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Abstract

In this note we study standard Euler updates for computing first exit times of
general diffusions from a domain. We focus on one dimensional situations and
show how the ideas of Mannella and Gobet can be adapted to this problem.
In particular, we give a fully implementable algorithm to compute the first
exit time from an interval numerically. The Brownian motion case is treaten
in detail.

Special emphasize is on numerical experiments: For every ansatz, we
include numerical experiments confirming the conjectured accuracy of our
methods. Our methods appear to be at least of weak order one and give
improved results at the same computational cost compared to algorithms
used widely in practice.
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1 Introduction

1.1 Problem formulation

Computing the first exit time of a stochastic process from a domain with high accuracy is of
significant interest in many applications. Examples range from financial derivatives with barriers
to path integrals in mathematical physics. Here, we discuss the probabilistic solution of Dirichlet
problems. If one applies the Feynman-Kac formula to get a probabilistic representation of the
solution to a certain Dirichlet problem, the first exit time plays a crucial role. There, one integrates
along a path until this path leaves the domain for the first time. In more detail, let D be a bounded
domain in n-space with smooth boundary ∂D and consider the following boundary value problem
(BVP). We focus on the Poisson equation for its simplicity:

1

2
! u(x) + g(x) = 0, x ∈ D, u(x) = ψ(x), x ∈ ∂D. (1)

Then, the solution u(x) is given by the Feynman-Kac formula (under some regularity and smooth-
ness conditions on g, ψ and D (see for example [Fre85])),

u(x) = Ex

[

ψ(X(τ)) +

∫ τ

0
g(X(s)) ds

]

, (2)

where

X(t) = x+

∫ t

0
dW (s). (3)

We introduced in (2) the first exit time of (X(t))t≥0 from D (or, by continuity, the first passage
time to ∂D), τ = τ(x),

τ(x) = inf{t > 0 : X(t) #∈ D} = inf{t > 0 : X(t) ∈ ∂D}, X(0) = x. (4)

X(t) is a Brownian motion starting at x. The starting point, x, also appears in the symbol Ex for the
expectation and will show up again when we denote densities, distributions or general probabilities
as Px. We implicitly assume x ∈ D. Approximating u(x) numerically using the representation (2)

is in principle straightforward: One introduces f(t) =
∫ t

0 g(X(s))ds and considers the system of
stochastic differential equations (SDEs)

dX = dW and df = g(X) dt with X(0) = x and f(0) = 0. (5)

System (5) is then integrated numerically for a (large) number, sayN , of paths, and the expectation
in (2) is approximated by the mean over these N independent realizations.

The Euler scheme (or Euler-Maruyama scheme), due to its simplicity, is of great interest.
Applied to system (5) with a fixed time step of size h, it takes the form

Xk+1 = Xk +∆Wk and fk+1 = fk + g(Xk)h (k = 0, 1, . . . ), (6)

with X0 = x and f0 = 0. Here, an n-vector, ∆Wk, of i.i.d. normal random variables with mean
0 and variance h is generated in each time step. We denote such random variables by the symbol
N h

0 . Additionally, we will use the symbol U for random variables distributed uniformly in (0, 1).
The main difficulty presents itself: when should the (numerical) integration be stopped? In

other words: How shall X(τ) and in particular τ be approximated? We concentrate on the ap-
proximation of τ in this note, corresponding to a constant boundary condition ψ in (1).

The naive approach is to stop as soon as Xk #∈ D and to take as an approximation for the first
exit time τ ≈ (k − 1)h, τ ≈ kh or a certain value between these two values.

We compare our results in the case ψ ≡ 0 in (1) to

Algorithm 1 (naive Euler) Update according to (6) until Xk+1 #∈ D. Approximate f(τ) ≈ fk.



2 Exit Times and the Euler Scheme

The drawback of this approach is the loss of accuracy: Although the Euler scheme is of weak
order one for a fixed final time T with M + 1 discretization points (giving h = T/M in our
notation, see for example [KP92]), the rate of convergence in the weak sense in the presence of
a boundary reduces to O(

√
h), i.e. it is of weak order one half [Gob00]. The reason for this

loss of accuracy is as follows: Although the discrete random walk is correct in distribution sense

(X((k + 1)h) − X(kh)
law
= Xk+1 − Xk

law
= N h

0 in one dimension and the same holds for any
component in higher dimensions) it gives the process values only at discrete time points tk = kh.
In between, for tk < t < tk+1, we have no information on the behaviour of the continues process
X(t). Both Mannella and Gobet pointed out (see also Janson and Lythe [JL00]) that anywhere
near the boundary the process might have left D and come back within step h: Even if both Xk

and Xk+1 ∈ D, it is not unlikely that X(t) #∈ D for some t ∈ (tk, tk+1) – the process X(t) might
follow an excursion within h, implying τ < tk+1.

