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1 Introduction

Progress in manufacturing techniques allows the production of lattice materials
of increasing complexity that are of growing importance in mechanical engineer-
ing, optoelectronics, etc.
Typically, when trying to characterize the physical properties of such materials,
one has to take into account three different length scales: the macroscopic size l
of the material block, the microscopic scale of the heterogeneities ε and finally
the thickness of the bars δ. Taking the limit δ → 0, the remaining dimensionally
reduced structures can be modeled by networks consisting of one-dimensional
curves periodically arranged in a higher dimensional space. Appropriate partial
differential equations (PDE’s) describing e.g. thermal or electrical conductivity
or elastic properties on networks are characterized by a highly oscillatory peri-
odic pattern in the coefficients and geometry. Their solutions exhibit a multiple
scale behaviour: a macroscopic behaviour superposed with local characteristics
at micro scale length ε.

Figure 1: Periodic block lattice materials are characterized by three different
length scales: the diameter l of the embedding domain Ω, the size ε of the
spatial periodicity and finally the thickness of the branches δ.

The direct numerical treatment of such problems faces the difficulty of hav-
ing to resolve microstructure. Standard Finite Element Methods (FEM) yield
reliable results only with a discretization mesh with element size smaller than
the smallest characteristic length scale ε of the heterogeneities. The standard
FEM is therefore computationally very expensive for small ε.
Classical homogenization (see e.g. [2] for an introduction) takes a different
approach to solve such problems. It tries to give an overall behaviour of the
composite by neglecting the fluctuations due to the heterogeneities. A macro-
scopic global model (the so-called homogenized material), whose behaviour must
be as close as possible to the behaviour of the composite itself. This model is
derived analytically, by taking an appropriate limit as the micro length scale
ε tends to zero. The obtained homogenized problem is amenable to standard
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numerical treatment. However, the small scale features of the solution are lost
in the homogenization process and even the computation of so-called correctors
does not necessarily recover them.

In [4, 5] a high order generalized Finite Element Method (gFEM) for classi-
cal elliptic two-scale problems was introduced. In the present paper, a gFEM
is developed for elliptic problems on periodic lattice structures. The discretiza-
tion is based on two-scale hp−FE spaces. The standard polynomial spaces are
replaced by conforming function spaces that are, in a sense, adapted to the
micro-scale dependent coefficients of the differential operator, i.e. information
much smaller than the macro mesh size H # ε is built into the shape functions.
These two-scale FE-spaces are obtained by augmenting the standard piecewise
polynomial FE spaces with problem dependent, non-polynomial micro shape
functions that reflect the correct oscillatory behaviour of the exact solution.
Scale resolution by the FE mesh is not necessary.
In [6], a class of representation formulas for the solution of elliptic homogeniza-
tion problems on unbound domains is presented. It is shown here, that the exact
solutions on infinite periodic lattice structures can be represented by a Fourier-
Bochner integral with respect to the lattice measure dDx. It is proved, that
the periodicity of the lattice implies scale separation in the generalized Fourier
inversion integrals. This motivates the choice of the micro shape functions as
solutions of suitable unit cell problems on the reference network.
In our gFEM-algorithm these parameter dependent unit cell problems are solved
numerically with standard FEM during the start-up phase of the calculation.
An analysis of the parameter dependence shows that the expensive assembly
routines only have to be called one time, for any order of generalized lattice
shape functions.
Taking into consideration the periodicity of the micro shape functions, the com-
putation of the stiffness matrices to solve the discrete two scale problem can be
realized with work independent of the micro scale length ε.

This paper is organized as follows:
Chapter 2 introduces the basic notation concerning networks and network func-
tions that are needed to formulate the elliptic two-scale in the next chapter. The
theoretical considerations in chapter 4 lead to an integral representation of the
exact solution of the original problem extended to an infinite network with the
same periodic pattern. This motivates the choice of the special basis functions
in the gFE-discretization in chapter 5. The efficient algorithmic realization is
discussed in chapter 6. Numerical experiments can be found in the last chapter.
An important lemma is sourced out to appendix A because of its oblong, rather
technical proof. The theorems of the theoretical section are proved in appendix
B.
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2 Preliminaries

In this section nomenclature of networks is introduced. A network, as a lower
dimensional structure embedded in Rd, d = 2, 3, is a set of Lebesgue measure
zero. Functions on networks would vanish in standard Sobolev spaces, such as
e.g. L2 (Ω) on a domain Ω ⊂ Rd. To be able to treat differential equations on
networks in a variational setting, appropriate Sobolev spaces must be defined.

2.1 Networks

A one-dimensional network N :=
⋃

i∈I Bi is defined as a union of directed
curves Bi of length Li > 0 the so-called branches of N . They are geometrically
described by the parameterizations σi : [0, Li] → Bi with respect to arc length,
i.e. Bi = σi([0, Li)]) for all indices i in the set I ⊂ N.
The endpoints ∂Bi := σi({0, Li}) of all branches Bi are collected in ΓN :=
⋃

i∈I ∂Bi, the set of the nodes of the network N . It is assumed that branches
only intersect at nodes, i.e. Bi ∩Bj is empty or an element of ΓN for all index
pairs {i, j} ∈ I × I.
A network N is connected iff for every pair of nodes (P1, P1) ∈ ΓN × ΓN a
connecting path along branches of N exists.
The network N is called finite, iff it consists of finitely many branches, i.e.
|I| < ∞.

Figure 2: The network N̂ ⊂ [0, 2π]2 consists of 8 branches {B̂i : i = 1, . . . 8}
that are geometrically determined by the parameterizations σ̂i : [s0 = 0, s1 =
L̂i] → R2, where L̂i is the length of the corresponding branch.

2.2 Network Functions

A K-valued network function u := {ui, i ∈ I} on the networkN is given branch-
wise as a sequence of functions ui : Bi → K (K = R,C). Based on this definition,
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function values at the nodes ΓN are not uniquely defined. It will depend on
the branch-wise function spaces what sort of transmission conditions can be
imposed on functions ui on branches with a common node.

2.3 Differentiation and Integration on Networks

For a network function u given on the network N such that ui ◦σi ∈ C1([0, Li])
on all branches Bi, i ∈ I of N ,

Dui (σi (s)) :=
∂

∂s
ui ((σi (s)) , s ∈ [0, Li], (1)

defines a new network function. The derivatives towards the nodes in ∂Bi are
defined by

Dνui(σi(s)) := (−1)1−s/LiDui(σi(s)), s ∈ {0, Li}. (2)

The corresponding integration of u over the network N is defined by
∫

N
u(x) dDx :=

∑

i∈I

∫

Bi

u(x) dDx, (3)

where
∫

Bi

ui(x)dDx :=

∫ Li

0
u(σi(s)) ds. (4)

2.4 Function Spaces

The branch-wise function spaces can be reduced to the corresponding spaces on
intervals.
For the network function u on the network N and k ∈ N ∪ {∞},

u ∈ Ck(N ) iff ui ◦ σi ∈ Ck([0, Li]) ∀i ∈ I. (5)

Equipped with the norm

||u||Ck(N ) := sup
i∈I

||ui ◦ σi||Ck([0,Li]), (6)

Ck(N ) is a Banach space. Correspondingly for k ∈ N0 the function

u ∈ Hk(N ) iff ui ◦ σi ∈ Hk([0, Li]) ∀i ∈ I. (7)

With the inner products

(u, v)Hk(N ) :=
∑

i∈I

(ui ◦ σi, vi ◦ σi)Hk([0,Li]) (8)

the defined Sobolev spaces become Hilbert spaces. Finally a network function

u ∈ L∞(N ) iff ui ◦ σi ∈ L∞([0, Li]) ∀i ∈ I. (9)
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The following norm is chosen

||u||L∞(N ) := sup
i∈I

||ui ◦ σi||L∞([0,Li]). (10)

