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D. Schötzau†, Ch. Schwab and A. Toselli

Research Report No. 2002-21
October 2002

Seminar für Angewandte Mathematik
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1 Introduction

It is well-known that solutions of elliptic boundary value problems in polyhedral
domains have corner and edge singularities. In addition, boundary layers may
also arise in laminar, viscous, incompressible flows with moderate Reynolds
numbers at faces, edges, and corners. Suitably graded meshes, geometrically
refined towards corners, edges, and/or faces, are required in order to achieve an
exponential rate of convergence of hp-finite element approximations; see, e.g.,
[3, 5, 23, 28, 29].

The Stokes and Navier-Stokes equations are mixed elliptic systems with sad-
dle point variational structure. The stability and accuracy of the corresponding
finite element approximations depend on an inf-sup condition for the finite el-
ement spaces that are chosen for the velocities and the pressures. Even for
stable velocity-pressure combinations, the corresponding inf-sup constants may
in general be very sensitive to the aspect ratio of the mesh, thus degrading the
stability if very thin elements are employed, as required for boundary-layer and
singularity resolution. It has recently been shown for two- and three-dimensional
conforming approximations employingQk−Qk−2 elements, on corner, edge, and
boundary-layer tensor-product meshes, that the dependence on the polynomial
degree of the inf-sup constant for the Stokes problem might be only slightly
worse than that for isotropically refined triangulations but is independent of
the aspect ratio of the anisotropic elements; see [24, 25, 1, 33].

Discontinuous Galerkin (DG) approximations rely on discrete spaces con-
sisting of piecewise polynomial functions with no kind of continuity constraints
across the interfaces between the elements of a triangulation. They present con-
siderable advantages for certain types of problems, especially those modeling
phenomena where convection is moderate or strong; see, e.g., [11, 14, 15] and
the references therein. DG approximations often allow for greater flexibility
in the design of the mesh and in the choice of the approximation spaces since
they do not usually require geometrically conforming triangulations. We note
however that even if convection may be the dominant effect of a problem, dif-
fusive terms still need to be accounted for and correctly discretized in a DG
framework. Some mixed DG approximations have been proposed. We mention
the methods in [6, 22, 13, 12, 20, 19]. In [32, 26], DG hp-approximations in
two and three dimensions have been proposed and analyzed for tensor product
meshes. Numerical evidence hints that DG approximations exhibit better di-
vergence stability properties than the corresponding conforming ones; see [32]
for the case of Qk −Qk, Qk −Qk−1, and Qk −Qk−2 elements.

In this paper, we consider Qk − Qk−1 DG approximations in three dimen-
sions. They were originally studied in [32] and then in [26] for shape-regular
meshes, possibly with hanging nodes. In particular, it was shown that these
approximation spaces are divergence stable uniformly with respect to the mesh
size h. The best bound for the inf-sup constant in terms of the polynomial de-
gree k was given in [26] and decreases as k−1 both in two and three dimensions.
Even though this estimate does not appear to be sharp, at least in two dimen-
sions (see the numerical results in [32]), it ensures the same convergence rate for

1
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the velocity and the pressure as that of conforming Qk−Qk−2 elements in three
dimensions, but with a gap in the polynomial degree of the velocity-pressure
pair of just one. We also note that a similar approach was considered in [20] for
h-finite element approximations on shape-regular tetrahedral meshes for mixed
formulations of elasticity problems.

Here, we generalize our analysis in [26] to the case of geometric edge meshes
consisting of hexahedral elements in R3. These meshes are refined anisotrop-
ically and non quasi-uniformly towards edges and corners in order to resolve
edge and corner singularities at exponential rates of convergence. We show that
the inf-sup constant for discontinuous Qk−Qk−1 elements decreases as Ck−3/2,
with a constant C that only depends on the geometric grading factor, but is
independent of the degree k, the level of refinement, and the aspect ratio of
the anisotropic elements. We recall that for conforming Qk −Qk−2 approxima-
tions the inf-sup constant on geometric edge meshes decreases as Ck−1/2 in two
dimensions and as Ck−3/2 in three dimensions; see [24, 25, 33]. The inf-sup con-
stant of our method has thus the same dependence on k as that of conforming
approximations, but with an optimal gap of just one order.

In this paper we consider the symmetric interior penalty discontinuous Galerkin
method, but note that our stability results remain valid for all the methods
discussed in [26]. Moreover, we note that our analysis is also valid for linear
elasticity problems in nearly incompressible materials, see, e.g., [9, 16], since the
same inf-sup condition is required in order to have approximations that remain
stable close to the incompressible limit.

This paper is organized as follows: In section 2, we review the discrete
setting from [26] that we use in our stability analysis. Section 3 is devoted
to the definition and construction of geometric edge meshes. In section 4, we
discuss continuity and coercivity properties of the discontinuous Galerkin forms.
Our main stability result is an inf-sup condition for the divergence form on
geometric edge meshes and is presented in section 5. In order to prove this
result, several ingredients are needed. First, in section 6, we establish a macro-
element technique for mixed hp-discontinuous discretizations in the spirit of [31,
24, 25, 33]. This technique allows us to investigate the stability on reference
configurations. Then, to address the stability on one of these configurations,
namely the edge patch, we provide estimates of Raviart-Thomas interpolants
on stretched elements in section 7. The stability on edge patches is shown in
section 8. Finally, we complete the proof of our stability result in section 9.

2 Mixed hp-DGFEM for the Stokes problem

In this section, we introduce mixed hp-discontinuous Galerkin methods for the
Stokes problem in incompressible fluid flow, and review the theoretical frame-
work of [26] that we use to analyze the methods on geometric edge meshes.
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2.1 The Stokes equations

Let Ω be a bounded polyhedral domain in R3, with n denoting the outward
normal unit vector to its boundary ∂Ω. Given a source term f ∈ L2(Ω)3 and
a Dirichlet datum g ∈ H1/2(∂Ω)3 satisfying the compatibility condition

∫
∂Ω g ·

n ds = 0, the Stokes problem for incompressible fluid flows consists in finding a
velocity field u and a pressure p such that

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω, (1)

u = g on ∂Ω.

By setting V := H1(Ω)3, Q := L2
0(Ω) = { q ∈ L2(Ω) :

∫
Ω q dx = 0 } and

A(u,v) =

∫

Ω
ν∇u : ∇v dx, B(v, q) = −

∫

Ω
q∇ · v dx,

we obtain the usual mixed variational formulation of the Stokes problem that
consists in finding (u, p) ∈ V ×Q, with u = g on ∂Ω, such that

{
A(u,v) + B(v, p) =

∫
Ω f · v dx

B(u, q) = 0
(2)

for all v ∈ H1
0 (Ω)

3 and q ∈ Q. As usual, H1
0 (Ω)

3 is the subspace of H1(Ω)3 of
vectors that vanish on ∂Ω.

The well-posedness of (2) is ensured by the continuity of A(·, ·) and B(·, ·),
the coercivity of A(·, ·), and the following inf-sup condition

inf
0"=q∈L2

0(Ω)
sup

0 "=v∈H1
0(Ω)d

B(v, q)

|v|1‖q‖0
≥ γΩ > 0, (3)

with an inf-sup constant γΩ only depending on Ω; see, e.g., [9, 18]. Here, we
denote by ‖ · ‖s,D and | · |s,D the norm and seminorm of Hs(D) and Hs(D)3,
s ≥ 0. In case D = Ω, we drop the subscript.

