
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Switzerland

Research Report No. 2002-22 October 2002

Abstract

We propose and analyze a domain decomposition method on non-matching
grids for hp-finite element approximations of the Stokes problem in two di-
mensions. No weak or strong continuity of the discrete velocities, is imposed
across the boundaries of the subdomains. Instead, we employ suitable bilin-
ear forms defined on the common interfaces, typical of discontinuous Galerkin
approximations. Our main result is the divergence stability of some finite
element approximations on geometrically conforming and non-conforming
subdomain partitions. Our lower bound for the inf-sup constant depends
on the stability constants of the local problems and the subdomain parti-
tion. Our bounds show a slight degradation with the polynomial degree for
non-conforming partitions.

Keywords: Mixed problems, hp Finite Element Method, non-matching
grids, discontinuous Galerkin approximations

∗This work was partially supported by the Swiss National Science Foundation under
Project 20-63397.00
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1 Introduction

In this paper we consider the Stokes problem in a bounded polygonal domain
Ω ⊂ R2: 





−ν∆u+∇p = f , in Ω,

divu = 0, in Ω,

u = 0, on ∂Ω,

(1)

This system of differential equations describes the motion of an incompressible
viscous fluid with no convection. Here, ν > 0 is the viscosity of the fluid and
f : Ω → R2 is an external force. The unknown fields are the velocity u and the
pressure p. The second equation represents the incompressibility condition. For
simplicity we only consider homogeneous Dirichlet boundary conditions.

The computational domain Ω is supposed to be partitioned into a finite num-
ber of subdomains. We wish to employ different and independent conforming
hp finite element approximations on each subdomain. As opposed to the mortar
method, where weak continuity conditions are imposed on the velocity across
the subdomain boundary, we employ a discontinuous Galerkin (DG) approach
here. No kind of continuity is imposed across the interface between the sub-
domains but suitable bilinear forms defined on the interface are added to the
variational formulation of the problem in order to ensure the consistency and
the well-posedness of the discrete problem.

DG methods have a long history and have recently become more and more
popular. They have been heavily tested and studied, and they present con-
siderable advantages for certain types of problems, especially those modelling
phenomena where convection is moderate or strong; see the monograph [9]. In
addition, more general meshes can be employed than in the case of conforming
approximations and thus simpler adaptive strategies are possible.

The main result of this paper is the divergence stability of some finite element
approximations obtained using a DG approach for the case of a fixed subdomain
partition and is given in Theorem 4.1. Roughly speaking, the lower bound found
for the inf-sup constant depends on the inf-sup constants of the local problems
and the subdomain partition. If the partition is geometrically conforming, the
constant exhibits the same dependence in the polynomial degree as the local
ones, and only depends on the topology of the partition, but not on the number
of subdomains or their size. If the partition is not conforming our bounds show
a slight degradation with the polynomial degree. Only numerical results will
be able to show if our bounds are sharp, and to compare our approach with a
mortar one. We note in particular that a similar approach as in [2] can be also
employed using a DG approach for spectral element approximations. We do not
consider this case in this work.

Some work has already been done for the approximation of the Stokes prob-
lem on non-matching grids using a mortar approach:
In [1] hp finite element approximations are considered with conforming subdo-
main partitions. The analysis of the divergence stability of our DG method
borrows some techniques originally employed there; see in particular the con-
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struction of interface functions in Lemma 5.1 and in [1, Lemma 3.1], and the
use of the connectivity matrix of the subdomain partition. In [2], a mortar
method for spectral approximations is proposed. The techniques employed for
the divergence stability of the corresponding approximations are similar to those
in [1], but they rely on different technical tools, a fact that does not allow to
combine them with those in [1] in a straightforward way in order to analyse
approximations where finite and spectral elements are coupled.

Ours is not the first method where a DG approached is employed with ap-
proximations on non-matching grids for the Stokes problem. In [10], a similar
approach is proposed and analysed for the Stokes and Navier-Stokes problems.
There however the analysis is carried out only for the case of two subdomains
and severe restrictions are imposed on the local meshes. In particular, on the
interface between the subdomains, a mesh must be a refinement of the other.
Moreover, in the discrete problem, extra jump terms are added to the interface
bilinear forms, which do not appear to be necessary in our approach.

The remainder of this paper is organised as follows:
In section 2 we present the continuous Stokes problem. In section 3 we define the
finite element spaces and make precise assumptions on the subdomain partition.
The discrete problem is derived in section 4, where, in particular, we define
discrete bilinear forms and norms. In section 5 we derive some technical tools
needed in section 6, where the divergence stability is proven for the case of a
fixed decomposition. Finally, the analysis of the well-posedness of the discrete
problem and a priori estimates are presented in section 7.

2 Problem Setting

Let Ω be a bounded polyhedral domain in R2. For D ⊆ R2 we introduce the
following spaces

L2(D) =




v : D → R |
∫

D

|v|2 dx < ∞




 ,

L2
0(D) =




v ∈ L2(D) |
∫

D

v dx = 0




 ,

Hm(D) =
{
v ∈ L2(D) | ∂αv ∈ L2(D), |α| ≤ m

}
, m ∈ N0,

H1
0 (D) = {v ∈ H1(D) | v = 0 on ∂D}.

