
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Abstract

In this paper we simulate the Ornstein-Uhlenbeck process (OUP) to generate an approx-
imate inverse of any real valued stable matrix. Matrix A being stable means that ana-
lytically the OUP will converge to a stationary Gaussian process in n dimensions with a
covariance (2A)−1. If the eigenvalues of A are widely separated in absolute value, however,
the stiffness of the simulated linear stochastic differential equations must be considered.
Hence, we consider a splitting scheme to permit large step sizes but keep convergence.
Methods are described for both symmetric and non-symmetric matrices. Our precondi-
tioner is also tested in the symmetric positive definite case by its effect on the convergence
of conjugate gradient iterations.
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1 INTRODUCTION

In this paper we use a novel approach to preconditioning a linear system of the usual form
Ax = b. We treat only the case that (n × n) matrix A is real valued. The remainder of this
introduction considers the symmetric positive definite problem; then we generalize this to the
non-symmetric stable case (Section 3.2). In what follows, stability (A > 0 here) means that
all of the eigenvalues of A are in the right-half plane [5].
The task of preconditioning is to find an approximate inverse of the matrix A. Namely, we

are looking for a matrixM ≈ A−1. Our procedure involves an n-dimensional stochastic process
X(t) (a vector) satisfying the system of n stochastic differential equations (SDEs)

dX = −AXdt+ dW with X(0) = X0. (1)

Here, W = {W}t≥0 is a standard n-dimensional Brownian motion and the initial condition X0

is independent of the driving process W . Multiplying both sides of (1) by the matrix valued
integrating factor exp(At) and a little rearrangement, one gets a formal solution to (1),

X(t) = e−tAX0 +

∫ t

0
e−(t−s)AdW (s), 0 ≤ t < ∞. (2)

This is an n dimensional Ornstein-Uhlenbeck process (e.g. [10], exercise 3.14, or in the notes
by Carmona in [2]). To extract information from this formal solution, we need expectation
values of the increments of dW (s) [6]:

E [dW k(u)dW l(v)] = δklδ(u− v)dudv. (3)

On the right-hand side, δkl is the Kronecker delta (= 1 if k = l, zero otherwise), and δ(u− v)
is the Dirac delta function (zero everywhere except u = v, but with unit area).
Our purposes are well served by the deterministic initial conditions X i

0 = 0, although these
are not essential to the argument: Because A > 0, from (2) we see that the influence of the
initial conditions soon exponentially decays to zero. For these X(0) = 0 initial conditions, we
get using (3) the expectation E [X(t)] = 0 and a matrix valued correlation function

E [X(s)XT (t)] =

∫ s∧t

0
e−((t+s)−2u)Adu,

where s ∧ t = min(s, t). In particular, by setting t = s we get the covariance

E [X(t)XT (t)] =

∫ t

0
e−2(t−u)Adu. (4)

We now show this gives our approximate inverse to A in the limit that t becomes large.

Lemma 1.1 The integral expression of (4) is

∫ t

0
e−2(t−u)Adu =

1

2
A−1{I − e−2tA} (5)

where I is the unit matrix.
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Proof: The matrix exp(−2tA) may be pulled out of both sides of (5), leaving

L(t) =

∫ t

0
e2Audu (6)

R(t) =
1

2
A−1(e2At − I) (7)

It is easy to see that dL(t) = dR(t) by taking derivatives of L and R in (6) and (7). Since
L(0) = R(0) = 0, by the uniqueness of the matrix valued solution to this ordinary differential
equation, we get L(t) = R(t). Multiplying L,R by exp(−2tA), we have (5). !

Now let t become large in ((4), respectively (5)). Because A > 0,

lim
t→∞

E [X(t)XT (t)] =
1

2
A−1. (8)

Explicitly writing out the indices, this is

2 lim
t→∞

E [X i(t)Xj(t)] = (A−1)ij , i, j = 1, . . . n.

In practice, we select a set of such indices (say p of these) to form a possibly incomplete inverse
as preconditioner.
Hence, asymptotically (t → ∞) there exists a unique invariant probability measure, µ, for

the process (2) which is Gaussian with mean 0 and covariance (2A)−1:

µ(dx) =
1

((2π)n(det 2A)−1)
1

2

e−〈Ax,x〉dnx.

Following Talay [11], we use a numerical method for approximating this invariant law
for a stochastic process. In his paper, a system of stochastic differential equations dX =
b(X)dt+σ(X)dW was discretized using a scheme of weak order 2 to get a chainX1, X2, . . . , XN .