Remark 1 It is clear from above reasoning that Algorithm 1 will overestimate τ , as no intermediate
excursions are monitored.

Mannella proposed a simple hitting test in [Man99] to be performed after each time step with
Xk+1 ∈ D. This test estimates the probability that an excursion occurred and leads to improved
statistics. Gobet later proved that first order weak convergence can be obtained for the Euler
scheme when applying this test for killed diffusions in the presence of a boundary. For fixed
T < ∞, paths for which τ < T are killed, that is, they do not contribute to the expectation.

The purpose of this note is to show how these ideas might be applied to the case of stopped
(rather than killed) diffusions. In this case, one is interested in the actual value of τ rather than
being satisfied by the assertion that (or if) τ < T for some predefined (deterministic) T . In other
words, one wants to know (again in a statistical sense) when the first exit time actually took place
rather than asking only if the exit did already occur. We show how a new interpretation of the
exit probability as a distribution leads to more accurate results (yet of the same order) for exactly
the same computational cost. We then further improve our algorithm for a Brownian motion for
the case that a discrete Xk falls outside D. Our numerical tests show that we are left almost with
the statistical error – keeping the systematic error tiny.

1.2 The main test problem

Throughout the paper, we include results for the different algorithms applied to our main test
problem. To test the different approaches we suggest the following simple problem: Set in the
boundary value problem (1) g ≡ 1 and ψ ≡ 0. Then by (2) u(x) = Ex[τ(x)]. For n = 1, the
solution for D = (α,β) is then

u(x) = −x2 + (α+ β)x − αβ. (7)

We summarize in

Test problem 1 (Main test problem) In n = 1 we consider in D = (α,β) with α < 0 < β the

BVP (1) with g ≡ 1 and ψ ≡ 0. Our test measurement will be u(0)
(7)
= −αβ.

Note that the Euler scheme (6) is exact in distribution for both X and f in system (5) with
g(x) ≡ 1 as all the higher order terms in an Itǒ-Taylor expansion vanish. The updates take the
simple form Xk+1 = Xk + N h

0 , fk+1 = fk + h. The only errors besides statistical ones are those
due to the approximation of τ(x) – the variable of interest.

1.3 Organisation of the paper

Clearly, the Feynman-Kac formulation (2) reveals its full strength mainly (but not only) in high
dimensions. Nevertheless, we concentrate on a simple one dimensional problem here, in particular
we shall consider D = (α,β) with −∞ < α < β < ∞. The justification for this simplification is
twofold: (i) the simple one dimensional situation is already interesting on its own and contains



Fabian M. Buchmann 3

the main difficulties, and, (ii) we hope to be able to apply a big part of the ideas presented here
also in higher dimensions. If n becomes large, the domains D are usually smooth with boundaries.
Near to the boundary it looks flat. There, locally, the problem of a random walk approaching
the boundary resembles to some extent the one dimensional situation. Gobet on the other hand,
approximated quite general domains in n-space locally as a half space if the walk is close to the
boundary. He then presented formulae for general n > 1 [Gob00].

In Section 2 we recall the main idea of an exit test of Mannella and Gobet for killed diffusions.
In Section 3 we show a simple improvement for the case of stopped diffusions which improves
results at exactly the same cost (Subsection 3.1). For the pure Brownian motion (dX = dW )
we improve these results further (Subsection 3.2). In Section 4 we extend the ideas presented so
far to the case of more general diffusions which arise for more general (elliptic) operators in the
Feynman-Kac formulation and show a general numerical test. Throughout the paper we include
results of numerical experiments.

2 The ideas of Mannella and Gobet

As mentioned in Section 1 we restrict our work to the case n = 1. We start with some notation
and known formulae (see [BS02] and consider some basic probability manipulations).

2.1 Notation and formulae

Let

St(x) = sup
0≤s≤t

X(s), X(0) = x.

