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Switzerland

∗Bucharest University, Romania



On the Set of Diameters of Finite Point-Sets in the Plane

M. Becheanu∗ and R.A. Todor

Seminar für Angewandte Mathematik
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1 Introduction

Let n ≥ 3 be an integer and S be a set of n points, say A1, A2, . . . , An, in the plane.

Definition 1.1 A diameter of the set S is any of the segments [AiAj ], such that i "= j and its
length is the largest possible among all segments joining two points in S:

|AiAj| = max{|AkAl| | k, l ∈ {1, . . . , n}, k "= l} (1.0)

This length will be denoted by dS.

To set up some further notations, d(S) will be in the following the number of diameters of
the set S, while Card(S) will denote the cardinality of the same set. To S we shall frequently
associate also a graph, denoted ΓS, by saying that Ai and Aj are adjacent if and only if [AiAj ]
is a diameter of S.

For the study of the diameters of a finite plane set S, the following result is essential.

Lemma 1.2 The intersection of any two diameters of the set S is nonempty.

Proof. As the result is well-known (see [2]), we only sketch the proof. Let [AiAj] and [AkAl]
be two diameters of S. We may assume that i, j, k, l are distinct. It is easy to see that the
convex envelope of the set {Ai, Aj , Ak, Al} is then a quadrilateral. So it remains to rule out
the situation when the convex envelope reads AiAjAkAl. Indeed, if this were the case, since
[AiAk]∩[AjAl] "= ∅, the triangle inequality would ensure that at least one of the lengths |AiAk|,
|AjAl| is larger than dS . But this would contradict the defining maximality property of dS . &

As a consequence, we can easily deduce also the following known result (see [2], [3]).

Theorem 1.3 If S is a finite plane set, then d(S) ≤ Card(S).

Proof. We use here induction on n = Card(S). The case n = 3 being trivial, we may assume
the claim true for all plane sets containing at most n− 1 points and we let S be an arbitrary
n-point plane set. Now, if there exists a point Aj ∈ S whose degree in ΓS is at least 3, then
we can find 3 diameters emerging from Aj , that we denote by [AjAi], [AjAk] and [AjAl]. If,
say, |AiAl| = max{|AiAl|, |AiAk|, |AkAl|}, then it is easily seen that the line joining Aj and Ak

separates the points Ai and Al. This implies that there are no halflines emerging from Ak and
intersecting both segments [AjAi] and [AjAl], other than [AkAj. This in turn ensures, due to
Lemma 1.2, that there exists exactly one diameter to which Ak belongs, namely [AkAj]. In
other words, the degree of Ak in ΓS is equal to 1. Applying the induction hypothesis to S \Ak,
we are done. It follows that the degrees of all vertices of ΓS are not larger than 2, which of
course implies that ΓS contains at most n edges, concluding the proof. &

2 Complete sets

Theorem 1.3 enables us to give the following

Definition 2.1 Suppose S is a finite plane set. Then

1. The positive integer i(S) := Card(S)− d(S) will be called the defect index of S.

2. S will be called complete provided i(S) = 0.

1



Examples of complete sets S can be easily constructed. It suffices for instance to choose the
vertices P1, P2, P3 of an equilateral triangle T , as well as another n − 3 points on the arc of
measure π/3 joining two of the vertices (say P2, P3) of T and lying outside of T . However,
such a configuration is not ‘democratic’ for n ≥ 4, since P1 belongs to n− 1 diameters, while
other points in S belong to only one diameter.

Definition 2.2 A complete set S is called democratic if each point in S belongs to exactly two
diameters.

The problem we address next is the existence of a democratic set S of n points.

Theorem 2.3 There exists a democratic set S of n points iff n is odd.

Proof. If n is odd, the set S of all vertices of an n-regular polygon is obviously democratic.
Conversely, suppose that a democratic set S containing n points exists. Since the degrees of
all vertices of ΓS equal 2, we can decompose ΓS as a disjoint union of k cycles {C(j)}1≤j≤k .
We label the vertices of Cj from Ap(j−1)+1 to Ap(j), where p(0) := 0 and p(k) := n. Let us
further denote by d the line joining the points labeled A1 and A2.
Case 1. k = 1 (one cycle)
Suppose that n is even. Lemma 1.2 ensures then that the line d separates the points labeled
Aj and Aj+1 for all j ∈ {3, 4, . . . , n − 1}. This means that, denoting by H1 and H2 the open
halfplanes with joint boundary d, {A3, A5, . . . , An−1} ⊂ H1 and {A4, A6, . . . , An} ⊂ H2. It
follows that [A1 An] ⊂ H2 and [A2 A3] ⊂ H1 are two disjoint diameters of S, contradicting
Lemma 1.2.
Case 2. k > 1 (at least two cycles)
If one of p(1), p(2)−p(1) is even, we reach again a contradiction of Lemma 1.2 by arguing as in
the first case on the corresponding cycle (C1 or C2, respectively). It follows therefore, that p(1)
is odd and p(2) is even. As in the first case, we deduce that {Ap(1)+1, Ap(1)+3, . . . , Ap(2)} ⊂ H1

and {Ap(1)+2, . . . , Ap(2)−1} ⊂ H2. But then [A1 A2] and [Ap(1)+1 Ap(2)] are two disjoint diame-
ters, contradicting once again Lemma 1.2. &

The way we have ruled out the second case in the previous proof ensures that

Corollary 2.4 The graph ΓS associated to a democratic set S consists of exactly one cycle.

