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1 Introduction

Solutions of elliptic boundary value problems in polyhedral domains have cor-
ner and edge singularities and, in addition, boundary layers may also arise
in laminar, viscous, incompressible flows with moderate Reynolds numbers at
faces, edges, and corners. Suitably graded meshes, geometrically refined to-
wards corners, edges, and/or faces, can be employed in order to achieve an
exponential rate of convergence of hp finite element approximations; see, e.g.,
[4, 5, 26, 36, 37].

Neumann-Neumann (NN) and FETI algorithms are particular iterative sub-
structuring methods and are among the most popular and heavily tested domain
decomposition (DD) methods; see, e.g, [19, 13, 24, 7]. Unfortunately, the per-
formance of iterative substructuring methods might be severely compromised if
very thin elements and/or subdomains or general non quasiuniform meshes are
employed.

Some work has been done on domain decomposition preconditioners for
higher order approximations of three-dimensional problems. It is well-known
that on shape-regular meshes special care must be taken in the choice of the
basis functions in order to produce preconditioners that are robust with respect
to the polynomial degree. We mention, e.g., [21, 22, 23, 29, 8, 38]. For p approx-
imations that employ nodal basis functions on Gauss-Lobatto nodes (spectral
element approximations), many iterative substructuring methods can be suc-
cessfully employed and studied; see [33, 34, 30, 32] and the references therein.
Some of these ideas can be and have been generalized to hp approximations.
We mention, e.g., [2, 1, 28, 14, 20, 3, 18] and the references therein and, in par-
ticular, [15] for three-dimensional problems. In all the above-mentioned works,
however, the finite element mesh is assumed to be shape-regular and robustness
with respect to the aspect ratio is not in general ensured and often unlikely to
hold in practice.

In [40, 42], we showed that NN and FETI methods can be successfully devised
for the particular geometrically refined boundary layer meshes commonly used
for hp finite element approximations of two-dimensional problems. Indeed, these
meshes are highly anisotropic, but of a particular type:

1. they are obtained by refining an initial shape-regular mesh (macromesh);

2. refinement is only carried towards the boundary of the computational do-
main.

These properties, also shared by three-dimensional meshes, allowed us to
obtain condition number bounds for the corresponding preconditioned operators
that only grow polylogarithmically with the polynomial degree, as is the case of
p approximations on shape regular meshes. Our understanding and analysis was
confirmed by numerical experiments. In particular, we choose the macromesh

1



2 A. TOSELLI and X. VASSEUR

as a decomposition into substructures in such a way that subdomains are shape-
regular. Roughly speaking, the reason why such favourable condition numbers
are retained lies on the fact that upper bounds come from stable decompositions
of finite element functions into components associated to geometrical objects
(typically vertices and edges of the subdomains in two dimensions). Because of
our particular meshes, only components associated to internal vertices need to
be considered, i.e., relative to vertices in a neighborhood of which the mesh is
shape-regular.

Three-dimensional boundary layer meshes also share the two characteristics
mentioned above. However, stable decompositions now involve face and wire-
basket components, where the wirebasket is the union of the subdomain edges
and vertices that do not lie on the external boundary of the computational do-
main. By considering, for instance, an edge E of a macroelement that share a
face with Ω (see the face patch in Figures 1, left, or 2), decoupling of face and
wirebasket components is now also performed close to ∂Ω, and thus where the
mesh is not shape-regular. In this work, we are however able to provide con-
dition number bounds that only grow polylogarithmically with the polynomial
degree, as in the two-dimensional case, and are independent of arbitrarily large
aspect ratios of the mesh.

The core of this work lies in the careful modification and derivation of certain
Sobolev type inequalities that are independent of the aspect ratio of the mesh
for wirebasket and face components of finite element functions; see section 7.
Provided such inequalities are available, the definition of the algorithms and
their analysis are fairly standard procedures in DD methods and proceed as in
the two-dimensional case in [40]. Here, we will only consider Neumann-Neumann
methods, but note that the estimates derived can be employed for the analysis
of one-level FETI methods in a straightforward way; see [17, 40].

We limit our analysis to the case of nodal basis functions built on Gauss-
Lobatto nodes. In addition, we only consider the model problem (1), which does
not have boundary layers but only corner and edge singularities. However, our
tensor-product meshes can also be employed when only singularities are present
and do not require the use of hanging nodes. We recall that numerical results in
[42] for two-dimensional problems showed that better performance is obtained
for certain singularly perturbed problems which exhibit boundary layers. In
addition, a linear dependence in k for the condition number was observed for
problems with geometric refinement towards interfaces that lie in the interior of
the computational domain.

The remainder of this paper is organized as follows: in sections 2 and 3,
we introduce our continuous and discrete problems, respectively. Geometric
boundary layer meshes are introduced in section 4. A particular choice of basis
functions is given in section 5 and our Neumann-Neumann preconditioners are
defined in section 6. Section 7 is the core of this work and is devoted to the
proof of some discrete Sobolev type inequalities. Comparison results for certain
discrete harmonic extensions are given in section 8. Condition number bounds
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are then proven in section 9. Section 10 contains some numerical results, while
some concluding remarks and perspectives are presented in section 11.

2 Problem setting

We consider a linear, elliptic problem on a bounded polyhedral domain Ω ⊂ R3

of unit diameter, formulated variationally as:
Find u ∈ H1

0 (Ω), such that

a(u, v) =

∫

Ω
ρ(x)∇u ·∇v dx = f(v), v ∈ H1

0 (Ω). (1)

As usual,H1(Ω) is the space of square summable functions with square summable
first derivatives, and H1

0 (Ω) its subspace of functions that vanish on ∂Ω. The
functional f(·) belongs to the dual space H−1(Ω). Here x = (x, y, z) denotes
the position vector.

The coefficient ρ(x) > 0 can be discontinuous, with very different values
for different subregions, but we allow it to vary only moderately within each
subregion. We will in fact assume that the region is the union of elements (also
called subdomains, substructures, or macroelements) {Ωi}. Without decreasing
the generality of our results, we will only consider the piecewise constant case:

ρ(x) = ρi, x ∈ Ωi.

In the case of a region of diameter Hi, such as the substructure Ωi, we use
a norm with different relative weights obtained by a simple dilation argument:

‖u‖21,Ωi
= |u|21,Ωi

+
1

H2
i

‖u‖20,Ωi
. (2)

Here, ‖·‖0,Ωi and |·|1,Ωi denote the norm in L2(Ωi) and the seminorm inH1(Ωi),
respectively. In the following we also employ the space W 1,∞(Ωi) of bounded
functions with bounded derivatives; see, e.g., [27].

3 hp finite element approximations

We now specify a particular choice of finite element spaces. Given an affine
quadrilateral mesh T of Ω and a polynomial degree k ≥ 1, we consider the
following finite element spaces:

X = Xk(Ω; T ) :=
{

u ∈ H1
0 (Ω) | u|K ∈ Qk(K), K ∈ T

}

. (3)

Here Qk(K) is the space of polynomials of maximum degree k in each variable
on K. In the following, we may drop the reference to k, Ω, and/or T whenever
there is no confusion.
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Level 2

Level 1

2(1!") 2"

Figure 1: Hierarchic structure of a boundary layer mesh, with σ = 0.5 and
n = 3.

In this paper, we always assume that the meshes are regular, i.e, the inter-
section between neighboring elements is either a vertex, or an edge, or a face
that is common to the two elements.

A finite element approximation of (1) consists of finding u ∈ X , such that

a(u, v) = f(v), v ∈ X. (4)

4 Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically graded
meshes can be employed. They are determined by a mesh grading factor σ ∈
(0, 1) and a refinement level n ≥ 0. The number of layers is n + 1 and the
thinnest layer has a width proportional to σn. Robust exponential convergence
of hp finite element approximations is achieved if n is suitably chosen. For
singularity resolution, n is required to be proportional to the polynomial degree
k; see [4, 5]. For boundary layers, the width of the thinnest layer needs to be
comparable to that of the boundary layer; see [26, 36, 37].

A geometric boundary layer mesh T = T n,σ
bl is, roughly speaking, the tensor

product of meshes that are geometrically refined towards the faces. Figure 1
shows the construction of a geometric boundary layer mesh T n,σ

bl .
The mesh T n,σ

bl is built by first considering an initial shape-regular macro-
triangulation Tm, possibly consisting of just one element, which is successively
refined. This process is illustrated in Figure 1. Every macroelement can be
refined isotropically (not shown) or anisotropically in order to obtain so-called
face, edge, or corner patches (Figure 1, level 2). Here and in the following, we
only consider patches obtained by triangulating the reference cube Q̂ := I3,
with I := (−1, 1). A patch for an element Km ∈ Tm is obtained by using an
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affine mapping FKm : Q̂ → Km. The stability properties proven for patches
on the reference cube are equally valid for an arbitrary shape-regular element
Km ∈ Tm, with a constant that is independent of the diameter of Km.