In all these definitions the topology of the branches in Rd does not play any
role. Therefore the spaces are isomorphic to corresponding product spaces, e.g.
L2(N ) =̃

∏

i∈I L
2([0, 1]). This is no longer true for the exponentially weighted

Sobolev spaces Hk
ν (N ), k ∈ N0, ν ∈ R: A network function

u ∈ Hk
ν (N ) iff ||u||2k,ν :=

∫

N





∑

α≤k

|Dα
xu(x)|2



 e2ν||x||dDx < ∞. (11)

3 Two-Scale Problem

This section introduces an elliptic two-scale problem on an 2πε-periodic network
N ε embedded in a domain Ω ⊂ Rd. Typically the characteristic micro length
scale 2πε is in orders of magnitudes smaller then the macro length scale of the
domain Ω, i.e. ε , l = diam(Ω).
The periodicity of the geometry is reflected in the rapidly oscillating coefficients
representing material properties, whereas the source terms are assumed to be
independent of ε.
First the computational domain is defined. Boundary and transmission condi-
tions are needed to define a well-posed problem. Finally a variational formu-
lation based on the Network Sobolev spaces defined in the previous section is
given. The Lax-Milgram lemma shows its unique solvability.

3.1 Periodic Networks

A domain Ω ⊂ Rd and a finite reference network

N̂ :=
⋃

i∈Î

B̂i ⊂ Ŷ (12)

in the fundamental period Ŷ := [−π,π]d have to be chosen such that the finite
2πε-periodic network

N ε := N ε
∞ ∩ Ω =:

⋃

i∈Iε

Bε
i (13)

is connected, where ε > 0 and the corresponding infinite network

N ε
∞ :=

⋃

k∈Zd

ε(2kπ + N̂ ). (14)

is built of scaled, periodically arranged reference networks N̂ .
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Figure 3: The infinite periodic network N ε
∞ on the right results by periodically

arranging ε-scaled copies of the reference network N̂ on the left.

3.2 Diffusion Problem on N ε

On the finite periodic network N ε, the system of branch-wise given ordinary
differential equations

L
(x

ε
, Dx

)

uε(x) := −Dx

(

A
(x

ε

)

Dxu
ε (x)

)

+ a
(x

ε

)

uε (x) = f (x) , x ∈ N ε,

(15)
has to be solved for the network function uε, where the periodic coefficients
A, a ∈ L∞

per(N̂ ) have to be positive, i.e. there exist constants γA, γa > 0 with

γA ≤ A(y), γa ≤ a(y) for a.e. y ∈ N̂ . (16)

To get a well-posed problem, additional conditions are needed to couple the
differential equations (15). Homogeneous Dirichlet or Neumann boundary con-
ditions are imposed at the intersection of the network N ε with the boundary
∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ of the domain Ω:

uε|ΓD∩N ε = 0 (17)

and
∑

i∈Iε:P∈∂Bε
i

Ai

(

P

ε

)

Dνu
ε
i (P ) = 0 ∀P ∈ ΓN ε ∩ ΓN . (18)

At the nodes of ΓN ε the two following transmission conditions hold. The solu-
tion uε should be uniquely defined at each node, i.e.

∂Bε
i ∩ ∂Bε

j = P ∈ ΓN ε implies ui(P ) = uj(P ). (T0)

The energy conservation or Kirchhoff’s rule

∑

i∈Iε:P∈∂Bε
i

Ai

(

P

ε

)

Dνu
ε
i (P ) = 0 ∀P ∈ ΓN ε\ΓN , (T1)

at all inner nodes looks equal to the homogeneous Neumann boundary condi-
tions (18) on ΓN .
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Figure 4: The computational domain N ε is determined by the intersection of
the infinite network N ε

∞ with the two-dimensional, L-shaped domain Ω. Its
boundary ∂Ω consists of two parts with different boundary conditions: On ΓD

(solid) homogeneous Dirichlet (solid) are imposed, whereas the dashed lines
indicate Neumann boundary conditions. ∂Ω.

3.3 Variational Formulation

A variational formulation results from multiplying the differential equations (15)
with a network test function v, integrating by parts and using the conditions
(18) and (T1):
Find uε ∈ H1

D (N ε) such that

Bε (uε, v) = (f, v)L2(N ε) ∀v ∈ H1
D (N ε) , (19)

with right hand side f given in L2(N ε). The bilinear form Bε : H1(N ε) ×
H1(N ε) → R is defined by

Bε (u, v) :=

∫

N ε

A
(x

ε

)

Dxu (x)Dxv (x) + a
(x

ε

)

u (x) v (x) dDx. (20)

The test and trial space

H1
D (N ε) := {u ∈ H1 (N ε) : u|ΓD∩N ε = 0, satisfying (T0)} (21)

consists of branch-wise H1-functions that are uniquely valued at all nodes in
ΓN ε and vanish on ΓD. Due to the Sobolev lemma implying

Hj(Bε
i ) ↪→ Cj−1(Bε

i ), j ≥ 1, (22)

on all branches Bε
i , i ∈ Iε, the definition (21) makes sense.

Note the functions in H1
D(N ε) are globally continuous due to the transmission

7



condition (T 0). Because the coefficients A and a are bounded and positive, see
(16), the bilinear form Bε is continuous and coercive, independent of ε. The
Lax-Milgram lemma guarantees the existence and uniqueness of the solution uε

of the variational problem (19) and yields the a priori estimate

||uε||H1(N ε) ≤
1

γ
||f ||L2(N ε), (23)

with γ := min{γA, γa} is independent of ε.

4 Theory: Two-scale Problem on Infinite Net-

work

In practice, the period 2πε of the spatial inhomogeneities is much smaller than
the dimensions of the domain Ω. Therefore, standard methods based on branch-
wise discretization of the network function uε in (15), (19) respectively, are not
feasible due to their computational expense.
Motivated by [4, 5], a generalized Finite Element Method (gFEM) is developed
which uses two-scale FE-spaces with 2πε-periodic, problem-dependent shape
functions to capture the correct oscillatory behavior of the solution. The choice
of the micro shape functions is motivated by a generalized Fourier-Bochner
integral representation first proposed in [6] of the exact solution of the original
problem extended here to an infinite periodic network.

4.1 Representation Formula

Adapting the ideas of [6], a representation formula of the exact solution uε
∞ of

L
(x

ε
, Dx

)

uε
∞ (x) = f(x), x ∈ N ε

∞, (24)

satisfying (T0), (T1),

on the infinite periodic network N ε
∞ is based on the Fourier transform of the

network function f ∈ L2(N ε
∞) that equals the right hand side of (19) on N ε

and vanishes on N ε
∞\N ε. For functions F ∈ H1(R2) with

f = F |N ε
∞
. (25)

the standard Fourier transform

F̂ (t) :=
1

(2π)d/2

∫

Rd

F (x)e−it·xdx, t ∈ R
d, (26)

is well defined. The additional regularity of F guarantees that the restriction
(25) makes sense, at least in the two-dimensional case.
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Theorem 1 (Trace theorem for network functions)
Let N ε

∞ be an infinite periodic network given by (14) that consists of Lipschitz
continuous branches, i.e. the geometry of the corresponding reference network
N̂ is defined by parameterizations σi ∈ C0,1(Li), i ∈ Î.
Then the trace operator is a continuous linear map from H1(R2) to L2(N ε

∞)
such that

||u|N ε
∞
||L2(N ε

∞) ≤ C(N̂ )max{ε, 1
ε
}||u||H1(R2) (27)

holds for all u ∈ H1(R2) with a constant C(N̂ ) only depending on the geometry
of N̂ .

This follows from the standard trace theorem for H1-functions on Lipschitz do-
mains combined with a scaling argument.