As we have already mentioned, the set S of all n = 2k + 1 vertices of a regular polygon is
democratic. However, the converse is not true. To see this, it suffices to choose, for some 0 <
x < 1/

√
3, the five-element set S = {(0, 1), (±x, 0), (±(1+x2)1/2, (3/4−x2/4−x(1+x2)1/2)1/2)}.

Nevertheless, the vertices of a democratic set S still enjoy some properties regarding the convex
hull as well as distances between them, similar to those of a regular polygon.

Theorem 2.5 Let S be a democratic set, containing n = 2k + 1 points. Label the vertices of
ΓS in such a way that the cycle reads [A1 A2A3 . . . An]. Then

1. The polygon [A1 A3A5 . . . A2k+1A2 A4 . . . A2k] is convex.

2. The following inequalities concerning the diagonals’ lengths hold:

|A1 A3| < |A1 A5| < |A1 A7| < . . . < |A1 A2k+1|

|A1 A2k| < |A1 A2k−2| < |A1 A2k−4| < . . . < |A1 A2|. (2.1)

Similar inequalities hold for the diagonals emerging from Ai for all i ∈ {2, 3, . . . , 2k+1}.
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Proof. 1. The case n = 3 being trivial, we assume n ≥ 5. To prove the convexity of
[A1 A3 A5 . . . A2k+1 A2A4 . . . A2k], it suffices, due to symmetry reasons, to show that the line
passing through the vertices A1 and A3 does not separate S\{A1, A3}. Suppose this is not true,
so that one can find two nonempty sets S1 ⊂ H1, S2 ⊂ H2 such that S1 ∪ S2 = S \ {A1, A3},
where H1 and H2 are the two parts in which the line A1A3 splits the plane. Say, for instance,
that A2 ∈ S1. Since [A1 A2] ∩ [A3 A4] "= ∅, it follows A4 ∈ S1, too. This implies that one can
find a diameter [Aj Aj+1] with j ∈ {4, 5, . . . , 2k} such that Aj ∈ S1 and Aj+1 ∈ S2, otherwise
S2 would be empty. On the other hand, if we denote by D(X, r) the open disc of center X and
radius r, it also follows that Aj , Aj+1 ∈ S \ {A1, A2, A3} ⊂ M := D(A1, dS) ∩D(A2, dS). De-
note by M1 and M2 the two parts in which [A1 A3] splits M. If, say, S1 ⊂ M1 and S2 ⊂ M2,
we deduce that [Aj Aj+1]∩ [A1 A3] "= ∅. But [Aj Aj+1]∩ [A1 A2] "= ∅ and [Aj Aj+1]∩ [A2 A3] "= ∅
as well, in view of Lemma 1.2. Since a segment can not cut all the sides of a triangle without
passsing through its vertices, we have reached the contradiction that finishes the proof.
2. We prove only the first chain of inequalities in (2.1), as the other can be proved simi-
larly. Let us consider the diagonals [A1A2j−1] and [A1A2j+1] for some j ∈ {2, 3, . . . , k}. As
a consequence of i), the quadrilateral [A1 A2j−1 A2j+1A2j ] is convex and let us denote by O
the intersection of its diagonals. Upon summing the triangle inequalities in ∆A1OA2j−1 and
∆A2j+1OA2j respectively, we get, noting that |A2j−1A2j | = |A2j A2j+1| = dS , the desired
inequality |A1 A2j−1| < |A1 A2j+1|. &

Now we turn to the study of an arbitrary complete set S. We shall see next that to each
such set one can canonically associate a democratic subset, which is, moreover, unique in some
natural sense.

Theorem 2.6 If S is a complete set, then there exists at most one subset of S, denoted by S̃,
such that S̃ is democratic and dS = dS̃ .

Proof. Suppose that there exist two democratic sets S̃1 and S̃2 such that S̃1, S̃2 ⊂ S and
dS = dS̃1

= dS̃2
. The last equality ensures that each point in S̃1 ∪ S̃2 belongs to at least two

diameters of the set S̃1 ∪ S̃2. Theorem 1.3 implies then that each point in S̃1 ∪ S̃2 belongs
to exactly two diameters of the same set, that is, S̃1 ∪ S̃2 is democratic. The graph ΓS̃1∪S̃2

associated to it, and containing all the diameters of S̃1 and S̃2 among its edges, consists then of
only one cycle. As the diameters of S̃1 build also a cycle in ΓS̃1∪S̃2

, it follows that S̃1 = S̃1∪ S̃2

and similarly S̃2 = S̃1 ∪ S̃2, concluding the proof. &

The existence of a democratic subset S̃ ⊂ S as in Theorem 2.6 can be proved constructively.
The result reads as follows.

Theorem 2.7 (‘Democratization by killing the poor’)
Let S be a complete set and denote by S1 the set of all points in S belonging to exactly one
diameter. Then S \ S1 is democratic.
The following algorithm renders S \ S1 in a finite number of steps.
S̃ := S;
while (∃P ∈ S̃,degΓ

S̃
(P ) "= 2)

choose P ∈ S̃ such that degΓ
S̃
(P ) = k ≥ 3;

label the vertices adjacent to P , clockwise, by Q1, Q2, . . . , Qk;
S̃ := S̃ \ {Q2, . . . , Qk−1};

end;

Proof. To prove the first assertion, we use induction on n = Card(S). If n = 3, the claim
is trivially true. We may therefore suppose n ≥ 4 and the claim true for all complete sets S
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containing at most n−1 points. We may assume also S1 "= ∅, otherwise there’s again nothing to
prove. We deduce that there exists P ∈ S such that k := degΓS