A face patch is given by an anisotropic triangulation of the form

Tf := {Kx × I × I | Kx ∈ Tx}, (5)

where Tx is a mesh of I, geometrically refined towards, say x = 1, with grading
factor σ ∈ (0, 1) and n levels of refinement; see Figure 1 (level 2, left). We note
that the mesh Tx × {I} of Ŝ := I2 is a two-dimensional edge patch.

An edge patch is given by a triangulation

Te = T bl
e := {Kx ×Ky × I | Kx ∈ Tx, Ky ∈ Ty} = {Kxy × I | Kxy ∈ Txy},

(6)
where Tx and Ty are meshes of I, geometrically refined towards, say x = 1 and
y = 1, respectively, with grading factor σ ∈ (0, 1) and total number of layers n;
see Figure 1 (level 2, center). The mesh Txy of Ŝ is a two-dimensional corner
patch.

In a similar way, we can define a corner patch Tc:

Tc = T bl
c := {Kx ×Ky ×Kz | Kx ∈ Tx, Ky ∈ Ty, Kz ∈ Tz},

where Tx, Ty, and Tz are meshes of I, geometrically refined towards, say x = 1,
y = 1, and z = 1, respectively; see Figure 1 (level 2, right).

We note that every element K̂ of Tf , Te, and Tc on the reference cube is of
the form (0, hx)× (0, hy)× (0, hz) (after a possible translation and rotation) and

is thus obtained from the reference element by an affine mapping FK̂ : Q̂ → K̂
of the form

[x y z]T = [(hx/2)(x̂+ 1) (hy/2)(ŷ + 1) (hz/2)(ẑ + 1)]T . (7)

The aspect ratio of K̂ is the maximum of all possible ratios of hx, hy, and hz.
Since the macromesh consists of affinely mapped elements Km, every element
K of the global mesh T = T n,σ

bl is obtained from the reference element by
combining two affine mappings

K = FK(Q̂) = FKm(FK̂(Q̂)), K ⊂ Km ∈ Tm. (8)

Since Tm is shape-regular, the aspect ratio is determined only by FK̂ ; cf. (7).
Finally we note that the aspect ratio of the mesh is determined by σ and n, and
is proportional to σ−n.

As in [40], our analysis will be made for a prototype mesh, obtained from a
shape-regular (not necessarily quasi-uniform) macromesh, by refining elements
that only touch ∂Ω, either as corner, edge, or face patches. Such meshes only
consist of four types of patches: unrefined, face, edge, and corner patches. We
also recall that in practical applications σ is bounded away from one and zero.
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5 Basis functions on Gauss-Lobatto nodes

For the space Xk(Ω; T ), we choose nodal basis functions on the Gauss-Lobatto
nodes. We denote by GLL(k) the set of Gauss-Lobatto points {ξi; 0 ≤ i ≤ k}
on I = (−1, 1) in increasing order and by {wi > 0} the corresponding weights;
see [6, Sect. 4]. We recall that the quadrature formula based on GLL(k) has
order 2k − 1 and, in addition,

‖u‖20,I ≤
k
∑

i=0

u(ξi)
2 wi ≤ 3 ‖u‖20,I, u ∈ Qk(I); (9)

see [6, Rem. 13.3].
For the reference cube Q̂ = (−1, 1)3 we setGLL(k)3 = {ξijl = (ξi, ξj , ξl); 0 ≤

i, j, l ≤ k}. In the following, we use the same notation for the mapped Gauss-
Lobatto nodes and corresponding weights for an affinely mapped element K ∈
T .

Given the nodes GLL(k)3, our basis functions on Qk(Q̂) are the tensor
product of k-th order Lagrange interpolating polynomials on GLL(k), defined
by

l̂i(ξj) = δij . (10)

On the reference element we can write

u(x, y, z) =
k

∑

i=0

k
∑

j=0

k
∑

l=0

u(ξi, ξj , ξl) l̂i(x)l̂j(y)l̂l(z), u ∈ Qk(Q̂). (11)

For a general element in T , basis functions are obtained by mapping those on
the reference element. Interior local basis functions correspond to GLL nodes
inside Q̂ (all local indices differ from 0 and k).

Equation (11) defines an interpolation operator Ik on the reference element

Iku(x, y, z) :=
k

∑

i=0

k
∑

j=0

k
∑

l=0

u(ξi, ξj , ξl) l̂i(x)l̂j(y)l̂l(z).

The points GLL(k)3 define a triangulation Tk = Tk(Q̂) of Q̂ in a natural way,
consisting of k3 parallelepipeds. Let Y h = Y h(Q̂) = X1(Q̂; Tk) be the space
of piecewise trilinear functions on this mesh. We also denote Y k = Y k(Q̂) =
Qk(Q̂). The aspect ratio of Tk is of the order of k; see [10, Pg. 27] for details.
In a similar way we can consider a Gauss-Lobatto mesh on an affinely mapped
element K by simply mapping the GLL mesh on Q̂. In the following, we will
use the notations Tk = Tk(K), Y h = Y h(K), and Y k = Y k(K), to denote the
GLL mesh, the piecewise trilinear finite element space, and Qk, respectively,
for a mapped element. If the aspect ratio of K is, e.g., hx/hy (cf. (7) and (8)),
then that of the corresponding Tk is (hx/hy)k.
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There is a one-to-one correspondence between Y h and Y k given by

Ik : Y h → Y k, Ih : Y k → Y h,

where Ih is the nodal interpolation operator on Y h. We use the notation uh ∈
Y h and uk ∈ Y k in order to denote two corresponding functions.

Lemma 5.1 Let K̂ = (0, hx)× (0, hy)× (0, hz). Then there exist positive con-
stants c and C, such that, for uh ∈ Y h(K̂),

c‖uh‖0,K̂ ≤ ‖uk‖0,K̂ ≤ C‖uh‖0,K̂ ,

c‖∂x(uh)‖0,K̂ ≤ ‖∂x(uk)‖0,K̂ ≤ C‖∂x(uh)‖0,K̂ ,

with, in particular, c and C independent of hx, hy, hz, and k. Similar bounds
hold for the y and z derivatives. If K ∈ T is given by (8), then, for uh ∈ Y h(K),

c‖uh‖0,K ≤ ‖uk‖0,K ≤ C‖uh‖0,K ,

c|uh|1,K ≤ |uk|1,K ≤ C|uh|1,K

where the constants are independent of the diameter and the aspect ratio of K,
and k.

The proof of the above result can be found in [9, Sect. 2] for K = Q̂. For an
affinely mapped element a scaling argument can be used. We note that thanks
to Lemma 5.1 we can equivalently work with functions in Y k or Y h.

The following result can be found in [10, Lem. 3.3.3].

Lemma 5.2 Let K̂ = (0, hx) × (0, hy) × (0, hz) and uh ∈ Y h(K̂). Given θ ∈
W 1,∞(K̂), with

‖θ‖∞,K̂ ≤ C, ‖∇θ‖∞,K̂ ≤ C/r,

then
‖Ih(θuh)‖20,K̂ ≤ C‖uh‖20,K̂ ,

‖∂xIh(θuh)‖20,K̂ ≤ C(|uh|21,K̂ + r−2‖uh‖20,K̂),

where C is independent of hx, hy, hz, and k. Similar bounds hold for the y and
z derivatives. If K ∈ T is given by (8), then, for uh ∈ Y h(K),

‖Ih(θuh)‖20,K ≤ C‖uh‖20,K ,

|Ih(θuh)|21,K ≤ C(|uh|21,K + r−2‖uh‖20,K),

where C is independent of the diameter and the aspect ratio of K, and k.

Given an element K̂ = (0, hx)× (0, hy)× (0, hz) and a coordinate direction,
say x, , let a, b, c, and d be the vertices of a face of K̂ perpendicular to this
direction, and let a′, b′, c′, and d′ be the corresponding points on the parallel
face. The following lemma relies on trivial properties of trilinear functions; cf.
[10, Lem. 3.3.1].
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Lemma 5.3 Let K̂ = (0, hx) × (0, hy) × (0, hz) and a, b, c, and d be the ver-

tices of a face of K̂ perpendicular to the x direction. Then there are constants
independent of hx, hy, and hz, such that, if u is trilinear on K̂,

c‖u‖2
0,K̂

≤ hxhyhz

∑

x=a,b,c,d

(u(x)2 + u(x′)2) ≤ C‖u‖2
0,K̂

,

c‖∂xu‖20,K̂ ≤ (hxhyhz/h2
x)

∑

x=a,b,c,d

(u(x)− u(x′))2 ≤ C‖∂xu‖20,K̂ ,

c‖∂xu‖2∞,K̂
≤ h−2

x

∑

x=a,b,c,d

(u(x)− u(x′))2 ≤ C‖∂xu‖2∞,K̂
.

