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1 Introduction

We consider an elliptic boundary value problem with stochastic input data
in a domainD. Namely, let (Ω,Σ, P ) be a σ-finite probability space andD ⊂
Rd a bounded open set with Lipschitz boundary ∂D. Consider also a deter-
ministic and uniformly positive on D diffusion coefficient A ∈ L∞(D ,Rd×d

sym ).

We define a random field on a submanifold M of Rd (it will always be D
or some part of its boundary) as a jointly measurable function from M ×Ω
to R. Suppose ∂D = Γ0 ∪ Γ1 (disjoint union), where Γ0 has positive surface
measure, and let f , g and h be random fields on D, Γ0 and Γ1 respectively.
We consider the following model problem

L(∂x)u
γ0(u)
γn(u)







=







−div(A(x)∇u(x,ω))
u(x,ω) |Γ0

n#A(x)∇u(x,ω) |Γ1







=







f(x,ω) in D
g(x,ω) on Γ0

h(x,ω) on Γ1

, (1)

where the operators involved in the boundary conditions should be thought
of as stochastic counterparts of the classical trace on Γ0, Γ1 and distribu-
tional conormal derivative operators, γ0, γ1 and γn respectively. Note that if
Ω reduces to only one point of mass one, the dependence of (1) on ω can be
dropped, the stochastic character dissapears, and we are left with a classical
mixed BVP, which will be refered to in the following as ’deterministic case’.
Since for a stochastic problem the data is uncertain and, moreover, knowing
all joint probability densities is in practice hardly the case, reasonable as-
sumptions can be made only on some ’statistics’ associated to the data. Here
we assume that the k-th order moment, sometimes called k-point correlation
of the random data f(x,ω) in (1) and given by

Mk(f)(x1, · · · , xk) :=

∫

Ω
f(x1,ω) · f(x2,ω) · . . . · f(xk,ω) dP (ω),

xj ∈ D, j = 1, 2, . . . , k, whenever such an integral exists, is available. Cor-
respondingly one is often interested in the higher moments of the stochastic
solution. We devoted [9] to the theoretical and numerical study of the
expectation (that is, the mean field or first order moment) and two-point
correlation of the solution. Both these ’statistics’ have been shown to satisfy
deterministic elliptic problems which are numerically solvable at essentially
the same cost (number of operations, memory requirements for a prescribed
relative accuracy) as the deterministic mean field problem,

L(∂x)Eu

γ0(Eu)
γn(Eu)







=







−div(A(x)∇Eu(x))
Eu(x) |Γ0

n#A(x)∇Eu(x) |Γ1







=







Ef (x) in D
Eg(x) on Γ0

Eh(x) on Γ1

. (2)

Here the mean field, or expectation, Eu associated to u, solution of (1), is
given by

Eu(x) := M1(u)(x) =

∫

Ω
u(x,ω)dP (ω), x ∈ D.

1



We shall study in the present paper existence, regularity, discretization and
complexity issues for the k-point correlation of u, the stochastic solution to
(1). Our main goal will be to derive and analyze an algorithm that makes
these high order statistics available at a computational cost which exhibits
only a mild dependence on k.

2 Problem formulation

Let k ≥ 1 be an integer, (Ω,Σ, P ) a σ-finite probability space and H a sepa-
rable Hilbert space. We define the Banach space of Lk, H-valued functions
on Ω (see [11]) by

Lk(Ω;H) :=

{

f : Ω → H | f measurable,

∫

Ω
‖f(ω)‖kH dP (ω) < ∞

}

/ ∼

‖f‖kLk(Ω;H) :=

∫

Ω
‖f(ω)‖kH dP (ω),

where we use the same notation for a P -a.e. equivalence (denoted by ∼)
class and one of its members. Bochner’s Theorem (see [11]) asserts that
f ∈ Lk(Ω;H) if and only if there exists a sequence ofH-valued step functions
(fj)j∈N such that

fj → f P -a.e. on Ω and

∫

Ω
‖fj − f‖kH → 0, as j → ∞. (3)

For each f ∈ L1(Ω;H) one can then define the vector-valued integral
∫

Ω
f(ω) dP (ω) ∈ H (4)

by means of a sequence of H-valued step functions (fj)j∈N satisfying (3) for
k = 1. Namely,

∫

Ω
f(ω) dP (ω) := lim

j→∞

∫

Ω
fj(ω) dP (ω), in H. (5)

We shall consider data for (1) satisfying the regularity assumption with
k ≥ 2,

f ∈ Lk(Ω;H−1(D)) ⊂ L2(Ω;H−1(D)) , H−1(D)⊗ L2(Ω),

g ∈ Lk(Ω;H1/2(Γ0)) ⊂ L2(Ω;H1/2(Γ0)) , H1/2(Γ0)⊗ L2(Ω), (6)

h ∈ Lk(Ω;H−1/2(Γ1)) ⊂ L2(Ω;H−1/2(Γ1)) , H−1/2(Γ1)⊗ L2(Ω).

For any Sobolev space H we denote by H its stochastic counterpart, that
is, the Hilbert space H ⊗L2(Ω) (we refer the reader again to [11] for tensor
products of Hilbert spaces). We shall use for instance L2(D) := L2(D) ⊗

2



L2(Ω), H1
(0)(D) := H1

(0)(D)⊗ L2(Ω) H1/2(Γ1) := H1/2(Γ1)⊗ L2(Ω), etc.

We consider also a deterministic diffusion coefficient A ∈ L∞(D ,Rd×d
sym ),

uniformly positive on D, i.e.

∃α,β > 0 s.t. α‖ξ‖2 ≤ ξ#A(x )ξ ≤ β‖ξ‖2 ∀ξ ∈ R
d and a.e. x ∈ D . (7)

With this setup one can prove (see [9]) that (1) has a rigorous variational
formulation and a unique random solution, as follows. Note that Id stands
for the identity operator in L2(Ω).