We further introduce the first hitting time of level B as

HB(x) = inf{t ≥ 0 : X(t) = B}, X(0) = x. (8)

We have for y, z ≤ B

Py [HB(y) ≤ t;X(t) ∈ dz] = Py [St(y) ≥ B ; X(t) ∈ dz] = exp

(

−2(B − y)(B − z)

t

)

. (9)

Let Xy,h,z(t) be a Brownian bridge starting at t = 0 at y and ending at t = h at z (i.e. the bridge
is pinned in time-space coordinates at (0, y) and at (h, z) and has Ey [Xy,h,z(t)] = y + (z − y)t/h
and Cov(Xy,h,z(t), Xy,h,z(s)) = (s∧ t)− st/h [IW89]). Denote its law by Py,h,z[·]. Then we might
write (assuming B ≥ y and using (9))

Py,h,z[HB(y) ≤ h] =








1, y ≤ B ≤ z

exp

(

− 2

h
(B − y)(B − z)

)

, y, z ≤ B.
(10)

On the other hand, for D = (α,β) we have (see 4) τ = Hα ∧ Hβ . For α < y, z < β it is known
that [Gob00, RY91]

Py,h,z[τ(y) ≤ h] =
k=∞
∑

k=−∞

{

exp

(

− 2

h
k(β − α)(k(β − α) + z − y)

)

− exp

(

− 2

h
(k(β − α) + y − β)(k(β − α) + z − β)

)}

. (11)

Again, clearly Py,h,z[τ(y) ≤ h] = 1 if any y, z #∈ D. Clearly, in the case of an excursion, the formula
(10) for HB is much simpler to evaluate than formula (11) for τ .
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2.2 The main idea

The idea for killed diffusions according to Gobet is as follows. Assume Xk = y ∈ D, tk + h < T
and generate an Euler update as Xk+1 = y+N h

0 = z. Now there are two cases: (i) z #∈ D and (ii)
z ∈ D. In the first case, X(t) clearly left the domain and this path is killed (as τ < T ). On the
other hand in the case (ii), one has to account for the possibility that the continuous path left D
and came back. To this end, a test according to (10) or (11) is performed. Clearly, test (11) would
be the correct one for D = (α,β). On the other hand, (10) is much simpler and much cheaper to
calculate on a computer. Moreover, in higher dimensions, closed formulas of the form (11) are only
known for half spaces. Assume now that h , 1 such that

√
h , |β−α|, i.e. the average size of the

space increments is much smaller than the diameter of the domain. Then, the probability that the
path follows an excursion within h and came back has a value sufficiently large to be taken into
account only if the boundary is sufficiently close. Therefore, the test (10) is applied only for the
closest boundary. If h is sufficiently small (such that

√
h , |β − α|), the resulting error in doing

so is very small compared to the reduction in computer time (which could be used to reduce the
overall error by choosing a smaller stepsize h or a larger sample N).

In more detail, for y, z ∈ D = (α,β) we define the closest boundary B as follows. Let ρα =
(y − α) ∧ (z − α) and ρβ = (β − y) ∧ (β − z). If ρα < ρβ we set B = α and B = β otherwise.
The event that both boundaries are equally far away has probability zero in theory and an almost
vanishing probability on a computer. Additionally, in that case either y = z (with probability
zero) or y and z are symmetric wrt. the point (α + β)/2. In the latter case, both boundaries are
far away, and the exit probability goes to zero. The error arising if we set B = β in these worst
case situations is therefore negligible.

To evaluate expectations over functionals F of the form Ex[F (XT )1T<τ ] the approach of Gobet
for the Euler scheme is the following. After an update of the form (6), set Xk = y, Xk+1 = z. In
the case that z ∈ D, generate a random variable U uniform in (0, 1). If U ≤ Py,h,z[HB(y) ≤ h],
the path is deemed to have left D across B within h and the diffusion is killed. Gobet proved that
if F is bounded and of class C3(D,R), T < ∞ fixed and h = T/M , convergence is of weak order
one (for fixed T ) whereas the Algorithm 1 converges with O(

√
h).

Applying these ideas to functionals of the form u(x) = Ex[f(τ)] (see (2) with ψ ≡ 0) is straight
forward: Assume again Xk = y ∈ D and z = Xk +N h

0 and that B is the closest boundary.

Algorithm 2 (Gobet test) If z #∈ D or U < Py,h,z[HB(y) ≤ h] we stop the integration at tk and
have for this path f(τ) ≈ fk. Otherwise, we update fk+1 = fk + hg(Xk) and Xk+1 = z.

Remark 2 Algorithm 2 will certainly underestimate τ , as the exit time will be set to tk if an
excursion occurred before tk+1 (but after tk). In the case z = Xk+1 #∈ D, we approximate τ ≈ tk,
although the true exit took place in both cases at a time t between tk and tk+1.