Similar bounds hold for the y and z derivatives.

6 Neumann-Neumann methods

Iterative substructuring methods rely on a non-overlapping partition into sub-
structures. We mention [39, Ch. 4] as a general reference to this section. In our
algorithms the substructures are chosen as the macroelements in Tm = {Ωi | 1 ≤
i ≤ N}. We recall that the macroelements are shape-regular. This appears to
be essential for the analysis and good performance.

We define the boundaries Γi = ∂Ωi \ ∂Ω and the interface Γ as their union.
We remark that Γ is the union of the interior subdomain faces, regarded as open
sets, which are shared by two subregions, and subdomain edges and vertices,
which are shared by more than two subregions. Vertices can only be endpoints
of edges. In the following, we tacitly assume that points on ∂Ω are excluded
from the geometrical objects that we consider, or, in other words, we will only
deal with geometrical objects (faces, edges, vertices, ...) that belong to Γ. We
denote the faces of Ωi by F ij , its edges by Eij , its vertices by V ij , and its
wirebasket, defined as the union of its edges and vertices, by W i. Occasionally,
we will also use faces, edges, and vertices with one or no superscript. If a vertex
(edge) lies on ∂Ω we will regard it as part of the internal edge (resp., face) that
shares it with ∂Ω.

When restricted to the subdomain Ωi, the global triangulation T determines
a local mesh Ti. This mesh can be of four types: face, edge, corner, or consisting
of just one element. We define the local spaces Xi = Xk(Ωi; Ti), of local finite
element functions that vanish on ∂Ω ∩ ∂Ωi

In our analysis, we will also employ the GLL mesh Tk(Ωi) on Ωi, generated by
the local GLL meshes Tk(K) for K ∈ Ti. The corresponding space of piecewise
trilinear functions on Tk(Ωi) that vanish on ∂Ω∩∂Ωi is denoted by Y h(Ωi). We
set Y k(Ωi) = Xk(Ωi; Ti).

We next define the local bilinear forms

ai(u, v) =

∫

Ωi

ρi∇u ·∇v dx, u, v ∈ Xi.
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We note that if Ωi is a floating subdomain (i.e., its boundary does not touch
∂Ω), ai(·, ·) is only positive semi-definite and for u ∈ Xi we have

ai(u, u) = 0 iff u constant in Ωi.

The sets of nodal points on Γi, Γ, F ij , Eij , and W i are denoted by Γi,h, Γh,
F ij
h , Eij

h , and W i
h, respectively. We will identify these sets with the correspond-

ing sets of degrees of freedom. As for the corresponding regions, we will also
use notations with one or no superscript.

We introduce some spaces defined on the interfaces: Ui is the space of re-
strictions to Γi of functions in Xk(Ωi; Ti) and U of restrictions to Γ of functions
in Xk(Ω; T ). We note that functions in Ui and U are uniquely determined by
the nodal values in Γi,h and Γh, respectively. For every substructure Ωi, there
is a natural interpolation operator

RT
i : Ui −→ U,

that extends a function on Γi to a global function on Γ with vanishing degrees of
freedom in Γh \Γi,h. Its transpose with respect to the Euclidean scalar product
Ri : U → Ui extracts the degrees of freedom in Γi,h.

Once a vector u ∈ Xk(Ω; T ) is expanded using the basis functions introduced
in section 5, Problem (4) can be written as a linear system

Au = f.

We recall that the condition number of A is expected to grow at least as
k3/(hmin)2 ∼ k3σ−2n ∼ k3σ−2k (see [25] for a result in two dimensions) and
may thus be extremely large for large values of k.

The contributions to the stiffness matrix and the right hand side can be
formed one subdomain at a time. The stiffness matrix is then obtained by
subassembly of these parts. We will order the nodal points interior to the sub-
domains first, followed by those on the interface Γ. Similarly, for the stiffness
matrix relative to a substructure Ωi, we have

A(i) =

(

A(i)
II A(i)

IΓ

A(i)
ΓI A(i)

ΓΓ

)

.

In a first step of many iterative substructuring algorithms, the unknowns in
the interior of the subdomains are eliminated by block gaussian elimination. In
this step, the Schur complements, with respect to the variables associated with
the boundaries of the individual substructures, are calculated. The resulting
linear system can be written as

SuΓ = gΓ. (12)
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Given the local Schur complements

Si = A(i)
ΓΓ −A(i)T

IΓ A(i)−1

II A(i)
IΓ : Ui −→ Ui,

we have

S =
N
∑

i=1

RT
i SiRi : U −→ U

and an analogous formula can be found for gΓ; see [39, Ch. 4].
A function u(i) defined on Ωi is said to be discrete harmonic on Ωi if

A(i)
II u

(i)
I +A(i)

IΓu
(i)
Γ = 0.

In this case, it is easy to see that Hi(u
(i)
Γ ) := u(i) is completely defined by its

value on Γi. The space of piecewise discrete harmonic functions u consists of
functions in X that are discrete harmonic on each substructure. In this case,
u =: H(uΓ) is completely defined by its value on Γ.

Our preconditioners will be defined with respect to the inner product

s(u, v) = uTSv, u, v ∈ U.

It follows immediately from the definition of S that s(·, ·) is symmetric and
coercive.

The following lemma results from elementary variational arguments.

Lemma 6.1 Let u(i)
Γ be the restriction of a finite element function to Γi. Then

the discrete harmonic extension u(i) = Hi(u
(i)
Γ ) of u(i)

Γ into Ωi satisfies

ai(u
(i), u(i)) = min

v(i)|∂Ωi
=u

(i)
Γ

ai(v
(i), v(i)) = u(i)

Γ

T
S(i)u(i)

Γ .

Analogously, if uΓ is the restriction of a finite element function to Γ, the piece-
wise discrete harmonic extension u = H(uΓ) of uΓ into the interior of the
subdomains satisfies

a(u, u) = min
v|Γ=uΓ

a(v, v) = s(u, u) = uT
ΓSuΓ.

This lemma ensures that instead of working with functions defined on the in-
terface Γ, we can equivalently work with the corresponding discrete harmonic
extensions. For this reason, in the following we will identify spaces of traces on
the interfaces, Ui and U , with spaces of discrete harmonic extensions. We point
out however that due to the particular meshes considered, we cannot equiva-
lently work with norms of local discrete harmonic extensions and traces on the
subdomain boundaries since our local meshes are not in general quasi-uniform
or shape-regular, and stable discrete harmonic extensions cannot be found in
general.
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Neumann-Neumann methods provide preconditioners for the Schur comple-
ment system: instead of solving (12) using, e.g., the conjugate gradient method,
they employ an equivalent system involving a preconditioned operator of the
form

Ŝ−1S = PNN = P0 + (I − P0)(
N
∑

i=1

Pi)(I − P0).

We refer to [12, 24, 30, 17] for some NN methods for the h and p finite element
approximations. We are unaware on any such method for hp approximations.

The operators Pi are projection-like operators associated to a family of sub-
spaces Ui and determined by a set of local bilinear forms defined on them

s̃i(u, v), u, v ∈ Ui.

Given the interpolation operators RT
i : Ui → U , we have

Pi = RT
i P̃i, P̃i : U −→ Ui, (13)

with
s̃i(P̃iu, vi) = s(u,RT

i vi), vi ∈ Ui. (14)

While P0 is associated to a low-dimensional global problem, the others are
associated to the single substructures. The remainder of this section is devoted
to the definition of the various components of PNN .

An important role is played by a family of weighted counting functions δi,
which are associated with and defined on the individual Γi (cf. [11, 12, 24, 35,
30]) and are defined for γ ∈ [1/2,∞). Given Ωi and x ∈ Γi,h, δi(x) is determined
by a sum of contributions from Ωi and its relevant next neighbors,

δi(x) =
∑

j∈Nx

ργj (x)/ρ
γ
i (x), x ∈ Γi,h. (15)

Here Nx, x ∈ Γh, is the set of indices j of the subregions such that x ∈ Γj,h.
The function δi is discrete harmonic and thus belongs to Ui. The pseudoinverses
δ†i ∈ Ui are defined, for x ∈ Γi,h, by

δ†i (x) = δ−1
i (x), x ∈ Γi,h. (16)

We note that these functions provide a partition of unity:

N
∑

i=1

RT
i δi

†(x) ≡ 1. (17)

In particular, for u ∈ U we can use the formula

u =
N
∑

i=1

RT
i ui, with ui = Hi(δ

†
i u). (18)
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Here and from now on, we will tacitly assume that whenever we write Hi(uv)
or H(uv) we first form Ik(uv), i.e., map the product of the two functions u and
v into the hp finite element space by interpolation, and then extend the result
as a discrete harmonic function. If there is no confusion, we will sometime use
the notation uv in order to denote Ik(uv) or Hi(uv).