Theorem 2.1 Assume that f, g, h satisfy (6). Then there exists a unique
random solution u ∈ H1(D) such that (γ0 ⊗ Id)u = g and

〈(A⊗ Id)(∇⊗ Id)u, (∇⊗ Id)v〉L2(D)d = 〈f, v〉H−1(D),H1
(0)(D)+

〈h, (γ1 ⊗ Id)v〉H−1/2(Γ1),H1/2(Γ1) (8)

for all v ∈ H1
(0)(D).

Proof. Since H1(D)/H1
(0)(D) , H1/2(Γ0) as topological spaces, there exists

u1 ∈ H1(D) such that (γ0 ⊗ Id)(u1) = g, so that the problem reduces to the
existence and uniqueness of u0 ∈ H1

(0)(D) satisfying

A(u0, v) := 〈(A⊗ Id)(∇⊗ Id)u0, (∇⊗ Id)v〉L2(D)d =

= −〈(A⊗ Id)(∇⊗ Id)u1, (∇⊗ Id)v〉L2(D)d + 〈f, v〉H−1(D),H1
(0)

(D)+

〈h, (γ1 ⊗ Id)v〉H−1/2(Γ1),H1/2(Γ1) (9)

for all v ∈ H1
(0)(D). And this is a simple consequence of Lax-Milgram

Lemma in H1
(0)(D), as soon as we note that, on account of (7), the bilinear

form A defined by the l.h.s. of (9) is bounded and coercive on H1
(0)(D)

(‖(∇⊗ Id) ·‖L2(D)d defines a norm on H1
(0)(D), equivalent to the usual one),

while the r.h.s. is a continuous linear functional on the same space. 3

Remark 2.2 Let (e)i≥1 be an ONB in L2(Ω) and expand f =
∑

i fi ⊗ ei
with

∑

i ‖fi‖
2
L2(D) ≤ ∞, (similarly for g and h). Then the solution (in the

sense given by Theorem 2.1) u to (8) is given by u =
∑

i ui ⊗ ei where the
series converges absolutely in H1(D) and the coefficient function ui solves
the deterministic mixed BVP

L(∂x)ui
γ0(ui)
γn(ui)







=







fi in D
gi on Γ0

hi on Γ1

.

3



This can be seen by choosing the test function in (8) of the form v = w⊗ ei,
with w ∈ H1

(0)(D). Note that the deterministic character of A is essential

for this decomposition of (1).

Well-posedness of (1) (in the sense given by (8)) being established, we now
investigate the existence and the deterministic computation of the k-th order
moment of u solution to (1), for k ≥ 2.

3 Existence and regularity of higher order mo-

ments Mk(u)

We use here the setup and notations of the previous section and assume
for simplicity g = 0. We deduce next the existence of the higher order
moments associated to the pair (f, h). For α = (αj)1≤j≤k ∈ {0, 1}k and
s > 0, we define first the deterministic Hilbert spaces Xs,α

± := ⊗k
j=1X

s,αj
± ,

where Xs,1
± := Hs±1(D),Xs,0

± := Hs±1/2(Γ1). Consider also the mapping

FH : Ω → X0,α
− , FH(ω) :=

k
⊗

j=1

(αjf + (1− αj)h)(ω). (10)

The strong measurability of FH can be deduced by tensorizing sequences
of step functions approximating f and h, while the norm integrability is
a consequence of (6) and the Hölder inequality for the pair of functions

‖f(·)‖|α|H−1(D) ∈ Lk/|α|(Ω), ‖h(·)‖k−|α|
H−1/2(Γ1)

∈ Lk/(k−|α|)(Ω).

This means, in view of (3), FH ∈ L1(Ω;X0,α
− ). Consequently, Mα(f, h),

the α-moment of the pair (f, h) can be defined according to (4), by

Mα(f, h) :=

∫

Ω
FH dP (ω) ∈ X0,α

− . (11)

Note that if α = (1, 1, . . . , 1), the moment defined by (11) is actually associ-
ated to f and not to the pair (f, h), so that from now on it will be denoted
by Mk(f). Similarly, α = (0, 0, . . . , 0) leads to Mk(h).
The problem we address next is the existence of the k-th order moment
of u. To state the result we use the notations Hv(Dk) := ⊗k

j=1H
vj (D),

Hv
(0)(D

k) := ⊗k
j=1H

vj
(0)(D) for a multi-index v ∈ (R+)k and s := (s, s, . . . , s) ∈

(R+)k for s ∈ R+.

Theorem 3.1 Under the regularity assumption (6), the k-th order moment
of u, solution to (1) exists and is an element of H1(Dk).

Proof. (1) means that, P -a.e. on Ω, u(ω) solves a deterministic mixed
boundary value problem in D, if we view u ∈ H1

(0)(D)⊗L2(Ω) as a measur-

able, H1
(0)(D)-valued, square norm integrable function on Ω. More precisely,

4



from (8) in Theorem 2.1 we deduce

〈A∇u(ω),∇w〉L2(D) =

= 〈f(ω), w〉H−1(D),H1
(0)

(D) + 〈h(ω),Tr1w〉H−1/2(Γ1),H1/2(Γ1),

P -a.e. ω ∈ Ω and for all w ∈ H1
(0)(D). From the well-posedness of the

deterministic problem in D it follows that

‖u(ω)‖H1(D) ≤ C · (‖f(ω)‖H−1(D) + ‖h(ω)‖H−1/2(Γ1)) P -a.e. ω ∈ Ω, (12)

where the constant C depends only on the coefficient A.
Taking into account the measurability of u : Ω → H1

(0)(D), which follows

from u ∈ H1
(0)(D), (12) implies, in view of (6) and the definition ofLk spaces,

the assertion. 3

To derive a deterministic equation for Mk(u), we introduce the following
operators:

A⊗,k := ⊗k
j=1A ∈ B(⊗k

j=1L
2(D)d)

∇⊗,k := ⊗k
j=1∇ ∈ B(H1(Dk),⊗k

j=1L
2(D)d)

γ⊗,α
1 := ⊗k

j=1(αjIdH1(D) + (1− αj)γ1) ∈ B(H1(Dk),X0,α
+ ),

where we denote by B(X,Y ) the space of bounded linear operators between
the Hilbert spaces X and Y , with B(X) := B(X,X).