2.2 Meshes and trace operators

Throughout, we consider meshes T in two and three space dimensions that
consist of quadrilaterals and hexahedra {K}, respectively. Each element K ∈ T
is affinely equivalent to a reference element K̂, which is either the reference
square Ŝ = (−1, 1)2 or the reference cube Q̂ = (−1, 1)3. The edges of Ŝ and the
faces of Q̂ are denoted by f̂m, m = 1, . . . , 2d, d = 2, 3, where

f̂1 = {x = −1}, f̂2 = {x = 1},
f̂3 = {y = −1}, f̂4 = {y = 1},
f̂5 = {z = −1}, f̂6 = {z = 1}, d = 3.
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We write {fi}2di=1 to denote the edges or faces of an element K ∈ T ; they

are obtained by mapping the corresponding ones of K̂. In general, we allow for
irregular meshes, i.e., meshes with so-called hanging nodes (see [27, Sect. 4.4.1]),
but suppose that the intersection between neighboring elements is a vertex, an
edge, or a face (if d = 3) of at least one of the two elements. For an element
K ∈ T , we denote by hK the diameter and by ρK the radius of the biggest circle
or sphere that can be inscribed into K. A mesh T is called shape-regular if

hK ≤ cρK , ∀K ∈ T , (4)

for a shape-regularity constant c > 0 that is independent of the elements. Our
meshes are not necessarily shape-regular; see section 3.

Let now T be a hexahedral mesh on Ω. An interior face of T is the (non-
empty) two–dimensional interior of ∂K+ ∩ ∂K−, where K+ and K− are two
adjacent elements of T . Similarly, a boundary face of T is the (non-empty)
two-dimensional interior of ∂K ∩ ∂Ω which consists of entire faces of ∂K. We
denote by EI the union of all interior faces of T , by EB the union of all boundary
faces, and set E = EI ∪ EB.

On E , we define the following trace operators. First, let f ⊂ EI be an interior
face shared by two elements K+ and K−. Let v, q, and τ be vector-, scalar-
and matrix-valued functions, respectively, that are smooth inside each element
K±, and let us denote by v±, q± and τ± the traces of v, q and τ on f from the
interior of K±. We define the mean values and the normal jumps at x ∈ f as

{{v}} := (v+ + v−)/2, [[v]] := v+ · nK+ + v− · nK− ,

{{q}} := (q+ + q−)/2, [[[[[[q]]]]]] := q+ nK+ + q− nK− ,

{{τ}} := (τ+ + τ−)/2, [[[[[[τ]]]]]] := τ+ nK+ + τ− nK− .

Here, we denote by nK the outward normal unit vector to the boundary ∂K of
an element K. We also need to define the matrix-valued jump of v, namely,

[[v]] := v+ ⊗ nK+ + v− ⊗ nK− ,

where, for two vectors a and b, [a ⊗ b]ij = aibj . On a boundary face f ⊂ EB
given by f = ∂K ∩ ∂Ω, we then set accordingly {{v}} := v, {{q}} := q, {{τ}} := τ ,
as well as [[v]] := v · n, [[v]] := v ⊗ n, [[[[[[q]]]]]] := qn and [[[[[[τ]]]]]] := τ · n.

2.3 Finite element spaces

For a mesh T on a polyhedron D and an approximation order k ≥ 0, we intro-
duce the finite element spaces

Vk
h(T ;D) := {v ∈ L2(D)3 : v|K ∈ Qk(K)3, K ∈ T },

Qk
h(T ;D) := { q ∈ L2(D) : q|K ∈ Qk(K), K ∈ T ,

∫

D
qdx = 0 },
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where Qk(K) is the space of polynomials of maximum degree k in each variable
on the element K. Further, we define the subspace Ṽk

h(T ;D) of Vk
h(T ;D) of

vectors with vanishing normal component on the boundary of D

Ṽk
h(T ;D) = {v ∈ Vk

h(T ;D) : v · nD = 0 on ∂D },

with nD denoting the outward normal unit vector to ∂D. For D = Ω, we omit
the dependence on the domain and simply write Vk

h(T ), Qk
h(T ) and Ṽ k

h (T ).

2.4 Mixed discontinuous Galerkin approximations

For a mesh T on Ω, we approximate the velocities and pressures in the spaces
Vh and Qh given by

Vh := Vk
h(T ), Qh := Qk−1

h (T ), k ≥ 1.

We refer to this velocity-pressure pair as (non-conforming) Qk−Qk−1 elements.
In order to apply the framework of [26], we need to define the additional

space V(h) := V +Vh, endowed with the broken norm

‖v‖2h :=
∑

K∈T

|v|21,K +

∫

E
δ|[[v]]|2 ds, v ∈ V(h).

Here, δ ∈ L∞(E) is the so-called discontinuity stabilization function, for which
we will make a precise choice in section 3.2 below. Further, we define the lifting
operators

∫

Ω
L(v) : τ dx =

∫

E
[[v]] : {{τ}} ds ∀τ ∈ Σh, (5)

∫

Ω
M(v)q dx =

∫

E
[[v]]{{q}} ds ∀q ∈ Qh, (6)

where we use the auxiliary space Σh := { τ ∈ L2(Ω)3×3 : τ |K ∈ Qk(K)3×3, K ∈
T }.

We consider the following mixed DG method: find (uh, ph) ∈ Vh ×Qh such
that {

Ah(uh,v) + Bh(v, ph) = Fh(v)

Bh(uh, q) = Gh(q)
(7)

for all (v, q) ∈ Vh ×Qh. Here, Ah : V(h)×V(h) → R and Bh : V(h)×Q → R

are the following forms:

Ah(u,v) =

∫

Ω
ν
[
∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx

+ ν

∫

E
δ[[u]] : [[v]] ds,

Bh(v, q) =−
∫

Ω
q [∇h · v −M(v)] dx,

(8)
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where ∇h is the discrete gradient, taken elementwise. The right-hand sides
Fh : Vh → R and Gh : Qh → R are given by

Fh(v) =

∫

Ω
f · v dx−

∫

EB

(g ⊗ n) : {{ν∇hv}} ds+ ν

∫

EB

δg · v ds,

Gh(q) =

∫

EB

q g · n ds.

Restricted to discrete functions in Vh and Qh, we have

Ah(u,v) =

∫

Ω
ν∇hu : ∇hv dx−

∫

E

(
{{ν∇hv}} : [[u]] + {{ν∇hu}} : [[v]]

)
ds

+ν

∫

E
δ[[u]] : [[v]] ds,

Bh(v, q) = −
∫

Ω
q∇h · v dx+

∫

E
{{q}}[[v]] ds.

We note that for q ∈ Qh

Bh(v, q) = B(v, q) = −
∫

Ω
q∇ · v dx, v ∈ Vh ∩H0(div;Ω), (9)

where the space H0(div;Ω) consists of square-integrable vectors with square-
integrable divergence and vanishing normal component on ∂Ω. We note that
Vh ∩H0(div;Ω) consists of discrete vectors with continuous normal component
across the interelement boundaries and vanishing normal component on ∂Ω; see,
e.g., [9, Ch. III.3].

Remark 2.1. The form Bh and the functional Gh are exactly those considered
in the mixed DG approaches in [13, 20, 32, 26]. The form Ah in (8) is the
so-called interior penalty (IP) form. Several other choices are possible for Ah,
as discussed in [26]. All the results of this paper hold verbatim for these other
forms as well.

