form ã(·, ·) and a “compressed”, sparse matrix Ã with O(N logN) non-vanishing
entries. The error introduced into the solution by this matrix compression is not larger than
the error due to Galerkin discretization [43]. Second, the wavelet basis will also allow optimal
preconditioning.

To define the spline wavelets, we consider dyadic partitions TL of ΩR into N + 1 = 2L subin-
tervals of equal size. We set N = NL and denote VN by VL to indicate the dependence on the
subdivision level L.
We use piecewise linear, continuous biorthogonal wavelets ψl

j that in the interior of ΩR have val-
ues 0, . . . 0,−1, 2,−1, 0, . . . , 0. In the case of Dirichlet conditions the values are 0, 2,−1, 0, . . . , 0
(and similarly at the right boundary), see Figure 1.
The support of wavelet ψl

j is denoted by Sl
j := suppψl

j . It has diameter bounded by C 2−l.

Wavelets ψl
j with S̄l

j ∩ ∂ΩR = ∅ have vanishing moments up to order 1, i.e.,

(ψl
j , 1) = (ψl

j , x) = 0. (4.7)

The boundary wavelets do not have any vanishing moments. The functions ψl
j for l ≥ l0 are

obtained by scaling and translation of the generating wavelets ψ1
j , j = 0, 1, 2 shown in Figure

1. Any v ∈ VL has the representation

v(x) =
L∑

l=0

M l∑

j=1

vljψ
l
j(x)

with vlj = (v, ψ̃l
j) where ψ̃l

j are the so-called dual wavelets (note that in our Galerkin scheme
these dual basis functions never enter explicitly).
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!1
!1 !1

2

Figure 1: Generating wavelets: interior wavelets (right) and boundary wavelets for Dirichlet
boundary conditions (left).

Any v ∈ V can be written as infinite series

v(x) =
∞∑

l=0

M l∑

j=1

vljψ
l
j(x)

with vlj = (v, ψ̃l
j) which converges in H̃θ(ΩR) := {v|ΩR | v ∈ Hθ(R), v|R\ΩR

= 0} for 0 ≤ θ ≤ 1.
For preconditioning our LCP solver, we exploit the norm equivalence

∀v ∈ H̃θ(ΩR) : c1‖v‖2H̃θ ≤
∞∑

l=0

M l∑

j=1

|vjl |
222lθ ≤ c2‖v‖2H̃θ , 0 ≤ θ ≤ 1. (4.8)

4.5 Matrix compression

The bilinear form a on VL × VL in the wavelet basis corresponds to a matrix A with elements
A(l,j),(l′,j′) = a(ψl

j ,ψ
l′
j′). The density of Ajump is assumed to satisfy (A1), (A2) uniformly with

respect to x and the Calderón-Zygmund type estimates (2.11); such densities arise for Lévy
processes, but also for the more general ‘homogeneous diffusions with jumps’ Xt in the sense of
Definition III.2.18 in [28], see also Section 2.2. Relation (2.11) implies with (4.7) the decay of
the matrix elements with increasing distance of the supports of corresponding wavelets. To be
specific, we define the compressed, sparse matrix Ã by setting certain small matrix elements
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in A to zero: with A(j,l),(j′,l′) = a(ψl
j ,ψ

l′
j′), we set

Ã(j,l),(j′,l′) :=

{
A(j,l),(j′,l′) if dist(Sl

j , S
l′
j′) ≤ δl,l′ or Sl

j ∩ ∂ΩR )= ∅
0 otherwise,

(4.9)

where Sl
j := supp (ψl

j). Here the truncation parameters δl,l′ are given by

δl,l′ := κmax{2−L+α̂(2L−l−l′), 2−l, 2−l′} (4.10)

where κ > 0 and α̂ > 0 are parameters. Their meaning is as follows: indexing of the wavelet
basis ψl

j by levels l implies a block structure of the matrix A. The compressed matrix Ã
obtained from (4.9) retains only diagonals of each block Al,l′ resulting in the typical ‘finger-
band’ structure of wavelet-compressed stiffness matrices (see [39] and the references there).

In (4.10), the parameter κ governs the bandwidth in the largest block ÃL,L of Ã which
is fixed independently of L while α̂ governs the growth of this bandwidth in the blocks Ãl,l′

with l + l′ < 2L, see Figure 2. If the truncation parameters α̂ and κ are suitably chosen, the

nnz = 16097, N
2
 = 65025 nnz = 39191, N

2
 = 261121

Figure 2: Sparsity pattern of the compressed matrix Ã in wavelet basis; compression parame-
ters: κ = 1.0, α̂ = 0.8; CGMY parameters: C = 1.0, Y = 1.4, G = 0.4, M = 1.6; L = 7 (left)
and L = 8 (right).

corresponding perturbation in the bilinear forms is small.

Remark 4.2 We considered only piecewise linear wavelets of degree p = 1. Results analogous
to Proposition B.1 are also available for wavelets of degree p > 1 and we refer to [43] for details.
We finally remark that a more refined criterion than (4.9) allows compression to O(N) nonzero
entries in certain cases while keeping (B.8).

Remark 4.3 For Y < 0, i.e. for finite intensity jump processes, we assume that Xt has a dif-
fusion component so that σ > 0 then. The norm in V is then the H1(ΩR)-norm. Compressing
A with respect to this norm allows to reduce the number of nonzero entries in A due to the
jump-measure to O(Nβ) with 0 < β < 1 while preserving accuracy of the scheme [39, Section
5.3.3].

Using the compressed matrix Ã in place of A in (4.3) gives instead of (4.6) the sequence of
perturbed LCPs

(v − Ũ
m+1
N ))(M+ kÃ)Ũ

m+1
N ≥ (v − Ũ

m+1
N ))(kF +MŨ

m
N ) ∀ ∈ v ∈ K0 (4.11)
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with corresponding solution vectors Ũ
m
N , m = 0, ...,M .