He approximated an integral T−1
∫ T
0 f(X(t))dt by 1/(Nh)

∑N
i=1 hf(Xi). Our approach is

similar, but instead of this discrete sum, we extend the system (1) by equations of the form
dZij = X i(t)Xj(t)dt, which will be simultaneously integrated along with the system (1). It is
important to note that the differential equations for the extensions do not directly contain the
Brownian motion (Wiener process) W . We will see that the integration rules for the variables
Zij are somewhat simpler than those for X because the Brownian motion terms do not appear
explicitly. The choice of which Zij to actually compute may well depend on the problem: for
example, one might choose an incomplete inverse with only those i, j values of the sparsity
pattern of matrix A.
An approximation M = (M ij) ≈ A−1 = ((A−1)ij) is generated by limiting the integration

to T < ∞ as a long time average in a finite number, N , of steps. To accelerate convergence to
a stationary state (of the approximation µh ≈ µ) we will also simulate a small sample of NP

paths of n-vectors X(k) and compute the average over the corresponding Z(k). This yields an
NP -sample average,

1

T

∫ T

0
X(t)XT (t)dt ≈

1

NP

NP
∑

k=1

Z(k)
N

Nh
,
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where the Z(k)
N are the approximations obtained by discretizing each independent dZ = X iXjdt

system numbered (k). A nice benefit of this approach is that we can use the sample variance
(25) over the NP parallel realizations to get an heuristic measure of statistical convergence.
We will apply weak approximations for both the system (1) for each realization (k) of X

(that is, X(k)) and the corresponding integrals in the extended system

T

2
M (k) = Z(k) =

∫ T

0
X(k)(t)(X(k))T (t)dt.

In the details, we will examine the simplest numerical scheme, the Euler method, and compare
it with two higher order schemes, one of which is of Runge–Kutta type. These latter procedures
will be weak order two. For a comprehensive review on numerical methods for SDEs see [6, 8].
We conclude this section by summarizing our notation. We use superscripts for vector and

matrix entries, for example A = (Aij) or x = (xi) = (x1, . . . , xn)T . We use superscripts here
because subscripts index the steps of our Markov processes (Xk = X(tk)). We also use the
summation convention that repeated indices imply summation: akbk ≡

∑

k a
kbk.

2 NUMERICAL SCHEMES

In the introduction we established that for stable matrices, OUP (2) converges to a stationary
process whose covariance gives us our desired preconditioner. From the ergodic theorem, we
may compute the covariance by long time averages:

lim
t→∞

EX i(t)Xj(t) = Zij = lim
T→∞

1

T

∫ T

0
X i(t)Xj(t)dt, (9)

where X(t) is one realization (NP = 1) of SDE system (1). In our examples, we choose a
subset P of the possible 1 ≤ i, j ≤ n which index matrix elements of the approximate inverse
M = (M ij); there will be p = |P | of these. Then we have a system of n+ p SDEs

dX = −AXdt+ dW, Xi(0) = 0, i = 1, . . . n

dZij = X iXjdt, Zij(0) = 0, (i, j) ∈ P.
(10)

Our approximation to (9) is (A−1)ij ≈ Zij = Zij(T )/T for large T . The next section deals
with numerical simulations of X(t) and Z(t) appearing in the system (10).

2.1 The basic scheme

The simplest procedure for simulating (10) is an Euler scheme. At time tk, we advance to
step tk+1 = tk + h by the formulae

Xk+1 = Xeuler = (I − hA)Xk +∆W

Zij
k+1 = Zij

k + hX i
kX

j
k

(11)

where ∆W is some model for the increments of the Brownian motion. At each time step, n
elements of ∆W are generated. To the desired weak order [6, 8], one wants an approximately
Gaussian increment. It is not expensive to generate Gaussian increments, so we choose

∆W j =
√
h ξj , (12)
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where the ξj are univariate, zero mean, and mutually independent normally distributed
random variables. On modern computers, it is often faster to generate these by the Box-Muller
procedure (see [3], section 4.2.1) than the polar method [7] which uses acceptance/rejection.
We have

E∆W i = 0

E∆W i∆W j = hδij

E∆W i∆W j∆W l∆Wm = h2(δijδlm + δilδjm + δimδjl).

Actually, the last relation follows from the second because ∆W j are independent variance h
Gaussians. All odd order moments are zero. The weak accuracy of the Euler method is 1 [6, 8].
Next, let us explore higher-order procedures. An explicit 2nd order method is a Heun or 2nd

order Runge-Kutta scheme,

Xeuler = (I − hA)Xk +∆W,

Xk+1 = Xk −
h

2
(AXk +AXeuler) +∆W, (13)

Zij
k+1 = Zij

k +
h

2
(X i

kX
j
k +X i

eulerX
j
euler).

This procedure is an explicit trapezoidal rule. Expanding this RK scheme in a Taylor expansion
to O(h2) accuracy, that is, ignoring terms of O(h5/2) and higher in the stochastic Taylor series,
we get theTaylor scheme (14). In this expansion, h(∆W i∆W j) ≡ h2δij in statistics to O(h2).
This follows because E∆W i∆W j = hδij . We get

Xk+1 = Xk − hAXk −
h

2
A ∆W +

h2

2
A2Xk +∆W,

Zii
k+1 = Zii

k + h(X i
k)

2 + hX i
k ∆W i (i = j case)

+ h2(
1

2
− (AXk)

iX i
k), (14)

Zij
k+1 = Zij

k + hX i
kX

j
k +

h

2
(X i

k ∆W j +∆W iXj
k) (i += j case)

−
h2

2
((AXk)

iXj
k +X i

k(AXk)
j).

The X-updates in (13) and (14) are identical since the OUP is linear. The Zij equation is
quadratic, however, so these two methods will not give the same Z’s.