Remark 3 Another advantage of applying a test according to (10) instead of (11) shows up in the
case of non-constant ψ(·): In the case of an excursion across the closest boundary B, ψ(B) might
be used for the evaluation of functional (2) for the corresponding path, i.e. X(τ) ≈ B.

2.3 Numerical experiments

We show results which confirm the conjectured first order in weak convergence. To see if the
application of the test (10) instead of (11) is admissible, we set β = 1 and took three different
values for the lower boundary, namely α = −7,−3,−1. We applied Algorithm 2 to the Problem
1. In the plot of the absolute error |u(0) − û(0)| we add a 66%-confidence interval σ̂ (numerical
standard deviation),

σ̂(û) =

√

û2 − û
2

N − 1
with û2 =

1

N

N
∑

i=1

(

û(i)
)2

and û =
1

N

N
∑

i=1

û(i) (12)

where û(i) denotes the result obtained for sample i, i = 1, . . . , N . Results in Figure 1 are for a
sample size of N = 106 on the left and for N = 4 · 106 on the right. We used the random number
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generator Mersenne Twister from the blitz-library [Vel98] for the exit test (10) and to generate

the normal increments ∆W
law
= N h

0 . In all our tests we used this random number generator. The
maximal stepsize is hmax = (β − α)/4 and we show results for hmax and seven smaller stepsizes.

Error |û(0)− u(0)| and σ̂ vs. stepsize h for α = −7,−3,−1 and β = 1.

106 paths

10
!2

10
!1

10
0

10
!3

10
!2

10
!1

10
0

4 · 106 paths

10
!2

10
!1

10
0

10
!3

10
!2

10
!1

10
0

◦ is for α = −1, × for α = −3 and • for α = −7.

Figure 1: Testing only for the closest boundary preserves weak order one.

¿From Figure 1 it can be seen, that the weak order of convergence is O(h) independent of the
choice of α. Note that decreasing α (and hence increasing the size of the domain) increases σ̂ as
on average more steps are needed till a path is stopped (the expected exit time increases).

In the next figure (Figure 2) we have a closer look at the solution û(0) for D = (−1, 1). We
compare the naive approach (Algorithm 1) with the straight forward application of the ideas recited
in this section (Algorithm 2). We have u(0) = 1 (indicated by a solid line) and show results for
N = 106 paths. The remarks made before (Remarks 1 and 2) are very obvious in this plot.

Solutions û(0)± σ̂(û(0)) vs stepsize h.

10
!2

10
!1

0.8

1

1.2

1.4

1.6

——– is u(0) = 1
· · · · · · is Algorithm 1
− ·−· is Algorithm 2

Error |û(0)− u(0)| vs. stepsize h.

10
!2

10
!1

10
!3

10
!2

10
!1

10
0

− ·× ·− is Algorithm 1
− · ◦ ·− is Algorithm 2
−−−− have slope 1/2 and 1

Figure 2: Algorithm 1 overestimates E0[τ ] = 1 whereas Algorithm 2 underestimates it.
Weak order of convergence improves fromO(

√
h) (for Algorithm 1) to O(h) (for Algorithm

2).
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3 Improvements

In this section we present an extension to Algorithm 2 which gives a better approximation of
τ ∈ (tk, tk+1). To simplify notation we assume Xk = y ∈ D and set Xk+1 = Xk + N h

0 = z
throughout this Section. Without loss of generality we assume that β > 0 is the closest boundary,
i.e. B = β > y. The situation B = α < y is obtained by symmetry.

3.1 The case Xk = y ∈ D and Xk+1 = z ∈ D

The first improvement is based on a new interpretation of Py,h,z[Hβ(y) ≤ h] as the distribution
of the first hitting time of level β (see (10)). It gives an improvement in the error of a factor of
two at exactly the same computational cost (preserving the order of convergence) when applied to
Problem 1 in D = (−1, 1).

3.1.1 Generate H law
= Py,h,z[Hβ(y) ≤ t]

For y, z < β, we are in particular interested in Py,h,z[Hβ(y) ≤ h]. On the other hand, this gives us
the distribution, F , of the first hitting time wrt. Brownian bridge measure (see (10))

F y,h,z
Hβ(y)

(t) ≡ Py,h,z[Hβ(y) ≤ t] = e−
1
2t (β−y)(β−z)1t≥0, y, z ≤ β. (13)

The idea is now to generate a random variable H with distribution (13). To this end, invert
(13) [KP92, p.12],

H = −2(β − y)(β − z)

logU (14)

where U is again a uniform random number in (0, 1). The path hit β between tk and tk+1 = tk +h
if H ≤ h (in a statistical sense). In that case, β was hit for the first time at t = tk +H and we add
a last Euler step with length H to f :

f(τ) =

∫ τ

0
g(X(s))ds

law
=

∫ tk

0
g(X(s))ds+

∫ H

tk

g(X(s))ds
(6)
≈ fk +Hg(Xk).