In the following, (u, v)D, (u,v)D , and (τ, ε)D denote the scalar products in
L2(D), L2(D)2, and L2(D)2×2, respectively, with ‖u‖D, ‖u‖D, and ‖τ‖D the
corresponding norms. We denote the norm of Hs(D) or Hs(D)n, s ∈ R, by
‖ · ‖s,D. Analogous notations are employed for the corresponding semi-norms
for s > 0. In case D = Ω, we drop the subscript Ω and, in case s = 0, we also
drop the subscript 0. We recall that the semi-norm |u|1,Ω = ‖∇u‖0,Ω is a norm

2



in H1
0 (Ω)

2. For D ⊆ R2 we denote by |D| the area of D.
For a vector u, the tensor ∇u is defined by

(∇u)ij = ui/j =
∂ui

∂xj
,

with ui the i-th component of u.
Given f ∈ L2(Ω)2 and ν > 0, the Stokes problem (1) can be written in variational
form as: Find u ∈ H1

0 (Ω)
2, p ∈ L2

0(Ω), such that
{
ν (∇u,∇v)Ω − (p,∇ · v)Ω = (f ,v)Ω, v ∈ H1

0 (Ω)
2,

(∇ · u, q)Ω = 0, q ∈ L2
0(Ω).

(2)

The well-posedness of this problem is ensured by the two stability conditions

ν (∇u,∇v) ≤ ν |u|1 |v|1, (3)

(∇ · u, p) ≤
√
2 |u|1 ‖p‖, (4)

the coercivity condition

ν (∇u,∇u) ≥ ν |u|21, u ∈ H1
0 (Ω)

2, (5)

and the divergence stability condition

sup
0"=v∈H1

0 (Ω)2

(∇ · v, p)
|v|1

≥ γ ‖p‖, p ∈ L2
0(Ω), γ > 0, (6)

see, e.g., [7, Chapter II] for a comprehensive analysis.

3 Finite Element Spaces

We partition Ω into N non-overlapping, shape-regular polygonal subdomains
Ωi, i = 1, . . . , N , of diameter Hi, with H := max{Hi}. We assume that our
partition is shape-regular, i.e., the aspect ratio of subdomains is bounded. In
this paper we do not assume that this partition is geometrically conforming
(regular), i.e., that the intersections between two different subdomains are ei-
ther empty, or a vertex or an edge that is common to both subdomains, but
we also consider non-conforming (irregular) partitions. We make the following
assumption.

Assumption 3.1. The subdomain partition is shape-regular and the length of
the sides of each polygon Ωi is comparable to its diameter Hi.

On each Ωi we then introduce a conforming, shape-regular affine quadri-
lateral mesh Ti of maximum diameter hi; see, e.g., [14]. These meshes are
independent and they do not need to match across the subdomain interfaces.
In each subdomain we then introduce a conforming and divergence stable ap-
proximation for the Stokes problem:
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• Qk+2 - Qk with discontinuous pressures; see, e.g., [17].

• Qk+1 - Qk with continuous pressures, also known as Taylor-Hood elements:
see, e.g., [6, 7].

Other choices are also possible; see, e.g., [4].
More precisely, on each subdomain we choose one of the following velocity/pressure
pairs for ki ≥ 0:

Vki (Ωi) =
{
u ∈ H1(Ωi)

2 | u|κ ∈ Qki+2(κ)
2 κ ∈ Ti, u|∂Ω∩∂Ωi

= 0
}
, (7)

Mki(Ωi) =
{
p ∈ L2(Ωi) | p|κ ∈ Qki(κ) κ ∈ Ti

}
, (8)

or

Vki (Ωi) =
{
u ∈ H1(Ωi)

2 | u|κ ∈ Qki+2(κ)
2 κ ∈ Ti, u|∂Ω∩∂Ωi

= 0
}
, (9)

Mki(Ωi) =
{
p ∈ H1(Ωi) | p|κ ∈ Qki+1(κ) κ ∈ Ti

}
, (10)

where Qk(κ) is the space of the polynomials of maximum degree k in each
variable on κ. We define the N -vector k := {k1, k2, . . . , kN} and we take k :=
max{k}. The global approximation spaces are defined as

Vk = Vk(Ω) :=
N∏

i=1

Vki(Ωi), (11)

Mk = Mk(Ω) := L2
0(Ω) ∩

N∏

i=1

Mki(Ωi). (12)

Given a vector w or a function v, we denote by wi and vi respectively, their
restrictions to Ωi. We next define the intersections

Eij = ∂Ωi ∩ ∂Ωj ,

the set
M = {(i, j) | lenght (Eij) -= 0, i -= j},

and the skeleton
Γ =

⋃

(i,j)∈M

Eij .

We note that one edge E = Eij = Eij corresponds to two couples in M and,
since the subdomain partition may not be geometrical conforming, it may not
coincide with an entire side of the polygons Ωi and Ωj .
Given an interior edge E ∈ Γ, there are two subdomains, Ωi and Ωj , with, e.g.,
i < j, that share this edge. We define the jump [v] and the average < v > on E
as

[v]E = vi|E − vj |E , < v >E=
1

2

(
vi|E + vj |E

)
,

and n as the unit normal which points from Ωi to Ωj , i.e., n = ni.
The following local stability result holds.
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Lemma 3.1. There exist constants γki independent of Ti such that:

sup
vi∈Vki (Ωi)∩H1

0 (Ωi)

−
∫

Ωi

div vi pi dx

|vi|1,Ωi

≥ γki ‖pi‖0,Ωi , pi ∈ Mki(Ωi) ∩ L2
0(Ωi).

For the case of Qk+2−Qk elements, the inf-sup constant depends only on k:
γk ≥ ck−1/2; see [17]. We recall that this bound is sharp; see [3, Remark 25.2].
For the case Qk+2 − Qk+1 elements, we know of no theoretical sharp bound
explicit in k, but numerical evidence shows that γk ∼ ck−α, with α = 1/2 and
c independent of the local mesh size; see [18].