2.2 Semi-implicit schemes

Because A only appears on the right hand side of (11) in the updates for X , large variations
in the sizes of the eigenvalues of A can force the stepsize down to keep the R term in (15)
contracting. This means more steps are necessary to reach convergence to a stationary process.
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Quite generally, the update for X can be written

Xk+1 = R(h,A)Xk + S(h)ξk+1 (15)

where

R(h,A) =

{

In − hA, for the scheme (11)

In − hA+ h2

2 A2, for the schemes (13, 14),

and

S(h) =

{ √
h, for the scheme (11)

√
hIn − h

3
2

2 A, for the schemes (13, 14).

In order that the numerical simulation converges to a stationary process, the matrix in the
drift term, R(h,A), must satisfy

sup
λ∈σ(A)

|R(h,λ)| < 1, (16)

where σ(A) is the spectrum of A. In the positive definite A case using the explicit Euler
method, this criteria is

h <
2

supλ∈σ(A) λ
. (17)

In the second order explicit weak algorithm (13), the analogous concern is to keep
sup |1− hλ+ 1

2h
2λ2| < 1. This conflicts with our desire to use a large stepsize to speed up

convergence to stationarity. In the non-symmetric A case, the spectra may be complex so the
analysis is more subtle than (17). However, this theory is well known in the numerical analysis
of ordinary differential equations: (16) when using the Euler scheme implies that hσ(A) must
fall into Gershgorin circles.
Certainly a fully implicit method like

Xk+1 = Xk −
h

2
(AXk +AXk+1) +∆W

is useless for our purposes because finding (I + hA/2)−1 is at least as difficult as finding A−1

– our objective. However, imagine splitting A into two pieces

A = B + C,

where 1+hB/2 is easy to invert. In that situation, the following semi-implicit method becomes
useful (see (11) and (13)),

Xk+1 = Xk −
h

2
(AXk +BXk+1 + CXeuler) +∆W,

= (I +
h

2
B)−1

(

Xk −
h

2
(AXk + CXeuler) +∆W

)

. (18)

An obvious choice is B = D = diag(A). There is a lot of freedom to choose such splittings:
see, for example [9]. Substituting update (18) for Xeuler in the last equation (for Zij) in (13),
we get a semi-implicit 2nd order weak scheme. A careful choice of B may permit a relatively
large stepsize h. If we pick B = D = diag(A), the resulting splitting scheme algorithm uses
(18) then a trapezoidal rule to get the Zij extended variables:
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• compute Xk+1 from (18) with B = D,

• and compute the extended system variables Z by

Zij
k+1 = Zij

k + h(X i
kX

j
k +X i

k+1X
j
k+1). (19)

3 NUMERICAL EXPERIMENTS

In this section we show results from numerical experiments. First we will study the behaviour
of the explicit schemes (11, 13, 14) for some simple one dimensional problems. Continuing
with the explicit schemes, our example will be the approximation of A−1 for a finite difference
tridiagonal matrix. For this example, we compare the condition numbers of A and MA using
our M ≈ A−1 estimate. We finish for these schemes with the results from solving a linear
system Ax = b iteratively using the (preconditioned) conjugate gradients method [4].
In a (shorter) second part, we show results from the splitting scheme (18,19) and compare

it with the Euler scheme (11).

3.1 Testing the explicit schemes

To start with, consider the (n× n)-matrix

A = T4 =















4 −1
−1 4 −1

. . .
. . .

. . .
−1 4 −1

−1 4















. (20)

The eigenvalues of T4 are
λi = 4− 2 cos(iπ/(n+ 1)) (21)

with the largest and smallest behaving as

maxλi = λn −→ 6 and minλi = λ1 −→ 2

when n → ∞. Its inverse is dense and easily found using MATLAB or MAPLE, so it provides
a useful example for incomplete preconditioning. To test convergence of our schema, we first
study one dimensional problems with A = a = 2 and A = a = 6.

3.1.1 One dimensional simulations

For this range of eigenvalues, we compare first order (11) and second order schemes (13), (14)
for the system

dX = −aXdt+ dW, X(0) = 0 and dZ = X2dt, Z(0) = 0 (22)

for scalar a = 2, 6. For both values of a we will make N = 1000 steps for different stepsizes
h. Stability condition (16) requires h < 1/3 when a = 6. Simulation results are shown for
h = 3/10, 3/20, 3/40 giving the corresponding final times T = 300, 150, 75. To examine the
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statistical convergence, we use NP = 30 independent simulations. Denote by Z̃(i)
k the discrete

time average up to time kh of the ith simulation, Z̃(i)
k = Z(i)

k /(kh), and by Zk its sample mean
at step k:

Zk =
1

NP

NP
∑

i=1

Z̃(i)
k . (23)

As a monitor of convergence for Zk we follow the relative error

ek = 2aZk − 1 (24)

and the sample standard deviation

σk(Z) =

√

Dk

NP − 1
with Dk =

1

NP

NP
∑

i=1

(

Zk − Z̃(i)
k

)2
. (25)