Summarizing, we get

Algorithm 3 (Simulating the distribution in the case y, z ∈ D) If z #∈ D we stop the inte-
gration at tk. If z ∈ D and H ≤ h (where H is generated according to (14)) we add a last Euler
step of length H to f and stop: f(τ) ≈ fk +Hg(Xk). Otherwise, we update fk+1 = fk + hg(Xk)
and Xk+1 = z.

Remark 4 Clearly, generating (14) is not more costly than generating U and evaluating (10) as in
Algorithm 2.

3.1.2 Numerical experiment

We consider again D = (−1, 1) and compare Algorithms 2 and 3 applied to Problem 1. As in
Figure 2 we show the approximation û(0) ± σ̂(û(0)) and the error |û(0) − u(0)| for a sample of
N = 106 paths.

Looking at Figure 3 it is evident that results improve. For Problem 1 with D = (−1, 1) we
observed in our experiments an improvement in the error by approximately a factor of two (of
course, only in the regime where h is big enough such that the systematic error dominates and the
statistical error of O(1/

√
N) is negligible), see Table 1. Results where rounded to five significant

digits.
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Solutions û(0)± σ̂(û(0)) vs stepzise h.

10
!2

10
!1

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

——– is u(0) = 1
−−− is Algorithm 3
− ·−· is Algorithm 2

Error |û(0)− u(0)| vs. stepsize h.

10
!2

10
!1

10
!3

10
!2

10
!1

− · ◦ ·− is Algorithm 2
− ·+ ·− is Algorithm 3
−−−− have both slope 1

Figure 3: Generating a random number H improves results by a factor of two at the same
cost.

Error |û(0)− u(0)|
k, h = 2−k Algorithm 2 Algorithm 3

1 0.24273 0.12011
2 0.12485 0.062221
3 0.062285 0.030980
4 0.031433 0.015837
5 0.017166 0.0093502

Table 1: Algorithm 3 improves results compared to Algorithm 2 at the same cost.

3.2 The case Xk = y ∈ D and Xk+1 = z #∈ D

Let

p(t;x, y) =
1√
2πt

exp

(

− (x− y)2

2t

)

.

Using absolute continuity of the measures Py and Py,h,z we have [BS02, p.67]

Py,h,z[Hβ(y) ≤ h] = p(h; y, z)−1

∫ h

0
p(h− t; b, z)Py[Hβ(y) ∈ dt]

with (see for example [RW00, (13.5),p.26])

Py[Hβ(y) ∈ dt] =
|β − y|
t
√
2πt

exp

(

− (y − β)2

2t

)

dt.

Together,

Py,h,z[Hβ(y) ≤ h] =
|β − y|√

2π

∫ h

0

√

h

t3(h− t)
exp

(

−1

2

(

− (z − y)2

h
+

(β − z)2

h− t
+

(β − y)2

t

))

dt.

Recall our assumption y < β < z and introduce the shorthands β̃ = β − y, z̃ = z − y and t̃ = t/h.
With these notations, after arranging the terms in the exponent we find

Py,h,z[Hβ(y) ≤ h] =
β̃√
2πh

∫ 1

0

1
√

t̃3(1− t̃)
exp

(

− 1

2h

(β̃ − t̃z̃)2

t̃(1− t̃)

)

dt̃. (15)
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As we did not succeed in calculating and inverting Py,h,z[Hβ(y) ≤ t] for 0 ≤ t ≤ h we use some
approximations for the statistics of Hβ(y). They are given in the following paragraphs and will be
denoted by Ĥ . We then get the final algorithm, which is based on Algorithm 3. Again, y = Xk

and z = Xk+1.

Algorithm 4 (Approximations in the case z #∈ D) If z ∈ D we proceed as in Algorithm 3. If
z #∈ D we calculate Ĥ for the closest boundary according to (16) or (17) or generate it according
to (19). Then, we add a last Euler step of length Ĥ to f : f(τ) ≈ fk + Ĥg(Xk).

3.2.1 Choosing the peak

As a first approximation, we choose the t ∈ (0, h) where the density of the hitting time of β is
maximal,

Ĥpeak = arg max
t∈(0,h)

Py,h,z[Hβ(y) ∈ dt]

dt
. (16)

The calculation of Ĥpeak reduces to find the roots of a cubic polynomial. For completeness, it is
given in Appendix A.