The local meshes are required to satisfy the following property:

Assumption 3.2. There exists constants such that for (i, j) ∈ M :

c hj ≤ hi ≤ C hj

We define i as the set of the indices j so that the pair (i, j) ∈ M . To a given
decomposition we associate a connectivity matrix A = (aij)1≤i,j≤N , the entries
of which are defined by:

aij =






card (i), if j = i,

−1, if j ∈ i,

0, otherwise.

The symbol card (i) denotes the cardinality of the set i, or, in other words, the
number of the neighbours of Ωi. This connectivity matrix describes the topology
of the decomposition of Ω and does not depend on the size of the subdomains.
We remark that card (i) gives an upper bound for the number of sides of the
polygon Ωi.
We make the following assumption:

Assumption 3.3. For each subdomain Ωi, the number of neighbours is uni-
formly bounded, i.e., there exists a constant C such that

card (i) ≤ C, i = 1, . . . , N.

Before proceeding, we recall some definitions and properties.
An N ×N matrix B = (bij)1≤i,j≤N is an L-matrix if

bii > 0 and bij ≤ 0, i -= j.

In addition, B is said to be irreducible if, for any pair i, j (1 ≤ i, j ≤ N), there
exists a sequence i1, i2, . . . , in such that

bii1 · bi1i2 · . . . · binj -= 0

Since Ω is connected, it is then easy to check that the connectivity matrix A is
an irreducible L-matrix. The proof of the following property can be found in [1,
Lemma 4.1].
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Lemma 3.2. Let A be a symmetric, irreducible L-matrix that satisfies

N∑

j=1

aij = 0 i = 1, . . . , N.

Then, its eigenvalues (λi)1≤i≤N are all nonnegative and, if in increasing order,
the first eigenvalue λ1 = 0 is simple.

4 Discrete Problem

In this section we introduce a DG formulation. Unlike the mortar finite element
method, where the continuity of the velocities between subdomains is imposed
through suitable matching conditions, here we take independent discrete velocity
spaces on the subdomains. As in DG approximations on conforming meshes,
the idea is to consider Problem (1) on each subdomain Ωi and impose Dirichlet
conditions weakly on the boundary ∂Ωi using the value on the boundary of
the neighbouring subdomains. We then choose suitable numerical fluxes on the
interface Γ. Finally an interface term penalising the jumps of the velocity is
added, as for similar DG approximations of second order problems. This is a
standard procedure in the derivation of DG formulations; see, e.g., [13, 8, 12].
Here the penalization term is chosen as

∫

Γ

σ[u] · [v] ds =
1

2

∑

(i,j)∈M

∫

Eij

σ [u] · [v] ds =
1

2

N∑

i=1

∑

j∈i

∫

Eij

σ [u] · [v] ds, (13)

where the penalization coefficient for the velocity space is

σ(x) = σ0
k(x)2

h(x)
, x ∈ Γ, (14)

with σ0 a positive constant, and

k(x) =

{
max{ki, kj}, if x ∈ ∂Ωi ∩ ∂Ωj,

ki, if x ∈ ∂Ωi ∩ ∂Ω,
(15)

and

h(x) =

{
min{hi, hj}, if x ∈ ∂Ωi ∩ ∂Ωj ,

hi, if x ∈ ∂Ωi ∩ ∂Ω;
(16)

see [15].
Following [18], we introduce the following bilinear forms a(·, ·) and b(·, ·):
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a(u,v) :=
N∑

i=1

∫

Ωi

ν∇u ·∇v dx +

∫

Γ

σ ν [u] · [v] ds+

+

∫

Γ

([u] < ν∇v : n > −[v] < ν∇u : n >) ds,

(17)

b(u, q) := −
N∑

i=1

∫

Ωi

divu · q dx+

∫

Γ

< q > [u · n] ds, (18)

and define the following discrete problem:
Find (u, p) ∈ Vk ×Mk such that:






a(u,v) + b(v, p) =

∫

Ω

f · v dx, v ∈ Vk,

b(u, q) = 0, q ∈ Mk.

(19)

We note that, by integrating by parts, we can also write b(·, ·) as

b(v, p) =
N∑

i=1

∫

Ωi

v ·∇p dx−
∫

Γ

[p] < v · n > ds. (20)

For discrete velocities we define the norm

|u|2h :=
N∑

i=1

‖∇u‖20,Ωi
+

∫

Γ

σ |[u]|2ds, u ∈ Vk. (21)

The main result of this paper is the following divergence stability property.

Theorem 4.1. There exists a positive constant βk such that

sup
0"=v∈Vk

b(v, p)

|v|h
≥ βk ‖p‖, p ∈ Mk, (22)

where βk depends on the constants γki of Lemma 3.1 and the partition of Ω.

The precise form of βk is given in section 6.1.

5 Technical Tools

In this section we develop some tools needed for the proof of Theorem 4.1. We
have the following important property.

Lemma 5.1. Let Eij = ∂Ωi ∩ ∂Ωj. Then there exist functions wij ∈ Vk such
that

wij = 0 on Ω \ (Ωi ∪ Ωj ∪ Eij), (23)
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∫

Eij

w
ij
i · n ds =

∫

Eij

w
ij
j · n ds = 1, (24)

|wij |h ≤ αij = α̂ij / |Eij |, (25)

wij = wji. (26)

with wij
i and wij

j the restrictions of wij to Ωi and Ωj, respectively.
Here we have α̂ij ≤ C for a conforming partition and α̂ij ≤ C max(ki, kj) for
a non-conforming partition, where the constant C depends only on the topology
of the partition.

The remainder of this section is devoted to the proof of Lemma 5.1. This
proof is carried out separately for the cases of a conforming and a non-conforming
partition.