2.5 Well-posedness and error estimates

Problem (7) was analyzed in [26] where an abstract framework was introduced.
To the knowledge of the authors, all available mixed DG methods for the Stokes
problem can be studied in this framework.

We assume that the forms Ah and Bh satisfy the following continuity prop-
erties

Ah(u,v) ≤ α1‖u‖h‖v‖h, u,v ∈ V(h), (10)

Bh(v, q) ≤ α2‖v‖h‖q‖0, (v, q) ∈ V(h) ×Q, (11)

with constants α1 > 0 and α2 > 0, and that Ah is coercive

Ah(u,u) ≥ β‖u‖2h, u ∈ Vh, (12)
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for a constant β > 0. Further, we suppose that the following discrete inf-sup
condition for the finite element spacesVh and Qh (also referred to as divergence
stability) holds true:

inf
0"=q∈Qh

sup
0 "=v∈Vh

Bh(v, q)

‖v‖h‖q‖0
≥ γh > 0. (13)

The above conditions ensure the well-posedness of (7): Indeed, (7) has a unique
solution and we have the following error bounds [26, Sect. 3 and 4]

‖u− uh‖h ≤ C
[
γ−1
h inf

v∈Vh

‖u− v‖h + inf
q∈Qh

‖p− q‖0 +Rh(u, p)
]
,

‖p− ph‖0 ≤ C
[
γ−1
h inf

q∈Qh

‖p− q‖0 + γ−2
h inf

v∈Vh

‖u− v‖h + γ−1
h Rh(u, p)

]
,
(14)

where the constants C only depend on α1, α2 and β, and where Rh(u, p) is the
residual defined by

Rh(u, p) := sup
0 "=v∈Vh

|Ah(u,v) +Bh(v, p) − Fh(v)|
‖v‖h

. (15)

In [26], the above conditions have been verified on isotropically refined, shape-
regular meshes and it has been proved in [26, Theorem 9.1] that, for δ of the
order k2/h, the estimates in (14) are optimal in the mesh sizes and slightly
suboptimal in the polynomial degrees. In particular, we point out that the
residual Rh in (15) has been shown to be optimally convergent.

In the following, we generalize these results and show that the forms in (8)
satisfy the above conditions on geometric edge meshes, which may be highly
anisotropic. In particular, we show that the constants α1, α2, β and γh can
be bounded independently of the aspect ratio of the anisotropic elements in
the meshes, for a suitable choice of the discontinuity stabilization parameter δ.
Geometric edge meshes are introduced in section 3. Continuity and coercivity
properties are then shown in section 4. The crucial stability result is the discrete
inf-sup condition in section 5.

3 Geometric edge meshes

In this section, we introduce a class of geometric meshes designed to resolve
corner and edge singularities that arise in Stokes flow or nearly incompress-
ible elasticity. These meshes are referred to as geometric edge meshes; they
are, roughly speaking, tensor products of meshes that are geometrically refined
towards the edges.

3.1 Construction of geometric edge meshes

Geometric edge meshes are determined by a mesh grading factor σ ∈ (0, 1)
and a number of layers n, the thinnest layer having width proportional to σn.
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Level 1

Level 2

Figure 1: Hierarchic structure of a geometric edge mesh T n,σ. The macro-
elements M touching the boundary of Ω (level 1) are further refined as edge
and corner patches (level 2). Here we have chosen σ = 0.5 and n = 3.

We recall that exponential convergence of hp-finite element approximations is
achieved if n is suitably chosen. For singularity resolution, n is required to be
proportional to the polynomial degree k; see [3, 5].

On Ω, a geometric edge mesh T n,σ is constructed by considering an initial
shape-regular macro-triangulation Tm = {M} of Ω, possibly consisting of just
one element. The macro-elementsM in the interior of Ω can be refined isotropi-
cally and regularly (not discussed further) while the macro-elementsM touching
the boundary of Ω are refined geometrically and anisotropically towards edges
and corners. This geometric refinement is obtained by affinely mapping refer-
ence triangulations (referred to as patches) on Q̂ onto the macro-elements M
using elemental maps FM : Q̂ → M . An illustration of this process is shown in
Figure 1. For edge meshes, the following patches on Q̂ = Î3, Î = (−1, 1), are
used for the geometric refinement towards the boundary of Ω:

Edge patches: An edge patch T n,σ
e on Q̂ is given by

T n,σ
e := {Kxy × Î | Kxy ∈ T n,σ

xy },

where T n,σ
xy is an irregular corner mesh, geometrically refined towards a vertex

of Ŝ = Î2 with grading factor σ and n layers of refinement; see Figure 1 (level
2, left).

Corner patches: In order to build a corner patch T n,σ
c on Q̂, we first

consider an initial, irregular, corner mesh T n,σ
c,m , geometrically refined towards

a vertex of Q̂, with grading factor σ and n layers of refinement; see the mesh
in bold lines in Figure 1 (level 2, right). The elements of this mesh are then
irregularly refined towards the three edges adjacent to the vertex in order to
obtain the mesh T n,σ

c .
For simplicity, we always assume that the only hanging nodes contained in

geometric edge meshes T n,σ are those contained in the edge and corner patches.
The geometric edge meshes satisfy the following property; see also [17].
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Property 3.1. Let T n,σ be a geometric edge mesh on Ω and K ∈ T n,σ. Then
K can be written as K = FK(Kxyz), where Kxyz is of the form

Kxyz = Ix × Iy × Iz = (x1, x2)× (y1, y2)× (z1, z2),

and FK is an affine mapping, the Jacobian of which satisfies

| det(JK)| ≤ C, | det(J−1
K )| ≤ C,

with C only depending on the angles of K but not on its dimensions.

We note that the constants in Property 3.1 only depend on the constant
in (4) for the underlying macro-element mesh Tm. The dimensions of Kxyz on
the other hand may depend on the geometric grading factor and the number of
refinements.

For an element K of a geometric edge mesh, we define, according to Prop-
erty 3.1,

hK
x = hx = x2 − x1, hK

y = hx = y2 − y1, hK
z = hx = z2 − z1.

3.2 Discontinuity stabilization on geometric meshes

In this section, we define the discontinuity stabilization parameter δ ∈ L∞(E) on
geometric edge meshes. Let f be an entire face of an element K of a geometric
edge mesh T n,σ on Ω. According to Property 3.1, K can be obtained by a
stretched parallelepiped Kxyz by an affine mapping FK that only changes the
angles. Suppose that the face f is the image of, e.g., the face {x = x1}. We set
hf = hx. For a face perpendicular to the y– or z–direction, we choose hf = hy

or hf = hz.
Let now K and K ′ be two elements with entire faces f and f ′ that share an

interior face, e.g., f = f ∩ f ′ in EI . We have

chf ≤ hf ′ ≤ c−1hf , (16)

with a constant c > 0 that only depends on the geometric grading factor σ and
the constant in (4) for the underlying macro-element mesh Tm. We then define
the function h ∈ L∞(E) by

h(x) :=

{
min{hf , hf ′} x ∈ f ∩ f ′ ⊂ EI ,
hf x ∈ f ⊂ EB.

(17)

Furthermore, we define
δ(x) = δ0h

−1k2, (18)

with a parameter δ0 > 0 that is independent of h and k.

Remark 3.1. For isotropically refined, shape-regular meshes, the definition in
(18) is equivalent to the usual definition of δ, see [26].
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Strongly related to the choice of δ in (17) is the following discrete trace
inequality.