3.2.2 Heuristic approximations

We compare the approach from Section 3.2.1 with two heuristic approximations.

Linear interpolant Here we choose the linear interpolant as an approximation for Hβ(y) ∈
(0, h), namely

Ĥlip = h
β − y

z − y
. (17)

This approach is justified by a result which is interesting on its own and shall be given in a little
lemma.

Lemma 1 Fix y = Xk and z = Xk+1 and assume y < β < z. Then, the expectation Ey,h,z[Hβ(y)]
is a linear function of β − y, i.e.

Ey,h,z[Hβ(y)] = C(β − y) (18)

where C depends only on the distance Xk+1 −Xk and the timestep h.

The proof is given in Appendix B.

Uniform distribution Another heuristic approach is a uniform random variable, i.e.

Ĥuni = hU (19)

ignoring the location of the boundary β within y and z completely.

3.2.3 Numerical experiment

We consider again Problem 1 with D = (−1, 1). Applying Algorithm 4 leads to very small errors –
independent of the approximation chosen for Ĥ . We therefore show simulations with three different
(large) sample sizes N . Above the approximations û(0) are shown (confidence levels σ̂ are smaller
than the plot symbols) and below the errors |û(0)− u(0)|.

Figure 4 leads to the following heuristic conclusions: the two approximations (16) and (17)
conserve the weak order of convergence of O(h) but with a smaller constant than application of
Algorithms 2 and 3. The uniform approximation (19) has a smaller error, but it has to be noted
that it is more costly to generate U than evaluating for example the simple expression (17). From
the proof in Appendix B we also see the reason, why linear interpolation (17) is overestimating
the solution: this approximation corresponds to the choice C = 1 in (18), which is only true for
z - y. Convergence of the approximation (19) is very fast and one has almost only the statistical
error.
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Solutions û(0) vs. stepsize h on top and error |û(0)− u(0)| vs. h on bottom.
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−∗− is the peak approximation (16), − ·& ·− is linear interpolation (17) and · · ·♦ · · ·
is uniform distribution of HB(Xk) in (0, h) (19). On the top, the exact solution is
drawn with a solid line.

Figure 4: Adding a correction in the case Xk+1 '∈ D improves results and errors become
very small.

4 Extension to more general diffusions

In this section we extend the ideas presented so far to more general BVPs which lead to general
diffusions. Again, we limit ourself to a one dimensional situation.

4.1 The general Dirichlet problem

Let D = (α,β) and consider a generalization of (1)

[
1

2
a(x)

d2

dx2
+ b(x)

d

dx

]

u(x) + g(x) = 0, x ∈ D, u(x) = ψ(x), x ∈ ∂D (20)

where a(x) > 0. The probabilistic solution is again given by (2) where now (compare with (3))

X(t) = x+

∫ t

0
b(X(s)) ds+

∫ t

0
σ(X(s)) dW (s) (21)

with σ2(x) = a(x). Numerically, we shall now solve (compare with (5))

dX = b(X) dt+ σ(X) dW and df = g(X) dt with X(0) = x and f(0) = 0. (22)

The corresponding Euler approximation is (compare with (6))

Xk+1 = Xk + b(Xk)h+ σ(Xk)N h
0 and fk+1 = fk + g(Xk)h (k = 0, 1, . . . ) (23)

where we set as before X0 = x and f0 = 0.
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4.2 Extending Algorithms 2 and 3

Let y = Xk and denote by z the next Euler update obtained using (23): z = Xk+1. Assume
y, z < B where B denotes again the closest boundary. The counterpart of (9) is [Gob00]

Py [HB(y) ≤ t;X(t) ∈ dz] = exp

(

−2(B − y)(B − z)

tσ2(y)

)

. (24)

Inverting (24) leads to (compare with 14)

H = −2(B − y)(B − z)

σ2(y) logU (25)

where U is again a uniform random number in (0, 1).

The adaption of Algorithm 2 is now obvious:

Algorithm 5 (Gobet test for general diffusions) Let y = Xk and z = Xk+1. If z #∈ D or

U < exp

(
−2(B − y)(B − z)

hσ2(y)

)

we stop the integration at tk and set for this path f(τ) ≈ fk. Otherwise, we update fk+1 =
fk + hg(Xk) and Xk+1 = z.

Algorithm 3 is adapted similarly:

Algorithm 6 (Simulating the distribution in the case y, z ∈ D for general diffusions) If z #∈
D we stop the integration at tk and set f(τ) ≈ fk. If z ∈ D and H ≤ h (where H is generated
according to (25)) we add a last Euler step of length H to f and stop: f(τ) ≈ fk + Hg(Xk).
Otherwise, we update fk+1 = fk + hg(Xk) and Xk+1 = z.