(P ) ≥ 3. Then, obviously, the
points adjacent to P lie on C(P, dS), the circle of center P and radius dS . More precisely, if we
label them Q1, Q2, . . . , Qk clockwise, then the angle !Q1PQk has measure no larger than π/3.
Using an argument that already appeared in Theorem 1.3, it is easily seen that there are no
diameters emerging from Q2, . . . , Qk−1 other than those adjacent to P . We consider then the
set S′ := S \{Q2, . . . , Qk−1} and the graph ΓS′ associated to it. We note that through passing
from ΓS to ΓS′ , the degrees of all vertices of ΓS′ have been preserved, except for degΓS

(P ) = k,
which has been lowered to degΓ

S′
(P ) = 2. We may therefore apply the induction assumption

to S′ and conclude the proof of the first claim. As for the algorithm, it is straigthforward to
see that every passage through the ‘while’ loop strictly lowers the number of points of degree
different from 2, as long as such points exist. We shall only remark, for the sake of a better
understanding of the underlying structure of S, that deg(Q1),deg(Qk) ≥ 2. Indeed, we can
rephrase the first assertion already proven, by saying that each point in S of degree at least
2 in ΓS is also an element of the democratic set S \ S1. It follows that the point P , subject
to the procedure of a ‘while’ loop, must be adjacent to at least two points from S \ S1 (its
neighbours on the cycle ΓS\S1

) and having therefore degree at least 2 in ΓS. These two points
must be Q1 and Qk, since Q2, . . . , Qk−1 have for sure degree 1 in ΓS. &

Definition 2.8 The democratic set S̃ = S \S1 associated to a complete set S by Theorem 2.7
will be refered to as the democratic core of S.

From the previous proof we deduce also

Corollary 2.9 Let S be complete and S̃ be its democratic core. For each triple of consecutive
points O,P,R on the cycle ΓS̃ draw the arc AP of C(P, dS) joining O and R and lying inside
the angle !OPR. Then

S1 ⊂
⋃

P∈S̃

AP .

Moreover, a converse, which will help us describe all complete sets, is also true.

Proposition 2.10 Let S̃ be a democratic set. For each triple of consecutive vertices O,P,R
of the cycle ΓS̃ draw the arc AP of C(P, dS) joining O and R and lying inside the angle !OPR.

If S1 is an arbitrary finite part of
⋃

P∈S̃ AP , then S := S̃ ∪ S1 is complete.

Proof. It is enough to check that if Q1, Q2 ∈
⋃

P∈S̃ AP , then dS̃∪{Q1,Q2}
= dS̃ . This amounts

to proving that |Q1Q2|, |TQ1|, |TQ2| ≤ dS̃ ∀T ∈ S̃. Let us prove only |TQ1| ≤ dS̃ ∀T ∈ S̃, the

proofs of the other two inequalities being similar. Suppose therefore Q1 ∈ AP for some P ∈ S̃,
adjacent on the cycle ΓS̃ to O and R. We may suppose T "= P . Since the points of S̃ are the
vertices of a convex polygon in which O and R are consecutive, it follows that either [ORTP ]
or [ORPT ] is a convex quadrilateral. In both cases we deduce that the line TP does not cross
[OR], therefore it does not meet AP either. This in turn yields |TQ1| ≤ max{|TO|, |TR|} ≤ dS̃ ,
as claimed. &

Let us now collect, for later use, some almost obvious properties of complete sets. We leave
the proof to the reader.

Proposition 2.11 Let S be complete. Due to Theorem 2.5, the points of S are the vertices of
a convex polygon P = [P1P2 . . . Pn]. Then

1. For each 1 ≤ i ≤ n there exists a unique vertex Pj of P such that [PjPi] and [PjPi+1] are
diameters of S (Pn+1 := P1).

4
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Figure 1: Recursive construction of a democratic set S.

2. If [PjPi] and [PjPk] are two diameters of S, with i < k, then [PjPl] is also a diameter of
S for all l satisfying either l ∈]i, k[ if j /∈]i, k[, or l /∈]i, k[ if j ∈]i, k[.

In view of Corollary 2.9 and Proposition 2.10, the construction of complete sets reduces to the
one of democratic sets.

The next results describes how this can be achieved, in a recursive way. Since a democratic
set containing three points is trivially an equilateral triangle, we are primarily interested in
the case Card(S) ≥ 5.

Proposition 2.12 Let P1 and P2 be two points in the plane and n ≥ 5 an odd integer. Let d
denote the distance between P1 and P2 and e the closed set D(P1, d)∩D(P2,D). We introduce
further notations, {A,B} := C(P1, d) ∩ C(P2, d), γi := C(Pi, d) ∩ ∂e and H1, H2 the half-
planes in which the line P1P2 divides the plane. We choose an arbitrary point P3 ∈ H1 on
γ1 \ {P1, A,B} and we construct the points Pk for 3 ≤ k ≤ n− 2 recursively, as follows.
C(Pk, d)∩ e consists of one single arc QkRk, with Qk ∈ γ1 and Rk ∈ γ2. We arbitrarily choose
then

Pk+1 ∈
{

Pk−1Rk if k is odd
Pk−1Qk if k is even

Finally, Pn := Rn−1. Then S := {P1, P2, . . . , Pn} is a democratic set of diameter d. (see
Figure 1)