Our results for a = 2 are shown in Figure 1. Those for a = 6 are in Figure 2. The better
convergence of the higher order schemes (13), (14) compared to the Euler method (11) is
evident. The Euler scheme appears also much more sensitive to the stepsize h. Second order
methods convergence to a stationary state is faster at a = 6. This can be seen by comparing
trajectories and relative errors but more convincingly by smaller standard deviations. For
h = 3/10, which is near the unstable value h = 1/3, the Euler scheme (11) converges to a
state, which is completely wrong. Instead of converging to the dark horizontal line at 1/(2a),
for large stepsizes convergence is to a line above – easiest seen in the different scale of abscissa
in Figure 2 for the Euler method compared to the scale for second order schema (13), (14)
in the first and second columns. We see that the Euler scheme has large fluctuations (high
standard deviation) as the stepsize h approaches the maximal h < 2/a = 1/3 value. For these
1-D tests, the higher order schemes still give reasonable results which are more than a factor
of ten better than the low order Euler method near this critical h. Reducing the stepsize h
improves the results for the Euler method and eventually it becomes comparable to the higher
order schemes. Another interesting result is that the Taylor scheme (14) approaches the true
solution from below for all chosen stepsizes h for a = 2: during the first 1000 steps, this
scheme is underestimating the true value of 1/(2a). When a = 6, the Taylor scheme (14) still
underestimates the value of 1/(2a) with small stepsizes h = 3/20, 3/40.
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Figure 1: One dimensional simulations (n = p = 1) for system (22) with A = a = 2. From left
to right: mean of trajectories, mean of relative error and standard deviation of Zk/(kh) for
the different schemes (from top to bottom): Euler (11), weak order 2.0 Runge-Kutta (13), and
weak order 2.0 Taylor (14). Simulation parameters were: N = 1000, NP = 30 and h = 3

10 (· · · ),
h = 3

20 (− ·−) and h = 3
40 (−−−). In the left column the exact solution 1/(2a) is marked with

a solid line (—).
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Figure 2: One dimensional simulations with same settings as in Figure 1 with higher A = a = 6.
Note the different scaling in the first two plots of the first row compared with rows two and
three due to the big error arising from the Euler scheme with h = 0.3.
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3.1.2 Preconditioning T4

We now turn to the task of preconditioning A = T4 (see (20)) using our incomplete inverse
estimates. Simulations in n = 10, 100 and 1000 dimensions were run. For these sizes, T4 has
the condition number in the two-norm rounded to four digits (using 21),

κ2(T4) =
λmax

λmin
=

4 + 2 cos(π/(n+ 1))

4− 2 cos(π/(n+ 1))
≈







2.844, n = 10
2.998, n = 102

3.000, n = 103.

Diagonal preconditioning We first examine the incomplete inverse consisting of only the
diagonal of T−1

4 , i.e. M ij = 0 when i += j; that is, p = n from (10). We applied the schemes
of section 2.1 using only the Zii updates of (13) and the (i = j) case (14). Using an exact
diagonal preconditioning (M ii = (T−1

4 )ii) computed by MATLAB using inv(.)), we have

κ2(MT4) ≈







2.847, n = 10
2.998, n = 102

3.000, n = 103,

which shows that diagonal preconditioning does not improve the condition number. Our
results are consistent with this analysis of estimates for M using weak approximations. The
different simulations yield condition numbers listed in Table 1: We include a column with the
improvement ratio r2 = κ2(T4)/κ2(MT4).

Table 1: Condition number of MT4 with diagonal M and improvement ratio κ2(T4)/κ2(MT4).

h = 1/6, T = 500/3 h = 1/12, T = 500/6 h = 1/12, T = 500/3
N = 1000 N = 1000 N = 2000

scheme n κ2(MT4) r2 κ2(MT4) r2 κ2(MT4) r2
10 2.852 0.997 2.860 0.995 2.849 0.998

Euler (11) 100 3.017 0.994 3.030 0.989 3.018 0.994
1000 3.028 0.991 3.061 0.980 3.043 0.986

10 2.853 0.997 2.860 0.994 2.850 0.998
Taylor (14) 100 3.015 0.994 3.032 0.989 3.025 0.991

1000 3.041 0.986 3.071 0.977 3.052 0.983
10 2.853 0.997 2.861 0.994 2.850 0.998

RK (13) 100 3.018 0.993 3.032 0.989 3.020 0.993
1000 3.031 0.990 3.066 0.978 3.047 0.984

For the ten dimensional problem we will have a closer look at the resulting eigenvalues of
MT4. The left plot in Figure 3 shows the eigenvalues of the diagonally preconditioned matrix
T4 for n = 10. It can be seen that the Euler scheme (11) is much more sensitive to the choice of
the stepsize h than the higher order schemes. Further, we note that for h = 1/12, another 1000
numerical integration steps to T = 500/3 does not improve the distribution of the eigenvalues.
This shows that the stochastic process has clearly converged to a stationary state. The Taylor
scheme (14) gives very good concordance with exact diagonal preconditioning for all chosen
parameter sets. Still, this scheme underestimates certain eigenvalues.
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Figure 3: Eigenvalues of preconditioned (10× 10) matrix MT4 for (from top to bottom) exact
preconditioning (,) and for the three approximations Euler (11), RK (13), and Taylor (14)
for the three parameter sets h = 1/6, T = 500/3 (+), h = 1/12, T = 500/6 (-) and h = 1/12,
T = 500/3 (×). On the left (right), results from diagonal (tridiagonal) preconditioning are
shown.