We denote by ũmN (x) =
∑N

j=1(Ũ
m
N )ljψ

l
j(x) ∈ VL the corresponding price functions.

4.6 Convergence

The approximate prices ũmN of (3.14), (3.15) obtained from the matrix LCPs (4.11) contain
two errors: the discretization error obtained by passing from the continuous problem (3.14),
(3.15) to the matrix LCPs (4.6) and the error introduced by the matrix compression (4.9)
yielding the perturbed matrix LCPs (4.11) 1. To separate these numerical errors from, for
example, modelling errors such as unsuitable choices for the price process Xt, it is essential
to quantify numerical errors and to prove convergence of the computed prices, i.e. to show
that the numerical errors become negligible as the meshwidth h = 2R/(N + 1) and the size
k = T/M of the time step tend to zero.

The computed prices ũmN converge indeed, as M,N → ∞, to the exact prices (3.2) of the
model: if the truncation parameters κ, R > 0 are fixed sufficiently large independent of M
and N and if α̂ > 4/(4 + Y ) and, moreover, if the exact prices u are, as function of x and t,
sufficiently regular 2, we have for certain 0 < γ ≤ 1 and for max{1, Y }/2 < s ≤ 2 the error
estimate

max
m

‖um − ũmN‖L2(ΩR) +

(
M∑

m=1

k‖um − ũmN‖2V

)1/2

≤ C(kγ + σhs−1 + hmin(s/2,s−Y/2)). (4.12)

Here, the norm ‖ ◦ ‖V is as in (3.25) and the constant C depends on the exact prices u(x, t)
and its derivatives. The bound (4.12) indicates convergence as time-stepsize k and mesh width
h = 2R/N in the log-price variable tend to zero. The rate of convergence, i.e. the precise
values of γ and s in (4.12), depend on the smoothness of the exact solution U = u − ψ and,
in particular, on the validity of the smooth pasting condition. Since the proof of (4.12) is not
needed for the pricing algorithm, we give it in Appendix B.

5 Pricing Algorithm

In the error bound (4.12), we assumed that the LCPs (4.11) are solved exactly in each time
step. If the meshwidth h is small, the size N of these matrix LCPs is large and standard
solution methods like PSOR (projected SOR) [18] and PSSOR (projected symmetrized SOR)
are not suitable, since their rate of convergence depends on N . Unlike in the BS case, in the
Lévy case symmetry of the matrix Ã can not be achieved by transformations, since accurate
modelling of log-returns requires asymmetric tails of the Lévy densities.
Our solution algorithm is described first in an abstract framework which is also applicable to
other models as e.g. BS models with stochastic volatility. It relies on a fixed point (outer)
iteration where in each step a projection onto the convex cone K0 has to be realized (inner
iteration). Owing to the norm equivalence (4.8) of the wavelet basis, the outer fixed point
iteration applied to (4.11) converges at a rate independent of the dimension N of the FE
discretization. In each outer iteration, one must realize the V (or an equivalent) projection

1 Strictly speaking, (3.14), (3.15) already contain yet another source of error due to the truncation of the
log-price range from (−∞,∞) to ΩR. This truncation error is small if R is sufficiently large; see [39], Sect. 4,
for more on this. Further, we ignore here effects due to roundoff error assuming that all calculations are done
in double precision float point arithmetic with a mantissa of about 15 decimals as used e.g. in MATLAB

2 more precisely, if ut ∈ Cγ([0, T ];L2(ΩR)) with some 0 < γ ≤ 1 and if u ∈ C0((0, T ];Hs(ΩR)) with
1/2 < s ≤ 2, cf. Appendix B
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PK0
onto K0. We realize this projection based on a wavelet generalization of the classical Cryer

algorithm [18]. Since in the pure jump case V is a fractional order Sobolev space, the wavelet
basis is essential here.

5.1 Outer iteration

5.1.1 Fixed point iteration

We describe an iterative solution algorithm for an abstract elliptic variational inequality set

in a Hilbert space (V, (·, ·)V ). Let ‖ · ‖V denote the corresponding norm (‖v‖V = (v, v)1/2V ) and
let K ⊂ V be a closed, convex cone in V. Without loss of generality it can be assumed that
0 ∈ K. Let u ∈ K be the solution of the following variational inequality

Find u ∈ K : b(u, v − u) ≥ l(v − u) ∀ v ∈ K. (5.1)

The bilinear form b : V × V → R is assumed continous and coercive and the linear form
l : V → R is continuous with respect to ‖ · ‖V , i.e. there exist constants C > 0 and α > 0 such
that for all v,w ∈ V

b(v, v) ≥ α‖v‖2V , |b(v,w)| ≤ C‖v‖V‖w‖V , |l(v)| ≤ C‖v‖V .

Let 〈·, ·〉V be an inner product on V equivalent to (·, ·)V . Since for each v ∈ V it holds that
b(v, ·) ∈ V∗, Riesz’ theorem applies and there exists B : V → V∗ and bl ∈ V such that

b(v,w) = 〈Bv,w〉V , l(v) = 〈bl, v〉V ∀ v,w ∈ V.

The variational inequality (5.1) translates into

Find u ∈ K : 〈Bu, v − u〉V ≥ 〈bl, v − u〉V ∀ v ∈ K. (5.2)

Denote by ||| · |||V the norm corresponding to 〈·, ·〉V . By our assumptions on b(·, ·), there are
C1 > 0, C2 > 0 such that for all v,w ∈ V it holds

|〈Bv,w〉V | ≤ C1|||v|||V |||w|||V , 〈Bv, v〉V ≥ C2|||v|||2V . (5.3)

Let us denote by PK the 〈·, ·〉V projection onto the convex set K. Solving (5.2) is equivalent to
solving the fix-point problem [36]

u = Su := PK(u− ρ(Bu− bl)), ρ > 0 (5.4)

We solve (5.4) iteratively:

Given u0 ∈ V define un+1 := PK(un − ρ(Bun − bl)) ∀n ≥ 0.