Lemma 3.1. Let K be an element of a geometric edge mesh T n,σ on Ω and f
an entire face of K. Then

‖ϕ‖20,f ≤ Ch−1
f max{1, k}2‖ϕ‖20,K

for any ϕ ∈ Qk(K), k ≥ 0, with a constant only depending on the constants in
Property 3.1.

Proof. First we note that on the reference cube Q̂, this estimate follows from
standard inverse inequalities, see, e.g., [27, Theorem 4.76]. Next, let K =
Kxyz = (x1, x2)× (y1, y2)× (z1, z2) be an axiparallel element. We may assume
that the face f is given by fyz = {x1} × (y1, y2) × (z1, z2). A simple scaling
argument then yields

‖ϕ‖20,fyz ≤ Ch−1
x max{1, k}2‖ϕ‖20,Kxyz

(19)

for any ϕ ∈ Qk(Kxyz), with hx = x2 − x1 and an absolute constant C > 0.
Finally, since an element K of a geometric edge mesh can be written as K =
FK(Kxyz) according to Property 3.1, the claim follows from (19) by a scaling
argument that takes into account the definition of hf .

4 Continuity and coercivity on geometric edge

meshes

Our first main result establishes the continuity of Ah and Bh as well as the
coercivity of Ah on geometric edge meshes.

Theorem 4.1. Let T n,σ be a geometric edge mesh on Ω with a grading factor
σ ∈ (0, 1) and n layers of refinement. Let the discontinuity stabilization function
δ be defined as in (17) and (18).

The forms Ah and Bh in (8) are continuous,

|Ah(v,w)| ≤ να1‖v‖h‖w‖h ∀v,w ∈ V(h),

|Bh(v, q)| ≤ α2‖v‖h‖q‖0 ∀u ∈ V(h), q ∈ Q,

with continuity constants α1 and α2 that depend on δ0 and the constants in Prop-
erty 3.1, but are independent of ν, k, n, and the aspect ratio of the anisotropic
elements in T n,σ.

Furthermore, there exists a constant δmin > 0 that depends on the con-
stants in Property 3.1, but is independent of ν, k, n, and the aspect ratio of the
anisotropic elements in T n,σ, such that, for any δ0 ≥ δmin,

Ah(v,v) ≥ νβ‖v‖2h ∀v ∈ Vh,

for a coercivity constant β > 0 depending on δ0 and the constants in Property
3.1, but independent of ν, k, n, and the aspect ratio of the anisotropic elements
in T n,σ.
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Proof. We first claim that the lifting operators L and M in (5) and (6) satisfy

‖L(v)‖20 ≤ C

∫

E
δ |[[v]]|2 ds, ‖M(v)‖20 ≤ C

∫

E
δ |[[v]]|2 ds, (20)

for all v ∈ V(h), with C > 0 independent of k, n, and the aspect ratio of the
anisotropic elements.

We show the first estimate in (20) for L; the proof of the second estimate is
completely analogous by noting that |[[v]]|2 ≤ |[[v]]|2. For v ∈ V(h), we have

‖L(v)‖0 = sup
τ∈Σh

∫
Ω L(v) : τ dx

‖τ‖0
= sup

τ∈Σh

∫
E [[v]] : {{τ}} ds

‖τ‖0

≤ sup
τ∈Σh

( ∫
E δ|[[v]]|2 ds

) 1
2
( ∫

E δ−1|{{τ}}|2 ds
) 1

2

‖τ‖0

≤ C sup
τ∈Σh

( ∫
E δ|[[v]]|2 ds

) 1
2
(∑

K∈Th

∫
∂K δ−1|τ |2ds

) 1
2

‖τ‖0
.

Here, we used the definition of L and Cauchy-Schwarz inequalities. Since for
τ ∈ Σh ∫

∂K
δ−1|τ |2ds ≤ C

6∑

m=1

hfmk−2‖τ‖20,fm ≤ C‖τ‖0,K ,

thanks to the definition of δ and Lemma 3.1, we obtain the desired estimate for
L.

The continuity of the forms Ah and Bh follows immediately from (20) and
Cauchy-Schwarz inequalities. The coercivity of Ah can be proven by employing
the first estimate in (20) and the arithmetic-geometric mean inequality 2ab ≤
εa2 + ε−1b2, for all ε > 0, see [4].

Remark 4.1. The results in Theorem 4.1 are based on the anisotropic stability
estimates (20) for the lifting operators L and M. These operators are identical
for all the DG forms considered in [26] and, thus, the results in this section holds
true for all the mixed DG methods there as well. We also note that the restriction
on δ0 is typical for the interior penalty form Ah and can be avoided if Ah is
chosen to be, e.g., the local discontinuous Galerkin form, the nonsymmetric
interior penalty form or the second Bassi-Rebay form, see [26].

5 Divergence stability on geometric edge meshes

Our second main result establishes the divergence stability in (13) for Qk−Qk−1

elements on geometric edge meshes. We have the following theorem.

Theorem 5.1. Let T n,σ be a geometric edge mesh on Ω with a grading factor
σ ∈ (0, 1) and n layers of refinement. Let the discontinuity stabilization function



Mixed hp-DGFEM on geometric edge meshes 12

δ be defined as in (17) and (18). Then there exists a constant C > 0 that depends
on σ and the shape-regularity of the macro-element mesh, but is independent of
k, n, and the aspect ratio of the anisotropic elements in T n,σ, such that, for
any n and k ≥ 2,

inf
0"=q∈Qk−1

h (T n,σ)
sup

0"=v∈Vk
h(T

n,σ)

Bh(v, q)

‖v‖h ‖q‖0
≥ Ck−3/2.

Hence, condition (13) is satisfied with γh = Ck−3/2.

Remark 5.1. This result extends the work in [24, 25, 33] for conforming Qk −
Qk−2 elements to the discontinuous Galerkin context; it is proved in a similar
way using a macro-element technique. We point out, however, that in the DG
approximations considered here we use Qk −Qk−1 elements that are unstable in
a conforming setting. This choice of spaces is optimal from an approximation
point of view.

Remark 5.2. The form Bh is identical for the DG methods in [13, 20, 32, 26].
Therefore, the stability result in Theorem 5.1 is valid for all these methods.

The proof of Theorem 5.1 is carried out in the remaining sections. The first
ingredient we need is a macro-element technique that we introduce in section 6.
The second ingredient is given by some stability estimates for Raviart-Thomas
interpolants on certain anisotropic meshes, derived in section 7. In section 8,
we establish divergence stability on edge patches. The proof of Theorem 5.1 is
completed in section 9 by recursively applying the macro-element technique.

6 Macro-element technique

In order to prove Theorem 5.1, we use a macro-element technique; see [30, 31,
25, 33]. We recall that a geometric edge mesh T = T n,σ is obtained by refining
a coarser, shape-regular macro-mesh Tm. Theorem 6.1 below is the main tool
of our macro-element technique.

First, we introduce local bilinear forms. If M ∈ Tm, we define

Bh,M (v, q) = −
∫

M
q∇h · v dx +

∫

EI∩M
{{q}}[[v]] ds+

∫

E∩∂M
q v · n ds, (21)

for (v, q) ∈ Vk
h(T )×Qk−1

h (T ). Correspondingly, we also need the local norm

‖v‖2h,M =
∑

K∈T

K⊂M

|v|21,K +

∫

EI∩M

δM |[[v]]|2 ds+
∫

E∩∂M

δM |v ⊗ nM |2 ds, (22)

where nM denotes the outward normal unit vector to ∂M and δM is a discon-
tinuity stabilization function defined as in (18), with h(x) replaced by

hM (x) :=

{
h(x) x ∈ f ⊂ EI \ ∂M,
hf x ∈ f ⊂ ∂M.