Theorem 3.2 Mk(u) is the unique solution inH1
(0)(D

k) of the kd-dimensional
variational problem

〈A⊗,k∇⊗,kMk(u),∇⊗,kM〉L2(D)dk =
∑

α∈{0,1}k

〈Mα(f, h), γ⊗,α
1 M〉X0,α

− ,X0,α
+

,

(13)
∀M ∈ H1

(0)(D
k).

Proof. The existence and uniqueness of a solution to (13) are easily proved
using the Lax-Milgram Lemma in appropriate spaces, as soon as we note
that tensor products of bounded positive homeomorphisms between Hilbert
spaces induce corresponding homeomorphisms between tensor products of
these spaces.
Now, since f ∈ Lk(Ω,H−1(D)), h ∈ Lk(Ω,H−1/2(Γ1)), there exist sequences
(fn)n∈N, (hn)n∈N of H-valued step functions on Ω satisfying (3) with H :=
H−1(D) andH := H−1/2(Γ1), respectively. Let us write fn =

∑

q∈Jn f
q
n1Ωq,n

and hn =
∑

q∈Jn h
q
n1Ωq,n , where 1Ωq,n stands for the indicator function of

the measurable set Ωq,n, f
q
n ∈ H−1(D), hqn ∈ H−1/2(Γ1),∀ q, n, and for each

n, the family (Ωq,n)q∈Jn is a partition of Ω. The above mentioned properties

5



of (fn)n∈N, (hn)n∈N are also sufficient to ensure, via the Hölder inequality,
dominated convergence and (5),

lim
n→∞

Mα(fn, hn) = Mα(f, h) in X0,α
− . (14)

To the deterministic data (f q
n, h

q
n) we associate the solution uqn ∈ H1

(0)(D) of
the corresponding mixed BVP,

〈A∇uqn,∇v〉L2(D)d = 〈f q
n, v〉H−1(D),H1

(0)(D) + 〈hqn, γ1v〉H−1/2(Γ1),H1/2(Γ1) (15)

∀v ∈ H1
(0)(D), and set un :=

∑

q∈Jn u
q
n1Ωq,n . The continuous dependence

(12) of the solution of a mixed BVP on the data and (3) for f and h imply

lim
n→∞

un → u P -a.e. on Ω, lim
n→∞

∫

Ω
‖u(ω)− un(ω)‖

k
H1

(0)(D)dP (ω) = 0.

(16)
Recalling definition (11) of the k-th order moment, we deduce from (16) and
(5) that

lim
n→∞

Mk(un) = Mk(u) in H1(Dk). (17)

Choosing in (15) k different deterministic test functions v1, v2, . . . , vk, taking
the product of the resulting k equalities and summing over q with weights
P (Ωq,n), we obtain that Mk(un) solves the deterministic problem

〈A⊗,k∇⊗,kMk(un),∇
⊗,kM〉L2(D)dk =

=
∑

α∈{0,1}k

〈Mα(fn, hn), γ
⊗,α
1 M〉X0,α

− ,X0,α
+

∀M ∈ H1
(0)(D

k) (18)

(use here that tensor products of total sets in Hilbert spaces are total in
product spaces).
The desired equation for Mk(u) follows then from (14) and (17) if we let
n → ∞ in (18). 3

The regularity of Mk(u) follows naturally from that of the data Mα(f, h),
∀α ∈ {0, 1}k and the result, as well as its proof, is analogous to the one
in [9] for k = 2. We only state it, as follows. Recall first that the mean
field problem (2) is said to satisfy the shift theorem at order s > 0 if Ef ∈
H−1+s(D) implies Eu ∈ H1+s(D).

Theorem 3.3 Suppose that the deterministic boundary value problem on D
with the diffusion coefficient A satisfies the shift theorem at order s. Then
also for (13) holds a shift theorem at order s, in the sense that if Mα(f, h) ∈
Xs,α

− , ∀α ∈ {0, 1}k, then Mk(u) ∈ Xs,1
+ = ⊗k

j=1H
s+1(D).

6



Remark 3.4 In the case of a polygon or polyhedron D, a shift theorem at
order s ≥ 0 holds in weighted spaces H1+s,2

β (D) (see [1]). The proof of

Theorem 3.3 can be correspondingly adapted to deduce then a shift theorem
for the correlation equation (13) in an anisotropic weighted Sobolev scale in
Dk.

4 FE Discretization

We shall now investigate the numerical approximation of Mk(u), using the
Finite Element Method for the deterministic elliptic equation (13). We
assume, for simplicity, Γ1 = ∅ and we start by defining hierarchical FE
spaces in D. Let V0 ⊂ V1 ⊂ . . . ⊂ VL ⊂ . . . ⊂ H1

0 (D) be a dense hierarchical
sequence of finite dimensional subspaces ofH1

(0)(D), with NL := dim(VL) <
∞ for all L. Suppose that the following approximation property holds:

min
v∈VL

‖u− v‖H1
0 (D) ≤ Φ(NL, s)‖u‖Hs+1(D), ∀u ∈ Hs+1(D)∩H1

(0)(D), (19)

where Φ(N, s) → 0 for s > 0 as N → ∞ is the convergence rate. For regular
solutions the usual FE spaces based on quasiuniform, shape regular meshes
are suitable.

Example 4.1 If {T L}L∈N is a nested sequence of regular triangulations of
D of meshwidth hL = hL−1/2, we choose VL to be the space of all continuous
piecewise polynomials of degree p on T L vanishing on ∂D. Then NL =
O(2d·L) and the functional Φ on the r.h.s. of (19) reads Φ(N, s) = O(N−δ),
with δ := min{p, s}/d.