Then un → u as n → ∞ provided that 0 < ρ < 2C2/(C1)2, since in this range of ρ the operator
S is non-expanding. The optimal choice is ρopt = C2/(C1)2, for which |||Su1 − Su2|||V ≤
q|||u1 − u2|||V , with q := (1 − (C2)2/(C1)2)1/2 < 1. Note that the rate of convergence of the
fix-point iteration depends only on the constants C1, C2 in (5.3).
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5.1.2 Discretization

We apply the fix-point iteration (5.4) to b(·, ·) = (·, ·)L2(ΩR) + kã(·, ·). For clarity of exposition
we continue with the description of the FE discretization of (5.1) in the abstract framework of
the previous section and explain in Section 5.1.3 how this applies to (4.1)–(4.2).

Let VN = Span {Φi}Ni=1 ⊂ V be a finite dimensional subspace of V of dimension dimVN = N .
Let KN := K ∩ VN and let uN be the solution of the following variational inequality

Find uN ∈ KN : 〈BuN , v − uN 〉V ≥ 〈bl, v − uN 〉V ∀ v ∈ KN . (5.5)

Again, (5.5) is equivalent to the following fix-point iteration

Given u0,N ∈ VN define un+1,N := PKN (un,N − ρ(Bun,N − bl)) ∀n ≥ 0 (5.6)

where PKN denotes here the 〈·, ·〉V projection onto KN

Given v ∈ V, find PKNv ∈ KN such that 〈PKN v,w − v〉V ≥ 〈v,w − v〉V ∀w ∈ KN .

Let H denote the ‘mass’ matrix of 〈·, ·〉V in the basis B, B the ‘stiffness’ matrix of the bilinear
form b(·, ·) in the basis B and l the ‘load’ vector, i.e.

Hi,j := 〈Φj,Φi〉V , Bi,j = b(Φj,Φi), li = l(Φi) 1 ≤ i, j ≤ N.

The fix-point iteration (5.6) is equivalent to:
Find un+1 ∈ KN := {v ∈ RN : v :=

∑N
i=1 viΦi ∈ KN} such that

u)n+1H(v − un+1) ≥ (Hun − ρ(Bun − l)))(v − un+1) ∀ v ∈ KN , (5.7)

where v is the coefficient vector of v with respect to the basis {Φi}Ni=1.
Let us denote by (·, ·)H the scalar product (v,w)H = v)Hw induced by the matrix H. Then
(5.7) can be written as:
Find un+1 ∈ KN such that

(un+1, v − un+1)H ≥ (Hun − ρ(Bun − l)))(v − un+1) ∀ v ∈ KN (5.8)

which is the fixed point iteration applied to the bilinear form bN (·, ·) : RN ×RN → R and the
linear form lN : RN → R given by

bN (v,w) = v)Bw, lN (v) = v)l.

The constants C1,N , C2,N that enter into the choice of the relaxation parameter 0 < ρ <
2C2,N/(C1,N )2 and that determine the rate of convergence of the fix-point iteration (5.8) are
‖H−1/2BH−1/2‖2 and λmin((H−1/2(B+B))H−1/2).

5.1.3 Application to (4.1)–(4.2)

The choice of the equivalent inner product 〈·, ·〉V and of the matrix H in (5.8) will be used for
preconditioning the fixed point iteration.
Denote by AE := M+ kÃ. For a standard finite element basis and σ )= 0, AE has a condition
number of order h−2 for small h and fixed k. For the matrixAE in wavelet basis one can achieve
uniformly bounded condition number, so that the number of iterations (5.7) is essentially
independent of the number of unknowns N in log price.
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Proposition 5.1 Assume that 0 ≤ Y < 2 and fix κ in (B.6) sufficiently large, but independent
of L. Then the quantities

‖ÂE‖2 := ‖(HE)−1/2AE(HE)−1/2‖2, λmin((H
E)−1/2(AE + (AE)))(HE)−1/2) (5.9)

where HE is a diagonal matrix with entries HE
(j,l),(j,l) = 1 + k22l, are bounded from above and

below, respectively, in L and k. In particular, the fixed point iteration (5.8) with B = AE and
H = HE converges with rate q < 1 independent of k and L.

Proof. Define ÂE := (HE)−1/2AE(HE)−1/2. By the norm equivalences (4.8) and the consis-
tency condition (B.6) for sufficiently large κ in (4.10) it holds

C1‖x‖2+2 ≤ x)Mx, x)My ≤ C2‖x‖+2‖y‖+2
C3‖Dx‖2+2 ≤ x)Ãx, x)Ãy ≤ C4‖Dx‖+2‖Dy‖+2

withD being the diagonal matrix with entriesD(j,l),(j,l) = 2l and with constants Cj independent
of L. It follows that there exist some constants C5 and C6 > 0 independent of L such that

C5x
)(I + kD)x ≤ x)ÂEx

x)ÂEy ≤ C6[‖x‖+2‖y‖+2 + k‖Dx‖+2‖Dy‖+2 ] ≤ C6‖(I + kD)x‖+2‖(I + kD)y‖+2

which completes the proof.