Due to the linearity of the equation, the ansatz

uε
∞(x) =

1

2π

∫

R2

F̂ (t)ψ(x, t) dt, x ∈ N ε
∞ (28)

for uε
∞ in (24) leads to the parameter dependent problem

L
(x

ε
, Dx

)

ψ(x, t) = eit·x, x ∈ N ε
∞, t ∈ R

2, (29)

(T0), (T1) hold,

that should be solved by the kernel ψ(·, t). As some sort of fundamental solution,
it is the response of the micro structure to a wave with wave vector t ∈ R2.
Unlike e.g. asymptotic homogenization, the kernel ψ(x, t) also incorporates
responses to high frequency ’volume’ sources as arise in dynamic simulations.
Note that the restriction of eit·x in (29) onto the infinite network N ε

∞ is not in
L2(N ε

∞), but ||eit·x||L2
−ν(N ε

∞), ν > 0 is finite. Therefore

Find ψ ∈ H1
−ν(N ε

∞) such that

Ψε(ψ, v) = 〈ψ, eit·x〉(H1
ν(N ε

∞))∗×H1
ν(N ε

∞) ∀v ∈ H1
ν(N ε

∞) (30)

is an appropriate variational formulation of (29) for right hand sides in the dual
space of

H1
ν(N ε

∞) := {u ∈ H1
ν (N ε

∞) : (T0) is satisfied} (31)

with the sesquilinear form Ψε : H1
−ν(N ε

∞)×H1
ν (N ε

∞) → C defined for ν ≥ 0 by

Ψε(u, v) :=

∫

N ε
∞

A
(x

ε

)

Dxu(x)Dxv(x) + a
(x

ε

)

u(x)v(x) dDx. (32)

For ν = 0, the coercivity and continuity of Ψε would imply unique solvability
of the equation (30) by the Lax-Milgram lemma as in the previous section. A
perturbation argument can be employed to verify
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Theorem 2 (inf-sup)
There exist constants C, ν0, γ > 0 independent of ε such that for all ν ∈
(0, ν0), ε > 0

(i1) |Ψε(u, v)| ≤ C||u||1,−ν ||v||1,ν ∀u ∈ H1
−ν(N ε

∞), v ∈ H1
ν (N ε

∞) (Continuity)

(i2) inf ||u||1,−ν=1 sup||v||1,ν=1 |Ψε(u, v)| ≥ γ (Inf-sup condition)

(i3) supu∈H1

−ν(N ε
∞) |Ψε(u, v)| > 0 ∀v ∈ H1

ν (N ε
∞)\{0} (Injectivity)

The statements of the previous theorem are exactly the properties required
by the Bakuška-Brezzi theory [1] to guarantee existence and uniqueness of the
solution u of (30) under the assumption that ν ∈ (0, ν0) for all ε > 0. Addition-
ally, the a-priori estimate

||u||H1

−ν(N ε
∞) ≤

1

γ
||f ||(H1

ν(N ε
∞))∗ (33)

holds with γ := min{γA, γa} independent of ε.
To get the estimate (33) in the case of (29) independent of t and fixed ν, the
following theorem is of interest. With regard to later considerations, this general
setting is chosen.

Theorem 3 (Analyticity of t 2→ eit·x)
The mapping

Dν2 3 t 2→ G(t) := eit·x ∈ (H1
ν (N ε

∞))∗ (34)

is holomorphic in Dν2 := {t ∈ C2 : ||Im t||∞ < ν2}, ν2 := ν
2
√
2
with values in the

Banach space (H1
ν (N ε

∞))∗.
Additionally, Gk(t) := (ix)keit·x ∈ (H1

ν (N ε
∞))∗ is the k ∈ N2-th partial deriva-

tive of G(t) and

||Gk||(H1
ν (N ε

∞))∗ ≤ C(N̂ , ε, ν)
2

π

(

2

ν

)||k||1+1

(||k||1 + 1)! (35)

with C(N̂ , ε, ν) = C(N̂ )e

(

2+ 1√
2

)

πεν√
πν + ε−1 and ||x||1 := |x1|+ |x2|.

The properties of the map t 2→ eit·x shown in the previous theorem together
with the existence and uniqueness statements of the linear problem (29, 30) lead
to

Theorem 4 (Analyticity of t 2→ ψ(·, t))
For t ∈ Dν2 with ν2 := ν0

2
√
2
the mapping

t 2→ ψ(·, t) ∈ H1
−ν(N ε

∞) (36)

is holomorphic in Dν2 with values in the Banach space H1
−ν(N ε

∞). Moreover,
ψk(t) ∈ H1

−ν(N ε
∞) defined as the solution of

Ψε(ψk(t), v) = 〈Gk(t), v〉, ∀v ∈ H1
ν(N ε

∞) (37)
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equals
ψk(t) = Dk

t ψ(·, t) = ∂k1

t1 ∂
k2

t2 ψ(·, t) (38)

for all k ∈ N2 and

||ψk(t)||1,−ν ≤ C(N̂ , ε, ν)

γ

2

π

(

2

ν

)||k||1+1

(||k||1 + 1)! (39)

where γ is the inf-sup constant form theorem 2 and

C(N̂ , ε, ν) = C(N̂ )e

(

2+ 1√
2

)

πεν
√

πν + ε−1

as in the previous theorem.

Towards to the verification of the representation formula, the result is first
proved under the assumption that the Fourier transform of the right hand side
of (24) has compact support. The general case will follow by an appropriate
limiting process.
For F ∈ L2(R2) and M > 0 define FM as the inverse Fourier transform of

F̂M (t) := 1||t||≤M F̂ (t), t ∈ R
2, (40)

i.e.

FM (x) :=
1

2π

∫

R2

F̂M (t)eit·x, x ∈ R
2, (41)

and denote by uε
M ∈ H1

−ν(N ε
∞) the correspondingly truncated integral

uε
M (x) =

1

2π

∫

R2

F̂M (t)ψ(x, t)dt, x ∈ N ε
∞. (42)

This integral has to be interpreted as a Bochner integral (see [3]) over ΩM :=
{t ∈ R2 : ||t|| ≤ M} of a H1

−ν(N ε
∞)-valued function. In order to show that the

integral really has such a mathematical meaning, a sequence of finitely-valued
functions {wn

M (·, t) : n ∈ N} on R2 has to be found for each M > 0, such that

(bi1) limn→∞ ||F̂M (t)ψ(·, t) − wn
M (·, t)||1,−ν = 0 for a.e. t ∈ ΩM ,

(bi2) limn→∞
∫

R2 ||F̂M (t)ψ(·, t)− wn
M (·, t)||1,−νdt = 0 for a.e. t ∈ ΩM .

The equation (bi1) expresses the strong measurability of the integrand ˆF (t)Mψ(·, t)
and implies that the positive, real-valued functions t 2→ ||F̂M (t)ψ(·, t)||1,−ν , t 2→
||F̂M (t)ψ(·, t) − wn

M (·, t)||1,−ν respectively are Lebesgue-measurable. Therefore

the integrals in (bi2) are well-defined and the Bochner integral of F̂M (t)ψ(·, t)
over ΩM ⊂ R2 is defined by the limes

∫

ΩM

F̂M (t)ψ(·, t)dt := lim
n→∞

∫

ΩM

wn
M (·, t)dt in H1

−ν(N ε
∞). (43)

11



The integrals of the simple functions on the right hand side are defined in a
standard way by finite sums. Their limes in H1

−ν(N ε∞) exists: Because of the
inequality

||
∫

ΩM

wn1

M (·, t)dt− wn2

M (·, t)dt||1,−ν ≤
∫

ΩM

||F̂M (t)ψ(·, t) − wn1

M (·, t)||1,−ν

+

∫

ΩM

||F̂M (t)ψ(·, t) − wn2

M (·, t)||1,−ν ,

the sequence {
∫

ΩM
wn

M (·, t)dt : n ∈ N} ⊂ H1
−ν(N ε

∞) is Cauchy and the com-
pleteness of the Banach space guarantees the existence of its limes.
The existence of such a sequence {wn

M (·, t) : n ∈ N} on R2 for each positive M
is essential and constructed in the proof of

Theorem 5 (Simple functions)
For M, ε > 0 and t 2→ ψ(·, t) continuous it exists a sequence {wn

M (·, t)} ⊂
H1

−ν(N ε
∞) of finitely-valued functions with the properties (bi1) and (bi2).