5.1 Proof for conforming partitions

Let Eij = ∂Ωi ∩ ∂Ωj = [z1, z2], where z1 and z2 are the endpoints of our edge.
We suppose for simplicity that the edge Eij is parallel to the x-axis. We define

wij(x) :=
6ϕ(x)

(z2 − z1)
, (27)

with the quadratic bubble

ϕ(x) :=
(x− z1)(z2 − x)

(z2 − z1)2
. (28)

We note that

wij(z1) = wij(z2) = 0,

∫

Eij

wij ds = 1.

This trace can be then extended by zero on the rest of ∂Ωi (resp. ∂Ωj), in
order to give a piecewise quadratic function defined on the boundary ∂Ωi (resp.
∂Ωj). We take the extension RΩiw

ij to Ωi, as the piecewise quadratic, discrete
harmonic extension of wij on the whole subdomain Ωi. In order to find a bound
for

∣∣RΩiw
ij
∣∣
1,Ωi

we use a scaling argument. We first consider a dilation x̂ 1→ x

that maps a reference domain Ω̂ into Ωi. We suppose that the edge Eij is the

image of the reference interval Ê = (−1, 1). We can write

|RΩiϕ|
2
1,Ωi

≤ Ĉ
∣∣RΩ̂ϕ̂

∣∣2
1,Ω̂

≤ ĈCΩ̂ ‖ϕ̂‖2
H

1/2
00 (Ê)

≤ C,

where ϕ̂(x̂) = (1− x̂2)/4 and the constants only depend on the shape of Ωi. We

recall that H1/2
00 (Ê) is the largest subspace of H1/2(Ê) for which the extension

by zero from Ê to the whole of ∂Ω̂ is contained in H1/2(∂Ω̂); see, e.g., [11].
Using (27) then yields ∣∣RΩiw

ij
∣∣2
1,Ωi

≤ C/|Eij |2. (29)
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Our velocities wij
i ∈ Vk(Ωi) and w

ij
j ∈ Vk(Ωj) are taken equal to the vectors

(0, RΩiw
ij), (0, RΩjw

ij). We then have

∫

Eij

w
ij
i · n ds =

∫

Eij

w
ij
j · n ds =

∫

Eij

wij ds = 1.

Finally, we define wij ∈ Vk as

wij(x) =






w
ij
i (x), if x ∈ Ωi,

w
ij
j (x), if x ∈ Ωj ,

0, otherwise.

We note that those functions are continuous across Γ.
Inequality (29) yields that

∣∣wij
∣∣
h

≤ ν
∣∣wij

∣∣
1,Ωi

+ ν
∣∣wij

∣∣
1,Ωj

≤

≤
C

|Eij |
+

C

|Eij |
≤

C

|Eij |
:=

α̂ij

|Eij |
,

which proves (25).
Properties (23) and (24) follow directly from the construction of wij , while (26)
follows from the symmetry of the problem.

5.2 Proof for non-conforming partitions

We fix (i, j) ∈ M . As in the previous subsection, we suppose for simplicity that
the edge Eij is parallel to the x-axis. We define N as the set of the vertices of
all the subdomains Ωi.
For each pair (i, j) ∈ M there exists two points z1 and z2 contained in N and
lying on Eij such that Eij = Eji = (z1, z2). We note that, if the subdomain
partition is not conforming, z1 and z2 may not be vertices of both subdomains;
see Figure 1. We also define the following points:

• z(i)1 is the nearest mesh point to z1 that belongs to [z1, z2) and is a node
of the triangulation of Ti.

• z(i)2 is the nearest mesh point to z2 that belongs to (z1, z2] and is a node
of the triangulation of Ti.

An analogous definition holds for z(j)1 and z(j)2 . We assume that the above
points are defined for each edge. In particular, this is true if, e.g., the following
Assumption is satisfied.

Assumption 5.1. Let Eij = ∂Ωi ∩ ∂Ωj. Then

hi ≤
1

2
|Eij |, hj ≤

1

2
|Eij |.

9



z  = z2 2

(i)

z  = z1 1

(j)

z2

(j)

z1

(i)

! j

! i

Figure 1: Intersection of two substructures of a non-conforming partition.

We consider the following functions defined on Eij for l equal to i or j, as
showed in Figure 5.2:

ϕl(x) =






(
z(l)2 − x

) (
x− z(l)1

)

(
z(l)2 − z(l)1

)2 , if x ∈
[
z(l)1 , z(l)2

]
,

0, if x ∈ Eij \
[
z(l)1 , z(l)2

]
.

"
i

z  = z1 1

(j) z(i)

1

"
j

z(j)

2 z  = z(i)

2 2

Figure 2:

We then define

wl(x) :=
ϕl(x)

βl
,

where

βl :=

z(l)
2∫

z(l)
1

ϕl(x) dx =

∫

Eij

ϕl(x) dx = z(l)2 − z(l)1 .

As for the case of a conforming decomposition, we extend these functions by
zero to the rest of ∂Ωi (resp. ∂Ωj) and we take RΩiwi (resp. RΩiwj) as the
discrete harmonic extension of wi (resp. wi) on the whole subdomain Ωi (resp.
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Ωi) . We then define our velocity wij ∈ Vk as

wij(x) =






(0, RΩiwi), if x ∈ Ωi,

(0, RΩjwj), if x ∈ Ωj ,

0, otherwise.