Tridiagonal preconditioning In this section, results from tridiagonal preconditioning of
T4 are shown, i.e. M ij = 0 for |i−j| > 1. For exact (i.e. MATLAB) tridiagonal preconditioning
we have

κ2(MT4) ≈







1.369, n = 10
1.437, n = 102

1.438, n = 103
and r =

κ2(T4)

κ2(MT4)
≈







2.078, n = 10
2.086, n = 102

2.086, n = 103.

Again we computed approximations to M using weak approximations yielding the condition
numbers and improvement ratios listed in Table 2. As for diagonal preconditioning, we show
a plot of the eigenvalues for the ten dimensional problem, see the right plot in Figure 3. The
points noted in the diagonally preconditioned example are even more obvious here: the Euler
method (11) is very sensitive to the choice of the stepsize h, whereas the higher order schemes
(13,14) give much better results also for higher stepsizes. Especially the Taylor scheme (14)
gives very satisfactory results for all choices of the parameters shown, but underestimation of
certain eigenvalues is still evident.

3.1.3 Preconditioned Conjugate Gradients with T4

In this section we show results with the method of conjugate gradients (CG, [4]) to solve the
linear system Ax = b with symmetric positive definite A. We computed approximate solution
to T4x = b with b = (1, . . . , 1)T using preconditioned CG. As seen in the first paragraph
of Section 3.1.2 (Table 1), diagonal preconditioning yields no improvement. Therefore, only
results for tridiagonal preconditioning in n = 1000 and n = 2000 dimensions are shown.
Starting with the initial guess x0 = (0, . . . , 0)T , we performed CG iterations until the two
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Table 2: Condition number of MT4 with tridiagonal M and improvement ratio
κ2(T4)/κ2(MT4): N is the number of timesteps.

h = 1/6, T = 500/3 h = 1/12, T = 500/6 h = 1/12, T = 500/3
N = 1000 N = 1000 N = 2000

scheme n κ2(MT4) r2 κ2(MT4) r2 κ2(MT4) r2
10 1.604 1.772 1.349 2.108 1.340 2.123

Euler (11) 100 1.708 1.755 1.429 2.103 1.418 2.115
1000 1.729 1.735 1.456 2.061 1.432 2.095

10 1.379 2.062 1.440 1.975 1.433 1.985
Taylor (14) 100 1.450 2.068 1.544 1.942 1.518 1.942

1000 1.476 2.032 1.563 1.919 1.539 1.950
10 1.373 2.071 1.318 2.158 1.313 2.167

RK (13) 100 1.445 2.074 1.407 2.131 1.377 2.177
1000 1.464 2.049 1.410 2.128 1.401 2.142

norm of the relative (w.r.t. the initial) residual

‖Axk − b‖2
‖b‖2

was smaller than 10−40. The three algorithms (11,13, 14) were tested to compute the
approximate inverse M which was subsequently used to precondition the system Ax = b.
That is, Ax = b → MAx = Mb was solved using CG. Without preconditioning, the CG
algorithm needed 68 iterations for both n = 1000 and n = 2000. Table 3 shows results for
means over NP = 30 samples. Looking at Table 3, several points can be observed:

1. The Euler method (columns marked with “E”) is very sensitive to the chosen stepsize
h. Recall that the critical h for T4 is ≈ 1/3. For the large h = 0.3, the preconditioned
system needs many iterations more than the pure CG. For smaller h, however, the results
also improve for first order Euler method.

2. Choosing the stepsize around half the critical stepsize (results for h = 0.15), the Euler
method gives comparable results with the higher order algorithm and is hence favorable
(as it is much faster to compute), especially if the number of steps N increases.

3. As the number of simulated paths (sample sizeNP ) is decreased, the algorithms becomes
more sensitive to the final time T = Nh. Results for small number of steps become worse.
This holds for all three schemes discussed: (11), (13), and (14).

4. For a moderate sample size of NP = 30, good results can be obtained with as few as
N = 16 steps with the higher order schemes using a stepsize h = 0.15 (around half the
critical stepsize).

5. It is evident that the approximation of M becomes better, the longer system (10) is
integrated numerically and the larger the sample is.

6. The second order schemes (13, 14) give comparable results when the parameters are
properly chosen.
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Table 3: Number of iterations needed with preconditioned CG to solve T4x = b in two different
dimensions n using a tridiagonal preconditioner M . The entries of M where computed using
the Euler scheme (E,11), the Runge-Kutta scheme (RK,13), the Taylor scheme (T,14). Results
are for different parameter sets h (stepsize), N (number of steps) and NP (sample size, number
of paths).