The continuity of ψ(·, t) is ensured by theorem 4.

Using the notation introduced in the proof of theorem 5 uε
M ∈ H1

−ν(N ε
∞)

defined in (42) can be written as

uε
M (x) = lim

n→∞

1

2π

Jn
∑

j=1

F̂M (tk,jM )ψ(x, tk,jM )|Ωn,j
M |, x ∈ N ε

∞. (44)

Is this the solution of (30) with corresponding right hand side fM? A positive
answer is given by

Theorem 6 (Integral representation: M < ∞)
For each ε,M > 0

Ψε(uε
M , v) =

∫

N ε
∞

fM (x)v(x)

holds for all v ∈ H1
ν(N ε

∞).

Note that the restrictions to the network are well defined because FM (x) and
F are in H1(R2).

A combination of the statement of the previous theorem with (29), (30)
respectively leads to

||uε
∞ − uε

M ||1,−ν ≤ 1

γ
||F − FM ||L2(N ε

∞) (45)

12



and using that F ∈ H1(R2) with the trace theorem and the Parseval’s equality,
to get

||uε
∞ − uε

M ||1,−ν ≤ C(ε)

γ
||F − FM ||H1(R2)

≤ C(ε)

γ
||(1 + |t|2)1/2(F̂ − F̂M )||L2(R2)

≤ C(ε)

γ

(

∫

R2\ΩM

(1 + |t|2)|F̂ (t)|2
)1/2

−→ 0, as M → ∞, (46)

the following theorem is obvious.

Theorem 7 (Integral representation: M → ∞)
Let F (x) ∈ H1(R2), ν ∈ (0, ν0), ε > 0 and further uε

∞ ∈ H1(N ε
∞) solving the

symmetric variational formulation of (29) on N ε
∞. Then, as an element of the

weighted Sobolev space H1
−ν(N ε

∞) ⊃ H1(N ε
∞), uε

∞ admits the Fourier-Bochner
integral representation

uε
∞(x) =

1

2π

∫

R2

F̂ (t)ψ(x, t)dt, x ∈ N ε
∞. (47)

Note that the previously presented results are valid in a very general in par-
ticular non-periodic setting, whereas the next section is focussed on the periodic
two-scale problems.
Stronger regularity assumptions on F in (25) allow the extension of (47) to
dimension d = 3.

4.2 Scale Separation

Following [6], the periodicity of the coefficients allows the scale separation of
the kernel ψ(x, ε, t) into a product of Fourier waves eit·x with periodic, highly
oscillatory functions φ

(

x
ε , ε, t

)

encoding the fast scale of the problem, i.e

ψ(x, ε, t) = eit·xφ
(x

ε
, ε, t

)

. (48)

Here φ solves the unit cell problem on N̂ with t ∈ C2, ε > 0:
Find φ(·, ε, t) ∈ H1

per(N̂ ) such that

Φε
t (φ, v) = ε2

∫

N̂
v(y) dDy ∀v ∈ H1

per(N̂ ), (49)

where the sesquilinear form Φε
t : H

1
per(N̂ )×H1

per(N̂ ) → C is defined by

Φε
t (u, v) :=

∫

N̂
A(y)Dy(u(y)e

it·εy)Dy(v(y)eit·εy) + ε2a(y)u(y)v(y) dDy, (50)
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and the Sobolev space

H1
per(N̂ ) := {u ∈ H1

per(N̂ ) : (T0) is satisfied}. (51)

Summarizing:

Theorem 8 (Scale separation)
Let F ∈ H1(R2), ν ∈ (0, ν0) and ε > 0. Then, as an element of th weighted
Sobolev space H1

−ν(N ε
∞), the solution uε

∞ of the symmetric variational formu-
lation of (29) admits the Bochner integral representation (47) with the kernel
ψ defined by (48) in which the periodic function φ solves the unit cell problem
(49).

5 Generalized FE-Discretization

Because the kernel φ(y, ε, t) solving the unit cell problem (49) is analytic in the
Fourier vector t, the Fourier-Bochner integral (28) can be approximated by the
finite sum

1[−π
h ,πh ]

2

h2

2π

∑

k∈Z2

N

f̂(kh)φ
(x

ε
, ε, kh

)

eihk·x, (52)

where for N ∈ N

Z
2
N := {k ∈ Z

2 : |ki| ≤ N, p = 1, 2}

and h ∼ N− 1

2 . For the problem class considered in [4, 5] the approximation error
decays exponentially in N , independent of ε, for analytic data f . The micro
scale of the solution can be already resolved by span{φ(·, ε, t) : t ∈ T }, i.e.
the unit cell problem (49) has to be solved for only finitely many wave vectors
t ∈ T, |T | =: µ̂ < ∞. The macroscopic behaviour of the solution, represented by
the Fourier waves, is approximated by standard H1

D(Ω)-conforming, piecewise
polynomial FE-spaces on the computational domain Ω ⊂ R2.

5.1 Numerical Computation of the Micro Shape Functions

The computation of the micro shape functions φ(y, ε, t), y ∈ N̂ includes two
steps:

(i) The unit cell problem (49) on N̂ is solved numerically for |µ̂| # µ different
parameters t ∈ T ⊂ Cd. (Oversampling)

(ii) A well-conditioned basis is extracted via singular value decomposition
(SVD) of the matrix consisting of the solution vectors from (i). (Or-
thogonalization)

Due to the analyticity of the kernel φ(·, ε, t) with respect to the frequency t, its
evaluations at the collocation points t ∈ T are almost linear dependent. The
orthogonalization (ii) is needed to obtain a better-conditioned basis without
changing the space. The omission of the µ̂− µ “non-essential” micro functions
can be viewed as principal component analysis on the fine scale.

14



5.1.1 Discrete Unit Cell Problem

The infinite dimensional test and trial space H1
per(N̂ ) in the unit cell problem

(49) is replaced by the finite dimensional subspace

S p̂,1
per(N̂ , τ̂ ) := {u ∈ H1

per(N̂ ) : ui ∈ Sp̂i,1(B̂i, τ̂i), i ∈ Î}, (53)

of the globally continuous network functions that belong branch-wise to the
hp-FE spaces

Sp,1(B, τ) := {u ∈ H1(B) : deg(u|K) = pK , K ∈ τ}, (54)

where τ = {Kj : j ∈ J} is a mesh consisting of open intervals of a finite partition

of B, i.e. B =
⋃

j∈J Kj and i 7= j implies Ki ∩Kj = ∅.

With N̂ := dim( ˆSp,1
per(N̂ , τ̂)) and the basis

{ν̂i(y) : i = 1, . . . , N̂} (55)

of (53), the matrix C := [ c1(ε), . . . , cµ̂(ε) ] collects column-wise the coefficient
vectors cj(ε) of the solutions φ̃j(y) = cj(ε)T ν̂(y) of the discrete unit cell problem
(49) for the µ̂ different parameters tj ∈ T .