The fix-point iteration (5.8) applied to (4.3)–(4.4) reads:

For m = 0, 1, . . . , T/M − 1 do:

For n = 0, 1, 2, . . . until convergence:

Find Um+1
n+1,N ∈ K0 such that

Um+1
n+1,N

)
HE(v−Um+1

n+1,N ) ≥ (HEUm+1
n,N −ρAEUm+1

n,N +ρ(MUm
N+kF )))(v−Um+1

n+1,N ) ∀ v ∈ K0

Next n

Set Um+1
N := Um+1

n,N

Next m

L \ ρ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

6 31 28 25 23 20 18 17 15 14 15 18 20 24
7 31 28 25 23 20 18 17 15 14 15 18 20 24
8 32 28 25 24 22 20 19 17 17 17 18 25 24
9 29 34 28 28 26 22 20 22 17 20 24 33 28

Table 1: Performance of the outer fix point iteration for σ = 0.2. The CGMY parameters are
C = 1.0, G = 1.4, M = 2.5 and Y = 1.4.
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Remark 5.2 In the pure jump unbounded variation case, i.e., when σ = 0 and Y ∈ [1, 2) the

bilinear form is continuous on H̃Y/2(ΩR) × H̃Y/2(ΩR) and satisfies the G
◦
arding inequality

(3.21), see also Proposition 3.6 and Proposition 3.9. By the norm equivalences (4.8) we define
in this case HE as being the diagonal matrix with entries HE

(j,l),(j,l) = 1 + k2Y l and the proof

of Proposition 5.1 holds verbatim. When Y ∈ [0, 1] we applied the same numerical scheme
and the perfomance of our solution algorithm turns out to be the same as reported for the
case when σ > 0 or σ = 0 and Y ∈ (1, 2). With this choice of HE, the number of iterations
(5.7) per time step is independent of the number N of mesh points in log price uniformly with
respect to σ and k.

Remark 5.3 In the context of Remark 3.8, we emphasize that the choice of HE
(j,l),(j,l) =

1+k(σ22l +C2Y l) in (5.7) renders the number of iterations in (5.1.3) independent of N , k and
σ. This choice, therefore, gives a preconditioner for the LCP which is robust with respect to
a vanishing diffusion component in Xt.

In Table 1 we study the rate of convergence of the outer iteration in dependence on ρ and L
(the level of the FE discretization). More precisely, for a fixed time t = 0.5 and a fixed time
step k = 0.01 we count the number n of outer iterations needed for ‖Un+1,N −Un,N‖HE to fall

below a given tolerance tol = 10−8 as the number NL = 2L of degrees of freedom increases. In
this case, σ = 0.2 and the HE projection corresponds, by the wavelet norm equivalences, to
the H1 projection onto the convex cone of admissible solutions K0

L \ ρ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

6 24 21 19 17 16 16 13 13 13 12 15 19 23
7 28 25 23 21 19 18 17 16 17 20 26 33 45
8 30 27 24 23 22 20 19 18 22 27 32 40 59
9 32 28 27 26 22 21 20 20 26 31 41 55 83

Table 2: Performance of the outer fix point iteration for a pure jump Lévy process, i.e. σ = 0.0.
The CGMY parameters are C = 1.0, G = 8.8, M = 9.2 and Y = 1.6.

In Table 2 we repeat this experiment for a pure jump process (i.e. σ = 0) with Y = 1.6.
The diagonal preconditioning matrix HE is now given by HE

(j,l),(j,l) = 1 + k2Y l, i.e. does not
correspond to the Laplace matrix anymore. We observe that the number of outer iterations
for e.g. ρ = 1.0 is independent of σ and of the choice of the discretization level parameter L.

5.2 Realization of PKN

The early exercise feature of american style contracts is taken into account by the projection
PKN of the approximate solution onto the admissible prices. Here, this projection is realized
by the variational inequality (5.7). Note that HE is symmetric and, if the diagonal wavelet
preconditioner is used, possibly diagonal. To compute theHE projection onto the convex cone
K0 we use a generalization of the Cryer algorithm [18].

5.2.1 Generalized Cryer algorithm

Let H ∈ lRN×N be any symmetric positive definite matrix and letC ∈ lRN×N be any invertible
matrix. Specific choices of H and C will be given below. Consider the minimization problem

min
u

u)Hu− 2f)u subject to Cu ≥ 0 element-wise, (5.10)
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which corresponds to the LCP

Find u ∈ RN such that Cu ≥ 0

C−)(Hu− f) ≥ 0

u)(Hu− f) = 0.

We use the following

Algorithm 5.4 Choose ω ∈ (0, 2). Set si := C−1ei, i = 1, . . . , N .
0) Choose a starting vector u0 with Cu0 ≥ 0.
1) For k = 1, . . . do (until convergence):

1.1) Set uk0 := uk−1.
1.2) For i = 1, . . . , N do:

1.2.1) Set rki = (s)i Hsi)
−1s)i

[
f −Huki−1

]
si.

1.2.2) Choose the maximal ω̃k
i with ω̃k

i ≤ ω, such that C(uki−1 + ω̃k
i r

k
i ) ≥ 0.

1.2.3) Set uki = uki−1 + ω̃k
i r

k
i .

1.3) Next i.
1.4) Set uk := ukN .

2) Next k.

Lemma 5.5 Under the above assumptions, for any starting vector u0 ∈ RN , the sequence of
iterates generated by Algorithm 5.4 converges to the solution u of (5.10).

Proof. Let G(u) = u)Hu− 2f)u. Using symmetry of H, one has

G(u)−G(v) = (u− v))H(u− v) + 2(u− v))(Hv − f).

With

(rki )
)(Huki−1 − f) = −s)i Hsi

s)i si
(rki )

)rki ,

we get

G(uk
i )−G(uk

i−1) = (ω̃k
i )

2(rki )
)Hrki − 2ω̃k

i
s)i Hsi
s)i si

(rki )
)rki . (5.11)

Since rki is a multiple of si, equation (5.11) reads

G(uk
i )−G(uk

i−1) = −ω̃k
i (2− ω̃k

i )(r
k
i )

)Hrki ≤ 0,

the last inequality due to ω̃k
i ∈ [0,ω] ⊂ [0, 2).