Proof. We start by proving, using induction on k ∈ {2, 3, . . . , n}, the first claim concerning the
existence of exactly one arc QkRk and therefore of Pk+1, too. What we shall actually check,
will be that Pk ∈ H1 ∩ e if k is odd, and Pk ∈ H2 ∩ e if k is even. Sice the cases k = 1, 2, 3
are trivial, suppose the claim true for all integers up to k and let us prove it for k + 1. Say
k is even (the case k odd can be treated analogously). Then Pk ∈ Int(e) ∩H2, which ensures
|PkP1|, |PkP2| < d. As e∩H1 is convex, maxX∈e∩H1

|PkX| is attained for X ∈ {A,P1, P2} and
is larger than d, because Pk−1 "= A lies also in e ∩H1. Now, since the line P1X doesn’t meet
γ2∩H1, it follows that there exists a uniqueQk ∈ γ2∩H1 such that |PkQk| = d. Similarly, there
is exactly one point Rk ∈ γ1 ∩H1 satisfying |PkRk| = d. So, the whole arc QkRk containing
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Pk−1 is lying in e ∩H1 and the construction of Pk+1 is therefore possible.
We postpone the proof of the claim concerning the completeness of the set S, as this will follow
directly from a later result (see Corollary 3.4). &

3 Extensible sets

One further natural question we could raise now is the following. If the set S has n ≥ 3 points
and nonvanishing defect index, is it possible to enlarge S to a complete set S̄, preserving also
the length of the diameters (dS = dS̄)? The main purpose of this section is to solve this
extensibility problem. First, let us set up some terminology.

Definition 3.1 Suppose S is a finite plane set. Then

1. If each point of S belongs to at least one diameter, the set S will be called weakly complete.

2. If there exists a weakly complete set S such that S ⊂ S and dS = dS, S will be called
weakly extensible and S will be refered to as a weak extension of S.

3. If there exists a complete set S such that S ⊂ S and dS = dS , S will be called strongly
extensible and S will be refered to as a strong extension of S.

Using this definitions, we shall see next that finding a positive answer to the question above
amounts to bringing all the points of the set S on diameters, by adding some new points.

Theorem 3.2 A set S is strongly extensible iff it is weakly extensible.

Proof. It is of course enough to prove that a weakly complete set S is strongly extensible.
We prove this by induction on i(S). As the claim is trivial if i(S) = 0, let us suppose that S
has nonvanishing defect index. Let further S1 denote the set of all vertices of degree 1 in ΓS .
Denote by Γ2

S the subgraph of ΓS, consisting of all v(Γ2
S) vertices of degree at least 2 in ΓS

and the edges between them.
Case 1. Γ2

S "= ∅
Then there exists at least one vertex of Γ2

S, denoted by Q, which has degree at most 1 in Γ2
S .

Indeed, if all vertices of Γ2
S had degree at least 2, we would use the weak completeness and

we would conclude that the number of edges in ΓS is at least Card(S1) + v(Γ2
S) = Card(S),

meaning that S is complete. So the point Q has degree at least 2 in ΓS and at most one of
the vertices adjacent to Q has degree at least 2 in ΓS. We label the vertices adjacent to Q by
P1, P2, . . . , Pk, k ≥ 2 in such a way that P2, . . . Pk−1 lie inside the angle !P1QPk. It follows that
at least one of the vertices P1 or Pk (say, P1) has degree 1. We construct next the closed plane
set eP1Q defined by eP1Q := D(P1, d(S))∩D(Q, d(S)) = e1P1Q

∪e2P1Q
, where D(X, r) denotes the

closed disc of center X and radius r and e1P1Q
, e2P1Q

are the closures of the two halves in which
[P1Q] splits eP1Q. As [P1Q] is a diameter, all points of S must lie in eP1Q. Due to the choice of
P1, we may suppose that all points in S adjacent to Q are in e1P1Q

. This means that there are

no points in S lying on the boundary of e2P1Q
, except for P1 and Q. We choose next a point

R ∈ S such that the center N on ∂e2P1Q
of the circle passing through R and Q with radius dS

is as close to P1 as possible (see Figure 2). Of course, N /∈ S and we claim that S ∪ {N} has
diameter dS , Card(S) + 1 points and at least two diameters more than S, namely [QN ] and
[NR]. In fact, all we have to check is that dS∪{N} = dS . Noting that e1NQ and e2NQ are two
closed plane sets, with diameter dS , the equality above follows immediately from the defining
property of R, which ensures S ⊂ eP1Q ∩ eQN . Applying the induction assumption to the set
S∪{N}, for which i(S ∪{N}) = Card(S∪{N})−d(S ∪{N}) ≤ Card(S)−d(S)−1 = i(S)−1
holds, we are done.
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Figure 2: Construction of a new point N , based on the geometry of S.

Case 2. Γ2
S = ∅

This case is now trivial, as we can simply repeat the previous argument after having chosen Q
to be an arbitrary point in S. &

Due to Theorem 3.2, a weakly (or strongly) extensible set S will be called in the following
extensible. For later use, we make the following remark, whose validity follows from the proof
of Theorem 3.2.

Remark 3.3 If S is weakly complete, then there exists a strong extension S̃ of S such that
S̃ = ∪∞

j=0Fi, where F0 := S and

Fj := {P ∈ S̃ \
j−1
⋃

i=0

Fi | P is adjacent in ΓS̃ to at least 2 points of
j−1
⋃

i=0

Fi}, ∀j ≥ 1.

As a second consequence of the proof of Theorem 3.2, we get next a sharp estimate for the
cardinality of the strong extension that we have inductively constructed. More precisely,

Corollary 3.4 If S is weakly complete, then there exists a strong extension S̄ of S, containing
exactly 2 · Card(S)− d(S) points.