NP = 15 NP = 30
n = 1000 n = 2000 n = 1000 n = 2000

h N E T RK E T RK E T RK E T RK
0.3 8 158 65 77 178 70 83 141 60 69 146 64 72

16 157 61 69 160 61 67 145 57 62 139 57 64
32 147 57 60 151 57 62 133 54 57 134 55 57
62 136 53 56 134 54 56 130 52 54 125 52 52

125 126 52 52 127 52 52 124 50 50 123 50 50
250 124 50 50 124 50 51 121 49 49 122 49 49
500 121 49 48 121 49 49 119 48 47 119 48 47

0.15 8 83 73 79 90 81 83 74 62 67 79 64 71
16 73 62 68 71 70 67 63 53 58 66 57 61
32 61 56 55 63 61 59 57 48 50 56 52 50
62 55 50 49 55 54 50 52 46 46 50 48 46

125 51 47 45 50 48 45 47 44 43 48 44 43
250 48 43 42 47 45 42 45 42 40 45 42 41
500 45 42 40 45 42 40 44 41 39 44 41 39

0.075 8 108 95 100 108 97 102 84 79 81 86 76 80
16 79 80 77 83 95 91 67 63 65 72 70 71
32 65 67 64 69 77 72 57 56 56 57 62 58
62 55 59 55 57 66 61 48 50 48 51 55 52

125 49 55 50 49 54 50 45 49 46 46 48 45
250 44 47 43 45 49 45 41 45 41 42 45 42
500 41 45 41 42 45 42 40 43 39 40 43 40

7. Concluding this test we note that, for T4, the best performance can be probably be
obtained without preconditioning. The matrix T4 is almost an ideal example for the CG
method – making preconditioning unnecessary. Nevertheless, the results shown may give
some good indications about other linear systems.

3.2 Results with the splitting scheme

In order to examine improved stability when using large stepsizes, we used the (n×n)-matrix

T2 =















2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2















.

T2 has Gershgorin bounds of 0 and 4. For the Ornstein Uhlenbeck process (2) to converge
to a stationary state, we need minλi > 0. But as n increases, the smallest eigenvalue
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Table 4: Comparison of splitting scheme (18,19) and Euler scheme (11) for A = T2 + 0.01I.
Shown are the maximal error (e = maxi,j |(A−1)ij − M ij |), the condition number of the
preconditioned matrices (κMA = κ2(MA) and κMT2

= κ2(MT2)) and the improvement
factors (rA = κ2(A)/κ2(MA) and rT2

= κ2(T2)/κ2(MT2)). Results are for a fixed sample
size NP = 30, various stepsizes h and number of steps N .

Euler scheme Splitting scheme
n h N e κMA rA κMT2

rT2
e κMA rA κMT2

rT2

10 0.2 4 2.16 30.5 1.42 34.1 1.42 2.13 18.2 2.38 20.3 2.38
8 1.78 13.9 3.11 15.5 3.11 1.79 9.84 4.39 11.0 4.40

16 1.42 6.26 6.90 6.98 6.93 1.44 5.33 8.10 5.90 8.20
100 0.2 16 4.27 624 0.59 6716 0.62 4.34 645 0.57 6962 0.59

32 4.02 227 1.61 2406 1.72 4.00 242 1.51 2597 1.59
64 3.72 120 3.04 1250 3.30 3.76 133 2.75 1395 2.96

128 3.02 40.7 8.98 417 9.91 3.01 44.6 8.19 463 8.92
0.4 16 4.14 382 0.96 4177 0.99 4.06 282 1.30 3011 1.37

32 3.84 148 2.46 1613 2.56 3.65 100 3.65 1092 3.78
64 3.42 84.0 4.35 871 4.74 3.30 64.8 5.64 673 6.14

128 2.48 32.5 11.3 325 12.7 2.33 22.5 16.2 225 18.4
0.6 16 3.89 226 1.61 2393 1.73

32 3.38 77.1 4.74 819 5.05
64

not stable
2.97 51.2 7.14 518 7.99

128 1.91 18.4 19.9 174 23.7

(λ1 = 2 − 2 cos(1/(n + 1)) ∼ (n + 1)−2) quickly decreases toward zero. We therefore shift
T2 by ε, A = T2 + εI with ε = 0.01. The extremal eigenvalues for A are then,

λmin ≈
{

0.0910, n = 10
0.0110, n = 100

and λmax ≈
{

3.9290, n = 10
4.0090, n = 100

.

The resulting condition numbers are κ2(A) ≈ 43.1690 (n = 10) and κ2(A) ≈ 365.54 (n = 100).
We compare the splitting scheme with X-updates (18) with the Euler updates (11).

T2 is no longer (strictly) diagonally dominant like T4. In consequence, we compare full
approximations of A−1: that is, p = n2 in (10) computing all the indices (i, j). In this situation,
the approximate inverse (preconditioner) M is complete. The results in Table 4 show that
in n = 10 dimensions (where λmin > 0.09) the Euler scheme (11) still does well. Larger n
decreases the smallest eigenvalue to around 0.01 and thus increases the condition number by a
factor of nine. As n increases, the better performance of the splitting scheme (18,19) becomes
evident. As it allows larger stepsizes, convergence to stationarity improves significantly.