Our first purpose is prove property (25), i.e., to find a bound for:

∣∣wij
∣∣2
h
:=

N∑

i=1

∥∥∇wij
∥∥2
0,Ωi

+

∫

Γ

σ
∣∣[wij

]∣∣2 ds (30)

We note that, as opposed to the case of a conforming partition, this velocity is
not continuous across Eij . For the first term we proceed exactly as in the case
of a conforming partition and, as for (29), we obtain

∣∣wij
∣∣2
1,Ωi

≤
C

|Eij |2
,

∣∣wij
∣∣2
1,Ωj

≤
C

|Eij |2
(31)

For the second term we proceed in the following way.

We first map the interval (z(l)1 , z(l)2 ) into the reference interval:

t̂l : (z
(l)
1 , z(l)2 ) −→ (−1, 1), x 1−→ x̂ = t̃l(x) =

2
(
x− Z(l)

)

∆Z(l)
,

with Z(l) :=
z(l)1 + z(l)2

2
and ∆Z(l) := z(l)2 −z(l)1 . We can then write our functions

ϕl as
ϕl(x) = ϕ̂(t̂l(x)),

where

ϕ̂(x) =
1− x2

4
.

The second term in (30) can then be written as
∫

Γ

σ
∣∣[wij

]∣∣2 ds =

∫

Eij

σ
∣∣[wij

]∣∣2 ds =

∫

Eij

σ (wi − wj)
2 ds =

=

∫

Eij

σ

(
ϕi(x)

βi
−

ϕj(x)

βj

)2

dx ≤

≤ 2
σ

β2
j

∫

Eij

(ϕi(x) − ϕj(x))
2 dx+ 2 σ

(
1

βi
−

1

βj

)2 ∫

Eij

ϕi(x)
2 dx =

=: A+B.

We start with the term A.
Using the mean-value theorem of differential calculus we can write the following
bound:

11



|ϕi(x) − ϕj(x)| =
∣∣ϕ̂
(
t̂i(x)

)
− ϕ̂

(
t̂j(x)

)∣∣ ≤ |ϕ̂|1,∞ ·
∣∣t̂i(x) − t̂j(x)

∣∣ . (32)

The last term on the right-hand side can be further decomposed as

t̂i(x) − t̂j(x) =
2
(
x− Z(i)

)

∆Z(i)
−

2
(
x− Z(j)

)

∆Z(j)
=

=
2
(
x− Z(i)

)
− 2

(
x− Z(j)

)

∆Z(i)
+ 2

(
x− Z(j)

) ( 1

∆Z(i)
−

1

∆Z(j)

)
=

=: I + II,
(33)

and, since

|ϕ̂|21,∞ ≤ C, |I| ≤
2 max(hi, hj)

|Eij |
, |II| ≤

4 max(hi, hj)

|Eij |2
|x− Z(j)|,

it follows from the definition of σ and Assumption 3.2 that

A ≤ 4

∫

Eij

σ

β2
j

|ϕ̂|21,∞
(
|I|2 + |II|2

)
dx ≤

≤
Cmax(k2i , k

2
j )

β2
j

+
Cmax(k2i , k

2
j )

β2
j

≤

≤
Cmax(k2i , k

2
j )

|Eij |2
.

(34)

We now consider the term B.
Combining inequality (32) and property (33) and using similar argument as
before, we obtain

|βi − βj | ≤
∫

Eij

|ϕi(x) − ϕj(x)| dx ≤

≤ |ϕ̂|1,∞
∫

Eij

∣∣t̂i(x)− t̂j(x)
∣∣ dx ≤

≤ C max(hi, hj),

and thus, using the definition of σ and Assumption 3.2,

B = 2 σ

(
1

βi
−

1

βj

)2 ∫

Eij

ϕi(x)
2 dx ≤

C max(k2i , k
2
j )

|Eij |2
, (35)

where we have used ∫

Eij

ϕ(x)2 dx ≤ C |Eij |

12



Combining the bounds for A and B in (34) and (35), we then obtain

∫

Γ

σ
∣∣[wij

]∣∣2 ds ≤
C max(k2i , k

2
j )

|Eij |2
. (36)

Finally, combining (31) and (36) yields

|wij |2h ≤
C

|Eij |2
+

C max(k2i , k
2
j )

|Eij |2
:=

α̂2
ij

|Eij |2
,

which proves (25). We note that here, as opposed to the conforming case, the
constant αij also depends on the degrees k. This is due to the fact that the
functions wij are not continuous on the whole domain and the penalization
term depends on the degrees k.
The other properties of Lemma 5.1 follow directly from the definition of wij .

6 Proof of Theorem 4.1

We define the set of all piecewise constant pressures

M0 :=
{
q ∈ L2

0(Ω) | q|Ωi
∈ Q0(Ωi), i = 1, . . . , N

}
, (37)

and the space defined by the velocities founded in the previous section

X := span {wij | (i, j) ∈ M} ⊂ Vk.

We use an argument which was originally proposed by Boland & Nicolaides; see
[5]. Any p ∈ Mk can be decomposed into two functions, one with zero mean
value in each Ωi, the other constant on each subdomain:

p = p̃+ p, (38)

with

pi =
1

|Ωi|

∫

Ωi

p(x)dx. (39)

Is easy to see that p belongs to M0 and that p̃i ∈ L2
0(Ωi) ∩Mki(Ωi)

We note that if p ∈ M0 then

‖p‖20,Ω =
∑N

i=1 p
2
i |Ωi| (40)

∑N
i=1 pi |Ωi| = 0. (41)

We proceed by proving two stability results for p̃ and p.
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Lemma 6.1. For each p̃i ∈ L2
0(Ωi) ∩ Mki(Ωi) there exists a velocity ṽi ∈

Vk(Ωi) ∩H1
0 (Ωi) such that






−
∫

Ωi

div ṽi p̃i dx = ‖p̃i‖20,Ωi
,

|ṽi|1,Ωi ≤
1

γki

‖p̃i‖0,Ωi .