Proof. Within the setting of the previous proof, it is enough to check that d(S∪{N}) = d(S)+2,
which amounts to proving that there are exactly two points in S (one of them being, of course,
Q), lying on the dashed arc in Figure 2, that is, on C(N, dS) ∩ eP1Q. Suppose that there are
at least three such points, Q, R1 and R2, labeled in such a way that R1 is between Q and
R2. We repeat here an argument we have already employed in Theorem 1.3. More precisely,
since from R1 ∈ S ∪ {N} emerges at least one diameter (with both ends in S), this must cross
all other diameters, in particular [NR] and [NQ]. It follows that R1 is adjacent to exactly
one diameter, namely [NR1]. This in turn implies N ∈ S, contradicting therefore the defining
property of P1 which ensured N /∈ S. The proof is complete. &
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Using Corollary 3.4 we now complete the proof of Proposition 2.12. In those notations, we
shall prove, again by induction on k (3 ≤ k ≤ n− 2), that

|PkPi| ≤ d ∀1 ≤ i < k. (3.1)

We suppose therefore that (3.1) holds for all integers up to k, and let us prove it for k + 1.
We assume again w.l.g. k odd and we remark first that (3.1) implies the extensibility of the
set {P1, P2, . . . , Pk}, as a weakly complete set. Moreover, Corollary 3.4 secures the existence
of a point Q such that {P1, P2, . . . , Pk, Q} is a complete set. It is easy to see that, on account
of Proposition 2.7, there are only two possibilities, namely: either |QPk−1| = |QP2| = d, or
|QP1| = |QPk| = d. In both cases it follows, via Theorem (2.5), that [P1P3 . . . P2P4 . . .] is a
convex polygon. Of course, since e ∩H1 is a closed convex set of diameter d, |Pk+1Pi| ≤ d, ∀i
odd, 1 ≤ i ≤ k. Now, defining f := D(Pk, d)∩D(Pk−1, d) and denoting by G1 and G2 the half-
planes in which the line PkPk−1 splits the plane (say P1 ∈ G1), it follows from the convexity
of [P1P3 . . . P2P4 . . .] that Pi ∈ f ∩G2, ∀i even, 1 ≤ i ≤ k. Since also Pk+1 ∈ f ∩G2, and f is
a closed convex set of diameter d, we deduce |Pk+1Pi| ≤ d, also for all i even, 1 ≤ i ≤ k. &

We shall prove next that the bound we obtained in Corollary 3.4 for the cardinality of a strong
extension of a weakly complete set is optimal.

Theorem 3.5 Let S be weakly complete and S be a strong extension of S. Then it holds:

Card(S) ≥ 2 · Card(S)− d(S). (3.2)

Proof. Let S1 be the set defined by S1 := {P ∈ S \ S | degΓ
S
(P ) = 1}. It follows that

S
′
:= S \ S1 is again a strong extension of S. Hence, it suffices to prove the inequality (3.2)

with S replaced by S
′
. We claim that each P ∈ S

′ \S belongs to at most two diameters in S
′
.

If this is the case, then Card(S
′
) = d(S

′
) ≤ d(S) + 2 · Card(S′ \ S), which implies (3.2), since

Card(S
′ \ S) = Card(S

′
)− Card(S).

It remains therefore to prove the claim above. Suppose there exists P ∈ S
′ \ S belonging to

three diameters of S
′ \ S, say [PA], [PB], [PC]. Without loss of generality, we may suppose

that B ∈ Int(!APC). Consequently, there exists exactly one diameter of S
′
emerging from B,

namely [BP ]. Now, either B ∈ S, which entails P ∈ S (S is weakly complete !), or B ∈ S
′ \ S

which leads to degS(B) = 1. Both conclusions are absurd, due to P ∈ S
′ \ S and to the

definition of S
′
. The proof is complete. &

So far we have proved that weak completeness ensures strong extensibility and we have been
also able to construct in this case a strong extension containing as few points as possible.
However, if the finite plane set S is arbitrary, the existence of an extension (weak or strong)
is no longer guaranteed (to see this, take S such that not all of its points lie on the boundary
of its convex hull). The characterization of strongly extensible sets is the problem we shall be
addressing next. First, we shall see that if the extension is possible, then it can be done by
adding essentially not more points than in the weakly complete case. Then we shall use this
result to derive the desired extensibility criteria.

Theorem 3.6 Suppose that S is an extensible finite point plane set. Then there exists a strong
extension S such that

Card(S) ≤ 2 · Card(S)− d(S). (3.3)

Proof. For each weak extension S∗ of S we can define on the set S0 := {M ∈ S | degΓS
(M) = 0}

at least one function f which associates to M a point f(M) ∈ S∗\S adjacent to M in ΓS∗ , that
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is, such that [Mf(M)] is a diameter in S∗. Such pairs (S∗, f) will be called in the following
admissible. We note that the range of f depends on the weak extension S∗, while the domain
is S0, a fixed subset of S. For each admissible pair (S∗, f) we define S′ := S ∪ Range(f)
and we note that S′ is weakly complete. If we invoke at this moment Corollary 3.4, for the
set S′, this will provide us with a strong extension S of S′, therefore of S too, such that
Card(S) ≤ 2 ·Card(S′)− d(S′) ≤ 2 ·Card(S)− d(S) +Card(S0). But this inequality is by one
large term (Card(S0)) weaker than what we actually need. Hence, at this moment Corollary
3.4 is not worth employing. Instead of using it, let us recursively define, for each admissible
pair (S∗, f), the sets (Fj)j≥0 by F0 := S and

Fj := {P ∈ Range(f)\
j−1
⋃

i=0

Fi | P is adjacent in ΓS∗ to at least 2 points from
j−1
⋃

i=0

Fi}, ∀j ≥ 1.