5.1.2 Basis Reduction at the ε-Scale

Without changing the space span{φ̃j(y) : j = 1, . . . , µ̂} ⊂ H1
per(N̂ ), the singular

value decomposition
C = Udiag(σ1, . . . ,σµ̂)V

T (56)

orthogonalized the coefficient vectors. Finally

φj

(x

ε

)

:= UT
j ν̂

(x

ε

)

, j = 1, . . . , µ̂. (57)

defines the periodic micro shape functions φ. The micro spaces

Mµ
ε := span{φj(

x

ε
) : j = 1, . . . , µ+ 1} ⊂H 1

per(εN̂ ), (58)

and
M0

ε := span{1}, (59)

are generated by the micro shape functions φj

(

x
ε

)

corresponding to the leading
singular values σj , j = 1, . . . , µ + 1, where µ , µ̂ in (58) is chosen such that
σj < δ for all µ < j < µ̂. Here δ is a truncation parameter specified by the
user. For δ of the order of machine precision, the number of basis functions is
reduced substantially, while the change in span is negligible.
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Figure 5: The dominant micro basis functions φj(y), j = 0, . . . , 3 for data given
in the last section.

5.2 Generalized FE-Spaces

Remembering the scale separation of the approximated solution (52) in form of
a finite sum of products of the previously constructed, highly oscillating micro
scale shape functions φ with analytic Fourier waves,

Sp,µ,1
D (Ω, τ) := {u ∈ H1

D(N ε) : u|K ∈ FK(PpK (K̃))⊗MµK
ε , K ∈ τ} (60)

is an obvious choice for a conforming two-scale discretization space, based on
an ε-independent macro triangulation τ = {Kj : j ∈ J} of the two-dimensional
domain Ω covering the network N ε. For each element K ∈ τ , a basis of the
space PpK (K̃) of all polynomials of total degree pK on the reference element
K̃ = (0, 1)2 is transported by the element map FK : K̃ → K onto K in the
physical domain. Similarly to the vector {pK , K ∈ τ} of the element-wise
polynomial pK , a vector {µK , K ∈ τ} collects the number µK of micro scale
basis functions chosen on elements K ∈ τ .

6 Algorithmic Aspects

For fixed parameter ε > 0, given geometry Ω and data, the overall algorithm

Algorithm 1 (Main Algorithm)

• hpFEM(A, a, τ̂ , p̂, ε, t) ∀t ∈ T ↪→ C = [c1 (ε) , . . . , cµ̂(ε)]

• SV D(C, δ) ↪→ Mµ
ε

• microQuad(Mµ
ε ) ↪→ Qµ

ε
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• UnitCell = (Qµ
ε , [τ̂ , . . .])

• gFEMUnitCell(A, a, τ, p, µ) ↪→ uN

decomposes basically into two main parts: The unit cell computations on the
reference network N̂ that define the interface UnitCell containing informations
needed by the generalized EM to solve the main problem on N ε ⊂ Ω with work
independent of ε. To achieve this goal, the so-called micro quadratures play a
key rule. The corresponding function microQuad precomputes the moments

(Qµ
ε )

r,s,i,j
A,u,v,du,dv :=

∫

N̂
yr1 y

s
2 ẏ

i
1 ẏ

j
2 A(y)Ddu

y φu(y)D
dv
y φv(y) dDy, (61)

with A ∈ {A, a}, the derivatives ẏ(σ(s)) := ∂
∂sσ(s) and indices

r, s ∈ {0, 1, . . . , pmax}, u, v ∈ {1, 2, . . . , µmax}. i, j, du, dv ∈ {0, 1}.

The field Qµ
ε allows for efficient evaluation of stiffness matrix and load vector in

gFEM . But first, the unit cell problem has to be solved for µ̂ = |T | different
parameters t ∈ T . An analysis of the t-dependence of the sesquilinear form Φε

t

in (49) leads to an optimized algorithmic realization of the first step in main
algorithm.

6.1 Unit Cell Computations

The unit cell problem (49) is discretized via hp-FE spaces (53) on appropriate
meshes τ̂ .

6.1.1 Parameter Dependence

There is no reason to change the approximation space depending on the pa-
rameter t ∈ T . Therefore it is desirable to call the assembly routine with its
expensive quadrature rules only once. The decomposition

{Φε
t (ν̂k, ν̂l)}k,l = M0,0

A,1,1 − iε(t ·
[

M1,0
A,1,0

M0,1
A,1,0

]

− t ·
[

M1,0
A,0,1

M0,1
A,0,1

]

)

+ε2(t ·
[

M1,1
A,0,0 M1,2

A,0,0

M2,1
A,0,0 M2,2

A,0,0

]

· t+M0,0
a,0,0), (62)

of the sesquilinear form Φε
t from (50) into a sum of vector components of t

multiplied by parameter independent matrices

{M i,j
A,u,v}k,l :=

∫

N̂
ẏi1 ẏ

j
2 A(y)Du

y ν̂k D
v
y ν̂l dDy, (63)

enables the decoupling of the assembly process form the iteration over t ∈ T .
This is shown in
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Algorithm 2 (Unit Cell Computations)

• ∀i ∈ Î:

• ∀K ⊂ B̂i:

• M i,j
A,u,v+ = assemble (K)

• ∀t ∈ T :

• C ←↩
[

C, (M0,0
A,1,1 − iε(t1M

1,0
A,1,0 + t2M

0,1
A,1,0) + . . .)−1 b

]

• Mµ
ε ←↩ SVD (C, δ)

For every pass of this second loop a linear system has to be solved numerically.
The resulting coefficient vector extends the matrix C by one column.

6.1.2 Assembly on Periodic Meshes

To build the matrices (63), the function assemble in algorithm 2 has to map
local degrees of freedoms corresponding to shape functions living on the ref-
erence interval onto global ones such that the resulting global basis functions
are continuous. Instead of assembling branch-wise and imposing afterwards
the constraints needed to satisfy the transmission condition (T 0) between the
branches, it is more natural to prevent such separation. The connectivity is
realized by nodes that are represented by zero-dimensional typological objects
and elements defined by two nodes and an element map. Realized by this hierar-
chic data structures, the reference network becomes toric because of its periodic
boundaries. In this general setting the assembly procedure already used for the
homogenization problems in [7] also works on networks in Rd, d = 2, 3.

6.2 Efficient Integration of the Micro Shape Functions

The function gFEM computes the solution uN of the macro problem (19) in
the discrete gFE-space Sp,µ,1

D (Ω, τ). If the elements K ∈ τ are rectangles with
m1,m2,M1,M2 ∈ N such that

K = 2πε(m1,m1 +M1)× (m2,m2 +M2), (64)

the work to evaluate the stiffness matrix entries is independent of M1,M2 and
ε.
Let {νi(x) : i ∈ I} be a tensor product basis of the piecewise polynomial space
Sp,1(Ω, τ) (see e.g. [8]), i.e. the factorization

νi(x) = νi1(x1)νi2 (x2) (65)

of the shape functions holds. The evaluation of the bilinear form Bε(νiφu, νjφv)
for the two-scale basis functions {νi(x)φu

(

x
ε

)

}i,u on K− := 2πε[m1,m1+M1)×
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[m2,m2 +M2) equals
∫

N ε∩K−

A
(x

ε

)

Dx

[

νi1(x1)νi2 (x2)φu

(x

ε

)]

Dx

[

νj1(x1)νi2(x2)φv

(x

ε

)]

dDx.