Proof. Since in each Ωi we have chosen conforming and stable finite element
spaces, Lemma 3.1 ensures the existence of this velocity.

We will then define ṽ ∈ Vk by

ṽ|Ωi
= ṽi, i = 1, . . . , N.

Since ṽ vanishes on Γ, is continuous on Ω. Consequently we have

b(ṽ, p̃) =
N∑

i=1

‖p̃i‖20,Ωi
= ‖p̃‖20,Ω (42)

and

|ṽ|2h =
N∑

i=1

‖∇ṽ‖20,Ωi
≤

N∑

i=1

C

γ2
ki

‖p̃i‖20,Ωi
,

i.e.,

|ṽ|h ≤
C

γk
‖p̃‖0,Ω =

1

β̃
‖p̃‖0,Ω, (43)

where
γk := min

1≤i≤N
γki , β̃ := γk/C.

Lemma 6.2. There exists a constant β, independent of h but dependent on the
decomposition of Ω such that

sup
0"=v∈X

b(v, p)

|v|h
≥ β ‖p‖, p ∈ M0.

Proof. For every p ∈ M0, we construct a function v ∈ Vk such that:

b(v, p) ≥ ‖p‖20,

|v|h ≤
1

β
‖p‖0.

(44)

Thanks to Lemma 5.1, we can find a function wij ∈ Vk, supported in Ωi ∪ Ωj

such that:
∫

Eij

w
ij
i · n ds =

∫

Eij

w
ij
j · n ds =

∫

∂Ωi

w
ij
i · ni ds = −

∫

∂Ωj

w
ij
j · nj ds = 1, i > j.

(45)
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The divergence theorem ensures that:

∫

Ωi

divw(i)
ij dx = −

∫

Ωj

divw(j)
ij dx = 1. (46)

We can also find a velocity wij ∈ Vk supported in Ωi ∪ Ωj , defined as
wij := |Ωi| pi wij , such that:

−
∫

Ωi

divwij
i dx =

∫

Ωj

divwij
j dx = |Ωi| pi.

Unlike the function wij defined in lemma (5.1), we see that these functions wij

and wji are different. We then set

w :=
N∑

i=1

∑

j∈i

wij . (47)

We can easily check that w belongs to X . Indeed, there are two contributions
in the sum in (47) for each edge Eij , corresponding to Eij and to Eji = Eij .
We first note that for (i, j) ∈ M , i > j,

∫

Γ

< p > [wij · n] ds =
∑

(m,l)∈M

∫

Eml

< p >Eml [w
ij · n]Eml ds =

=
∑

(m,l)∈M

< p >Eml

∫

Eml

[wij · n]Eml ds =

= < p >Eij (−|Ωi| pi + |Ωi| pi) = 0,

where we have used (45). Using (46), we then find

b(wij , p) = −
N∑

m=1

∫

Ωm

divwij
m · pm dx+

∫

Γ

< p > [wij · n] ds =

= −
∫

Ωi

divwij
i · pi dx−

∫

Ωj

divwij
j · pj dx =

= −pi

∫

Ωi

divwij
i dx− pj

∫

Ωj

divwij
j dx =

= pi |Ωi| pi − pj |Ωi| pi = pi |Ωi| (pi − pj).
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We can then write

b(w, p) =
N∑

i=1

∑

j∈i

b(wij , p) =

=
N∑

i=1

∑

j∈i

pi |Ωi| (pi − pj) =

=
N∑

i=1

pi
∑

j∈i

|Ωi| (pi − pj),

or, equivalently,
b(w, p) = pT B p,

where B = (bij)1≤i,j≤N is a a sparse matrix defined as

bij =






| Ωi | card (i), if j = i,

− | Ωi |, if j ∈ i,

0, otherwise.

If we introduce the matrix D = diag (|Ω1|, . . . , |ΩN |), we see that from (40)

pT Dp = ‖p‖20,Ω, p ∈ M0,

where we have used the same notation for a function p ∈ M0 and the corre-
sponding vectors of values pi. In order to prove the first of (44), we need to
show that the minimum

γ = min
p∈P\{0}

pTBp

pTDp
(48)

is positive and does not depend on h. We consider the eigenvalue problem

D−1 B p = λ p, p -= 0.

It is easy to check that the matrix A = D−1B is the connectivity matrix defined
in section 3. Thanks to Lemma 3.2, its eigenvalues λi are all positive except
λ1 = 0, which is simple. The kernel of A involves only constant vectors (see
proof of [1, Lemma 4.1]). Therefore

γ = λ2 = inf
i≥2

λi.

The choice v = γ−1w ensures that the first equation of (44) holds.
Using (25), we have

|wij |h ≤ αij |Ωi| |pi|.

With the definition of the h-norm, see (21), and property (13), we can also write

|v|2h =
N∑

l=1

|v|21,Ωl
+

1

2

∑

(l,n)∈M

∫

Eln

σ |[v]|2 ds. (49)
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The first term in (49) can be written as

N∑

l=1

|v|21,Ωl
=

1

γ2

N∑

l=1

∣∣∣∣∣∣

∑

n∈l

(
wnl +wln

)
∣∣∣∣∣∣

2

1,Ωl

≤

≤
2

γ2

N∑

l=1

card (l)
∑

n∈l

(∣∣wnl
∣∣2
1,Ωl

+
∣∣wln

∣∣2
1,Ωl

)
=

=
2

γ2

(
max

1≤l≤N
card (l)

) N∑

l=1

∑

n∈l

(∣∣wln
∣∣2
1,Ωl

+
∣∣wln

∣∣2
1,Ωn

)
.