Since the k-th order moment Mk(u) of u solves the elliptic problem (13)
on Dk, we shall construct FE spaces in Dk, starting from the hierarchical
FE spaces {VL}L≥0 in D. Full tensor product spaces present themselves as
natural candidates. However, due to efficiency reasons, we shall use the
sparse tensor product spaces that are defined by (see [12], [2])

V̂L := Span







k
⊗

j=1

Vij | 0 ≤ i1 + i2 + . . .+ ik ≤ L







.

Since this description of the sparse tensor space does not help identifying
bases, we introduce next at each level L ≥ 0 a hierarchic excess WL of
the scale {VL}L≥0 to be an arbitrary algebraic summand of VL−1 in VL

(here we set V−1 := {0}). As VL can be obviously decomposed as a direct
sum VL =

⊕

0≤i≤L Wi, one can easily check that V̂L admits the direct (not
necessarily orthogonal!) decomposition

V̂L :=
⊕

0≤i1+i2+...+ik≤L

k
⊗

j=1

Wij ⊂
⊕

0≤i1,i2,...,ik≤L

k
⊗

j=1

Wij =
k
⊗

j=1

VL. (20)

7



The discretized version of (13) using the FE space V̂L then reads

〈A⊗,k∇⊗,kMk
L(u),∇

⊗,kML〉L2(D)dk = 〈Mk(f),ML〉X0,1
− ,X0,1

+
, (21)

∀ML ∈ V̂L, where we denoted by Mk
L(u) ∈ V̂L the discrete solution of (13).

The approximation property (19) allows us to estimate the discretization
error in terms of the functional Φ, as follows.

Proposition 4.2 If Mk
L(u) is the solution to (21), L ≥ k − 1, and the

approximation property (19) holds, then

‖Mk(u)−Mk
L(u)‖

2
H1(Dk) ≤ C ·

k
∑

j=1

c(j,Φ) ·
∑

J⊂{1,...,k}
Card(J)=j

‖Mk(u)‖2Hs·eJ+1(Dk)

(22)
where eJ ∈ {0, 1}k , eJ (j) = 1 iff j ∈ J and

c(j,Φ) =
j−1
∑

m=1

∑

l1+...+lm=L−m+1

(Φ(Nl1 , s)·Φ(Nl2 , s) · · ·Φ(Nlm , s)·Φ(N0, s))
2+

∑

l1+...+lj=L−j+1

Φ(Nl1 , s)
2 · Φ(Nl2 , s)

2 · · ·Φ(Nlj , s)
2 (23)

Note that the constant C depends only on the coefficient A.

Proof. As in [9], the result follows using the quasioptimality of the FE
solution, the approximation property (19) and the description (20) of the
sparse tensor space with WL defined as the orthogonal complement of VL−1

in VL w.r.t the usual scalar product 〈·, ·〉 in H1
0 (D). Namely, we employ the

following orthogonal decomposition in H1
0 (D

k) equipped with the Hilbert
structure induced by the tensor product

⊗k
i=1〈·, ·〉. For the rest of the proof,

orthogonality in H1
0 (D

k) is to be understood w.r.t. this natural Hilbert
structure.

Mk(u)− P
ŜL

(Mk(u)) =
∑

α1+α2+...+αk≥L+1
αi≥0,1≤i≤k

k
⊗

i=1

P i
αi
Mk(u) (24)

where P i
α denotes the orthogonal projection on Wα w.r.t. 〈·, ·〉, acting in the

i-th dimension of Dk. As the notation suggests, PV̂L
denotes the H1

0 (D
k)-

orthogonal projection on V̂L, while in the following we shall use also Qi
α, the

projection on Vα acting in the i-th direction of Dk. We note that the sum
in the r.h.s. of (24) is H1

0 (D
k)-orthogonal, since the excesses Wα,α ∈ N

are pairwise H1
0 (D)-orthogonal. We rewrite the r.h.s. of (24), pointing out

those directions j ∈ {1, 2, . . . , k} for which αj = 0 (coarsest approximation).
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This decomposition does not coincide with the one in [2], but leads to the
same type of estimate.

∑

∑k
i=1 αi≥L+1

αi≥0

(

k
⊗

i=1

P i
αi

)

Mk(u) =

=
k
∑

p=1

∑

J⊂{1,2,...,k}
CardJ=p

∑

∑
j∈J αj≥L+1

αj≥1





⊗

j∈J

P j
αj

⊗

j /∈J

P j
0



 Mk(u) (25)

and we cast the first inner sum of projections above for J = {j1, j2, . . . , jp}
in the form

∑

∑p
n=1 αn≥L+1

αn≥1





p
⊗

n=1

P jn
αn

⊗

j /∈J

P j
0



 = (Id−Qj1
L )
⊗

n≥2

(

Id− P jn
0

)

⊗

j /∈J

P j
0

+
∑

α1≤L
α1≥1

P j1
α1

⊗

(Id−Qj2
L−α1

)
⊗

n≥3

(

Id− P jn
0

)

⊗

j /∈J

P j
0

+
∑

α1+α2≤L
α1,α2≥1

2
⊗

n=1

P jn
αn

⊗

(Id−Qj3
L−α1−α2

)
⊗

n≥4

(

Id− P jn
0

)

⊗

j /∈J

P j
0

+ . . .+
∑

∑p−1
n=1 αn≤L

αn≥1

p−1
⊗

n=1

P jn
αn

⊗

(Id−Q
jp

L−
∑p−1

n=1 αn
)
⊗

j /∈J

P j
0 . (26)

We note that the l-th sum in the r.h.s of (26) consists of those terms in the
l.h.s. corresponding to indices α1,α2, . . .αp ≥ 1 with

∑p
n=1 αn ≥ L + 1 for

which l ≤ p is the smallest integer with the property
∑l

n=1 αn ≥ L+ 1.
Using (26) in (25) and the trivial estimate ‖P i

α‖ ≤ ‖Id − Qi
α−1‖ (operator

norm in H1
0 (D

k)) we easily get, via (19), the desired inequality (22). 3

We specialize Proposition (4.2) by choosing the FE spaces as in Example
(4.1), to obtain

Corollary 4.3 For the sparse tensor product based on the FE spaces in
Example 4.1 the following asymptotic estimates hold as L → ∞,

‖Mk(u)−Mk
L(u)‖H1(Dk) ≤ C · (logNL)

(k−1)/2N−δ
L · ‖Mk(u)‖Hs+1(Dk)

= O((logNL)
(k−1)/2N−δ

L ), (27)

and
dim V̂L = O((logNL)

k−1NL), (28)

where s = (s, s, . . . , s) and δ = min{p, s}/d.
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The full tensor space would require O(Nk
L) degrees of freedom for a relative

tolerance O(N−δ
L ).