(66)
Because Dxν(x) = ẋ∇xν(x) with ẋ(σ(s)) := ∂

∂sσ(s) on all branches of N ε, the
integral (66) decomposes into a sum of terms

∫

N ε∩K−

ẋd1

1 ẋd2

2 [ν(di1)i1
ν
(dj1)
j1

](x1)[ν
(dj1)
i2

ν
(dj2)
j2

](x2)[Aφuφv]
(x

ε

)

dDx, (67)

where A ∈ {A, a}, di, dj, du, dv indicate orders of differentiation and for shorter
notation set d1 := di1 + dj1, d2 := di2 + dj2. The substitution x̃ := ε−1(x − r)
leads to

cε
∫

Ñ∪K̃−

ẋd1

1 ẋd2

2 [ν(di1)i1
ν
(dj1)
j1

](x1(x̃1))[ν
(dj1)
i2

ν
(dj2)
j2

](x2(x̃2))[Aφuφv](x̃)dDx̃, (68)

with cε = ε1−d1−d2−du−dv, the transformed element K̃− := [0, 2πM1)×[0, 2πM2)
and Ñ := ε−1(N ε − r). Using the periodicity of Aφuφv and the monomial ex-
pansions of the shape functions

ν
(d)
i (y) =

deg(νi)−d
∑

r=0

ci,dr yr, d ∈ N0, (69)

the integral finally writes

cε
∑

ri,rj

ci1,di1ri cj1,dj1rj

∑

si,sj

ci2,di2si cj2,dj2sj

ri+rj
∑

p=0

(

ri + rj
p

)

(2π)ri+rj−pS
ri+rj−p
M1

si+sj
∑

q=0

(

si + sj
q

)

(2π)si+sj−pS
si+sj−q
M2

(Qµ
ε )

r,s,di,dj
A,u,v,du,dv. (70)

The tensor Qµ
ε results from the unit cell computations. The sum of powers

Sk
M :=

M−1
∑

l=1

lk, M, k ∈ N (71)

of natural numbers can be expressed in terms of tabulated Bernoulli numbers
bn

m
∑

l=1

lk =
mk+1

k + 1
+
mk

2
+
1

2

(

k

1

)

b2m
k−1+

1

4

(

k

3

)

b4m
k−3+

1

6

(

k

5

)

b6m
k−5+. . . , (72)

ending with a term containing either m or m2.
Runtime and memory can be saved by take into consideration symmetries of
the high dimensional tensors appearing in the calculations. Sum factorization
techniques are applied to implement the loops efficiently.
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7 Numerical Results

Based on the reference network geometry consisting of six branches that form
a diagonal cross in a frame, two numerical examples are considered: A periodic
network in a L-shaped domain and the situation of a local defect. Apart from
the solutions uN (x), the fluxes A(xε )DxuN(x) are also of interest. Time mea-
surements proof the calculation time is really independent of ε as predicted in
the previous section.

7.1 Unit Cell

The data on the reference network in Fig.(2) are defined in global coordinates:
The diffusion coefficient is

A(y1, 0) = sin(y1) + 2 and A(0, y2) = sin(y2) + 2 (73)

on ∂Ŷ and
A(y) = y1 + y1 + 1 (74)

on the inner branches of N̂ , where the reaction coefficient a(y) = 3. On the
outer branches

a(y1, 0) = a(0, y2) = 2. (75)

Based on this data, the micro scale shape functions in Fig.(5) result. They
are used in the two following problems with polynomial right hand side f(x) =
x1 + 2x2 on the corresponding computational domain Ω ⊂ R2.

7.2 L-shaped Domain

The problem (19) is solved numerically on an L-shaped domain Ω for ε = 1
12π .

Fig.(4) shows the boundary conditions imposed on ∂Ω. The mesh consists of 12
square elements with side lengths 1

4 . They result from a subdivision of the initial
mesh with three squares located in the three quadrants. Choosing p = µ = 4
uniformly for all elements, the lattice problem consisting of about 450 single
branches is solved for uN with only 480 degrees of freedom. This number is
even independent of ε as it is shown in the next example.

7.3 Local Defect

The second numerical example simulates the situation of a local defect in a pe-
riodic network covered by the unit square. Therefore the computational domain
Ω with the boundary conditions is given in Fig.(8). Reducing the micro length
scale from 1

40π to 1
80π , the number of single branches increase substantially to

almost 1600 branches, whereas the dimension of the discrete problem and the
resolution quality do not change.
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Figure 6: Solution uN(x).

7.4 CPU-time

To show that the computational cost is independent of the micro scale, CPU-
times for solving the first example are plotted against ε. The blue line which
denotes the overall time implies an ε-dependance. But these measurements also
include the time needed to write the data for graphical post processing to hard-
disk . The red line, indicated with ”HDD-Space” shows the amount of graphics
data depending on ε.
Finally the almost constant green line results from measurements stopped right
before the data files are written. It confirms the theoretical predictions: The
work does not depend on ε.

A Properties of the Exponential Function

The following lemma is essential for the proofs of the theorems in appendix B.

Lemma 1 For t ∈ D ν
2
√

2

, ν > 0 the inequality

||xkeit·x||20,−ν ≤ C(N̂ )[
2

π

(

2

ν

)||k||1+1

(||k||1 + 1)!]2eπεν(
√
2+4)(πν +

1

ε
). (76)

holds with C(N̂ ) only depending on the geometry of the reference network.

Proof. The inequality

|xk1

1 xk2

2 eit·x|2 ≤ |x1|2k1 |x2|2k2e
ν√
2
||x||1 (77)
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Figure 7: Flux A(xε )DxuN(x).

and the ”radial” decomposition of the infinite index set 2Z2

2Z2 =
⋃

r∈N

{z ∈ Z
2 : |zi| = 2r, i ∈ {1, 2}} =: Rr, (78)

where for all x ∈ N ε
r :=

⋃

z∈Rr
ε(πz + N̂ ), r ∈ N,

• |Rr| =
{

1, r = 0
8r, r 7= 0

• επ(2r − 1) ≤ |xi| ≤ επ(2r + 1), i = 1, 2,

• επ(2r − 1) ≤ ||x|| ≤ επ
√
2(2r + 1)

hold, lead to

||xkeit·xe−ν||x||||20 ≤
∫

N ε
∞

|x|2ke
ν√
2
||x||1e−2ν||x||dDx

≤
∑

r∈N

∫

N ε
r
|x|2ke

ν√
2
||x||1e−2ν||x||dDx

≤
∑

r∈N
8rεC(N̂ )(επ(2r + 1))2||k||1e

ν√
2
2πε(2r+1)

e−2νεπ(2r−1)

≤ 8εC(N̂ )(επ)2||k||1eπεν(
√
2+2)

∑

r∈N
r(2r + 1)2||k||1e−2πενr(2−

√
2)

≤ 8εC(N̂ )(επ)2||k||1eπεν(
√
2+2)4||k||1

∑

r∈N
(r + 1)2||k||1+1e−2πενr

with C(N̂ ) := |Î|max{Li : i ∈ Î} representing the reference cell geometry. The
last estimate follows, considering

r(2r + 1)2||k||1e−2ενr(2−
√
2) ≤ 4||k||1(r + 1)2||k||1+1e−2πενr. (79)
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Figure 8: The situation of a problem with a local defect. The homogeneous
boundary conditions are indicated as follows: dashed means Neumann, sold
stands for Dirichlet.

It remains to discuss the sum

∑

n∈N

nae−bn =

∫ ∞

0
ϕ(x)dx, (80)

with the positive constants a = 2||k||1 + 1 and b = 2πεν and the function
ϕ(x) :=

∑

n∈N
h(n)χ(n−1,n](x) interval wise given by h(x) := xae−bx. Since

( a

eb

)a
= h

(a

b

)

(81)

is the maximal value of h, the function ϕ is overestimated by

h̃(x) :=

{ (

a
eb

)a
, 0 ≤ x < a

b + 1
h(x), x > a

b + 1
, x ∈ R

+, (82)
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Figure 9: Solution uN(x).

and therefore
∫ ∞

0
ϕ(x)dx ≤

(a

b
+ 1

)( a

eb

)a
+

∫ ∞

a
b +1

h(x)dx

≤
(a

b
+ 1

)( a

eb

)a
+

∫ ∞

0
h(x)dx

≤
(a

b
+ 1

)

(

1

b

)a

a! +

(

1

b

)a+1

a!

≤
(

1

b

)a+1

a!a

(

1 +
b + 1

a

)

≤
(

1

b

)a+1

a!a(2 + b) (83)

holds because of Stirling’s formula

n! =
√
2πn

(n

e

)n
esn with

1

12n+ 2
5n

< sn <
1

12n
(84)

and the inequality b+1
a ≤ b+ 1 with a ≤ 1 used to verify the last step.