For the second term we find

1

2

∑

(l,n)∈M

∫

Eln

σ |[v]|2 ds =
1

2 γ2

∑

(l,n)∈M

∫

Eln

σ |[w]|2 ds =

=
1

2 γ2

∑

(l,n)∈M

∫

Eln

σ
∣∣[wln +wnl

]∣∣2 ds =

≤
1

γ2

∑

(l,n)∈M

∫

Eln

σ
(∣∣[wln

]∣∣2 +
∣∣[wnl

]∣∣2
)
ds =

=
2

γ2

∑

(l,n)∈M

∫

Eln

σ
∣∣[wln

]∣∣2 ds =

=
2

γ2

N∑

l=1

∑

n∈l

∫

Eln

σ
∣∣[wln

]∣∣2 ds.

Combining these two inequalities, using the definition of the h-norm first and
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of wln then, we obtain

|v|2h ≤
2

γ2

(
max

1≤l≤N
card (l)

) N∑

l=1

∑

n∈l

(∣∣wln
∣∣2
1,Ωl

+
∣∣wln

∣∣2
1,Ωn

)
+

+
2

γ2

N∑

l=1

∑

n∈l

∫

Eln

σ
∣∣[wln

]∣∣2 ds ≤

≤
2

γ2

(
max

1≤l≤N
card (l)

) N∑

l=1

∑

n∈l

∣∣wln
∣∣2
h
≤

≤
2

γ2

(
max

1≤l≤N
card (l)

) N∑

l=1

∑

n∈l

α2
ln p

2
l |Ωl|2 =

=
2

γ2

(
max

1≤l≤N
card (l)

) N∑

l=1

p2l |Ωl|2
∑

n∈l

α2
ln ≤

≤
2

γ2

(
max

1≤l≤N
card (l)

)2 N∑

l=1

p2l |Ωl|2
(
max
n∈l

α̂2
ln

|Eln|2

)
≤

≤
2

γ2

(
max

1≤l≤N
card (l)

)2 (
max

1≤l≤N
ηl

) N∑

l=1

p2l |Ωl|,

where

ηl := max
n∈l

(
α̂2
ln

|Eln|2

)
|Ωl|.

Using Assumption 3.3 and equation (40) we have also proved the second equa-
tion of (44) with

β =
1

C

(
max

1≤l≤N
ηl

) .

Now we are able to check the inf-sup condition (22). The pressure can be
decomposed as p = p̃+ p. We define also the velocity

v = ṽ + λv, (50)

where λ is a real number to be chosen later.
It is easy to check, since p ∈ P and ṽi ∈ H1

0 (Ωi) (1 ≤ i ≤ N), that b(ṽ, p) = 0.
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In addition, since the bilinear form b(·, ·) is continuous, we have:

b(v, p) = b(ṽ, p̃) + b(ṽ.p) + λ b(v, p̃) + λ b(v, p) ≥
≥ ‖p̃‖20 − λ |b(v, p̃)|+ λ ‖p‖20 ≥
≥ ‖p̃‖20 − λ c |v|h ‖p̃‖0 + λ ‖p‖20 ≥

≥ ‖p̃‖20 −
λ c

β
‖p‖0 ‖p̃‖0 + λ ‖p‖20 ≥

≥
1

2
‖p̃‖20 + λ

(

1−
λ c2

2 β
2

)

‖p‖20.

The choice λ =
β
2

c2
ensures

b(v, p) ≥
1

2
‖p̃‖20 +

β
2

2 c2
‖p‖20 ≥

≥
1

2
min

{

1,
β
2

c2

}

‖p‖20

and

|v|h = |ṽ + λv|h ≤ |ṽ|h + λ |v|h ≤
1

β̃
‖p̃‖0 +

λ

β
‖p‖0 ≤

≤
√

1

β̃2
+

λ2

β
2 ‖p‖0 =

√√√√ 1

β̃2
+

β
2

c4
‖p‖0.

We also have proved Theorem 4.1 with

βk =
min{1,

β
2

c2
}

2

√
1

β̃2
+

β
2

c4

=
β̃ β

2

2

√
c4 + β̃2 β

2
≈ C β̃ β

2

6.1 Remarks on the inf-sup constant

In this section we want to analyse the inf-sup constant βk found previously for
the case of conforming and non-conforming partitions. First we have to analyse
the constants β̃ and β in the two cases. In Lemma 6.1 we have seen that there
is no distinction for β̃: in both cases this constant depends only on the γki of
Lemma 3.1.
However, for β we have to separate the cases. With a conforming partition,
using Assumption 3.1 and the property

|Ωi| ≤ C H2
l ,
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which bound the term maxηl, follows that

β ≥ c γ.

We have also found that β depends only on the second eigenvalue γ = λ2 of our
connectivity matrix, i.e., depends only on the topology of the decomposition in
subdomains. Likewise we have that

βk ≥ c γ2 (min γki)

depends only on the topology of the decomposition and on the γki .
Otherwise, in the case of a non-conforming partition, we recall that

α̂ij ≤ C max(ki, kj);

therefore follows that
β ≥ c γ k−1,

where c depends to the size of the edges Eij . We have also found that our inf-
sup constant βk, besides depending to γ, k and the γki , depends to the partition
in subdomains (not only the topology).