Hence, the sequence {G(uk
i )} is monotonically decreasing. By positivity of H, G is strictly

convex and bounded below. It follows, that G(uk
i ) → G from above.

Using

(rki )
)Hrki =

1

(ω̃k
i )

2
(uki − uki−1)

)H(uk
i − uk

i−1)

in case ω̃k
i )= 0, we infer

G(uk
i )−G(uk

i−1) ≤
(
1− 2

ω

)
(uk

i − uk
i−1)

)H(uki − uki−1) ≤ −c‖uk
i − uki−1‖2

with some c > 0, i. e.

‖uk
i − uki−1‖2 ≤ C

[
G(uk

i−1)−G(uk
i )
]
.
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Hence,
‖uk

i − uki−1‖ → 0. (5.12)

Since G is convex and bounded from below, and since G(uk
i ) → G from above, the sequence

(uki ) is bounded and has a limit point u. We will show now, that u is the (unique) solution to
the minimization problem (5.10). Then it follows, that the whole sequence converges to u.
Let

K = {v ∈ RN : Cv ≥ 0}.

The constraint set K is the mapped positive orthantK0 = {v ∈ RN : v ≥ 0}, i.e. K = C−1K0.
Let x ∈ RN and let hi, i = 1, . . . , n, be a set of directions. If G′(x)hi, the directional derivative
of G at x in the direction hi, is non-negative for all i = 1, . . . , n, then for every set of non-
negative numbers αi, i = 1, . . . , n, it holds G(x +

∑
αihi) ≥ G(x), or, equivalently, x is the

minimizer of G over the cone spanned by the directions hi.
To see this, set h :=

∑
αihi and note, that by linearity of G′ we have G′(x)h ≥ 0. Since G,

restricted to the line {x+ αh,α ∈ R}, is a convex funtion in α, the claim follows.
We call a direction d ∈ RN pointing outwards of K at x, if for every ε > 0 the point x+εd )∈ K.
(Note, that for x ∈ K by convexity of K the fact x + ε0d )∈ K implies x + εd )∈ K for every
ε ≥ ε0.)
Set S = {±si, i = 1, . . . , N} and consider the set

S(u) := {s ∈ S : s is not pointing outwards of K at u}.

We claim now G′(u)s ≥ 0 for s ∈ S(u): Assume, to the contrary, that G′(u)si = −ε for some
si ∈ S(u) and ε > 0. For uki−1 sufficiently close to u, we have

uki − uki−1 = ω̃k
i r

k
i =

ω̃k
i

sTi Hsi

(
−G′(uki−1)si

)
si ≥

ω̃k
i

sTi Hsi

ε

2
si,

where ≥ is to be understood in the sense of direction si. Since ω̃k
i−1 is chosen maximal (but

≤ ω), this contradicts (5.12). Hence, u is the minimizer of G over the convex cone CS(u)
generated by S(u).
With

K ⊂ CS(u),

the lemma follows.

There seem to be no convergence rates available for Cryer’s algorithm. Multilevel techniques
[33] promise log-linear efficiency, but in the parabolic examples considered below, the direct
application of Cryer’s algorithm turned out to be superior, since the initial values taken from
the previous steps are very close to the respective solutions. In our experiments, the num-
ber of inner iterations was usually of the same size as the number of iterations in the outer
(Stampacchia) iteration.

6 Numerical Results

We present numerical experiments to illustrate the flexibility of our code with respect to the
choice of the price process and to the discretization parameters. European contracts have been
dealt with in [39], so we focus here on american style contracts. In all experiments below the
level L for the wavelet resolution is L = 11.
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In the first example shown on Figure 4 we take K = 500, T = 0.5, r = 0.4, σ = 0.2 and the
following CGMY parameters: C = 1, G = 1.4, M = 2.5 and Y = 1.4. We compare the value
of the American put option with that of the European one for the same set of parameters. The
early exercise boundary of the American contract is plotted on the right.
In Figure 5 we display the prices of American put options with respect to different time horizons
T = 0.1, 0.25, 0.5. The price process is a pure jump CGMY Lévy process with parameters
C = 1.0, G = 8.8, M = 9.2 and Y = 1.6. In Figure 6 we take VG as price process, i.e., σ = 0.0
and Y = 0.0.
In [12] it is shown that in the case of perpetual American put, i.e., for T = ∞ (equivalently, for
the stationary variant of (3.4)–(3.7)), the principle of smooth fit may fail in the case of infinite
intensity pure jump Lévy processes. From the results of [12] it follows in particular that for the
family of CGMY Lévy processes, the principle of smooth fit may fail if Y ∈ (0, 1), but also that
the smooth fit condition always holds for Y ∈ [1, 2). We emphasize that we do not rely on the
principle of smooth fit within our numerical scheme. Our numerical experiments also reveal
that in the case Y ∈ [1, 2) the smooth pasting condition holds (see Figures 4, 5) whereas
it fails for the case of the VG process in Figure 6. For CGMY Lévy processes of bounded
variation, i.e., when Y < 1, the sign of the ‘drift’ term (see [12], Section 7) is essential for the
smooth pasting condition to hold or to fail. Precisely, if the sign of the coefficient µ := c1 − r
(c1 :=

∫
R
(ex − 1)k(x)dx) in front of u′ is µ ≥ 0 then the smooth pasting condition holds, but

if µ < 0 there is no smooth pasting, only continuous fit. We illustrate this effect in Figure 3
for Y = 0.2.
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Figure 3: CGMY Lévy processes of bounded variation with alternating sign of the ‘drift’ term:
µ = −0.28 continuous fit (left) and µ = 0.09 smooth fit (right).