Re-substituting the original variables of a and b and applying the estimate

(2||k||1 + 1)!(2||k||1 + 1) ≤ [2(||k||+ 1)]! ≤ 4||k||1+1 ((||k||1 + 1)!)2 . (85)

leads to

||xkeit·x||20,−ν ≤ C(N̂ )[
2

π

(

2

ν

)||k||1+1

(||k||1 + 1)!]2eπεν(
√
2+4)(πν +

1

ε
).

!
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Figure 10: Flux A(xε )DxuN (x).

B Proofs of the Theorems

This section collects the proofs of all the theorems.

B.1 Proof of Theorem 1

The standard trace theorem for H1-functions on Lipschitz domains is used fol-
lowed by a scaling argument.

For each branch B̂i of the reference network N̂ a two-dimensional Lipschitz
domain Ω̂i ⊂ Ŷ can be found with B̂i ⊂ ∂Ω̂i. As a consequence, u ∈ H1(Ŷ )
fulfils

||u|N̂ ||2
L2(N̂ )

≤ C(N̂ )||u||2
H1(Ŷ )

(86)

with the only geometry dependent constant C(N̂ ) due to the trace theorem for
H1-functions on Lipschitz domain.
Scaling down this inequality by the factor ε leads to the estimate

||u||2
L2(εN̂ )

≤ max{ε, 1
ε
}C(N̂ )||u||2

H1(εŶ )
(87)

for u ∈ H1(εŶ ). Therefore

||u|N ε
∞
||2L2(N ε

∞) ≤
∑

k∈Z2

C(N̂ )max{ε, 1
ε
}||u||2

H1(ε(2πk+Ŷ ))

≤ C(N̂ )max{ε, 1
ε
}||u||2H1(R2) (88)

holds if u ∈ H1(R2).
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Figure 11: Solution uN (x).

B.2 Proof of Theorem 2

The continuity (i1) of the sesquilinear form applied to u ∈ H1
−ν(N ε

∞) and v ∈
H1

ν (N ε
∞) is obvious because

|Ψε(u, v)| ≤ ||A||∞
∫

N ε
∞

|Dxu(x)e
−ν||x||Dxv(x)eν||x|||dDx

+||a||∞
∫

N ε
∞

|u(x)e−ν||x||v(x)eν||x|||dDx

≤ max{||A||∞, ||a||∞}(||Dxu||0,−ν ||Dxv||0,ν + ||u||0,−ν||v||0,ν)
≤ max{||A||∞, ||a||∞}||u||1,−ν||v||1,ν .

To prove the inf-sub condition (i2) it is sufficient to show the existence of
ν0, γ, C > 0 independent of ε such that for each u ∈ C∞

0 (N ε
∞) exists vu ∈

H1
ν (N ε

∞) fulfilling

(i2.1) ||vu||1,ν ≤ C||u||1,−ν

(i2.2) |Ψε(u, vu)| ≥ γ||u||21,−ν.

Since C∞
0 (N ε

∞) := {u ∈ C∞(N ε
∞) : suppu ⊂⊂ R2} is dense in H1

−ν(N ε
∞), the

inf-sup condition follows.
Let u ∈ C∞

0 (N ε
∞) arbitrary, fixed and define vu(x) := u(x)e−2ν||x|| for ν > 0.

Obviously vu ∈ H1
ν (N ε

∞) and

||vu||21,ν =

∫

N ε
∞

(|u(x)|2 + |Dxu(x)− 2ν
x

||x|| · ẋu(x)|
2)e−2ν||x||dDx

≤ ||u||20,−ν + ||Dxu||20,−ν + 4ν||Dxu||0,−ν||u||0,−ν + 4ν2||u||20,−ν ,
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Figure 12: Flux A(xε )DxuN (x).

where |Dx||x||| = | x
||x|| · ẋ| ≤

||x||
||x|| ||ẋ|| = 1 is applied. This only holds due to the

parameterizations with respect to arc length.
The inequality (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R motivates

||vu||21,ν ≤ ||u||20,−ν + 2||Dxu||20,−ν + 8ν2||u||20,−ν

≤ max{2, 1 + 8ν2}||u||21,−ν.

Therefore (i2.1) holds with C =
√

max{2, 1 + 8ν2} independent of ε.
Based on the coercivity of Ψε for arguments in H1(N ε

∞), i.e ν = 0, a perturba-
tion argument is used to show (i2.2) for 0 < ν < ν0:

Ψε(u, vu) =

∫

N ε
∞

{A
(x

ε

)

|Dxu(x)|2 + a
(x

ε

)

|u(x)|2}e−2ν||x||dDx

−2ν

∫

N ε
∞

A
(x

ε

)

Dxu(x)u(x)
x

||x|| · ẋe
−2ν||x||dDx

=: Ψε
1(u)− νΨε

2(u). (89)

The estimate
|Ψε

1(u)| ≥ min{γA, γa}||u||1,−ν (90)

with the positive constants γA, γa from (16), and

|Ψε
2(u)| ≤ 2||A||∞

∫

N ε
∞

|Dxu(x)||u(x)|e−2ν||x||dDx

≤ ||A||∞(||u||20,−ν + ||Dxu||20,−ν) (91)
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Figure 13: Independence of the solution time of the micro scale parameter ε.

lead to the inequality

|Ψε(u, vu)| ≥ |Ψε
1(u)|− ν|Ψε

2(u)|
≥ (min{γA, γa}− ν||A||∞)||u||21,−ν , (92)

which proves (i2.2) with 0 < ν0 < min{γA,γa}
||A||∞ and γ = min{γA, γa} − ν||A||∞

independent of ε.
It remains to show the injectivity property (i3) that basically works in the same
way as the proof of the inf-sup condition: For each v ∈ H1

ν (N ε
∞)\{0} and the

definition uv(x) := v(x)e2ν||x|| ∈ H1
−ν(N ε

∞) the inequality

|Ψε(uv, v)| ≥ (min{γA, γa}− ν||A||∞)||v||21,ν > 0 (93)

holds for the same reason as (92) if 0 ≤ ν < ν0.

B.3 Proof of Theorem 3

A Taylor expansion at t ∈ Dν2 in the axis-aligned differentiation direction ek, k ∈
{1, 2} leads to

| 1
h
〈G(t + hek)−G(t)−Gek(t), v〉(H1

ν (N ε
∞))∗×H1

ν(N ε
∞)|

≤ h||eit·x
(

(ixk)2

2!
+ h

(ixk)3

3!
+ h2 (ixk)4

4!
+ · · ·

)

||0,−ν ||v||1,ν (94)

for each v ∈ H1
ν (N ε

∞) and h > 0. The lemma in appendix A ensures that the
terms ||xkeit·x||0,−ν are bounded and taking the limit h → 0 proves the first
statement. Analogously works the proof for higher order derivatives.
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An upper bound for ||Gk||(H1
ν(N ε

∞))∗ results by applying the lemma once more:

|〈Gk(t), v〉(H1
ν (N ε

∞))∗×H1
ν(N ε

∞)| ≤ ||v||1,ν ||xkeit·x||0,−ν

≤ ||v||1,νC(N̂ , ε, ν)
2

π

(

2

ν

)||k||1+1

(||k||1 + 1)!(95)

is true for all v ∈ H1
ν (N ε

∞).