We remark that the sets Fj are pairwise disjoint and empty for large j, namely for j ≥
Card(S0) + 1. For later use, we also note that the very definition of the sets (Fj)j≥0 already
provides us with a lower estimate for the number d(

⋃

i≥0 Fi) of diameters of S′ having both
ends in

⋃

i≥0 Fi, that is,

d(
⋃

i≥0

Fi) ≥ d(S) + 2 · Card(
⋃

i≥0

Fi). (3.4)

Define further E(S∗, f) := Range(f)\
⋃

i≥0Fi. Obviously, E(S∗, f) is a finite set, so let us choose
now the pair (S∗, f) in such a way that Card(E(S∗, f)) is as small as possible. We claim that
for this choice of (S∗, f), the set E(S∗, f) is empty. Indeed, suppose that E(S∗, f) "= ∅. We infer
then from the definition of E(S∗, f) that each point P = f(M) ∈ E(S∗, f) is adjacent in ΓS∗ to
exactly one vertex from

⋃

i≥0 Fi, namely M . We choose now P ∈ E(S∗, f) and A,B ∈
⋃

i≥0Fi

such that [AB] is a diameter and the measure 0 < α ≤ π/2 of the angle between [PM ] and
[AB] is the smallest possible for all choices of P ∈ E(S∗, f) and A,B ∈

⋃

i≥0Fi with A,B
adjacent (see Figure 3).
Case1. {M,P} ∩ {A,B} "= ∅
We may assume A = M and it follows B /∈ S (otherwise P wouldn’t exist!). This shows that
B is in the range of f , that is B = f(Q) ∈

⋃

i≥0Fi, with Q "= M . We define then the function
g : S0 → S′ \ (S ∪ {P}) to be equal to f on S0 \ {M} and by g(M) := f(Q) = B. It follows
that (S′ \ {P}, g) is an admissible pair and that E(S′ \ {P}, g) ⊂ E(S∗, f) \ {P}, contradicting
the minimality property of the pair (S∗, f).
Case 2. {M,P} ∩ {A,B} = ∅
Let us denote by X the crossing point of the diameters [PM ] and [AB]. We may assume
that the measure of the angle !MXB is not larger than π/2 and we claim that no points
of S′ := S ∪ Range(f) lie then inside the angles !AXP and !MXB. Indeed, if R were
such a point, say R ∈ Int(!AXP ), then an arbitrary diameter [RT ] emerging from R (S′

is weakly complete!) would satisfy, due to Lemma 1.2, T ∈ Int(!MXB) (see Figure 3).
If R ∈ Range(f) or T ∈ Range(f) (say, for instance, that the first holds), it would follow
R = f(U), with U ∈ Int(!MXB), and we would contradict the minimality property of α,
either with the angle between the diameters [RU ] and [AB] if R ∈ E(S∗, f), or with the angle
between [PM ] and [RU ] if R ∈

⋃

i≥0Fi. We deduce that R,T ∈ S ⊂
⋃

i≥0Fi should hold,
and in this case we would once again contradict the minimality of α with the angle between
[PM ] and [RT ]. The proof of the fact that S′ ∩ (Int(!AXP ) ∪ Int(!MXB)) = ∅ is therefore
complete.
We remark now that inside the angle !AXP there exists exactly one point P̃ such that
|MP̃ | = |BP̃ | = dS . We consider then the set S′′ := (S′ \ {P}) ∪ {P̃} and we note that
dS′′ = dS . Indeed, if Q ∈ S′\{P}, then Q lies in Int(!AXM)∪Int(!PXB), which implies (say,
Q ∈ Int(!AXM), so that [QP̃PM ] is a convex quadrilateral) |QP̃ |+ |MP | < |QP |+ |MP̃ | or,

9



A B
X

M

"

P

T

Q

P

R

Figure 3: Replacing P by P̃ and the new diameter [P̃B] gained thereby.

equivalently, |QP̃ | < |QP | ≤ dS (see again Figure 3). Moreover, the set S′′ is weakly complete
and we can define g : S0 → S′′ \ {P} to be equal to f on S0 \ {M} and by g(M) := P̃ . The
pair (S′′, g) is admissible and E(S′′, g) ⊂ E(S∗, f) \ {P}, contradicting again the minimality
property of the pair (S∗, f). We conclude that the set E(S∗, f) is empty. Hence (3.4) reads
now

d(S′) ≥ d(S) + 2 · Card(Range(f)). (3.5)

Besides,
Card(S′) = Card(S) + Card(Range(f)). (3.6)

Since S′ is weakly closed, there exists, cf. Corollary 3.4, a strong extension S of S′, therefore
of S too, such that

Card(S) ≤ 2 · Card(S′)− d(S′) (3.7)

Using (3.5) and (3.6) in (3.7) we obtain (3.3). The proof of the theorem is complete. &

Remark 3.7 The previous result shows that if an arbitrary finite plane set S is extensible,
then there exists a strong extension S̃ of S such that S̃ = ∪∞

j=0Fi, where F0 := S and

Fj := {P ∈ S̃ \
j−1
⋃

i=0

Fi | P is adjacent in ΓS̃ to at least 2 points from
j−1
⋃

i=0

Fi}, ∀j ≥ 1.