Remark 4.4 The factor (logNL)(k−1)/2 in (27) can not be removed. This
would be possible, as shown in [2], if we were interested in aH1(Dk) (instead
of H1(Dk)) approximation of the solution. However, since H1(Dk) is the
energy space for the k-point correlation problem, an H1(Dk)-approximation
is in this case irrelevant.

Remark 4.5 The proof of the approximation property of the sparse tensor
space, on which Proposition 4.2 is based, carries over to a heterogeneous
sparse tensor product, in which the factor spaces are possibly different and
satisfy each an approximation property of type (19) (see [10]).

5 Iterative Solution and Complexity

We have seen that sparse FE spaces allow to reduce the number of degrees
of freedom needed to compute a discrete solution approximating the exact
solution up to a prescribed accuracy. To study the complexity of the discrete
problem, we recall that (21) amounts to solving a linear system

ŜLMk(u) = Mk(f), (29)

where ŜL denotes the stiffness matrix of (13) with respect to some basis of
the sparse tensor product space V̂L ⊂ H1

(0)(D
k). To solve (29) efficiently, we

use the conjugate gradient (CG) method, which is suitable once the matrix
ŜL is well-conditioned and sparse. The first property will be ensured by a
wavelet preconditioning procedure, while the second, (which does not hold,
actually!) can be replaced by a proper use of the anistropic structure of the
problem. Here and in what follows, F denotes a family of double indices
running in Nd × Nd.

Assumption 5.1 There exist a family (ψj,i)(j,i)∈F ⊂ H1
0 (D) and constants

C1, C2 > 0 such that each u ∈ H1
0 (D) can be expanded as a convergent

series in H1
0 (D), u =

∑

(j,i)∈F cj,iψj,i and the following ‘stability condition’
is fulfilled

C1

∑

(j,i)∈F

|cj,i|
2 ≤ ‖

∑

(j,i)∈F

cj,iψj,i‖
2
H1

0 (D) ≤ C2

∑

(j,i)∈F

|cj,i|
2. (30)

We present some examples of families satisfying Assumption 5.1 for D =
(0, 1) or D = (0, 1)d, but mention that such constructions are available also
for polygonal domains (see [6]).

Example 5.2 For D = (0, 1), let us consider φ the hat function on R,
piecewise linear, taking values 0, 1, 0 at 0, 1/2, 0 and vanishing outside (0, 1).
We set F := {(j, i) | 0 ≤ j, 1 ≤ i ≤ 2j} and ψj,i(x) := 2−j/2φ(2jx − i +
1), x ∈ (0, 1). The family (ψj,i)(j,i)∈F satisfies then Assumption 5.1.
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Example 5.3 With D, F and φ as above, we define on R the function ψ,
piecewise linear, taking values (1,−6, 10,−6, 1) at (1/2, 1, 3/2, 2, , 5/2) and
vanishing outside (0, 3). Similarly, ψl take (9,−6, 1) at (1/2, 1, 3/2) and
ψr assumes values (1,−6, 9) at (1/2, 1, 3/2). Further, we define ψ0,1 :=
φ (scaling function) and ψj,1(x) := 2−j/2ψl(2jx), ψj,2j := 2−j/2ψr(2jx −
2j + 1), x ∈ (0, 1), for j ≥ 1 (boundary wavelets). Analogously, ψj,i(x) :=
2−j/2ψ(2jx−i+2), x ∈ (0, 1) for 2 ≤ i ≤ 2j−1 and j ≥ 2 (interior wavelets).
The family (ψj,i)(j,i)∈F constructed in this way satisfies Assumption 5.1.

For further examples see [4] and references therein.

Example 5.4 If D = (0, 1)d, we choose F := {(j, i) ∈ Nd × Nd | 0 ≤
j, 1 ≤ i ≤ 2j} (inequalities involving multi-indices should be understood
componentwise). Then, starting from the family in Example 5.3, we put
ψj,i(x) =

∏d
q=1 ψ(j(q),i(q))(xq) ∀x = (xq)1≤q≤d ∈ D to obtain (after rescal-

ing) a family (ψj,i)(j,i)∈F which still satisfies Assumption 5.1 (see [8]).

Formally, an increasing FE space sequence in D ⊂ Rd can be defined in
terms of the family (ψj,i)(j,i)∈F in Assumption 5.1 by

VL := Span{ψj,i| 0 ≤ |j|∞ ≤ L} (31)

(j may be a vector, as in the example above, and |j|∞ := max1≤q≤d jq).
We define further an algebraic complement WL of VL−1 in VL by

WL := Span{ψj,i | |j|∞ = L}. (32)

We then obtain, via (20), the following explicit description of the sparse
tensor space V̂L through a basis,

V̂L = Span{ψj,i :=
k
⊗

ν=1

ψj(ν),i(ν) |
k
∑

ν=1

|j(ν)|∞ ≤ L}, (33)

where j(ν) is the ν-th line of the k × d matrix j and similarly for i.

The algebraic excess ŴL of the sparse tensor scale (V̂L)L≥0 is then given by

ŴL = Span{ψj,i :=
k
⊗

ν=1

ψj(ν),i(ν) |
k
∑

ν=1

|j(ν)|∞ = L}, (34)

and can be further decomposed as

ŴL =
⊕

l∈Nk

|l|=L

Wl with Wl = Span{ψj,i | |j(ν)|∞ = lν}, (35)

where
|l| := l1 + l2 + . . .+ lk, ∀ l ∈ N

k.
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For further reference, let us collect, for L ≥ 0, in a vector denoted ΨL, the
basis functions in the definition (32) of WL. Similarly, for l ∈ Nk let Ψl be
the vector containing the basis functions of Wl, as defined in (35).