B.4 Proof of Theorem 4

In order to prove analyticity of t 2→ ψ(·, t) in the strip Dν2 , it is sufficient to
show that

Dν2 3 t 2→ Ψε(ψ(·, t), v) ∈ C (96)

is holomorphic for each v ∈ H1
ν (N ε

∞). Because of theorem 3, for k ∈ {1, 2}, t ∈
Dν2 and h > 0 it is

Ψε ((∂ekψ)(t), v) = lim
h→0

1

h
Ψε(ψ(·, t+ hek)− ψ(·, t), v)

= lim
h→0

1

h
〈G(t + hek)−G(t), v〉

= 〈Gek(t), v〉
= Ψε(ψek(t), v) (97)

for all v ∈ H1
ν (N ε

∞). The properties of the sesquilinear form Ψε summarized in
theorem 2 finally show that (∂ekψ)(t) = ψek(t) in H1

−ν(N ε
∞).

The verification of (39) follows from the estimates in of t 2→ eit·x because

||ψk(t)||1,−ν ≤ 1

γ
||Gk(t)||(H1

ν (N ε
∞))∗ (98)

holds with the inf-sup constant γ.

B.5 Proof of Theorem 5

For fixed M > 0 select two sequences of simple functions {F̂n
M : Ω → C}, {ψn

M :
Ω → C} respectively, and a collection {Ωn,j

M : j = 0, . . . , Jn} of measurable
subsets of ΩM such that for each n ∈ N

(s1) ΩM = ∪Jn

j=0 and j1 7= j2 ⇒ Ωn,j1
M ∩ Ωn,j2

M = ∅

(s2) for j = 1, . . . , Jn and t1, t2 ∈ Ωn,j
M arbitrary

||ψ(·, t1)− ψ(·, t2)||1,−ν < 2−n

(s3) F̂n
M |Ωn,j

M
= const for j = 0, . . . , Jn

(s4) |F̂n
M (t)| ≤ |F̂M (t)| such that F̂n

M (t) → F̂M (t) as n → ∞ for a.e. t ∈ ΩM
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(s5) For arbitrary tn,jM ∈ Ωn,j
M set

ψn
M (t)|Ωn,j

M
:= ψ(·, tn,jM ), ∀j = 1, . . . , Jn.

To realize property (s2), the continuity assumption on ψ(·, t) is needed. Whereas
{F̂n

M : n ∈ N} approximates F̂M (t) from below, the second collection of simple
functions {ψn

M (·, t) : n ∈ N} collocates the continuous function ψ(·, t).
As a consequence

||F̂M (t)ψ(·, t) − F̂n
M (t)ψn

M (·, t)ψ||1,−ν ≤ ||ψ(·, t)||1,−ν |F̂M (t)− F̂n
M (t)|

+|F̂n
M (t)|2−n

≤ Cν

γ
|F̂M (t)− F̂n

M (t)|+ |F̂M (t)|2−n

holds for a.e. t ∈ ΩM with the constants γ from (33) and Cν := ||eit·x||(H1
ν(N ε

∞))∗ .

With property (s4) the equation (bi1) follows where wn
M (x, t) := F̂n

M (t)ψn
M (x, t).

Furthermore, the Lebesgue dominated convergence theorem implies (bi2).

B.6 Proof of Theorem 6

Recalling the linear problem (29) for ψ(x, t) in the variational setting (30), the
identity

Ψε(uε
M , v) = lim

n→∞

1

2π

∫

N ε
∞





∫

ΩM

Jn
∑

j=1

F̂n
M (t)eit

n,j
M ·xχΩn,j

M



 v(x) (99)

is obvious because of the continuity of u 2→ Ψε(u, ·). The properties (s3) and
(s4) of the simple functions constructed in the previous theorem give |F̂n

M (t)| ≤
|F̂M (t)| for a.e. t ∈ ΩM . Therefore

|F̂n
M (x) :=

∫

ΩM

F̂n
M (t)eit

n,j
M ·xχΩn,j

M
dt| ≤

∫

ΩM

|F̂M (t)|dt (100)

for all x ∈ R2. The application of the Lebesgue’s theorem on dominated con-
vergence gives

lim
n→∞

∫

N ε
∞

F̂n
M (x)v(x)dDx =

∫

N ε
∞

lim
n→∞

F̂n
M (x)v(x)dDx. (101)

Since F̂n
M (t) → F̂Meit·x as n → ∞ for almost every t ∈ ΩM , the Lebesgue’s

theorem on dominated convergence can be applied once more to obtain

lim
n→∞

F̂n
M (x) =

∫

ΩM

lim
n→∞

F̂M (t)eit·xdt = 2πFM (x). (102)

This completes the proof because it is shown that

Ψε(uε
M , v) = lim

n→∞

1

2π

∫

N ε
∞

F̂n
M (x)v(x)dDx =

∫

N ε
∞

FM (x)v(x)dDx (103)

holds for all test functions v ∈ H1
ν(N ε

∞).
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B.7 Proof of Theorem 8

For k ∈ Z2 and ε > 0 define

N̂ (k, ε) := ε(N̂ + πk), Ŷ (k, ε) := ε(Ŷ + πk). (104)

For each ε > 0 there exists a locally finite C∞-partition of unity {αk(·, ε) : k ∈
Z2} associated to {Ŷk(·, ε) : k ∈ Z2} such that

(p1) αε
k ∈ C∞(R2)

(p2) suppαε
k ⊂ Ŷ (k, ε)

(p3) 0 ≤ αε
k(x) ≤ 1

(p4) ||∇αε
k(x)|| < C(ε)

for all k ∈ Z2 and of course

(p5)
∑

k∈Z2 αε
k(x) = 1 ∀x ∈ R2.

Since Ψε is a continuous sesquilinear form on H1
−ν(N ε

∞) × H1
ν (N ε

∞), for v ∈
H1

ν (N ε
∞) holds

Ψε(ψ, v) =
∑

k∈Z2

Ψε(ψ, vεk)

=
∑

k∈Z2

∫

N̂ (ε,k)
A
(x

ε

)

Dx(φ
(x

ε

)

eit·x)Dxvεk(x)

+a
(x

ε

)

φ
(x

ε

)

eit·xvεk(x)dDx, (105)

where vεk(x) := αε
k(x)v(x) is compactly supported. The goal to reduce the

integrals on N̂ (k, ε) to integrals on the reference network N̂ = N̂ (0, 1) can be
achieved by the substitution

x

ε
= y + πk̃ for x ∈ Ŷ (k, ε), (106)

with k̃ ∈ 2Z2 given by

k̃j :=

{

kj , kj even
kj − 1, kj odd

, j = 1, 2. (107)

Taking into consideration the periodicity of A, a and φ, each integral in the sum
(105) writes

∫

N̂ (k−k̃,1)

{

1

ε2
A(y)Dy(φ(y)e

iεt·(y+πk̃))Dyvεk(ε(y + πk̃))

+a(y)φ(y)eiεt·(y+πk̃)vεk(ε(y + πk̃))
}

εdDy. (108)
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The functions

vk(y, t) := vεk(ε(y + πk̃))e−iεt·(y+πk̃), t ∈ R
2, k ∈ Z

2, (109)

originally only defined for y ∈ supp vεk(ε(·+πk̃)) ⊂ N̂ (k− k̃, 1), can be extended

2π-periodically to all N̂∞. Because the complex factors e−iεt·(y+πk̃), t ∈ R2

in (109) do not change the functions essentially, it is obvious that vk(·, t) ∈
H1

per(N̂ ). Using the definition (109), the integrals (108) become

∫

N̂ (k−k̃,1)

{

1

ε2
A(y)Dy(φ(y)e

iεt·y)Dy(vk(y, t)eiεt·y)

+a(y)φ(y)vk(y, t)
}

εdDy, (110)

which is now independent of k. As a consequence, the domain of integration
can be replaced by the reference network N̂ and therefore

Ψε(ψ, v) =
∑

k∈Z2

ε−1Φε
t (φ, vk). (111)

Due to the unique solvability of the unit cell problem (49)

Ψε(ψ, v) =
∑

k∈Z2

∫

N̂
vk(y, t)εDy =

∫

N ε
∞

veit·xdDx (112)

holds for all for all v ∈ H1
ν (N ε

∞).
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