(compare Remark 3.3)

Based only on Remark 3.7, we can give already at this stage an algorithm to check on whether
an arbitrary finite plane set S containing n points is extensible or not. Let us briefly describe
how we proceed. As long as i(S) > 0, we add to the set S a new point Pn+k+1 (say that we
have already constructed k new points Pn+1, Pn+2, . . . , Pn+k) such that S ∪ {Pn+k+1} has at
least two diameters more than S ([Pn+k+1Pi] and [Pn+k+1Pj ], for some 1 ≤ i < j ≤ n+ k). Of
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course there are already 2 ·
(

n+ k

2

)

possibilities to be considered, and the algorithm should

carefully examine all of them. Now, to ensure that we are on the way to a complete set,
S ∪ {Pn+k+1} must preserve the diameter dS . If, however, this is not the case, we pick a new
pair (i, j) with 1 ≤ i < j ≤ n+ k in order to construct the point Pn+k+1. If, moreover, no pair
(i, j) provides us with a good candidate for Pn+k+1, we go backwards, remove all the points we
have added to our set (that is, Pn+k, Pn+k−1, . . .) up to the next one for which a new choice is

still possible (say, Pl+1). We replace then Pl+1 by a new point from the 2 ·
(

n+ l

2

)

candidates

at this level and restart the procedure. In this way, we either reach a complete set, or, after
examining all possibilities, we are left with the original set S.
As we can see, the question as to whether an arbitrary set is extensible or not can be answered
using a computational approach. However, the algorithm presented above is, in some respects,
not optimal. It does not take into account for instance various geometrical properties of the
point sets involved and this in turn leads to a very high complexity which restricts its appli-
cability only to small values of Card(S).

In the following we show therefore how further geometrical information can be employed to
refine this algorithm. The main purpose is of course to reduce its complexity, which is coming
from the huge (although finite) number of choices for new points to be added to S at each
step.

Definition 3.8 An arbitrary finite plane set S is called reduced if degΓS
P ≤ 2 for all P ∈ S.

To each set S we then canonically associate a reduced set Sr as follows: we choose P such that
k := degΓS

P ≥ 3 and label the points adjacent to P in ΓS clockwise, by P1, P2, . . . , Pk. We
remove then P2, . . . , Pk−1 from S and we repeat this operation as long as there exist points in
S of degree at least 3 in ΓS (compare Theorem 2.7). In the end, what we are left with is a
reduced set, denoted by Sr and referred to as the reduced core of S. Note the consistency of
this definition with the one of the democratic core associated to a complete set: the reduced
core of a complete set coincides, due to Theorem 2.7, with its democratic core. In view of
Corollary 2.9 and Proposition 2.10, it is straightforward to deduce

Proposition 3.9 An arbitrary finite plane set S is extensible if and only if Sr is extensible.

We shall also consider for an arbitrary finite plane set S the splitting of ΓS in connected com-
ponents. Note that if the set S is reduced and Γc is such a connected component, then Γc can
be either a point, a chain or a cycle. In case Γc is a cycle, the question of extensibility is easily
answered. Indeed, due to Corollary 2.4, if S is extensible, it must be already complete and
this information is computationally available at a low cost.

The main tool we shall use to refine the extension algorithm is the following result.

Proposition 3.10 Let S be an arbitrary plane finite set. If S is reduced, extensible, and no
connected component of ΓS is a cycle, then

1. We can label its points by P1, P2, . . . , Pn such that P := [P1P2 . . . Pn] is a convex polygon.

2. Denoting by Γc a connected component of ΓS which contains at least one edge, Γc is a
chain and it reads Γc = [PiPjPi+1Pj+1 . . . Pm] for some 1 ≤ i, j ≤ n, where Pn+k := Pk

∀k ∈ N∗.

3. With Γc as in 2., let P 1
n+1 and P 2

n+1 be the points defined by |Pi−1P 1
n+1| = |PiP 1

n+1| = dS,
|Pj−1P 2

n+1| = |PjP 2
n+1| = dS and lying on the same side of the lines PiPi−1 and PjPj−1
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Figure 4: Replacing R by X, as in Step 1.

respectively, as P. Then at least one of the sets S ∪ {P 1
n+1}, S ∪ {P 2

n+1} is extensible and
its defect index is strictly smaller than i(S).

Proof. 1. follows directly from Theorem 2.5, while 2. is a consequence of the fact that S
is reduced. To prove 3., let us first recall that, S being extensible, Remark 3.7 ensures the
existence of a set

S̃ strong extension of S, s.t. S̃ =
⋃∞

j=0Fi, with F0 := S and

Fj := {P ∈ S̃ \
j−1
⋃

i=0

Fi | P is adjacent in ΓS̃ to at least 2 points from
j−1
⋃

i=0

Fi}, ∀j ≥ 1. (3.8)

To each such S̃ we associate the integer %(S̃) :=
∑

P∈S̃ l(P ), where l(P ) ∈ N is well-defined

for each P ∈ S̃ by P ∈ Fl(P ). Now, of all S̃ satisfying (3.8), we choose one, denoted in the

following also by S̃, such that %(S̃) is minimal. It is for this S̃ that we shall prove that P 1
n+1 ∈ S̃

or P 2
n+1 ∈ S̃ holds. To this end, let us consider Q,R to be vertices of P such that Q,Pi, Pi+1

and R,Pj , Pj+1 are consecutive vertices of P. What we shall prove is that

either Q ∈ S,R /∈ S, |RQ| = |RPi| = dS , or Q /∈ S,R ∈ S, |QR| = |QPj | = dS , (3.9)

that is, either R = P 1
n+1, or Q = P 2

n+1.
In the following, we denote by H1 and H2 the half-planes containing Pi and Pj respectively, in
which the line QR splits the plane.
Step 1. Q ∈ S or R ∈ S
Let us argue by contradiction and suppose that Q /∈ S and R /∈ S. This implies that at
least one of [RQ], [RPi] is a diameter, otherwise Lemma 1.2 would ensure degΓ

S̃
(Q) = 1 with

[QPj ] the only diameter emerging from Q, which would in turn clearly contradict Q ∈ S̃ \ S.
Similarly, one of [QR], [QPj ] must be a diameter. Since the triangle inequality guarantees that
[QPj ] and [RPi] can not be simultaneously diameters, we conclude that [QR] is a diameter.
Further, it is straightforward to see that exactly one of [RPi], [QPj ] is a diameter. Indeed, if
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none of them were diameters, it would follow from degΓ
S̃
(R) ≥ 2 (R ∈ S̃ \S!), via Lemma 1.2,

that degΓ
S̃
(Q) = 1, which would contradict once again Q ∈ S̃ \ S.