4.3 Numerical experiment

Test problem 2 ( Test for generalized BVP) We show results for the BVP (20) with

σ(x) = 2 + sin(x), a(x) = σ2(x), b(x) = − cos(x)

(

2 +
sin(x)

2

)

and g(x) = 2 cos(x).

We take D = (−π/2,π/2) and set ψ(x) = 0. Then we have the solution u(x) = cos(x). We
evaluate numerically u(0) = 1.

We show results for the naive approach (Algorithm 1 with updates (23)) compared with the
Algorithms 5 and 6. We have chosen sample sizes N = 106 and N = 4 · 106. We show the
approximate solutions and absolute errors. Confidence intervals σ̂ are much smaller than the
symbols used in the plot.
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Solutions û(0) vs. stepzise h on top and error |û(0)− u(0)| vs. h on bottom.
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− ·× ·− is Algorithm 1 (updates according to (23)),
− ·+ ·− is Algorithm 5 and
− · ◦ ·− is Algorithm 6.

On the top, the exact solution is drawn with a solid line.

Figure 5: An exit test leads to convergence of at least weak order O(h) also in the case
of general elliptic operators with connected general diffusions dX = b(X) dt + σ(X) dW .
Generating H improves results further at the same cost.

¿From Figure 5 we see, that the procedure works also for BVPs with general elliptic operators,
as in (20). Both Algorithms 5 and 6 converge with a weak order of at least one whereas the simple
approach converges only with order O(

√
h). Further, Algorithm 6 improves the constant in the

convergence order at the same computational cost.

5 Conclusions

We investigated the simplest numerical procedure for the approximation of SDEs: the Euler scheme.
Although this scheme has been known, studied and used for a long time, its application in the
presence of a boundary is still a field of active research. At the boundary, the path is killed, reflected
or stopped. In each of these cases, the Euler scheme without any modification (see Algorithm 1)
no longer converges with weak order one but only with order O(

√
h). The problem arises because

the simulated random walk is discrete (or linearly interpolated) and one has no information of the
behaviour of the approximated path within the beginning and end of the step. In particular, the
path might take an excursion across the boundary within a step which is missed by the discrete
path. Simple yet effective modifications have been proposed in the literature, mainly for killed
diffusions due to their interest in pricing barrier options.

Our interest is in stopped diffusions. Stopping the simulated process when it crosses the bound-
ary gives an approximation to the first exit time – but to obtain again the lost weak order one
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in convergence, improvements are needed. The adaptation of known procedures for killed diffu-
sions to stopped ones worked encouragingly well. We showed how a simple exit test can avoid the
loss in accuracy. Our numerical tests also revealed that testing for an excursion only across the
closest boundary is permissible: the algorithms regain the first order in weak convergence (Figure
1). Already the obvious adaptation (Algorithm 2) showed good results (Figure 2). Nevertheless a
simple modification based on a different interpretation of equation (9) led to Algorithm 3 which
gave better results at the same computational cost (Figure 3 and Table 1). In the case of a pure
Brownian motion we improved results further. There, we approximated the first hitting time of
a bridge process across the boundary (Algorithm 4). Numerical experiments showed further de-
creasing errors. Finally, we generalized our ideas to more general diffusions which are connected
with more general (elliptic) operators. A numerical test with non-constant drift and diffusion
coefficients again showed satisfactory results.

We concentrated on the one dimensional situation. Expanding the ideas presented here to higher
dimensions is under development. Additionally, the work of Janson and Lythe on exponential time
stepping caught our interest. There, the main ideas to tackle the presence of a boundary are similar
to the ones presented here – yet, the resulting formulae are much simpler.
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Appendix

¿From (15) it follows for y < β < z that

Py,h,z[Hβ(y) ∈ dt] =
β̃√
2πh

1
√

t̃3(1− t̃)
exp

(

− 1

2h

(β̃ − t̃z̃)2

t̃(1− t̃)

)

dt̃.

For simplicity of notation, we set y = 0 and h = 1 and show the calculations in this appendix only
for the bridge pinned at (0, 0) and (1, z) with 0 < β < z. The general bridge follows from these
results in obvious manner. We have

P0,1,z[Hβ(0) ∈ dt] =
β√
2π

1
√

t3(1 − t)
exp

(

−1

2

(β − tz)2

t(1− t)

)

dt (26)

and define p(t) by p(t)dt = P0,1,z[Hβ(0) ∈ dt].