A coarse space U0 of minimal dimension is defined as

U0 = span{RT
i δ

†
i } ⊂ U,

where the span is taken over the floating subdomains. We note that U0 consists
of piecewise discrete harmonic functions and RT

0 is the natural injection U0 ⊂ U .
We consider an exact solver on U0

s̃0(u, v) := a(Hu,Hv) = a(u, v).

For every substructure Ωi, the local bilinear form is

s̃i(u, v) := ai(Hi(δiu),Hi(δiv)), u, v ∈ Ui.

For a floating subdomain P̃i is defined only for those u ∈ U for which s(u, v) =
0 for all v = RT

i vi such that Hi(δivi) is constant on Ωi. This condition is
satisfied if a(u,RT

i δ
†
i ) = 0; we note that RT

i δ
†
i is a basis function for U0. For

such subdomains, we make the solution P̃iu of (14) unique by imposing the
constraint

∫

Ωi

Hi(δiP̃iu)dx = 0, (19)

which just means that we select the solution orthogonal to the null space of the
Neumann operator. Thus, Range(P̃i) has codimension 1 with respect to the
space Ui.

We can equally well use matrix notations. Let Di be the diagonal matrix
with the elements δ†i (x) corresponding to the point x ∈ Γi,h. Then

s̃i(u, v) = uTD−1
i SiD

−1
i v.

We also have,
Pi = RT

i DiS
†
iDiRiS,

where S†
i is a pseudoinverse of Si. Analogously for the coarse projection

P0 = RT
0 S

−1
0 R0S,

where S0 = R0SRT
0 the restriction of S to U0

The main result of this paper is a bound for the condition number of PNN .
Such bound can be found using the abstract Schwarz theory; see, e.g., [39, Ch.
6]. We refer to [24, 12, 30, 39, 17] for similar proofs.

A uniform bound for the smallest eigenvalue can be found using the decom-
position (18) and the fact that P0 is an orthogonal projection.
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Lemma 6.2 We have

s(PNNu, u) ≥ s(u, u), u ∈ U.

In order to find a bound for the largest eigenvalue, we need a stability prop-
erty for the local bilinear forms; see, e.g., [39].

Assumption 6.1 We have

s(RT
i ui, R

T
i ui) ≤ ω s̃i(ui, ui), ui ∈ Range(P̃i), i = 1, · · · , N,

with

ω = C (1− σ)−6

(

1 + log

(

k

1− σ

))2

and C independent of k, n, σ, γ, the coefficients ρi, and the diameters Hi.

The proof of Assumption 6.1 is given in section 9. Assumption 6.1 and a
coloring argument provide a bound for the largest eigenvalue; see, e.g., [30, Sect.
8].

Lemma 6.3 Let Assumption 6.1 be satisfied. Then

s(PNNu, u) ≤ Cωs(u, u), u ∈ U.

Consequently the condition number of PNN satisfies

κ(PNN ) ≤ Cω = C (1− σ)−6

(

1 + log

(

k

1− σ

))2

.

7 Decomposition results

A key ingredient for the proof of Assumption 6.1 and for the analysis of many
iterative substructuring methods in three dimensions is a decomposition result
for local functions in Ui into face and wirebasket components:

u =
∑

j

uF ij + uW i , u ∈ Ui. (20)

The face component uF ij vanishes on ∂Ωi \ F ij and is discrete harmonic. It
is uniquely determined by the nodal values in F ij

h . The wirebasket component
uW i is also discrete harmonic and vanishes at all points of Γi,h except at those
in W i

h.
We can further decompose a local functions by also defining edge and vertex

components:

u =
∑

j

uF ij +
∑

j

uEij +
∑

j

uV ij , u ∈ Ui, (21)
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E

E

"

1!"

V

z

VK

(z)T

Figure 2: Face patch: partition of an edge E that touches ∂Ω into E1−σ and Eσ

(left) and two-dimensional mesh T (z) for a section corresponding to a constant
z (right).

where uEij is discrete harmonic and vanishes on ∂Ωi \Eij , and uV ij vanishes at
all nodes in Γi,h except at the vertex V ij . We recall that we exclude geometrical
objects on ∂Ω and that therefore the sums in (20) and (21) are taken over faces,
edges, and vertices that do not belong to ∂Ω. Discrete harmonic functions of
type uF ij , uEij , uV ij , and uW i are called face, edge, vertex, and wirebasket
functions, respectively.

Here and in the following section, we only carry out proofs for the reference
cube Q̂: since elements in the macromesh Tm are shape-regular and affinely
mapped, the corresponding bounds for a generic substructure Ωi ∈ Tm, of di-
ameter Hi, can be obtained by a standard scaling argument and involve the
scaled norm (2). We recall that we only need to consider four types of patches:
face, edge, corner, and unrefined ones, together with the corresponding trian-
gulations Tf , Te, Tc, and Q̂, respectively; cf. Figures 1. We recall that a generic
patch is denoted by Ωi and its triangulation by Ti.

7.1 Wirebasket components

Given an edge E = Eij ⊂ W i, we define a discrete L2 norm on E. If E does
not touch the boundary ∂Ω, we simply set

‖u‖h,E := ‖u‖0,E.

Let now E be an edge that touches ∂Ω; see Figure 2, left, for an example of
a face patch. After a possible translation and rotation, E can always be written
as

E = {(1, 1, z) | z ∈ I}.

Then, the local mesh Ti gives rise to a one-dimensional triangulation on E, TE ,
which is not quasiuniform and is geometrically refined towards one end point,
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say z = 1. In addition, E can be partitioned as

E = E1−σ ∪ Eσ, E1−σ = (−1,−1 + 2(1− σ)), Eσ = (−1 + 2(1− σ), 1).

We note that E1−σ consists of exactly one element of length 2(1−σ) in TE , while
the elements on Eσ are geometrically refined towards z = 1. We now consider
the GLL mesh Tk(Ωi) and observe that all the elements that touch the edge E
have the same diameters hi,x and hi,y, along the two directions perpendicular to
E; cf. Figure 2. Indeed, hi,x and hi,y are of order k−2, for a face patch, of order
k−2(1 − σ), for a corner patch, and of order k−2 and k−2(1 − σ), respectively,
for an edge patch. Moreover, thanks to our particular meshes and to the fact
that local spaces of the same degree k are employed on each element, we have
the following property:

Property 7.1 Let E be an edge parallel to, e.g., z, that is shared by two sub-
structures Ωi and Ωj. Then, the meshsizes hi,x and hj,x, and hi,y and hj,y are
comparable. In particular, there exist constants, depending only on the aspect
ratios of Ωi and Ωj, such that

c(1− σ)hi,x ≤ hj,x ≤ C(1− σ)−1hi,x.

Similar bounds hold for hi,y and hj,y.

We define

‖u‖2h,E := ‖u‖20,E + ‖u‖2h,Eσ
= ‖u‖20,E + hi,xhi,y‖∂zu‖

2
0,Eσ

.

We note that in this case the discrete norm is obtained by adding to the L2 norm
on E a weighted L2 norm of ∂zu over a part of E where TE is not quasiuniform.
A discrete wirebasket norm is obtained by summing the contributions over all
the edges:

‖u‖2h,W i :=
∑

E⊂W i

‖u‖2h,E

Lemma 7.1 Let uW i ∈ Ui be discrete harmonic and vanish at all nodal points
Γi,h except at those on W i. Then there is a constant independent of uW i , Hi,
σ, and n, such that

|uW i |21,Ωi
≤ C(1− σ)−2‖uW i‖2h,W i .

Proof. The result follows by estimating the energy norm of the zero extension
of the boundary values and by noting that the harmonic extension has a smaller
energy (cf. Lemma 6.1). More precisely, let uk be the function that vanishes at
all nodal points in Ωi,h ∪ Γi,h except at those on W i and u = uh = Ihuk the
corresponding piecewise trilinear function defined on the GLL mesh Tk(Ωi). We
will estimate the energy of uh on each element K ∈ Tk(Ωi) that touch an edge
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E ⊂ W i. Without loss of generality, we assume that E is parallel to the z axis.
We only consider the worst possible case, i.e., that of a face patch and refer to
Figure 2.