Studying sensitivity of prices with respect to parameters is of great importance and we illustrate
this feature in Figure 7, where we fix all parameters except Y and study how the exercise
boundary depends on Y .
Our last example concerns an American butterfly option. Its pay-off is given by

(S −K1)+ − 2(S − (K1 +K2)/2)+ + (S −K2)+

and is constructed by holding a long position in two calls with strikes at K1 and K2 and a
short position in two calls struck at (K1 +K2)/2. Note that the pay-off function is not convex
anymore, a feature that is often exploited to speed up convergence of certain algorithms 3

3 In [9] an algorithm for evaluating the American put option within the classical Black-Scholes framework
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We emphasize that our implementation does not rely on any topological assumption on the
free boundary as e.g., graph-like and monotone. We plot in Figure 8 the option value of an
American butterfly option with K1 = 3 and K2 = 10 and the early exercise boundary for this
case.
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Figure 4: American vs. European and the exercise boundary
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Figure 5: American Put option values for different maturities and for a pure jump Lévy process
of CGMY type with C = 1.0, G = 8.8, M = 9.2 and Y = 1.6.

A Proof of Theorem 3.4

Here, we give the proof of Theorem 3.4. We split the bilinear form aη into the following
expressions

aη = aη1 + aη2 + aη3

in linear computational complexity with respect to the number of grid points is proposed. The method relies
however on the monotonicity of the exercise boundary and on the band structure of the matrix M+ kA in the
LCP (4.6).
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Figure 6: Failure of the smooth pasting condition for pure jump VG as price process.
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Figure 7: Sensitivity of the exercise boundary with respect to the jump intensity parameter Y
in the CGMY model.

where

aη1(ϕ,φ) =
σ2

2

∫

R

dϕ

dx
(x)

dφ

dx
(x)e2η(x)dx− r

∫

R

(
dϕ

dx
(x)− ϕ(x)

)
φ(x)e2η(x)dx

+

∫

R

dϕ

dx
(x)φ(x)

(
σ2

2

(
2
dη

dx
(x) + 1

)
+

∫

R

(
ey − 1− yχ{|y|≤1}(y)

)
k(y)dy

)
e2η(x)dx

aη2(ϕ,φ) = −
∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)φ(x)e2η(x)yχ{|y|≥1}(y)k(y)dydx

aη3(ϕ,φ) = −
∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

d2ϕ

dx2
(x+ θ′y)y2φ(x)e2η(x)χ{|y|≤1}(y)k(y)dydx.
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Figure 8: American butterfly: prices (left) and exercise boundary (right)

Clearly, for all ϕ,φ ∈ H1
η (R) it holds

|aη1(ϕ,φ)| ≤ C(‖η′‖L∞(R))

∥∥∥∥
dϕ

dx

∥∥∥∥
L2
η(R)

∥∥∥∥
dφ

dx

∥∥∥∥
L2
η(R)

aη1(ϕ,ϕ) ≥
σ2

2

∥∥∥∥
dϕ

dx

∥∥∥∥
2

L2
η(R)

+ r‖ϕ‖2L2
η(R)

−
(
σ2

2

(
2‖η′‖L∞(R) + 1

)
+

∣∣∣∣

∫

R

(ey − 1− yχ{|y|≤1}(y))k(y)dy

∣∣∣∣

) ∥∥∥∥
dϕ

dx

∥∥∥∥
L2
η(R)

‖ϕ‖L2
η(R)

.

If we insert eη(x+θy)e−η(x+θy) in the definition of aη2 and use the hypothesis on the weighting
exponent η we obtain that

|aη2(ϕ,φ)| ≤ C

∥∥∥∥
dϕ

dx

∥∥∥∥
L2
η(R)

‖φ‖L2
η(R)

.

The remaining part aη3 needs a more careful inspection. It can be shown that for any ε > 0
there exists a constant C(ε) > 0 such that

|aη3(ϕ,φ)| ≤ ε

∥∥∥∥
dϕ

dx

∥∥∥∥
L2
η(R)

∥∥∥∥
dφ

dx

∥∥∥∥
L2
η(R)

+ C(ε)

∥∥∥∥
dϕ

dx

∥∥∥∥
L2
η(R)

‖φ‖L2
η(R)

. (A.1)

To prove (A.1) we write aη3(ϕ,φ) in the following form

aη3(ϕ,φ) =
∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

dϕ

dx
(x+ θ′y)

(
dφ

dx
(x) + 2η′(x)φ(x)

)
e2η(x)y2χ{|y|≤δ}(y)k(y)dydx

−
∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)eη(x+θy)φ(x)eη(x)e−η(x+θy)+η(x)yχ{δ≤|y|≤1}(y)k(y)dydx

+

∫

R

∫

R

dϕ

dx
(x)φ(x)e2η(x)yχ{δ≤|y|≤1}(y)k(y)dydx.

Since
∫
{|y|≤1} y

2k(y)dy < +∞, given ε > 0, one can choose δ = δ(ε) sufficiently small such that

(A.1) holds.
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B Convergence Analysis

To obtain an error estimate for the computed prices ũm, we proceed as in [30]. We assume
throughout that the drift term has been removed (cf. Remark 3.10).