A Calculation of Ĥpeak (see (16))

To calculate argmax0<t<1 p(t) define u = u(t), v = v(t), w = w(t) as

p(t) =
β√
2π

1

t
√

t(1 − t)
︸ ︷︷ ︸

u(t)

e−
1
2

(b−tz)2}v

t(1−t)}w =:
β√
2π

u(t)e−
1
2

v(t)
w(t)

(see (26)). Then, solving dp(t)/dt = 0 for t ∈ (0, 1) reduces to solve 2u′w2 − u(v′w − vw′) = 0
which shows to be equivalent to find the roots of the cubic polynomial t3 + lt2 +mt+ n = 0 with

l =
z2 − 7− 2βz

4
, m =

3 + 2β2

4
and n = −β2

4
. (27)

Introducing

q =
2l3

54
− lm

6
+

n

2
, p =

m

3
− l2

9
, D = p3 + q2 and P = sgn(q)

√

|p|

the real valued roots are given as ti = si − l/3 where

s1 = −2P cos(δ)
s2,3 = 2P cos(δ ± π

3 )

}

with δ =
1

3
arccos(q/P 3) if p < 0 and D ≤ 0,

s1 = −2P cosh(δ) with δ =
1

3
Arcosh(q/P 3) if p < 0 and D > 0,

s1 = −2P sinh(δ) with δ =
1

3
Arsinh(q/P 3) if p > 0.

For the general bridge pinned at (0, y) and (h, z) we need the roots of the same polynomial as
above where now (compare with (27))

l =
(z − y)2 − 7h− 2(β − y)(z − y)

4
, m = h

3h+ 2(β − y)2

4
and n = −h2 (β − y)2

4
.

The formulas used in this appendix can be found in any standard handbook of mathematical
formulae, for example [AS64, BS91].
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B Proof of Lemma 1

To show E0,1,z[Hβ(0)] = Cβ, we calculate the expectation explicitly. With (26) we have

E0,1,z[Hβ(0)] =
β√
2π

∫ 1

0
exp

(

−1

2

(β − tz)2

t(1− t)

)
dt

√

t(1− t)

=
β√
2π

∫ 1

0
exp

(

−z2

2

(ξ − t)2

t(1− t)

)
dt

√

t(1− t)

where ξ = β/z. Introduce the transformation

x =
t

1− t
with

dt
√

t(1− t)
=

dx√
x(1 + x)

.

Let η = 1− ξ, then
(ξ − t)2

t(1− t)
=

(ξ − ηx)2

x
.

With

p =
z2η2

2
=

(z − β)2

2
and q =

z2ξ2

2
=

β2

2
we have

E0,1,z[Hβ(0)] =
β√
2π

ez
2ξη

∫ ∞

0

e−px− q
x

√
x(1 + x)

dx.

We calculate the reminding integral

I =

∫ ∞

0

e−px− q
x

√
x

1

1 + x
dx =

∫ ∞

0

e−px− q
x

√
x

∫ ∞

0
e−s(1+x) dsdx.

Changing order of integration and using [PBM86, (2.3.16.3.),p.344]
∫ ∞

0
e−(p+s)x− q

x
dx√
x
=

√
π

p+ s
e−2

√
(p+s)q

we have with t = p+ s

I =
√
πep

∫ ∞

p

e−te−2
√
qt dt√

t
.

The obvious transformation u2 = t with dt/
√
t = 2du yields after completing the square in the

exponent

I = 2
√
πep+q

∫ ∞

√
p

e−(u+
√
q)2 du = 2

√
πep+q

∫ ∞

√
p+

√
q

e−v2

dv = πep+qerfc(
√
p+

√
q)

where [AS64, (7.1.2),p.297]

erfc(ζ) =
2√
π

∫ ∞

ζ

e−v2

dv = 1− erf(ζ) = 1− 2√
π

∫ ζ

0
e−v2

dv.

Noting z2ξη = β(z − β) and
√
p+

√
q = z/

√
2 we get finally

E0,1,z[Hβ(0)] =

√

π

2
e

z2

2 erfc

(
z√
2

)

︸ ︷︷ ︸

C

·β

which proofs Lemma 1 for y = 0 and h = 1.
For the bridge pinned at (0, y) and (h, z) we find analogously for y < β < z

Ey,h,z[Hβ(y)] =

√

hπ

2
e

(z−y)2

2h erfc

(
z − y√

2h

)

︸ ︷︷ ︸

C

·(β − y).
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