Let us first suppose that E does not touch ∂Ω. For a face patch, K has
dimensions hx, hy, and hz of order

k−2 × k−2(1 − σ)× k−2, or
k−2 × k−2(1 − σ)× k−1,

and thus
c(1− σ)hx ≤ hy ≤ Chx,
hx ≤ Chz;

(22)

see Figure 2. If a and b are the vertices of K that lie on E, Lemma 5.3 yields

‖∂xu‖
2
0,K ≤ C(hyhz/hx) (u(a)

2 + u(b)2) ≤ C

∫ b

a

u2dz,

where for the last inequality we have used (22) and standard properties of linear
functions. In a similar way, we find

‖∂yu‖
2
0,K ≤ C(1− σ)−1

∫ b

a

u2dz, ‖∂zu‖
2
0,K ≤ C

∫ b

a

u2dz.

Let now E be an edge that touches ∂Ω and K ∈ Tk(Ωi) be an element that
shares an edge with E1−σ. For a face patch, K has dimensions of the order

k−2 × k−2 × k−2(1− σ), or
k−2 × k−2 × k−1(1− σ),

and thus
chx ≤ hy ≤ Chx,
hx ≤ C(1 − σ)−1hz;

(23)

see Figure 2, left. As before, Lemma 5.3 yields

‖∂xu‖
2
0,K ≤ C

∫ b

a

u2dz, ‖∂yu‖
2
0,K ≤ C

∫ b

a

u2dz, ‖∂zu‖
2
0,K ≤ C(1−σ)−2

∫ b

a

u2dz.

We are now left with the case of an element K ∈ Tk(Ωi) that shares an edge
with Eσ. We note that the first of (23) remains valid in this case. We then have

‖∂xu‖
2
0,K ≤ C

∫ b

a

u2dz, ‖∂yu‖
2
0,K ≤ C

∫ b

a

u2dz.

For ∂zu, we trivially have

‖∂zu‖
2
0,K ≤ C(hxhy/hz)(u(a)− u(b))2 ≤ Chxhy

∫ b

a

(∂zu)
2dz.
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The proof is concluded by summing over the elements K ∈ Tk(Ωi) and using
Lemma 5.1.

We now have a bound for the wirebasket component.

Theorem 7.1 Let u ∈ Ui and uW i be its wirebasket component. Then there is
a constant independent of u, Hi, σ, and n, such that

|uW i |21,Ωi
≤ C(1− σ)−2‖u‖2h,W i.

A complementary result is given by the trace estimates in Lemma 7.2. We
first introduce some additional notations. Let E be an edge of a substructure
Ωi. Without loss of generality, we assume that Ωi coincides with the reference
cube Q̂ and that E = {(1, 1, z) | z ∈ I}. The intersection between the plane
corresponding to a constant z ∈ I and Q̂ is the unit square Ŝ = (−1, 1)2, and
the local mesh Ti gives rise to a two-dimensional mesh T (z) on Ŝ which is either
a two-dimensional edge or corner patch, or it consists of a single element Ŝ; see
Figure 2, right. Let V = (1, 1) be the intersection between E and the closure of
Ŝ. If KV ∈ T (z) is the two-dimensional element that contains V , we note that,
since E does not belong to ∂Ω, KV has dimensions in {2, 2(1− σ)}, and thus
independent of the level of refinement n. For a fixed (x, y) ∈ KV , we finally
define the edge E(x, y) = {(x, y, z) | z ∈ I}.

Lemma 7.2 Let uk ∈ Xi and E and edge of Ωi. Then there is a constant
independent of uk, Hi, σ, and n, such that

‖uk‖20,E ≤ C (1− σ)−2 (1 + log k) ‖uk‖21,Ωi
,

‖uk‖2h,E ≤ C (1− σ)−2 (1 + log k) ‖uk‖21,Ωi
.

Proof. As before, it is enough to find bounds for u = Ihuk. Without loss of
generality, we assume E = {(1, 1, z) | z ∈ I}. We consider the two-dimensional
mesh T (z) on the intersection between the plane corresponding to a constant z
and the substructure; cf. Figure 2, right. Since geometric refinement on T (z)
takes place far from the vertex (1, 1), we can apply the two-dimensional result
in [40, Lem. 7.6] and write

|u(1, 1, z)|2 ≤ C (1− σ)−2 (1 + log k) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1),

with a constant that is independent of n, σ, and z. Integrating over z then gives

‖u‖20,E ≤ C (1 − σ)−2 (1 + log k) ‖u‖21,Ωi
,

which proves the first inequality and the second one for edges that do not touch
∂Ω.

We now bound ‖u‖h,Eσ for an edge that touches the boundary ∂Ω. We
consider the one-dimensional GLL meshes for each one of the elements in TE
and estimate the single contributions from the elements of these meshes. Let e
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be one of these elements of length hz and end points a and b. The edge e belongs
to a parallelepiped Ke ∈ Tk(Ωi). We note that Ke has dimensions hx = hi,x,
hy = hi,y, and hz. Since u is linear on e and trilinear on Ke, we have

hxhy

∫

e

∂zu
2dz ≤ C

hxhy

hz
(u(a)− u(b))2 ≤ C‖∂zu‖

2
0,Ke

,

where, for the last inequality, we have used Lemma 5.3. Summing over the edges
e in Eσ yields

‖u‖2h,Eσ
≤ C‖∂zu‖

2
0,Ωi

,

which, combined with the first inequality, proves the second bound.
The next lemma can be proved using the two-dimensional bound in [40, Lem.

7.6] and similar arguments as before. We note that it is only valid for edges
E(x, y) that are not too far from E and thus not too close to the part of Ωi

where anisotropic refinement takes place.

Lemma 7.3 Let E be an edge of a substructure Ωi which is parallel, say, to
z and intersects the plane corresponding to a constant z in V . Let in addition
KV be the element in the two-dimensional mesh T (z) that contains V . Then,
for every (x, y) ∈ KV and uk ∈ Xi,

‖uk‖
2
0,E(x,y) ≤ C (1 − σ)−2 (1 + log k) ‖uk‖

2
1,Ωi

, (24)

where C is independent of uk, σ, n, k, and (x, y), but depends only on the aspect
ratio of Ωi.

Proof. The proof can be carried out as in the previous lemma by using the
two-dimensional result in [40, Lem. 7.6]. Indeed, since the point (x, y) belongs
to KV and is thus far from the region where anisotropic refinement takes place,
we have

|u(x, y, z)|2 ≤ C (1− σ)−2 (1 + log k) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1).

Integration along z concludes the proof.
We end this section with a stability result for vertex and edge components.

It is a direct consequence of (9) and of the fact that for a vertex function the
modified norm ‖ · ‖h,E coincides with ‖ · ‖0,E.

Lemma 7.4 Let E be an edge of a substructure Ωi and V one of its end points.
Then, for every u ∈ Xi,

‖uV ‖
2
h,W i ≤ C‖u‖2h,W i, ‖uE‖

2
h,W i ≤ C‖u‖2h,W i, (25)

where C is independent of u, σ, n, k.
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Figure 3: Edge patch on the reference cube (−1, 1)3 employed in the proofs of
Lemmas 7.5 and 7.6
.

7.2 Face components

We next consider the face contributions of the decomposition (20). Bounds for
face contributions on the unrefined patch follow from standard results for spec-
tral elements. For face, edge, and corner patches, we employ cut-off functions
θF for each face and Lemma 5.2. We note that we need to consider one possible
case for faces of the corner patch, and two for the edge and face patches; cf.
Figure 1. In this section we only consider the case of an edge patch Ωi in full
detail, with the edge (1, y,−1), y ∈ I, and the two adjacent faces in common
with ∂Ω; see Figure 3. The other patches can be dealt with in a similar way.

As shown if Figure 3 for the reference cube, the edges that do not lie on
∂Ω are denoted by El, l = 1, . . . , 5, with E5 the edge that does not touch the
boundary ∂Ω. An edge patch is further partitioned into three regions. The
first step of geometric refinement partitions Q̂ into four parallelepipeds with
dimensions in {2, 2(1− σ), 2σ}. Let KΩ be the one that contains the boundary
edge and Kint the one that does not touch ∂Ω and contains the inner edge E5.
The two remaining parallelepipeds are denoted by K12 and K34 and they touch
the edges E1 and E2, and E3 and E4, respectively. The region Kedge is the
union of K12 and K34; cf. Figure 3.

The proof of the following lemma is a modification of those of [10, Lem.
3.3.6] and [40, Lem. 7.7].

Lemma 7.5 Given a face F j of Ωi that does not lie on ∂Ω, there exists a
continuous function θF j , defined on Ωi, that is equal to one at the nodal points
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of F j
h and zero on Γi,h \ F j

h , such that

∑

F j⊂Γi

θF j (x) = 1, x ∈ (Ωi,h ∪ Γi,h) \W
i
h,

0 ≤ θF j ≤ 1,

|∇θF j | ≤ C/r, in Ωi \KΩ

|∇θF j | ≤ C/Hi, in KΩ,

(26)

where r = r(x) is the distance to the closest edge of Ωi that does not lie on ∂Ω.