Concerning the properties of the stiffness matrix ŜL that are of interest for
solving (29), namely well-conditioning and sparsity, it holds

Proposition 5.5 i) The matrix ŜL has uniformly bounded condition num-
ber, as L → ∞.
ii)For examples above as well as for similar wavelet constructions, the matrix
ŜL is not sparse, in the sense that nnz(ŜL) ≥ O(N2

L) (compare (28)).

Proof. i) (30) can be rephrased by saying that the basis (ψj,i)(j,i)∈F gives a
homeomorphism of Hilbert spaces between ,2 and H1

0 (D), or that

u =
∑

(j,i)∈F

cj,iψj,i −→ |u|2w :=
∑

(j,i)∈F

|cj,i|
2 (36)

defines an equivalent norm on H1
0 (D). The same holds then for the basis

ψj,i introduced in (33). It follows that for M := (Mj,i)j,i ∈ RN̂L with

N̂L := dim V̂L, M :=
∑

j,iMj,iψj,i is an element of V̂L and

〈ŜLM,M〉
RN̂L

= 〈A⊗,k∇⊗,kM,∇⊗,kM〉L2(D)dk

∼ ‖M‖2H1
0 (D

k) ∼
∑

j,i

|Mj,i|
2 = ‖M‖2

RN̂L
.

As for ii), one can easily see that the entries of ŜL corresponding to the in-
dices i,j,i’,j’ with j(1)=j’(2)= (L,L, . . . , L) are in general nonzero, implying
the desired lower bound. 3

The nonsparsity makes the storage and use of ŜL rather costly. However,
the alternative, that is a full tensor product FE space in Dk, proves already
inefficient, for k ≥ 3, due to its huge dimension Nk

L. A further improvement
in the efficiency of solving (29) on a sparse tensor FE space can be achieved
(see [9] for the case k = 2) by taking into account the special structure of the
discrete operator (or, equivalently, of ŜL), which inherits the tensor product
structure of the continuous operator (see (13)). More precisely, we shall see
that one should store only the matrix SL corresponding to the case k = 1
and relate ŜL to SL to perform one step of the CG-algorithm. Of course,
storage of the load vector is necessary too, but, due to (28), this requires
only a log-linear (in NL) amount of memory. The Algorithm 6.13 in [9]
will be then shown to be applicable to this higher order case to achieve the
log-linear complexity of the matrix-vector multiplication needed to perform
one step of the CG-algorithm.
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We shall derive next the relation between ŜL and SL that will help us
formulate the matrix-vector multiplication algorithm. To this end, let us
denote by 〈·, ·〉w the scalar product associated with the norm (36). 〈·, ·〉w is
obviously equivalent to the usual scalar product in H1

0 (D) and (ψj,i)(j,i)∈F
becomes an orthonormal basis ofH1

0 (D) equipped with 〈·, ·〉w . Let us denote
by PL and QL the orthogonal projections in H1

0 (D) w.r.t. 〈·, ·〉w, on VL and
WL respectively, as they were defined in (31), (32), so that

PL =
L
∑

l=0

Ql.

Correspondingly, we denote by P̂L and Q̂L the orthogonal projections on V̂L

and ŴL (see (33), (34)) w.r.t. the scalar product on H1
0 (D

k) obtained by
tensorizing 〈·, ·〉w by itself.
On account of (33), (34), we have the multilevel decomposition

P̂L =
L
∑

l=0

Q̂l, (37)

as well as

Q̂L =
∑

l∈Nk

|l|=L

Ql with Ql :=
k
⊗

ν=1

Qlν (38)

the projection on the space Wl introduced in (35).
Let us further denote by Qk the k-fold tensor product bilinear form of the
moment problem (13),

Qk := Q⊗Q⊗ . . .⊗Q, with Q(u, v) := 〈A∇u,∇v〉L2(D), (39)

∀u, v ∈ H1
0 (D). Then the discrete problem in V̂L is given by the bilinear

form
Qk

L(u, v) := Qk(P̂Lu, P̂Lv) ∀u, v ∈ V̂L ⊂ H1
0 (D

k) (40)

or, inserting (37) and (38) in (40), by

Qk
L(u, v) =

L
∑

l,l′=0

∑

l,l′∈Nk

|l|=l,|l′|=l′

Qk
(

Qlu,Ql′v
)

∀u, v ∈ V̂L. (41)

Recalling that Ψl is the vector containing the basis functions of Wl given in
(35), we can write

Qlu = u#l ·Ψl, (42)
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with real vector coefficients ul and similarly for v.
Using (42) in (41), we obtain

Qk
L(u, v) =

L
∑

l,l′=0

∑

l,l′∈Nk

|l|=l,|l′|=l′

u#l · ŜL
l,l′ · vl′ , (43)

where the matrix ŜL
l,l′ is given by evaluating the bilinear form on the basis

functions,
ŜL
l,l′ := Qk(Ψl,Ψl′).

But, in view of (39) and (34), we have

ŜL
l,l′ = Qk(Ψl,Ψl′) =

k
⊗

ν=1

Q(Ψlν ,Ψl′ν ) =
k
⊗

ν=1

SL
lν ,l′ν

, (44)

where SL
l,l′ := Q(Ψl,Ψl′), ∀0 ≤ l, l′ ≤ L are the blocks of the stiffness matrix

SL corresponding to the mean field problem (2) in D (or, equivalently, to
the simple case k = 1).
The representation formulas (43) and (44) show that

Qk
L(u, v) =

L
∑

l,l′=0

∑

l,l′∈Nk

|l|=l,|l′|=l′

u#l ·

(

k
⊗

ν=1

SL
lν ,l′ν

)

· vl′ , (45)

that is the stiffness matrix ŜL of the k-th moment problem computed w.r.t.
the basis (33) of the FE space V̂L has a block structure

ŜL = (ŜL
l,l′) l,l′∈Nk

|l|=l≤L
|l′|=l′≤L

,

and each block is a tensor product of certain blocks of the stiffness matrix
of the mean field problem, that is, k = 1.
Moreover, SL is almost sparse, once for the basis (ψj,i)(j,i)∈F the following
’local support’ assumption holds true. We remark that the above-mentioned
examples as well as similar wavelet-type constructions are in this category.