(23)
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By integration by parts on each element in M , we have

Bh,M (v, q) =

∫

M
v ·∇hq dx−

∫

EI∩M
[[[[[[q]]]]]] · {{u}} ds. (24)

If TM is the restriction of T to M , then

Bh,M (v, q) = Bh(v, q), v ∈ Ṽk
h(TM ;M), (25)

where we use the same notation for v ∈ Ṽk
h(TM ;M) and its extension by zero

to Ω.
For a geometric edge mesh on Ω, we have

δ(x) ≤ cδM (x), δ(x) ≤ cδM ′(x), x ∈ ∂M ∩ ∂M ′, (26)

with c > 0 solely depending on σ and the shape-regularity of the macro-element
mesh Tm. This follows from the construction of geometric edge meshes, from
the definition of δ in (17), (18), and from (16).

The following theorem holds.

Theorem 6.1. Let T = T n,σ be a geometric edge mesh on Ω with a grading
factor σ ∈ (0, 1) and n layers of refinement. Let Tm be the underlying macro-
element mesh. Assume that there exists a low-order space Xh ⊆ Vk

h(T ) such
that

inf
0"=q∈Q0

h(Tm)
sup

0"=v∈Xh

Bh(v, q)

‖v‖h ‖q‖0
≥ C1, (27)

with a constant C1 > 0 independent of k. Furthermore, assume that there exists
a constant C2 > 0 independent of M ∈ Tm and k such that

inf
0"=q∈Qk−1

h (TM ;M)
sup

0"=v∈Ṽk
h(TM ;M)

Bh,M (v, q)

‖v‖h,M‖q‖0,M
≥ C2 k

−α, M ∈ Tm, (28)

with α ≥ 0 and TM denoting the restriction of T to M ∈ Tm. Then the spaces
Vk

h(T ) and Qk−1
h (T ) satisfy

inf
0"=q∈Qk−1

h (T )
sup

0"=v∈Vk
h(T )

Bh(v, q)

‖v‖h ‖q‖0
≥ Ck−α,

with a constant C > 0 solely depending on C1, C2, σ and the shape-regularity
of Tm.

Proof. Let q ∈ Qk−1
h (T ). We decompose q into q = q∗ + qm where qm is the

L2(Ω)-projection of q onto the space Q0
h(Tm) of piecewise constant pressures on

the macro-element mesh Tm. Because of (27), there exists vm ∈ Xh such that

Bh(vm, qm) ≥ ‖qm‖20, ‖vm‖h ≤ C−1
1 ‖qm‖0. (29)
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We next consider q∗ ∈ Qk−1
h (T ). We fix a macro-element M ∈ Tm and set

q∗M := q∗|M . We note that q∗M has vanishing mean value on M . By using (28),

there exists a field v∗
M in Ṽk

h(TM ;M) such that

Bh,M (v∗
M , q∗M ) ≥ ‖q∗M‖20,M , ‖v∗

M‖h,M ≤ C−1
2 kα‖q∗M‖0,M . (30)

We now define v∗ =
∑

M∈Tm
v∗
M . By construction, v∗

M has a vanishing normal
component on ∂M and vanishes outside M . Thus, combining (25) with (30)
yields

Bh(v
∗, q∗) =

∑

M∈Tm

Bh,M (v∗
M , q∗M ) ≥ ‖q∗‖20. (31)

Furthermore, thanks to (26) and (30),

‖v∗‖2h ≤ C
∑

M∈Tm

‖v∗
M‖2h,M ≤ Ck2α‖q∗‖20, (32)

with a constant C only depending on C2 and the constant in (26). Select now
v = vm + ηv∗ ∈ Vk

h(T ) where η > 0 is still at our disposal. First, thanks to
(25), (24) and the fact that qm is constant on each macro-element, we have

Bh(v
∗, qm) =

∑

M∈Tm

Bh,M (v∗
M , qm)

=
∑

M∈Tm

(∫

M
v∗
M ·∇hqm dx−

∫

EI∩M
[[[[[[qm]]]]]] · {{v∗

M}} ds
)

= 0.

Further, the continuity of Bh(·, ·) in Theorem 4.1, (29), and the arithmetic-
geometric mean inequality yield

|Bh(vm, q∗)| ≤ α2‖vm‖h‖q∗‖0 ≤ C‖qm‖0‖q∗‖0 ≤
C

ε
‖qm‖20 + εC‖q∗‖20,

with another parameter ε > 0 to be properly chosen. Combining the above
results with (29) and (31), gives

Bh(v, q) = Bh(vm, qm) +Bh(vm, q∗) + ηBh(v
∗, q∗)

≥ (1 −
C

ε
)‖qm‖20 + (η − εC)‖q∗‖20.

It then clear that we can choose η and ε in such a way that

Bh(v, q) ≥ c‖q‖20 (33)

with a constant c independent of k. Furthermore, from (29) and (32),

‖v‖h ≤ ‖vm‖h + η‖v∗‖h ≤ ckα‖q‖0. (34)

The assertion of Theorem 6.1 follows then from (33) and (34).
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For geometric edge meshes, the macro-elements are refined by mapping ref-
erence configurations on Q̂. Condition (28) in Theorem 6.1 can then be verified
by checking the stability of the patches on the reference cube Q̂. Similarly to
(21) and (22), we denote by Bh,Q̂(·, ·) and ‖ · ‖h,Q̂ the divergence form and the

broken energy norm on a mesh on Q̂, respectively, with the stabilization func-
tion δQ̂ defined according to (18), but with h replaced by the local mesh-size hQ̂
defined as in (23) with M = Q̂.

Proposition 6.1. Let T = T n,σ be a geometric edge mesh on Ω with a grading
factor σ ∈ (0, 1) and n layers of refinement. Let Tm be the underlying macro-
element mesh, and F be a family of meshes on the reference element Q̂, also
containing the trivial triangulation T̂ = {Q̂}. Assume that T is obtained from
Tm by further partitioning the elements of Tm into FM (T̂ ) where T̂ ∈ F and FM

is the affine mapping between Q̂ and M . Assume that the family F is uniformly
stable in the sense that

inf
0"=q∈Qk−1

h (T̂ ;Q̂)
sup

0"=v∈Ṽk
h(T̂ ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂‖q‖0,Q̂
≥ C k−α, ∀T̂ ∈ F , ∀k, (35)

with a constant C > 0 independent of T̂ ∈ F and k. Then, condition (28) in
Theorem 6.1 is satisfied with a constant that only depends on the constant in
(35) and the shape-regularity of the macro-element mesh Tm.

Proof. Let M ∈ Tm be a macro-element. The restriction TM of T to M is given
by FM (T̂ ) for some mesh T̂ ∈ F . Let q ∈ Qk−1

h (TM ;M). We transform q back

to the reference element Q̂ via the affine transformation FM : Q̂ → M , that is,
we set q̂ = q ◦ FM ∈ Qk−1

h (T̂ ; Q̂). By (35), there exists v̂ ∈ Ṽk
h(T̂ ; Q̂) such that

Bh,Q̂(v̂, q̂) ≥ ‖q̂‖2
0,Q̂

, ‖v̂‖h,Q̂ ≤ C−1kα‖q̂‖0,Q̂. (36)

We use the Piola-transform, see [9, Sect. III.1], and set

v = PM (v̂) = |JM |−1JM v̂ ◦ F−1
M .