Proof. We only need to construct four functions and we will do that by
constructing them in the three regions Kint, Kedge, and KΩ separately.

We start with the inner region Kint and employ a similar construction as in
[10, Lem. 3.3.6]:
We further partitionΩi into eight parallelepipeds by bisecting {Kint, K12, K34, KΩ}
with the plane y = 0; see Figure 3, left. Let the center C be the common vertex
to these parallelepipeds and {Cj , j = 1, . . . , 6}, be their vertices that belong
to the six faces of Ωi; see Figure 3, right. By connecting the center C with the
centers Cj and with the eight vertices of Ωi, and, for each face, by connect-
ing the point Cj with the four vertices of this face, we can partition Ωi into
twenty-four tetrahedra; see Figure 3, right. By intersecting them with Kint, we
obtain a partition of Kint into eight tetrahedra. We first define a function ϑF j

associated to the face F j , defined to be 1/4 at the center C and ϑF j (Cl) = δjl
at the centers of the faces. On the segments CCl, these functions are obtained
by linear interpolation of the values at C and Cl; see Figure 3, right. The val-
ues inside each subtetrahedron formed by the segment CCl and one edge of F l

are defined to be constant on the intersection of any plane through that edge,
and are given by the value on the segment CCl. We note that this procedure
determines ϑF j at all points in Ωi except on the wirebasket W i.

We next consider the GLL triangulation Tk(Ωi) and interpolate ϑF j at the
GLL nodes in Kint \W i:

θF j (x) = (IhϑF j )(x), x ∈ Kint \W
i.

The function θF j is set to zero on the nodes in W i
h. The functions θF j are non

negative and bounded by one: this proves the second of (26) for points in Kint.
By construction, also the first of (26) holds for every node in Kint \W i. The
third of (26) can be proven by proceeding in the same way as for [10, Lem.
3.3.6].

We next construct the functions θF j in Kedge:
We start with K12. We take the values on the common face K12 ∩ Kint and
we extend them as constants into K12 along the segments parallel to E1 and
E2; see Figure 3, left. The inequalities in (26) remain valid. We note that the
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function obtained is independent of x in K12. A similar construction is carried
out in K34.

Finally we construct θF j in KΩ:
We note that KΩ is divided into two parallelepipeds and that on their internal
faces the function θF j has already been defined. In addition, θF j is bilinear on
these faces. It is then enough to assign the value 1/4 at the end points and
mid point of the boundary edge and interpolate these values in KΩ in order to
obtain a piecewise trilinear function. The first, second and fourth of (26) follow
from standard properties of trilinear functions.

By examining the proof of the previous lemma, we see that, for an edge E
that touches ∂Ω, the value of the functions θF j is independent of the coordinate
along the direction of E in all the elements of the GLL meshes that touch Eσ;
cf. Figure 3, left.

Property 7.2 Let F be a face of Ωi and E be an edge, parallel to, say z, that
touches ∂Ω. In any element KE ∈ Tk(Ωi) that shares an edge with Eσ the
function θF is independent of z.

We are now able to bound the face components in the decomposition (20).

Lemma 7.6 Let θF j be the functions in Lemma 7.5, where F j is a face of the
substructure Ωi. Then, for every x ∈ Ωi,h ∪Γi,h that is not on the wirebasket of
Ωi,

∑

j

Ik(θF ju)(x) =
∑

j

Ih(θF ju)(x) = u(x), u ∈ Xi

and

|Ik(θF ju)|21,Ωi
≤ C (1− σ)−4

(

1 + log

(

k

1− σ

))2

||u||21,Ωi
.

Proof. We only consider the case of an edge patch Ωi in full detail; see
Figure 3. The proof is similar to that in [40, Lem. 7.8] and [10, Lem. 3.3.7]
but particular care is required close to the edges that touch ∂Ω. Indeed, thanks
to Lemma 5.1, it is enough to find a bound for the piecewise trilinear function
Ih(θF ju).

The first equality follows directly from the first of (26). For the second
inequality, we consider an element K, of dimensions hx, hy, and hz, in the GLL
mesh Tk(Ωi). We consider three cases (as opposed to [10, Lem. 3.3.7] where
only two cases are considered): K may belong to the region KΩ containing the
boundary edge, touch the wirebasket, or may not touch it; see Figure 3.

Case 1. We start with an element that touches an edge E and does not
belong to KΩ. We can proceed as in [10, Lem. 3.3.7] if E does not touch ∂Ω
(E = E5) or, in case it does (E = El, l = 1, . . . , 4), if K does not touch Eσ.
We only consider the case of E = E3 in full detail; cf. Figure 3, left. The nodal
values of Ih(θF ju) on K are 0, 0, 0, 0, u(a), u(b), θF j (c)u(c), and θF j (d)u(d),
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with a and b vertices on a face and c and d vertices inside Ωi. It is immediate
to see that

c(1− σ)hx ≤ hy ≤ C(1− σ)−1hx,

hx ≤ C(1 − σ)−1hz.
(27)

Using Lemma 5.3 and (27), we can easily find

|Ih(θF ju|21,K ≤ C(1− σ)−2hz (u(a)2 + u(b)2 + u(c)2 + u(d)2)

≤ C(1− σ)−2

(

∫ b

a

u2dz +

∫ d

c

u2dz

)

,

where we have also used the fact that θF j has values between zero and one.
Summing over the element K and using in Lemma 7.3 for segments that are
parallel to E give

∑

K

|Ih(θF ju)|21,K ≤ C (1− σ)−4 (1 + log k) ‖u‖21,Ωi
,

where the sum is taken over the elements in Tk(Ωi) that touch an edge E, such
that E does not touch ∂Ω or, if it does, K does not touch Eσ.

We next consider the case where K shares an edge with Eσ. The terms
involving the x and y derivatives can be bounded as before: indeed, the first of
(27) still holds in this case. However, the second of (27), needed to bound the
z derivative, does not hold. Using Lemma 5.3 we find

‖∂zI
h(θF ju)‖20,K ≤ C(hxhy/hz)

(

(u(a)− u(b))2 + (θF j (c)u(d) − θF j (d)u(d))2
)

.

Property 7.1 ensures that θF j (c) = θF j (d) and thus

‖∂zI
h(θF ju)‖20,K ≤ C‖∂z(θF ju)‖20,K .

Summing over the elements K that touch Eσ gives
∑

K

‖∂z(I
h(θF ju)‖20,K ≤ C ‖∂z(θF ju)‖20,Ωi

and thus
∑

K∩W i '=∅

|Ih(θF ju)|21,K ≤ C (1− σ)−4 (1 + log k) ‖u‖21,Ωi
. (28)

Case 2. We now consider an element K ∈ Tk(Ωi) that does not touch the
wirebasket and does not belong to KΩ. The proof for this case is similar to that
of [10, Lem. 3.3.7]. Using Lemma 5.2 and the second of (26), we have

∑

K⊂Ωi\KΩ
K∩Wi=∅

|Ih(θF ju)|21,K ≤ C
∑

K

(|u|21,K + r−2
K ‖u‖20,K),
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where rK is the distance of the baricenter of K from the wirebasket. We have

∑

K

r−2
K ‖u‖20,K ≤ C

∫

Kint∪K12∪K34

r−2u2dx

≤ C

∫

Kint

r−2
5 u2dx+ C

2
∑

j=1

∫

K12∪Kint

r−2
j u2dx+ C

4
∑

j=3

∫

K34∪Kint

r−2
j u2dx,

where rj denotes the distance of a point from the edge Ej and the region
consisting of the elements in the GLL mesh Tk(Ωi) that touch the wirebasket is
assumed to be excluded from the domains of integration; cf. Figure 3, left. Each
of the integrals on the right, associated to an edge E = Ej , can be estimated
using cylindrical coordinates with the ζ axis coinciding with Ej and the radial
direction rj normal to Ej . We only considerE5 in detail; cf. Figure 3. The other
integrals can be estimated in the same way. If the point V is the intersection
between E5 and the section corresponding to a fixed ζ and KV is the element
of the two-dimensional mesh T (ζ) that contains V , we can write

∫

Kint

r−2
5 u2dx ≤ C

∫

KV

r−2
5 dxdy

1
∫

−1

u2dζ

≤ C(1− σ)−2(1 + log k)‖u‖21,Ωi

∫

KV

r−2
5 dxdy,

where we have used Lemma 7.3 for the last inequality; cf. Figure 2, right. The
last integral can be estimated by

∫

KV

r−2
5 dxdy ≤ C

∫ 2

k−2(1−σ)
r−1
5 dr5

∫ 2π

0
dφ ≤ C

(

1 + log

(

k

1− σ

))

.