Assumption 5.6 There exists p ∈ N∗ such that for all 1 ≤ i ≤ 2j ∈
Nd and j′ ∈ Nd, the set supp (ψj,i) ∩ supp (ψj′,i′) has nonempty interior for

at most pd ·
∏d

q=1max(1, 2j
′
q−jq) values of i′.

Remark 5.7 From Assumption 5.6 it follows by a simple counting argu-
ment that

nnz(SL
l,l′) ≤ pd · (min(l, l′) + 1)d−1 · 2d·max{l,l′} ∀ 0 ≤ l, l′ ≤ L. (46)
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To formulate the matrix-vector multiplication algorithm, we shall also need,
for each pair l = (lν)kν=1, l

′ = (l′ν)
k
ν=1, a reordering σl,l′ of {1, 2, . . . , k} such

that

q
∑

ν=1

lσ(ν) +
k
∑

ν=q+1

l′σ(ν) ≤ max

{

k
∑

ν=1

lν ,
k
∑

ν=1

l′ν

}

∀ 1 ≤ q ≤ k. (47)

The existence of such a permutation σ is easy to prove, by choosing xν = lν ,
yν = l′ν , ∀ 1 ≤ ν ≤ k in the following Lemma.

Lemma 5.8 If (xν)1≤ν≤k and (yν)1≤ν≤k are two families of positive real
numbers, then there exists a permutation σ of the set {1, 2, . . . , k} such that

q
∑

ν=1

xσ(ν) +
k
∑

ν=q+1

yσ(ν) ≤ max

{

k
∑

ν=1

xν ,
k
∑

ν=1

yν

}

∀ 1 ≤ q ≤ k. (48)

Proof. We use induction on k. Since for k = 1 the claim is trivial,
assume that it holds also for some k ≥ 1. Consider (xν)1≤ν≤k+1 and
(yν)1≤ν≤k+1 two families of positive real numbers and define zν := xν for
1 ≤ ν ≤ k − 1 and zk := xk + xk+1, as well as tν := yν for 1 ≤ ν ≤ k − 1
and tk := yk + yk+1. The induction assumption ensures the existence of
a permutation τ of {1, 2, . . . , k} such that

∑q
ν=1 zτ(ν) +

∑k
ν=q+1 tτ(ν) ≤

max
{

∑k
ν=1 xν ,

∑k
ν=1 yν

}

, ∀ 1 ≤ q ≤ k. We define then σ(ν) := τ(ν)

for all ν < τ−1(k) and σ(ν) := τ(ν − 1) for all ν > τ−1(k) + 1. Now, if
yk + xk+1 ≤ xk + yk+1 holds true, we set σ(τ−1(k)) := k, σ(τ−1(k) + 1) :=
k+1, otherwise, that is if yk+xk+1 > xk+yk+1, we define σ(τ−1(k)) := k+1
and σ(τ−1(k) + 1) := k. With this choice for σ one can easily check the in-
equalities (48). 3

To simplify the exposition of the algorithm, let us introduce, for an arbitrary
pair (l, l′) of indices, 1 ≤ q ≤ k, and a permutation σ = σl,l′ associated to it
in the sense explained above, the following tensor product matrices

TL
l,l′,q :=

k
⊗

ν=1

Uν , (49)

where

Uν :=











Idlν ,lν , ν ∈ {σ(1),σ(2), . . . ,σ(q − 1)}
SL
lσ(q),l

′
σ(q)

, ν = σ(q),

Idl′ν ,l′ν , ν ∈ {σ(q + 1),σ(q + 2), . . . ,σ(k)}

(50)

and Idl,l denotes for l ≥ 0 the identity matrix of size dimWl. With these no-
tations, each block in (45) can be expressed as a product of simpler matrices,
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of the type introduced in (49),

k
⊗

ν=1

SL
lν ,l′ν

= TL
l,l′,k · T

L
l,l′,k−1 · · ·T

L
l,l′,1. (51)

For later use, let us remark that (46) entails the following estimate concern-
ing the sparsity of the matrices TL

l,l′,q.

Remark 5.9

nnz(TL
l,l′,q) !

q−1
∏

ν=1

(lσ(ν) + 1)d · (min(lσ(q), l
′
σ(q)) + 1)d−1 ·

k
∏

ν=q+1

(lσ(ν) + 1)d

· 2d·(
∑q−1

ν=1 lσ(ν)+max{lσ(q),l
′
σ(q)}+

∑k
ν=q+1 l

′
σ(ν)) (52)

Proof. This follows immediately from the obvious equality

nnz(TL
l,l′,µ) =

µ−1
∏

q=1

dimWlσ(q)
· nnz(SL

lσ(µ),l
′
σ(µ)

) ·
k
∏

q=µ+1

dimWl′σ(q)
,

the asymptotic estimate dimWl , (L+ 1)d · 2dL and (46). 3

Based on the factorization formula (51), we can develop now the multipli-
cation algorithm of the matrix ŜL by a vector x.

Algorithm 5.10

store (SL
l,l′)0≤l,l′≤L (sparse), (xl)l1+l2+···lk≤L

for l satisfying
∑k

ν=1 lν ≤ L

initialize (ŜLx)l := 0

for l′ satisfying
∑k

ν=1 l
′
ν ≤ L

compute yl := TL
l,l′,k · T

L
l,l′,k−1 · · ·T

L
l,l′,1 · xl′

update (ŜLx)l := (ŜLx)l + yl

end % for

end % for

Remark 5.11 The order in the multiplication giving yl is essential for the
efficiency of the algorithm.
To implement the multiplication of TL

l,l′,q by a vector, one should not build

TL
l,l′,q, but, due to (49), (50), split the vector into blocks and multiply each

of them by SL
lσ(q),l

′
σ(q)

.
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The estimate of the complexity of Algorithm 5.10 can be carried out as in
[9]. The result reads:

Theorem 5.12 The algorithm (5.10) performs the matrix-vector multipli-
cation x → ŜLx using at most O((logNL)kd+2k−2NL) floating point oper-
ations. Besides, it requires only storage of the stiffness matrix SL of the
mean field problem and of x.