Let us say, for instance, that [RPi] is a diameter. (The case when [QPj ] is a diameter
can be ruled out analogously.) Note first that degΓ

S̃
(R) is then exactly 2 (otherwise again

degΓ
S̃
(Q) = 1, absurd), with [RPi] and [RQ] the only two diameters emerging from R (see

Figure 4). This means, of course, that l(R) = l(Q) + 1. Now Q ∈ Fl(Q) is adjacent to at

least two points in ∪l(Q)−1
j=0 Fi and this ensures, taking into account also the second claim of

Proposition 2.11, the existence of two diameters [QU ] and [QV ], where PjRUV are consecutive
vertices of P. Since, obviously, degΓ

S̃
(U) = 1, we conclude U ∈ S. We construct next a point

X such that |XPj | = |XU | = dS̃ and X,R do not lie on the same side of the line going through
Pj and U . The same argument we have used in Theorem 3.6 shows that d(S̃∪{X})\{R} = dS̃ .

Moreover, by removing the point R from S̃ and adding then X to S̃ \ {R} we preserve the
number of diameters (remove 2 of them and add 2 new ones). This means that (S̃∪{X})\{R}
is still a complete set. We note further that (S̃ ∪ {X}) \ {R} fulfills condition (3.8) if we
remove, of course, R from Fl(R) and then add X to F1. Since l(X) = 1, we can then write

%((S̃ ∪ {X}) \ {R}) = %(S̃) − l(R) + l(X) = %(S̃) − l(Q) < %(S̃). But this contradicts the
definition of S̃, which involved the minimality of %(S̃). Hence the proof of the first step is
complete.
Step 2. {Q,R} "⊂ S
We have to check that both Q and R can not be simultaneously elements of S. Suppose,
again by contradiction, that Q,R ∈ S. Since Pj and R are consecutive vertices of P, the
first claim of Proposition 2.11 secures the existence of a point W ∈ S̃ such that [WPj ] and
[WR] are both diameters. Then, necessarily, W = Pi, otherwise either [WR] ∩ [PiPj ] = ∅,
contradicting Lemma 1.2, if W ∈ H1, or [QPj ] is a diameter, (use again 2. from Proposition
2.11) contradicting S reduced, if W ∈ H2. Further, if W = Pi, it follows degΓS

(Pi) = 2, again
absurd, due to the fact that Pi is one end of the chain Γc and has therefore degree 1 in ΓS .
This contradiction concludes the proof of the second step.
Step 3. Proof of (3.9)
If, say, Q /∈ S and R ∈ S, let us consider again W ∈ S̃ such that [WPj ] and [WR] are both
diameters. We claim that W = Q, which actually means Q = P 2

n+1. Now, W ∈ H1 can not
hold, since this would imply [WR] ∩ [PiPj ] = ∅ absurd in view of Lemma 1.2. Neither can
W = Pi hold, since this would imply again degΓS

(Pi) = 2. So W ∈ H2. If W = Q we are done,
while if W "= Q, Lemma 1.2 ensures that there are exactly two diameters emerging from Q
(there are at least two, anyway, since Q /∈ S !), namely [QPj ] and [QR]. But this contradicts
the earlier assumption W "= Q, thereby ruling out this case.
If, reversely, Q ∈ S and R /∈ S, we argue similarly and we eventually draw a symmetric con-
clusion, namely that [QPj ] and [QR] are diameters of S̃, or, in other words, R = P 1

n+1. &

As we claimed, we use now Proposition 3.10 to improve the extension algorithm by reducing its
complexity. We start by replacing the arbitrary set S by its reduced core Sr, of cardinality, say,
n. As long as i(Sr) > 0, we perform steps 1. and 2. as described in Proposition 3.10 (if already
this is not possible, the set S is not extensible). We add then to the set Sr a new point, Pn+k+1

(say that we have already added k new points Pn+1, Pn+2, . . . , Pn+k), constructed as described
in step 3., Proposition 3.10. We stress that there are only two possibilities to do this, which
is a significant reduction, compared with the original algorithm, where already at this point

2 ·
(

n+ k

2

)

chioces were admissible. So, either Pn+k+1 := P 1
n+k+1 or Pn+k+1 := P 2

n+k+1 (the

superscript defined according to step 3., Proposition 3.10). We choose first Pn+k+1 := P 1
n+k+1

and we check that Sr ∪ {P 1
n+k+1} has diameter dS . If this is not the case, we replace P 1

n+k+1
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by P 2
n+k+1 and check again that this has not increased the diameter. If, however, the diameter

has changed, we go backwards, remove all the points we have added to our set (that is,
P 2
n+k, P

2
n+k−1, . . .) up to the next one for which a new choice is still possible (say, P 1

l+1). We
replace then P 1

l+1 by P 2
l+1 and restart the procedure. In this way, we either reach a complete

set, or, after examining all possibilities, we are left with set Sr.
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