Considering similar contributions for the other edges, we then find

∑

K⊂Ωi\KΩ
K∩Wi=∅

|Ih(θF ju)|21,K ≤ C|u|21,Ωi
+ C(1 − σ)−2

(

1 + log

(

k

1− σ

))2

‖u‖21,Ωi
.

(29)
Case 3. We are now left with the case K ⊂ KΩ. Since, in this case, |∇θF j |

is bounded by a constant, Lemma 5.2 ensures

∑

K⊂KΩ

|Ih(θF ju)|21,K ≤ C ‖u‖21,Ωi
.

The proof is concluded by combining this inequality with (28) and (29), and
applying Lemma 5.1.
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2(1!")

# #

#
i j

F

F

Figure 4: The cross sections of an edge and a face patch, or a corner and an
edge patch, with a common face F .

8 Comparison results

In the analysis of many iterative substructuring methods, it is necessary to
compare certain norms of discrete harmonic functions on different substructures
that have the same trace on a common face, edge, or vertex.

As already pointed out in [40], if the local meshes are shape-regular and
quasi-uniform, the comparison for functions on adjacent substructures that have
the same value on a common face, can be made using a trace theorem (which is
valid for general functions inH1) and a stable extension. However, the existence
of stable extensions for meshes that are not quasi-uniform or shape-regular is
far from trivial. For this reason, here we will adopt the same strategy as in [40],
since the meshes considered are highly anisotropic but of a particular type.

We note that we only need to consider three cases: that of a face shared by
an unrefined and a face patch, by a face and an edge patch, and by an edge and a
corner patch. We only consider the last two case in full detail, since the former
can be treated in exactly the same way. We consider the two substructures
Ωi and Ωj in Figure 4, which share the face F . Since we proceed in exactly
the same way as in [40, Sect. 7.3], we do not present any proof here. We first
consider Ωi and suppose that it coincides with the reference cube Q̂. The face
F corresponds to x = 1. Let ΩF be the layer of points in Ωi within a distance
2(1− σ) from F .

The following lemma can be proven in the same way as [40, Lem. 7.9].

Lemma 8.1 Let uF ∈ Ui be a face function on Ωi, i.e, a discrete harmonic
function that vanishes on ∂Ωi \ F , and ũF ∈ Xi, such that

1. ũF is equal to uF on F and vanishes on ∂ΩF \ F ;

2. ũF is discrete harmonic in ΩF ;

3. ũF vanishes in Ωi \ ΩF .
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Then
|uF |

2
1,Ωi

≤ |ũF |
2
1,Ωi

≤ ‖∇θσ,F ‖
2
∞ |uF |

2
1,Ωi

,

where θσ,F ∈ W 1,∞(Ωi) is any function that is equal to one on F , vanishes in
Ωi \ ΩF , and has values in (0, 1) in the rest of Ωi. In particular we can find a
function such that

‖∇θσ,F‖∞ ≤ C(1− σ)−1.

The comparison result for face functions can be then found by noting that
we can map Ωj and its mesh into ΩF and the corresponding local mesh, by a
simple dilation in the horizontal direction.

Theorem 8.1 Let F be a face that is common to Ωi and Ωj and uF ∈ U be a
piecewise discrete harmonic function that is identically zero at all nodal points
in Γh \ Fh . Then,

c (1− σ) |uF |
2
1,Ωi

≤ |uF |
2
1,Ωj

≤ C(1 − σ)−1 |uF |
2
1,Ωi

.

For vertex and edge functions the following lemma is sufficient for our anal-
ysis.

Lemma 8.2 Let Ωi and Ωj be two substructures and u ∈ X. If V = V i = V j

is a common vertex, then the vertex components of u satisfy

‖uV j‖2h,W j ≤ C(1− σ)−1‖uV i‖2h,W i .

If E = Ei = Ej is a common edge, then the edge components of u satisfy

‖uEj‖2h,W j ≤ C(1− σ)−2‖uEi‖2h,W i.

Proof. For the first inequality, we note that the modified norms ‖ · ‖h,W i

and ‖ · ‖h,W j coincide with the L2 norms, since a vertex function vanishes at all
nodal points in Γh except at that vertex and we only consider internal vertices.
It is enough to compare a contribution from an edge Ej of Ωj with that of an
edge Ei of Ωi. The worst possible case occurs when Ej does not touch ∂Ω but
Ei does; cf. Figure 4. Let φ(ẑ) be the function in Qk(I) that vanishes at all the
GLL nodes in I, except at −1 where it is equal to u(V ). Using the change of
variables z = (1− σ)(ẑ + 1)− 1 and the fact that uV i vanishes in Ei

σ, we have

∫

Ej

uV j (ẑ)2dẑ =

∫ 1

−1
φ(ẑ)2dẑ = (1− σ)−1

∫ −1+2(1−σ)

−1
φ(z)2dz

= (1− σ)−1

∫

Ei
1−σ

uV i(z)2dz = (1− σ)−1

∫

Ei

uV i(z)2dz.

For the second inequality, it is enough to use the definition of the modified
norms ‖ · ‖h,W i and ‖ · ‖h,W j and Property 7.1



26 A. TOSELLI and X. VASSEUR

9 Proof of Assumption 6.1

We are now ready to give an upper bound for ω in Assumption 6.1. Our proof
is similar to that in [31, Lem. 9.1]. We note that if ui ∈ Ui, its extension
u = RT

i ui vanishes on Γh except at the nodal points in Γi,h and its support is
thus contained in the union of Ωi and its neighboring substructures. In order
to estimate ω we thus have to estimate the energy of u in these substructures
in terms of the energy of Hi(δiui) in Ωi alone.

We first note that, by simple calculation, we have

ρj(δ
†
i (x))

2 = ρjδi(x)
−2 ≤ min{ρi, ρj}, x ∈ Γi,h, j ∈ Nx. (30)

Let ui ∈ Range(P̃i). We start with a substructure Ωj that only has a vertex
V = V i = V j in common with Ωi. We note that, according to the decomposition
(21), u has only a wirebasket component uV j = u on Ωj , which vanishes at all
nodes in Γj,h except at V . Using Lemma 7.1, we find

aj(u, u) = ρj |uV j |21,Ωj
≤ C ρj (1−σ)−2 ‖uV j‖2h,W j = C ρj δ

−2
i,V (1−σ)−2 ‖δiuV j‖2h,W j ,

where δi,V = δi(V ). We next note that, thanks to Lemma 8.2, the norm ‖·‖h,W j

associated to Ωj can be bounded by ‖·‖h,W i . In addition, we can apply Lemmas
7.4 and 7.2 and find

ρi‖δiuV j‖2h,W j ≤ C(1 − σ)−1ρi‖(δiui)V i‖2h,W i ≤ C(1 − σ)−1ρi‖Hi(δiui)‖
2
h,W i

≤ C(1− σ)−3(1 + log k) ρi‖Hi(δiui)‖21,Ωi

= C(1− σ)−3(1 + log k) (ai(Hi(δiui),Hi(δiui)) + ρiH
−2
i ‖Hi(δiui)‖20,Ωi

).

The L2 component in the last term can be bounded by the local bilinear form
ai(·, ·), thanks to a Poincaré inequality for floating subdomains (cf. (19)), or
thanks to a Friedrichs inequality for substructures that touch ∂Ω. Combining
these two estimates and using (30), we find

aj(u, u) = aj(uV j , uV j ) ≤ C(1− σ)−5(1 + log k) ai(Hi(δiui),Hi(δiui)). (31)

We next consider a substructure Ωj that only has an edge E = Ei = Ej in
common with Ωi, with vertices V j1 = V i1 and V j2 = V i2. We note that, ac-
cording to the decompositions (20) and (21), u has only a wirebasket component
on Ωj ,

u = uW j = uV j1 + uV j2 + uEj ,

which vanishes at all nodes in Γj,h except at those on the closure Ej . We then
have

aj(u, u) ≤ 3aj(uV j1 , uV j1) + 3aj(uV j2 , uV j2) + 3aj(uEj , uEj ).

For the two vertex components, we can proceed as before and find similar bounds
to (31). For the edge component, we use Lemma 7.1, the definition of ‖ · ‖h,Ej ,
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and the fact that δi is constant at all the nodal points in Eh. We find

aj(uEj , uEj ) = ρj |uEj |21,Ωj
≤ C

ρj
(1 − σ)2

‖uEj‖2h,Ej ≤ C
ρj δ

−2
i,E

(1− σ)2
‖δiuEj‖2h,Ej ,

where δi,E is the constant value of δi on E. Thanks to Lemma 8.2, the norm
‖ ·‖h,Ej associated to Ωj can be bounded by ‖ ·‖h,Ei. In addition, we can apply
Lemmas 7.4 and 7.2 and find

ρi‖δiuEj‖2h,Ej ≤ C(1− σ)−2ρi‖(δiui)Ei‖2h,Ei ≤ C(1− σ)−2ρi‖Hi(δiui)‖
2
h,Ei

≤ C(1 − σ)−4(1 + log k) ρi‖Hi(δiui)‖21,Ωi

= C(1 − σ)−4(1 + log k) (ai(Hi(δiui),Hi(δiui)) + ρiH
−2
i ‖Hi(δiui)‖20,Ωi

).