Here, JM is the Jacobian of FM and |JM | = | det(JM )|. Let now K = FM (K)
be an element of M that is the image of the element K in Q̂. It can then be
easily seen that v|K is obtained from v̂|K through the local Piola transformation
K → K. Due to the properties of these transforms in [9, Lemma 1.5 and Lemma
1.6], we thus have v ∈ Ṽk

h(TM ;M) and Bh,Q̂(v̂, q̂) = Bh,M (v, q). By using the
definition of δM and δQ̂ and standard scaling properties for the Piola-transform,

we obtain from (36) the existence of a field in Ṽk
h(TM ;M) also denoted by v

such that
Bh,M (v, q) ≥ ‖q‖20,M , ‖v‖h,M ≤ Ckα‖q‖0,M ,

where C solely depends on the constant in (35) and the shape-regularity of the
macro-element mesh Tm.
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7 Raviart-Thomas interpolant on anisotropic meshes

The purpose of this section is to provide estimates for the interpolant on Raviart-
Thomas finite element spaces on certain anisotropic meshes. In order to do so,
we employ a different representation than that considered in [26], originally
proposed in [2].

7.1 One-dimensional interpolants

We first introduce some one-dimensional projections. Let {Li(x), i ∈ N0} be
the set of orthogonal Legendre polynomials on Î = (−1, 1); see, e.g., [7]. We
also consider a different set {Ui(x), i ∈ N0}

U0(x) = L0(x) = 1, U1(x) = L1(x) = x,

Ui(x) =

x∫

−1

Li−1(t)dt = (2i− 1)−1(Li − Li−2), i ≥ 2;
(37)

see in particular [7, Theorem 3.3]. The sets {Li} and {Ui} both provide bases
for L2(Î) and thus H1(Î).

For a generic interval I = (x1, x2) = FI(Î), two bases can be found by
mapping {Li} and {Ui} onto I. In the following, we use the same notations for
these bases in L2(I) as for the reference interval.

Let π0
k : L2(I) → Qk(I) be the L2-orthogonal projection. We note that

π0
k

(
∞∑

i=0

viLi

)

=
k∑

i=0

viLi.

We also define a second projection π1
k : L2(I) → Qk(I) by

π1
k

(
∞∑

i=0

ṽiUi

)

=
k∑

i=0

ṽiUi.

Lemma 7.1. Let I = (x1, x2). For v ∈ H1(I), we have

(π1
kv)(x1) = v(x1), (π1

kv)(x2) = v(x2), k ≥ 1,∫

I
π1
kvq dx =

∫

I
vq dx q ∈ Qk−2(I), k ≥ 2.

Proof. The first property follows from the fact that Ui(x1) = Ui(x2) = 0 for
i ≥ 2. To prove the second property, let q ∈ Qk−2(I) be given by q = L′

i−1 for
2 ≤ i ≤ k. It is then easy to see that

∫

I
(π1

kv)
′Li−1dx =

∫

I
v′Li−1dx.

From the above identity and the first assertion, the second assertion follows by
integration by parts.
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The next lemma provides certain stability estimates.

Lemma 7.2. Let I = (x1, x2) and v ∈ H1(I). There is a constant C > 0
independent of k and I such that

‖π0
kv‖0,I ≤ ‖v‖0,I , |π0

kv|1,I ≤ C
√
k |v|1,I , |π1

kv|1,I ≤ |v|1,I .

If in addition v ∈ H1
0 (I), then

‖π1
kv‖0,I ≤ C

√
k ‖v‖0,I . (38)

Proof. Since for a generic interval the bounds are obtained by a standard scaling
argument, it is enough to consider I = (−1, 1). The bounds for π0

k can be found
in [10]. Moreover, let v =

∑∞
i=0 viUi and χ : [0,∞) → R be a C1 cut-off function

that is equal to one in [0, 1], decreases to zero in [1, 1 + µ], and is equal to zero

in [1 + µ,∞). If µ = 1/k, it is easy to prove that π1
kv =

∞∑
i=0

χ
(
i
k

)
viUi. The

bounds for π1
k can then be found in Lemma 3.2, Lemma 3.3, and Remark 3.4 in

[8].

Further, we will make use of the following approximation property. It is
proved in [21] for the reference interval and can be proved for a generic interval
by a scaling argument.

Lemma 7.3. Let I = (x1, x2) and h = x2−x1. Then there is a constant C > 0
independent of k and I such that for v ∈ H1(I)

|(π0
kv − v)(xi)|2 ≤ C

h

k
|v|21,I , i = 1, 2.

7.2 Two-dimensional interpolants

We recall some two-dimensional results that were proven in [2, 26]. Given the
reference square Ŝ and an integer k ≥ 0, we consider the Raviart-Thomas space

RTk(Ŝ) = Qk+1,k(Ŝ)×Qk,k+1(Ŝ),

whereQk1,k2
(Ŝ) is the space of polynomials of degree ki in the i-th variable on Ŝ.

For an affinely mapped elementK = FK(Ŝ), the Raviart-Thomas space RTk(K)
is defined by suitably mapping functions inRTk(Ŝ) using a Piola transformation;
see [9, Sect. 3.3] or [2, Sect. 3.3] for further details.

On Ŝ, there is a unique interpolation operatorΠŜ = Πk
Ŝ
: H1(Ŝ)2 → RTk(Ŝ),

such that
∫

Ŝ

(
ΠŜv − v

)
·w dx = 0, ∀w ∈ Qk−1,k(Ŝ)×Qk,k−1(Ŝ),

∫

f̂m

(
ΠŜv − v

)
· nϕ ds = 0, ∀ϕ ∈ Qk(f̂m), m = 1, . . . , 4;

(39)
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see [9] or [2]. For k = 0, the first condition in (39) is void. For an affinely mapped
element K, the interpolant ΠK = Πk

K : H1(K)2 → RTk(K) can be defined by
using a Piola transform in such a way that the orthogonality conditions in (39)
also hold for ΠK .

For shape-regular elements, we recall the following result from [26, Lemma 6.9
and Lemma 6.10].

Lemma 7.4. Let K be a shape-regular element of diameter hK and w ∈
H1(K)3. Then

|ΠKw|1,K ≤ C k |w|1,K , ‖w−ΠKw‖20,∂K ≤ ChK |w|21,K ,

with a constant C > 0 that is independent of k and hK .

In addition to the bounds in Lemma 7.4, we need slightly refined estimates
to treat axiparallel elements of the form S = Sxy = (x1, x2) × (y1, y2). Such
bounds can be obtained by using tensor product arguments. For this purpose,
we define the two-dimensional operators

Πx
k := π0,y

k ◦ π1,x
k+1, Πy

k := π1,y
k+1 ◦ π

0,x
k ,

with the one-dimensional projectors π0
k and π1

k from section 7.1. We have spec-
ified the variable on which these projections act.

We have the following representation result.

Lemma 7.5. The Raviart-Thomas interpolant on S = Sxy = (x1, x2)× (y1, y2)
satisfies

Πk
Sv = Πk

S(vx, vy) = (Πx
kvx,Π

y
kvy), v ∈ C∞(S)2.

Proof. Using Lemma 7.1 and properties of the L2-projection, it is immediate to
see that (Πx

kvx,Π
y
kvy) satisfies the conditions in (39) on S.