4 NON-SYMMETRIC CASE

We now extend this procedure for non-symmetric but stable matrices. The modification of
system (1) involves two processes instead of one. We require that A > 0, but it does not have
to be normal ([A,AT ] += 0).
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4.1 Extended system of SDEs

Extending the ideas of §1 to non-symmetric matrices A is not difficult. In this situation, we
use highly correlated processes X and Y – a system of 2n SDEs:

dX = −AXdt + dW, (26)

dY = −ATY dt+ dW, (27)

again with deterministic initial conditions X i(0) = Y i(0) = 0. It is important that in (26,27)
W = {W}t≥0 is the same n dimensional Brownian motion for both processes X = {X}t≥0

and Y = {Y }t≥0. The solutions with these initial conditions are

X(t) =

∫ t

0
(e−(t−u)A) dW (u) and Y (t) =

∫ t

0
(e−(t−v)AT

) dW (v).

From these formal solutions, we can extract the X,Y covariance.

Theorem 4.1 The covariance EX(t)Y T (t) → 1
2A

−1 as t → ∞.
Proof: Using (3) and explicitly writing out the indices i, j = 1, . . . , n, and using the summation
convention over k, l, we have

E [X i(t)Y j(t)] =

∫ t

0

∫ t

0
(e−(t−u)A)ik(e−(t−v)AT

)jlE [dW k(u)dW l(v)]

=

∫ t

0
(e−(t−u)A)ik(e−(t−u)AT

)jkdu

=

∫ t

0
(e−2(t−u)A)ijdu.

The last matrix valued integral is the same as in our Lemma 1.1 (5) of §1. Since A > 0, as
t → ∞ we get E [X i(t)Y j(t)] → 1

2 (A
−1)ij as stated. !

Again, as in the symmetric case, long time averages (9) are needed to compute M ≈ A−1.

4.2 Numerical tests

For our non-symmetric cases we do relatively simple tests for convergence using small (10× 10
and 4 × 4) matrices. For these cases, a full approximation (or complete preconditioner)
M ≈ A−1 is computed. That is, in (10) the set P = {(i, j)} has the full set of n2 indices.
Condition numbers κ(A) and κ(MA) are compared. For the full approximation we consider
the (2n+ n2) system of SDEs

dX = −AXdt + dW

dY = −ATY dt+ dW (28)

dM = 2XY Tdt

where X and Y are n dimensional vector processes and M is a (n × n) dimensional matrix
process. The initial conditions are X i(0) = Y i(0) = M ij(0) = 0 for i, j = 1, . . . , n.
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From 4.1, our estimate for A−1 is

lim
T→∞

M(T )

T
= A−1,

and we only consider the Euler method for system (28). This is a modification of (11):

Xk+1 = (I − hA)Xk +
√
hξk+1

Yk+1 = (I − hAT )Yk +
√
hξk+1

Zij
k+1 = Zij

k + hX i
kY

j
k . (29)

It is important to note that the same random vector ξk+1 is used for both the X- and the
Y -updates in (29). As in our analysis of the symmetric case, we compute a small sample of
realizations to both accelerate convergence to a stationary state and monitor this convergence
as k increases.

4.2.1 The test matrices

Since A is real, its eigenvalues may be real or appear in complex conjugate pairs. Our
simulations take account of the different situations that might arise. We tested an upper
bidiagonal matrix A1, and 4× 4 block diagonal matrices A2, . . . , A4,

A1 =















1 −1
2 −1

. . .
. . .
9 −1

10















, (30)

A2 =

(

B1 02
02 B2

)

, A3 =

(

B1 02
02 B3

)

, and A4 =

(

B3 02
02 B4

)

, (31)

where the diagonal blocks are

B1 =

(

1 −1
0 1

)

, B2 =

(

2 −1
0 2

)

, B3 =

(

1 −1
1 1

)

, B4 =

(

2 −4
1 2

)

.

Corresponding eigenvalues are 1 (for B1), 2 (B2), 1± i (B3) and 2(1± i) (B4). These imply the
following maximal stepsizes h (see (16) and the reasoning thereafter): 2 (B1), 1 (B2 and B3)
and 0.5 (B4). We also performed experiments with Ãi = UTAiU with a random orthogonal
matrix U , chosen such that the block diagonal structure of Ai was lost and any symmetries
were broken for i = 2, 3, 4. The results did not differ significantly from the results shown for
simulations with the block diagonal Ai’s (see Table 6).

4.2.2 Results

We will show the maximal error (e = maxi,j |(A−1)ij − M ij |), the condition number of the
preconditioned matrix (κ2(MA)) and the improvement factor (r = κ2(A)/κ2(MA)) for the
matrices A = A1 (30) and Ai i = 2, . . . , 4 (31).
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We start with the matrix A1, with κ2(A1) ≈ 11.926. The critical stepsize is h < 0.2, so the
simulations were run with h = 0.1. The inverse of A1 is an upper triangular matrix (M ij = 0
for i > j). In Table 5 we show results where we took this fact into account a priori, and
additionally results for the full approximation M .