As before, the L2 component in the last term can be bounded by the local
bilinear form ai(·, ·), thanks to a Poincaré or a Friedrichs inequality. Combining
these two estimates and using (30), we find

aj(uEj , uEj ) ≤ C(1− σ)−6(1 + log k) ai(Hi(δiui),Hi(δiui)). (32)

We next consider a substructure Ωj that shares a face F and thus also the
edges and vertices that lie on ∂F . We note that on Ωj , u can be decomposed as

u = uW j + uF .

We have
aj(u, u) = ρj|u|

2
1,Ωj

≤ 2ρj(|uW j |21,Ωj
+ |uF |

2
1,Ωj

).

The wirebasket component can be bounded as before; cf. (31) and (32). For the
face component we first note that the function δi is equal to a constant value
δi,F at all nodal points inside F . Using (30), we can then write

ρj |uF |
2
1,Ωj

= ρjδ
−2
i,F |Hj(δiuF )|

2
1,Ωj

≤ ρi|Hj(δiuF )|
2
1,Ωj

.

Using Corollary 8.1 and Lemma 7.6 yields

|Hj(δiuF )|
2
1,Ωj

≤ C(1−σ)−1|Hi(δiuF )|
2
1,Ωi

≤ C(1−σ)−5

(

1 + log

(

k

1− σ

))2

||u||21,Ωi
.

Combining the last two estimates and using a Poincaré or a Friedrichs inequality,
we find

aj(uF , uF ) ≤ C (1− σ)−5

(

1 + log

(

k

1− σ

))2

ai(Hi(δiu),Hi(δiu)). (33)

We finally need to consider the energy of u in Ωi, ai(u, u). We note that we can
decompose u on Ωi according to (20). The wirebasket and the face components
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can be bounded as before. Summing over i and the neighboring subdomains,
we then find

a(u, u) ≤
C

(1− σ)6

(

1 + log

(

k

1− σ

))2
(

∑

V ij

1 +
∑

Eij

1 +
∑

F ij

1

)

ai(Hi(δiu),Hi(δiu)).

Since the partition Tm is shape-regular, the number of subdomains to which an
edge or a vertex may belong is bounded. We finally obtain

ω ≤ C (1− σ)−6

(

1 + log

(

k

1− σ

))2

.

Since in practice σ is bounded away from one, we obtain the same bound as
for Neumann-Neumann methods for p finite element approximations on shape-
regular meshes

κ(PNN ) ≤ C (1 + log k)2;

see, e.g., [30]. We stress the fact that the constants in the last two estimates
are independent of the coefficients ρi and the refinement level n (and thus of
the aspect ratio of the mesh T n,σ

bl ).

10 Numerical results

The purpose of this section is to present some numerical experiments in order
to validate our analysis on some medium-size problems. An extensive numerical
study is presented elsewhere; see [41].

We consider approximations on the unit cube Ω = (0, 1)3. We choose ρ ≡ 1
and the right-hand side f ≡ 1. The macromesh Tm consists of N × N × N
cubic substructures. Geometric refinement is performed towards the three edges
x = 0, y = 0, and z = 0, with σ = 0.5; see Figure 5, left. Given a polynomial
degree k, we choose n = k as is required for robust exponential convergence;
see, e.g., [4, 5]. The conjugate gradient iteration is stopped after a reduction of
the Euclidean norm of the initial residual of 10−14.

We note that even for moderate values of k and N , extremely large linear
systems are obtained; cf. Tables 1 and 2. Huge local blocks need to be inverted,
both for the application of S (solution of local Dirichlet problems) and the pre-
conditioner (solution of local Neumann problems). Due to memory limitations
in our Matlab implementation, we have employed approximate solvers for lo-
cal Dirichlet and Neumann problems. We refer to [39, Sect. 4.4] for details on
the implementation. In particular, we have used a conjugate gradient iteration
with an incomplete Cholesky factorization with drop tolerance 10−3 for all local
problems. The iteration is stopped after a reduction of the initial residual of
a factor 10−3 or after 20 iteration steps. Our numerical results show that the
theoretical bounds for the case of exact solvers in Lemma 6.2 remain valid in
this case; cf. Tables 1 and 2.
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Figure 5: Geometric refinement towards one corner (N = 3, σ = 0.5, and n = 6),
left, and estimated condition numbers (circles) from Table 1 and least-square
second order logarithmic polynomial fit (solid line) versus k, right.

For a fixed partition into substructures with N = 3, Table 1 shows the
size of the original problem, the iteration count, the estimated maximum and
minimum eigenvalues, and the condition number for different values of k. We
note that the minimum eigenvalue is close to one; see Lemma 6.2. In addition
a moderate growth of the maximum eigenvalue is observed with k; such growth
is consistent with the quadratic bound in Lemma 6.3; see Figure 5, right.

We next consider the same problem, and fix the polynomial degree k = 4.
Table 2 shows the results for different values of N . The iteration counts, and
the smallest and largest eigenvalues appear to be bounded independently of the
number of subdomains.

11 Concluding remarks

As for the analysis in [40], some important issues still need to be addressed. We
refer to our previous work for a full discussion of these issues.

Our analysis is restricted to approximations that employ nodal basis func-
tions on the Gauss-Lobatto nodes. Indeed, for three-dimensional shape-regular
meshes good performance of iterative substructuring methods is in general en-
sured only if these basis functions are employed and for more general p or hp
version finite element approximations many important issues remain to be solved
even for shape-regular meshes; see, e.g., [38] and the references therein.

The Dirichlet and Neumann problems that we need to solve (cf. Si and
S†
i ) can be potentially very large. Approximate local solvers can be employed
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Fixed number of subdomains (N = 3)

NN (inexact)

k size It λmax λmin κ
2 1331 15 1.8379 1 1.8379

3 6859 20 2.8165 0.99997 2.8166

4 24389 25 3.9507 0.99947 3.9528

5 68921 29 5.1507 0.99799 5.1611

6 166375 34 6.3675 0.99801 6.3803

7 357911 38 7.5082 0.99395 7.554

8 704969 40 8.5298 0.99574 8.5663

Table 1: Conjugate Gradient method for the Schur complement system with
Neumann-Neumann preconditioner with inexact solvers: iteration counts, max-
imum and minimum eigenvalues, and condition numbers, versus the polynomial
degree, for the case of a fixed partition. The size of the original problem is also
reported.

for iterative substructuring methods (see, e.g., [39, 16]) and some have been
proposed in [18] for hp approximations. In our numerical experiments, we have
employed a conjugate gradient iteration with an incomplete Choleski precondi-
tioner, however, we believe that the tensor product structure of corner, edge,
and face patches can be exploited. This is left to a future work.

We believe that the analysis and/or the development of iterative substruc-
turing methods for general meshes with hanging nodes still need to be fully
addressed. These meshes are widely used in practice. There is no straightfor-
ward way of defining Neumann-Neumann or FETI algorithms when hanging
nodes lie on the interface Γ; see [40, Rem. 6.1] for more details.

Finally, our analysis has been carried out for the model problem (1), which
indeed does not exhibit boundary layers. As for two-dimensional problems in
[40, 42], numerical results show that our algorithms are robust when applied
to certain singularly perturbed problems. Extensive numerical results will be
presented in [41].
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Fixed spectral degree k = 4

NN (inexact)

N size It λmax λmin κ
2 15625 18 2.6417 0.99929 2.6436

3 24389 25 3.9507 0.99947 3.9528

4 35937 28 4.1084 0.99934 4.1111

5 50653 29 4.1378 0.9994 4.1402

6 68921 30 4.1492 0.99945 4.1515

7 91125 30 4.1555 0.99952 4.1575

8 117649 30 4.1593 0.99955 4.1612

9 148877 30 4.1618 0.99962 4.1634

10 185193 30 4.1636 0.9997 4.1648

Table 2: Conjugate Gradient method for the Schur complement system with
Neumann-Neumann preconditioner with inexact solvers: iteration counts, max-
imum and minimum eigenvalues, and condition numbers, versus the number
of substructures, for the case of a fixed polynomial degree and partitions into
N ×N ×N substructures. The size of the original problem is also reported.
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