The operators Πx
k and Πy

k can be uniquely extended by density to func-
tions in H1(S) (these extensions being still denoted by Πx

k and Πy
k). This is a

consequence of the following result.

Lemma 7.6. Let v ∈ C∞(Ŝ). Then there exists a constant C independent of
k, such that

‖∂x(Πx
kv)‖0,Ŝ ≤ ‖∂xv‖0,Ŝ , ‖∂y(Πx

kv)‖0,Ŝ ≤ Ck |v|1,Ŝ .

Similar estimates hold for Πy
k.

Proof. The first bound can be proven using the definition of Πx
k and Πy

k and the
one-dimensional bounds in Lemma 7.2. The second bound can be found in [26,
Lemma 6.9].

We end this section with an error estimate for the two-dimensional L2-
projection. It can be proven by using Lemma 7.3; cf. [21, Lemma 3.9].
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Lemma 7.7. Let S = Sxy = (x1, x2) × (y1, y2) be a shape-regular element of
diameter h. Then there exists a constant C > 0 independent of k and h such
that

‖v − π0,y
k π0,x

k v‖20,∂S ≤ C
h

k
|v|21,S , v ∈ H1(S).

7.3 Three-dimensional interpolants

In this section, we introduce the Raviart-Thomas interpolant in three dimen-
sions. We note that we use the same notations as for the two-dimensional case.
Given an axiparallel element of the form

Kxyz = (x1, x2)× (y1, y2)× (z1, z2),

and an integer k ≥ 0, we consider the Raviart-Thomas space

RTk(Kxyz) = Qk+1,k,k(Kxyz)×Qk,k+1,k(Kxyz)×Qk,k,k+1(Kxyz),

whereQk1,k2,k3
(Kxyz) is the space of polynomials of degree ki in the i-th variable

on Kxyz. For general affinely mapped elements K ∈ T of a geometric edge mesh
T = T n,σ (see Property 3.1), the Raviart-Thomas space RTk(K) is defined by
suitably mapping functions in RTk(Kxyz) using a Piola transformation; see [9,
Sect. 3.3] or [2, Sect. 3.3] for further details.

OnKxyz, there is a unique interpolation operatorΠKxyz = Πk
Kxyz

: H1(Kxyz)3 →
RTk(Kxyz), such that

∫

Kxyz

(
ΠKxyzv − v

)
·w dx = 0,

∀w ∈ Qk−1,k,k(Kxyz)×Qk,k−1,k(Kxyz)×Qk,k,k−1(Kxyz),

∫

fm

(
ΠKxyzv − v

)
· nϕ ds = 0, ∀ϕ ∈ Qk,k(fm), m = 1, . . . , 6;

(40)

with {fm} denoting denoting the six faces of Kxyz; see [9] or [2]. For k = 0,
the first condition in (40) is void. For an element K ∈ T , the interpolant
ΠK = Πk

K : H1(K)3 → RTk(K) can be defined by using a Piola transform in
such a way that the orthogonality conditions in (40) also hold for ΠK .

We now define the three-dimensional operators on K = Kxyz

Πx
k := π0,z

k ◦π0,y
k ◦π1,x

k+1, Πy
k := π0,z

k ◦π1,y
k+1 ◦π

0,x
k , Πz

k := π1,z
k+1 ◦π

0,y
k ◦π0,x

k ,

where we have specified the variable on which the one-dimensional projections
act. The following representation result can be proven in the same way as in
two dimensions.

Lemma 7.8. On K = Kxyz, the Raviart-Thomas interpolant satisfies

Πk
Kv = Πk

K(vx, vy, vz) = (Πx
kvx,Π

y
kvy,Π

z
kvz), v ∈ C∞(K).
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The operators Πx
k, Π

y
k, and Πz

k are well-defined for functions in C∞(K) and
can be uniquely extended by density to H1(K) (these extensions being still
denoted by Πx

k, Π
y
k and Πz

k). This is a consequence of the following result.

Lemma 7.9. Let v ∈ C∞(Q̂). Then there exists a constant C independent of
k such that

‖∂x(Πx
kv)‖20,Q̂ ≤ C‖∂xv‖20,Q̂,

‖∂y(Πx
kv)‖20,Q̂ ≤ Ck2 (‖∂yv‖20,Q̂ + ‖∂xv‖20,Q̂),

‖∂z(Πx
kv)‖20,Q̂ ≤ Ck2 (‖∂zv‖20,Q̂ + ‖∂xv‖20,Q̂).

Similar estimates hold for Πy
k and Πz

k.

Proof. The first two estimates can be obtained using Lemmas 7.2 and 7.6, and
the fact that Πx

k can be written as the tensor product of the two-dimensional
Raviart-Thomas projection and a one-dimensional L2-projection: Πx

k = π0,z
k ◦

(π0,y
k ◦ π1,x

k ); see Lemma 7.8. The last bound can be obtained by exchanging
the y and z variables.

7.4 Stretched elements

For a general anisotropic element, Lemma 7.9 and a scaling argument provide
estimates that are not independent of the aspect ratio. For an edge patch on
Q̂, however, we only need to consider stretched elements of the form

Kxyz = (x1, x2)× (y1, y2)× Î , (41)

with hx = x2−x1 < 2, hy = y2−y1 < 2, and hx comparable to hy. Even for this
simpler case, good bounds cannot be found for all the components. However,
if we only consider vectors with a vanishing normal component along the faces
z = ±1, we have the following result.

Lemma 7.10. Let K be given by (41) and v = (vx, vy, vz) ∈ H1(K)3, such that
v · n± = 0 along z = ±1, with n± = (0, 0,±1). If chx ≤ hy ≤ Chx, then there
exists a constant independent of k and the aspect ratio of K, such that

‖∂x(Πx
kvx)‖20,K ≤ C‖∂xvx‖20,K ,

‖∂y(Πx
kvx)‖20,K ≤ Ck2 (‖∂yvx‖20,K + ‖∂xvx‖20,K),

‖∂z(Πx
kvx)‖20,K ≤ Ck2 (‖∂zvx‖20,K + ‖∂xvx‖20,K),

and similarly for Πy
kvy. In addition,

‖∂x(Πz
kvz)‖20,K ≤ Ck2‖∂xvz‖20,K ,

‖∂y(Πz
kvz)‖20,K ≤ Ck2‖∂yvz‖20,K ,

‖∂z(Πz
kvz)‖20,K ≤ C‖∂zvz‖20,K .

Consequently, |ΠKv|1,K ≤ C k |v|1,K , with a constant independent of k and the
aspect ratio of K.
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Figure 2: Two stretched elements K1 and K2 that share the face f = {x2} ×
(y1, y2)× Î.

Proof. Assume first that v ∈ C∞(K)3. The bounds for Πx
kvx and Πy

kvy follow
from Lemma 7.9 and a scaling argument. To obtain the estimates of Πz

kvz ,
we use the representation in Lemma 7.8 and the results in Lemma 7.2. In
particular, we use (38) to bound π1,z

k+1. The proof is then completed by a density
argument.

Similarly, it is possible to bound the jumps across faces of stretched elements.
Let K1 and K2 be two stretched elements given by

K1 = (x1, x2)× (y1, y2)× Î , K2 = (x2, x3)× (y1, y3)× Î , (42)

with y2 ≤ y3. Further, we introduce the faces f1 = {x2} × (y1, y2) × Î and
f2 = {x2} × (y1, y3) × Î. Let f = f1 ⊆ f2, as illustrated in Figure 2. We then
set h1,x = x2 − x1, h2,x = x3 − x2, h1,y = y2 − y1, and h2,y = y3 − y1.