7 Well-posedness and a priori estimates

This section is based on [18, section 7], also we will omit the proofs and write
only the results.
Before proceeding, we note that our discrete bilinear forms a(·, ·) and b(·, ·) are
not continuous on the original spaces H1(Ω) and L2

0(Ω), due to the interface
contributions. This makes the analysis more complicated. However two weaker
continuity properties hold. We need to define two suitable stronger norms. For
a velocity V we set

|||V|||2v = |V|2h +
∑

e∈M

∫

e

σ |[V]|2 ds+
N∑

i=1

∫

∂Ωi

1

σ
|∇V|2 ds.

We note however that, in case v ∈ Vk, the inverse estimate [16, Eqq. 4.6.4 and
4.6.5] and the definition of σ ensure that

|v|h ≤ |||v|||v ≤ C |v|h, (51)

with a constant C that only depends on σ0. We have the following property.

Lemma 7.1. Let V ∈ L2(Ω)2, such that V ∈ H2(Ωi)2, for i = 1, . . . , N , and
w ∈ Vk. Then there exist constants independent of V,w, h and k such that

|a(V,w)| ≤ α ν |||V|||v |w|h,

and, in case V ∈ Vk,
|a(V,w)| ≤ α′ ν |V|v |w|h.
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Analogously, we define a stronger norm for the pressure:

|||Q|||2p = ||Q||20,Ω +
N∑

i=1

∫

∂Ωi

1

σ
Q2 ds.

In case q ∈ Mk, the inverse estimate yields

||q||0,Ω ≤ |||q|||p ≤ C ||q||0,Ω, (52)

with a constant that depends only on σ0.

Lemma 7.2. Let Q ∈ L2
0(Ω) and v ∈ L2(Ω)2, such that Q ∈ H1(Ωi) and

v ∈ H1(Ωi), i = 1, . . . , N . Then there exist constant independent of Q,v, h and
k such that

|b(v, Q)| ≤ β |v|h |||Q|||p,

and, in case Q ∈ Mk,
|b(v, Q)| ≤ β′ |v|h ||Q||0.

We finally recall that the bilinear form a(·, ·) is coercive, i.e.,

a(u,u) = ν |u|2h, u ∈ Vk. (53)

Existence and uniqueness of the discrete problem (19) are ensured by (53), the
continuity properties in Lemmas 7.1 and 7.2, and the discrete inf-sup condition.
With the following lemma we will proof the consistency of our methods.

Lemma 7.3. Let {U, P} ∈ H1(Ω)2 × L2
0(Ω) be the solution of the continuous

problem (1). If U ∈ H2(Ωi)2 and P ∈ H1(Ωi), for i = 1, . . . , N , the {U, P}
satisfies the discrete problem






a(U,v) + b(v, P ) =

∫

Ω

f · v dx, v ∈ Vk,

b(U, q) = 0, q ∈ Mk.

With the following lemmas we want to proof a priori error estimates for the
velocity and for the pressures.

Lemma 7.4. Let the exact solution {U, P} ∈ H1(Ω)2×L2
0(Ω) be in Hmi(Ωi)2×

Hni(Ωi), i = 1, . . . , N , with mi ≥ 2 and ni ≥ 1. Then there exists a constant
C, independent of h and k, but depending on ν and σ0, such that

|U− u|h ≤ C
N∑

i=1

(
1

βk

hsi−1
i

k
mi− 3

2
i

|U|mi.Ωi +
hri
i

kni
i

|P |ni,Ωi

)

, (54)

with 1 ≤ si ≤ min{ki + 2,mi}, 1 ≤ ri ≤ min{ki + 1, ni} and βk the inf-sup
constant.
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Lemma 7.5. Let the exact solution {U, P} ∈ H1(Ω)2×L2
0(Ω) be in Hmi(Ωi)2×

Hni(Ωi), i = 1, . . . , N , with mi ≥ 2 and ni ≥ 1. Then there exists a constant
C, independent of h and k, but depending on ν and σ0, such that

||P − p||0 ≤ C
N∑

i=1

(
1

β2
k

hsi−1
i

k
mi− 3

2
i

|U|mi.Ωi +
1

βk

hri
i

kni
i

|P |ni,Ωi

)

, (55)

with 1 ≤ si ≤ min{ki + 2,mi}, 1 ≤ ri ≤ min{ki + 1, ni} and βk the inf-sup
constant.
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on Numer. Anal.

[16] Christoph Schwab and Manil Suri. The p and hp version of the finite
element method for problems with boundary layers.Math. Comp., 65:1403–
1429, 1996.

[17] Rolf Stenberg and Manil Suri. Mixed hp finite element methods for prob-
lems in elasticity and Stokes flow. Numer. Math., 72:367–389, 1996.

[18] A. Toselli. hp-discontinuous Galerkin approximations for the Stokes prob-
lem. Technical Report 02-02, Seminar for Applied Mathematics, ETH
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02-19 D. Schötzau, Th.P. Wihler Exponential convergence of mixed hp-
DGFEM for Stokes flow in polygons

02-18 P.-A. Nitsche Sparse approximation of singularity functions
02-17 S.H. Christiansen Uniformly stable preconditioned mixed

boundary element method for low-frequency
electromagnetic scattering

02-16 S.H. Christiansen Mixed boundary element method for eddy
current problems

02-15 A. Toselli, X. Vasseur Neumann-Neumann and FETI precondi-
tioners for hp-approximations on geometri-
cally refined boundary layer meshes in two
dimensions

02-14 Th.P. Wihler Locking-Free DGFEM for Elasticity Prob-
lems in Polygons

02-13 S. Beuchler, R. Schneider,
C. Schwab

Multiresolution weighted norm equivalences
and applications

02-12 M. Kruzik, A. Prohl Macroscopic modeling of magnetic hysteresis
02-11 A.-M. Matache,

C. Schwab,
T. von Petersdorff

Fast deterministic pricing of options on Lévy
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