We need to consider functions in V which have additional regularity and introduce for this
purpose a scale of regularity spaces Hs(ΩR) which are defined as

Hs(ΩR) = H̃ρ/2(ΩR) ∩Hs(ΩR), s > ρ/2 (B.2)

where the order ρ of the operator A associated to Xt is as in (3.26).
In the compression step certain entries of the matrix A are replaced by zero, resulting in

the compressed stiffness matrix Ã. Both, A and Ã, induce mappings from VL to (VL)′ which
we denote by AL and ÃL, respectively, and bilinear forms aL(·, ·) and ãL(·, ·), respectively
which are defined on V × V and given by

aL(u, v) := 〈ALPLu, PLv〉, ãL(u, v) := 〈ÃLPLu, PLv〉. (B.3)

Here PL denotes, for v ∈ H := L2(ΩR), the bounded projection PL : H → VL obtained by
truncating the wavelet expansion of v in the log-price variable:

PLv :=
L∑

l=0

M l∑

j=1

vljψ
l
j(x). (B.4)

The projection PLv approximates v ∈ H. More precisely, for v ∈ Ht holds the approximation
property

‖v − PLv‖H̃s(ΩR) ≤ Cht−s
L ‖v‖Ht(ΩR), 0 ≤ s ≤ t ≤ 2. (B.5)

Wavelet compression (4.10) of A implies only a small perturbation of the bilinear form aL(·, ·).

Proposition B.1 [43] Assume σ > 0. Then, for any δ > 0 there exists κ in (4.10) sufficiently
large such that for all L > 0 holds

|aL(u, v) − ãL(u, v)| ≤ δ ‖u‖H̃Y/2(ΩR) ‖v‖H̃Y/2(ΩR) ∀u, v ∈ V. (B.6)

If additionally u ∈ Hs(ΩR), v ∈ Hs′(ΩR) for some Y/2 ≤ s, s′ ≤ 2, then for

α̂ ≥ 4

4 + Y
, (B.7)

holds
|aL(u, v) − ãL(u, v)| ≤ Chs+s′−Y | log h|ν‖u‖Hs(ΩR) ‖v‖Hs′ (ΩR) (B.8)

with ν = 0 if Y/2 ≤ s, s′ < 2, ν = 3
2 if s = 2 or if s′ = 2 and ν = 3 if s = s′ = 2.

If α̂ < 1 in (4.10), then the number of nonzero entries in Ã is bounded by CNL logNL. In
the case Y = 0, s = s′ = 2 (which corresponds to the VG process), α̂ = 1 and the above result
still holds with at most CNL(logNL)2 nonzero entries.

We see that for 1 ≥ α̂ ≥ 4/(4 + Y ) in (B.7), the matrix Ajump can be compressed to a sparse
matrix Ã with O(N logN) nonzero entries with small difference between the bilinear forms.
We recall that the exact solution u ∈ K0 = {v ∈ H̃Y/2(ΩR) : v ≥ 0 a.e. x ∈ ΩR} satisfies

(∂tu, v − u) + a(u, v − u) ≥ (f, v − u) a.e. t, ∀ v ∈ K0 (B.9)
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and that the sequence {Um
h } of approximate solutions Um

h ∈ VL ∩K0 satisfies

(∂Um
h , v − Um+1

h ) + ãL(Um+1
h , v − Um+1

h ) ≥ (fm+1, v − Um+1
h ) ∀ v ∈ VL ∩K0. (B.10)

We assume that the exact solution u ∈ L∞(0, T ;Hs(ΩR)) for some s > 1/2 and set e = u−Uh

and η = u(t)− ILu(t) where ILu ∈ VL ∩K0 denotes the nodal interpolant of u ∈ Hs(ΩR)∩K0

with s > 1/2, by piecewisewe linear, continuous functions. We have the identity

(∂em, em+1) + a(em+1, em+1) = (∂em, ηm+1) + a(em+1, ηm+1)

+ (∂um, ILum+1 − Um+1
h ) + a(um+1, ILum+1 − Um+1

h )

− (∂Um
h , ILum+1 − Um+1

h )− a(Um+1
h , ILum+1 − Um+1

h ).
(B.11)

Inserting v = Um+1
h and t = tm+1 into (B.9), we get also

(um+1
t , Um+1

h − um+1) + a(um+1, Um+1
h − um+1) ≥ (fm+1, Um+1

h − um+1) (B.12)

and inserting v = ILum+1 ∈ K0 into (B.10) gives

(∂Um
h , ILum+1 − Um+1

h ) + aL(Um+1
h , ILum+1 − Um+1

h )

+(ãL − aL)(Um+1
h , ILum+1 − Um+1

h ) ≥ (fm+1, ILum+1 − Um+1
h ).

(B.13)
Adding (B.12) and (B.13) to (B.11) and observing that on VL × VL holds a(·, ·) = aL(·, ·), we
get the inequality

(∂em, em+1) + a(em+1, em+1) ≤ (ãL − aL)(Um+1
h , ILu

m+1 − Um+1
h ) +

4∑

j=1

pmj (B.14)

with the pmj given by

pm1 := (∂em, ηm+1), pm2 := a(em+1, ηm+1),

pm3 := −(∂um, ηm+1)− a(um+1, ηm+1) + (fm+1, ηm+1),

and with
pm4 :=

(
ut(tm+1)− ∂um, Um+1

h − um+1
)
.

Multiplying (B.14) by k and summing from m = 0 to M − 1 gives the bound

1

2
max
m

‖em‖20 + k
M−1∑

m=0

a(em+1, em+1) ≤ 1

2
‖e0‖20 +

5∑

j=1

Sj (B.15)

where the Sj are defined by

S1 := k
M−1∑

m=0

(∂em, ηm+1), S2 := k
M−1∑

m=0

a(em+1, ηm+1)

S3 := k
M−1∑

m=0

−(∂um, ηm+1)− a(um+1, ηm+1) + (fm+1, ηm+1),
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S4 := k
M−1∑

m=0

(um+1
t − ∂um, Um+1

h − um+1)

and

S5 := k
M−1∑

m=0

(ãL − aL)(Um+1
h , ILu

m+1 − Um+1
h ).