Table 5: Maximal error e, condition number κ2(MA1) and improvement ratio r for the matrix
A1. Results are for a fixed stepsize h = 0.1 and different number of steps N and sample sizes
NP . In the upper part, only the elements M ij with j ≥ i where computed (with the others set
to zero), whereas the lower part shows results from computing the full M .

NP = 15 NP = 30
N e κ2(MA1) r e κ2(MA1) r
8 0.695 6.550 1.821 0.575 4.600 2.593

16 0.464 4.328 2.755 0.250 2.707 4.405upper triangular M
32 0.166 2.804 4.253 0.166 1.938 6.153
64 0.118 1.898 6.284 0.220 1.816 6.567
8 0.695 9.908 1.204 0.575 5.214 2.287

16 0.464 5.159 2.312 0.250 3.089 3.861full M
32 0.166 3.337 3.574 0.166 2.177 5.479
64 0.118 2.217 5.379 0.220 2.124 5.615

In Table 6 we show results for the matrices A2, A3 and A4. They have condition numbers
κ2(A2) ≈ 4.145, κ2(A3) ≈ 2.618 and κ2(A4) ≈ 3.325. We show results for sample sizes Np = 5
and Np = 25 and a fixed stepsize h = 0.1.

Table 6: Maximal error e, condition number κ2(MAi) and improvement ratio r for the matrices
Ai, i = 2, 3, 4. Results are for a fixed stepsize h = 0.1 and different number of steps N and
sample sizes NP .

NP = 5 NP = 25
N e κ2(MAi) r e κ2(MAi) r
4 1.053 8.085 0.513 0.937 2.661 1.557
8 0.865 8.020 0.517 0.695 1.933 2.144A2

16 0.481 3.924 1.056 0.486 1.861 2.227
32 0.500 2.263 1.832 0.276 1.426 2.907
4 1.053 7.151 0.366 0.937 2.292 1.143
8 0.865 9.503 0.276 0.695 1.563 1.676A3

16 0.481 4.400 0.595 0.486 2.087 1.255
32 0.500 3.176 0.824 0.276 1.440 1.818
4 0.553 9.209 0.361 0.513 3.360 0.989
8 0.554 20.159 0.165 0.519 2.681 1.240A4

16 0.356 3.844 0.865 0.361 2.567 1.295
32 0.331 2.651 1.254 0.220 2.055 1.618
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5 FINAL REMARKS

From the experimental results above, some of our important conclusions are as follows.

• From our tables and figures, particularly Figure 3, it is clear that our basic procedure
works reasonably well. In N = O(n) steps, the orbits of an OUP seem to sample the
distribution well enough to get a decent approximate covariance. It is unreasonable,
however, to expect thatN 1 n will give a good result. These are Monte-Carlo simulations
with an accuracy of roughly O((NPN)−1/2)!

• It is important that the basic numerical operations for the integration are very simple:
matrix-vector multiply (likely to be O(n) operations for sparse systems), some Gaussian
random numbers, and vector to vector additions. Also note that these operations are
easily parallelizable: e.g., there are no inner products.

• When large stepsizes are used, 2nd order methods are helpful to get a good result.
Decreasing the stepsize well below the critical value when using an Euler method,

h <
2

maxλ
,

seems to work quite well, however. Since the Euler method is so inexpensive, using a
smaller stepsize and more steps becomes attractive. Talay [11] comes to more or less the
same conclusion in his analysis of the invariant measure.

• Stability of the SDE discretization seems more important than order for these long time
integrations. Many choices of splitting methods are possible (18): we chose only the
diagonal B = D = diag(A) here. A tridiagonal or banded splitting might be useful in
some situations. There is a lot of freedom to modify our procedures.

• We were very concerned about the rank of the preconditioner. Since the condition number
κ(MA) always moved toward unity from above for stable stepsizes and increasing the
number of steps (N), our worry about rank deficiency was unfounded. For our diagonal,
tridiagonal, and full preconditioners, the preconditioner always seems to be of full

rank.

At this juncture, we take the opportunity to speculate. Although it is certainly true our test
examples were relatively small and uncomplicated, the results seem to us quite encouraging.
Because the basic integration procedure is so cheap, taking O(n) steps is not prohibitive.
Several methods to monitor the convergence to stationarity seem evident. Our approach here
was to use multiple realizations (NP > 1, see §1). Another possibility is to divide the number
of steps taken (N) into ”epochs” and monitor the convergence by comparing the Z-variance
in two or three such epochs. This has the advantage of saving memory: only NP = 1 copy of
the n+ p variables is required.
Finally, by choosing a relative small stepsize, Euler methods seem appealing as long as

stability can be maintained. In fact, in future work a split Euler method should be studied.
Such a procedure would again split A = B+C, as in §2.2, where I +hB is easily inverted but
B chosen to maintain stability in the X update:

Xk+1 = Xk − hBXk+1 − hCXk +∆W

= (I + hB)−1 (I − hCXk +∆W ) .
(32)



STOCHASTICALLY GENERATED PRECONDITIONER 19

This is of the same low order (weak order 1) as the explicit Euler method, but by a clever
choice of B in (32) could be made more stable than the explicit rule (11) and would permit
larger stepsizes – thus reducing the number of time steps needed to sample the stationary
stochastic orbits.
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