Proof. Due to (45), (51) we can write

(ŜLx)l =
∑

l′

|l′|≤L

k
⊗

ν=1

SL
lν ,l′ν

· xl′ =
∑

l′

|l′|≤L

TL
l,l′,k · T

L
l,l′,k−1 · · ·T

L
l,l′,1 · xl′ .

The multiplication under the summation above can be then performed using
at most

#l,l′ :=
k
∑

q=1

nnz(TL
l,l′,q) (53)

floating point operations. From (52) we obtain that

#l,l′ !
k
∑

q=1

(lσ(1) + 1)d · · · (lσ(q−1) + 1)d · (min(lσ(q), l
′
σ(q)) + 1)d−1·

· (l′σ(q+1) + 1)d · · · (l′σ(k) + 1)d · 2d·(
∑q−1

ν=1 lσ(ν)+max{lσ(q),l
′
σ(q)}+

∑k
ν=q+1 l

′
σ(ν)).

From this estimate and the defining property (47) of σ = σl,l′ , we deduce
that for L ≥ 1,

#l,l′ !
(

max
{

|l|, |l′|
})dk−1

· 2d·max{|l|, |l′|}.

Then the computation of the block (ŜLx)l can be done using
∑

l′ #l,l′ op-

erations. Finally, the number of operations needed to perform x → ŜLx
(collect all blocks (ŜLx)l for all l) admits the asymptotic upper bound, as
L → ∞,

∑

l
|l|≤L

∑

l′

|l′|≤L

(

max
{

|l|, |l′|
})dk−1

· 2d·max{|l|, |l′|}.

Since for a given l ≥ 0 the equation |l| = l has exactly

(

l + k − 1

k − 1

)

= O(lk−1)

(as l → ∞) solutions l ∈ Nk, we conclude

#flops(x → ŜLx) !
L
∑

l=0

ldk+2k−2 · 2dl = O((logNL)
kd+2k−2NL). 3
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Due to Proposition 5.5, the number of steps required by the CG algorithm
to compute the discrete solution up to a prescribed accuracy is bounded
once we use the solution at level L−1 as initial guess of the solution at level
L. Thus it holds

Theorem 5.13 The deterministic problem (13) for the k-point correlation
function
Mk(u) ∈ Hs+1(Dk)∩H1

0 (D
k) of the random solution u to (1) is numerically

solvable at a cost of
O((logNL)

kd+2k−2NL) (54)

floating point operations, with a

O((logNL)
k−1NL) (55)

needed amount of memory, for a relative accuracy of

O((logNL)
(k−1)/2N−δ

L ), (56)

where δ = min{p, s}/d.

Up to the logarithmic terms, the estimates (54), (55), (56) are similar to the
ones of the mean field problem (2).

6 Numerical Examples

We present here some elementary one-dimensional examples concerning the
2-point correlation (D = (−1, 1) and k = 2 throughout this section) and
numerical experiments we have performed in order to validate our main
theoretical result, Theorem 5.13. We mention that for the following com-
putations we have used the Riesz basis in Example 5.2 (piecewise linear
elements, p = 1).
Let us consider first (1) with g = 0, Γ1 = ∅ and a random field f(x,ω)
which is completely uncorrelated, the so-called ’white-noise’. This amounts
formally to

M2(f) = δ(x− y) (57)

where δ(x−y) is the Dirac distribution supported on the diagonal inD×D,

〈δ(x − y),φ〉 =
∫

D
φ(x, x)dx ∀ φ ∈ C∞

0 (D ×D).

One can see that the functional δ(x − y) admits a unique extension to
H1/4+ε(D2) ∀ε > 0. It follows, via Theorem (3.3), that the 2-nd moment
of u solution to (1) has the following regularity on the anisotropic Sobolev
scale:

M2(u) ∈ H7/4−ε(D2) ∩H1
0 (D

2). (58)
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Taking the coefficient A constant, equal to 1, the assumption of Theorem
5.13 holds true with s = 3/4. The expected convergence rate (expressed
in terms of the number of dofs N) of the discrete solution is therefore
O((logN)5/4N−3/4) (compare (55), (56) and note that N = (logNL)NL).
The observed rate matches the predicted one in Figure 1.
We consider a second example on which we test our complexity estimate
(54). Let the coefficient A be given by A(x) = 2+ sin(πx), x ∈ (−1, 1), and
the solution to the two-point correlation problem be

M2(u)(x, y) = (1− x2)(1− y2)exy ∈ C∞(R2). (59)

A and M2(u) being smooth, the assumptions of Theorem 5.13 are satisfied
∀s > 0. As a consequence, the expected convergence rate of the discrete
solution (again expressed in terms of number of dofsN) isO((logN)3/2N−1).
The expected asymptotic behaviour of the computational effort (flops) is
O((logNL)5NL) for a direct computation of the solution at each level. The
observed rates confirm these estimates in Figure 2 and Figure 3.
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Figure 1: Convergence in the 1D white-noise case with constant coefficient
(solid) and the predicted rate (dashed).
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Figure 2: Convergence in the case of a non-constant coefficient A (solid) and
the predicted rate (dashed).

20



10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Computational effort

Number of degrees of freedom (sparse grid)

N
u
m

b
e
r 

o
f 
fl
o
a
ti
n
g
 p

o
in

t 
o
p
e
ra

ti
o
n
s
 

Figure 3: Comparison between the effort required by the standard CG
method based on Algorithm 5.10 (solid) and its theoretical estimate
(dashed).
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