To estimate Sj for j = 1, ..., 4 we note that the nodal interpolant IL satisfies the error estimate

‖v − ILv‖H̃s(ΩR) ≤ Cht−s
L ‖v‖Ht(ΩR), 0 ≤ s ≤ t, 1/2 < t ≤ 2. (B.16)

For S1 we use summation by parts to write

S1 = −
M−1∑

m=0

k(em, ∂ηm) + (eM , ηM )− (e0, η0).

We have by (B.16) with s = 0 the bound

‖ηt‖L2(0,T ;L2(ΩR)) ≤ Chs‖ut‖L2(0,T ;Hs(ΩR)) for 1/2 < s ≤ 2

and estimate

‖∂ηm‖L2(ΩR) = k−1‖ηm+1 − ηm‖L2(ΩR)

≤ k−1
∫ tm+1

tm

‖ηt‖L2(ΩR)ds ≤ Ck−1/2hs‖ut‖L2(tm,tm+1;Hs(ΩR)).

Thus, we obtain the bound

S1 ≤
1

8
k
M−1∑

m=0

a(em+1, em+1) + Ch2s‖ut‖2L2(J,Hs(ΩR)) +
1

8
‖eM‖20 + ‖e0‖20 + Ch2s‖u‖2L∞(J,Hs(ΩR)).

(B.17)
For S2 we get for 0 < s ≤ 2 that

S2 ≤
1

8
k
M−1∑

m=0

a(em+1, em+1) + Ch2s−Y ‖u‖2L∞(J,Hs(ΩR)). (B.18)

For S3 we find, upon integration by parts, that

S3 ≤ Ck
M−1∑

m=0

[
‖∂um‖0 + ‖Aum+1‖0 + ‖fm+1‖0

]
‖ηm+1‖0 ≤ Chs‖u‖Hs(ΩR).

For S4 we proceed as follows: recall that

S4 = k
M−1∑

m=0

(∂um − um+1
t , em+1) ≤ k

M−1∑

m=0

‖∂um − um+1
t ‖0‖em+1‖0.

To estimate the first factor we distinguish two cases:
a)

∂um = k−1(um+1 − um) = k−1
∫ tm+1

tm

utds
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gives

‖∂um − um+1
t ‖20 = ‖um+1

t − k−1
∫ tm+1

tm

utds‖20.

If ut ∈ C0([tm, tm+1];L2(ΩR)), we get

‖∂um − um+1
t ‖0 ≤ ‖ut‖C0([tm,tm+1];L2(ΩR)).

b) If u ∈ C1,γ([tm, tm+1];L2(ΩR)) for some 0 < γ ≤ 1, the elementary identity

um+1
t − k−1

∫ tm+1

tm

utds = um+1
t − umt − 1

k

∫ tm+1

tm

[ut(s)− umt ]ds

gives the bound
‖∂um − um+1

t ‖0 ≤ kγ‖ut‖C0,γ ([tm,tm+1];L2(ΩR))

from where we get for any ε > 0 the bound

S4 ≤ C

[
k2γ

2ε
‖ut‖2Cγ([tm,tm+1];L2(ΩR)) +

ε

2
k

M∑

m=1

a(em, em)

]

.

Choosing ε > 0 sufficiently small, the second term may be absorbed into the left hand side of
(B.15).

To estimate S5, we note that the forms aL(·, ·) and ãL(·, ·) in (B.3) are defined on the whole
space V × V .

|S5| ≤ k
M−1∑

m=0

|(aL − ãL)(um+1 + Um+1
h − um+1, ILu

m+1 − Um+1
h )|

≤ k
M−1∑

m=0

|(aL − ãL)(um+1, ILu
m+1 − Um+1

h )|+ |(aL − ãL)(em+1, ILu
m+1 − Um+1

h )|

≤ Ck
M−1∑

m=0

hs−Y/2‖um+1‖Hs(ΩR)(‖(I − IL)u
m+1‖V + ‖em+1‖V )

+|(aL − ãL)(em+1, ILu
m+1 − Um+1

h )|

≤ Ck
M−1∑

m=0

hs−Y/2‖um+1‖Hs(ΩR)(‖(I − IL)u
m+1‖V + ‖em+1‖V )

+δ‖em+1‖V (‖(I − IL)u
m+1‖V + ‖em+1‖V )

≤ Ck
M−1∑

m=0

(1 +
δ

2
+

2

ε
)h2s−Y ‖um+1‖2Hs(ΩR) + (

3δ

2
+

ε

2
)‖em+1‖2V

≤ Ck
M−1∑

m=0

(1 +
δ

2
+

2

ε
)h2s−Y ‖um+1‖2Hs(ΩR) +

M−1∑

m=0

(
3δ

2
+

ε

2
)Cka(em+1, em+1).

Inserting these bounds into (B.15) and fixing δ > 0 and ε > 0 sufficiently small independent
of L and M , we can absorb the term

C(ε+ δ)
M−1∑

m=0

ka(em+1, em+1)

into the left hand side of (B.15). We have shown
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Theorem B.2 The sequence {ũm}Mm=0 of approximate prices obtained from the exact solution
of the matrix LCPs (4.11) with the matrix compression (4.9), (4.10) for sufficiently large κ
and α̂ > 4/(4 + Y ) satisfies the error bound

max
1≤m≤M

‖em‖20 + k
M∑

m=1

a(em, em)

≤ C

(

‖e0‖20 + h2min{s/2,s−Y/2}
M∑

m=1

k‖um‖2Hs(ΩR) + k2γ‖ut‖2Cγ([0,T ];L2(ΩR))

) (B.19)

for 0 < γ ≤ 1, 0 < Y ≤ 2 and for 1/2 < s ≤ 2.
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