Lemma 7.11. Let K1 and K2 be the two stretched elements in (42). Let u ∈
H1(K1∪K2)3 such that u ·n± = 0 along z = ±1, with n± = (0, 0,±1). Assume
that

ch1,x ≤ h2,x ≤ Ch1,x, h1,y ≤ h2,y ≤ Ch2,x.

Let v be the piecewise polynomial given by v|Ki = ΠKi(u|Ki) where ΠKi is the
Raviart-Thomas projector of degree k on Ki, i = 1, 2. Then,
∫

f
|[[v]]|2 ds ≤ Ch1,x

[
‖∂xu‖20,K1

+ ‖∂yu‖20,K1

]
+Ch2,x

[
‖∂xu‖20,K2

+ ‖∂yu‖20,K2

]
,

with a constant C > 0 that is independent of k and the mesh sizes h1,x, h2,x,
h1,y, and h2,y.

Proof. First, we assume that u ∈ C∞(K1 ∪K2)3.
For i = 1, 2, we denote u|Ki by u

i = (ui
x, u

i
y, u

i
z) and v|Ki by v

i = (vix, v
i
y, v

i
z).

Since
∫

f
|[[v]]|2 ds =

∫

f
(v1x−v2x)

2 ds+

∫

f
(v1y−v2y)

2 ds+

∫

f
(v1z−v2z)

2 ds =: T1+T2+T3,
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it is enough to estimate the terms T1, T2 and T3 separately. We observe that
v1x = v2x (and thus T1 = 0) only if f = f1 = f2, since the normal component
of v is continuous across f in this case. In the general case, since u1

x = u2
x is

continuous across f , we can write

T1 =

∫

f
(v1x − v2x)

2 ds ≤ 2

∫

f1

(u1
x − v1x)

2 ds+ 2

∫

f1

(u2
x − v2x)

2 ds

≤ 2

∫

f1

(u1
x − v1x)

2 ds+ 2

∫

f2

(u2
x − v2x)

2 ds := 2T1,A + 2T1,B.

For T1,A we use the representation in Lemma 7.8 of v1x = Πx
ku

1
x on K1. Lemma

7.1 ensures
v1x = (π0,z

k π0,y
k π1,x

k+1)u
1
x = (π0,z

k π0,y
k )u1

x, on f1.

For the case of K1 = Q̂, we have

T1,A =

∫

f1

(u1
x − π0,z

k π0,y
k u1

x)
2 ds ≤

∫

f1

|u1
x|2ds

=

∫

Î
dy

∫

Î
dz |u1

x(x2, y, z)|2 ≤ C

∫

Î
dx

∫

Î
dy

∫

Î
dz |∂xu1

x(x, y, z)|2,

where we have used the stability of the L2-projection π0,z
k π0,y

k in Lemma 7.2,

and the fact that functions in H1(Î) are continuous. For a generic K1 of the
form in (42), we employ a scaling argument and obtain

∫

f1

(u1
x − v1x)

2 ds ≤ Ch1,x‖∂xu1
x‖20,K1

.

A bound for T1,B can be found in the same way. We obtain

T1 ≤ C(h1,x‖∂xu1
x‖20,K1

+ h2,x‖∂xu2
x‖20,K2

). (43)

Let us now consider the term T2. Since u1
y = u2

y on f1, we have π0,z
k u1

y =

π0,z
k u2

y and can then bound T2 by

T2 =

∫

f
(v1y − v2y)

2 ds ≤ 2

∫

f1

(
v1y − π0,z

k u1
y

)2
ds+ 2

∫

f1

(
v2y − π0,z

k u2
y

)2
ds

≤ 2

∫

f1

(
v1y − π0,z

k u1
y

)2
ds+ 2

∫

f2

(
v2y − π0,z

k u2
y

)2
ds =: 2T2,A + 2T2,B.

Let us further estimate the term T2,A. From the representation in Lemma 7.8
and the stability of π0,z

k in Lemma 7.2, we find

T2,A =

∫

f1

(
π0,z
k u1

y − (π0,z
k π1,y

k+1π
0,x
k )u1

y

)2
ds ≤

∫

f1

(
u1
y − (π1,y

k+1π
0,x
k )u1

y

)2
dydz.

We now note that (π1,y
k+1π

0,x
k ) is the second component of the two-dimensional

Raviart-Thomas interpolant on the shape-regular rectangle (x1, x2) × (y1, y2).
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We can then use the two-dimensional result in Lemma 7.4 and obtain

T2,A ≤
∫ 1

−1
dz

∫ y2

y1

dy
(
u1
y(x2, y, z)− (π1,y

k+1π
0,x
k u1

y)(x2, y, z)
)2

≤ Ch1,x

∫ 1

−1
dz

∫ y2

y1

dy

∫ x2

x1

dx
(
|∂xu1(x, y, z)|2 + |∂yu1(x, y, z)|2

)

≤ Ch1,x

[
‖∂xu1‖20,K1

+ ‖∂yu1‖20,K1

]
.

A bound for T2,B can be found in the same way. This yields

T2 ≤ Ch1,x

(
‖∂xu1‖20,K1

+ ‖∂yu1‖20,K1

)
+ Ch2,x

(
‖∂xu2‖20,K2

+ ‖∂yu2‖20,K2

)
.

(44)
For the term T3, we proceed as for T1 and write

T3 =

∫

f
(v1z − v2z)

2 ds ≤ 2

∫

f1

(u1
z − v1z)

2 ds+ 2

∫

f1

(u2
z − v2z)

2 ds

≤ 2

∫

f1

(u1
z − v1z)

2 ds+ 2

∫

f2

(u2
z − v2z)

2 ds := 2T3,A + 2T3,B,

and bound the two last terms separately using the representation of Lemma 7.8.
We first note that u1

z = u2
z = 0 at z = ±1, so that we can use (38) in Lemma 7.2:

T3,A =

∫

f1

(
u1
z − (π1,z

k+1π
0,y
k π0,x

k )u1
z

)2
dydz ≤ Ck

∫

f1

(
u1
z − (π0,y

k π0,x
k )u1

z

)2
dydz.

Using the error estimate for the L2–projection (π0,y
k π0,x

k ) on the shape-regular
element (x1, x2)× (y1, y2) in Lemma 7.7, we find

T3,A ≤ Ck

∫ 1

−1
dz

∫ y2

y1

dy
(
u1
z(x2, y, z)− (π0,y

k π0,x
k u1

z)(x2, y, z)
)2

≤ Ch1,x

∫ 1

−1
dz

∫ y2

y1

dy

∫ x2

x1

dx
(
|∂xu1

z(x, y, z)|2 + |∂yu1
z(x, y, z)|2

)
.

Since a bound for T3,B can be found in the same way, we find

T3 ≤ Ch1,x

(
‖∂xu1

z‖20,K1
+ ‖∂yu1

z‖20,K1

)
+ Ch2,x

(
‖∂xu2

z‖20,K2
+ ‖∂yu2

z‖20,K2

)
.

(45)
For u ∈ C∞(K1 ∪K2)3 the assertion follows by combining (43), (44), and (45).

The proof is extended to functions u ∈ H1(K1∪K2)3 by a density argument.

In exactly the same manner, using the representation result of Lemma 7.8,
we obtain the following bound for the other faces.

Lemma 7.12. Let K be an element of the form (41) and f an entire face of
K. Assume that chx ≤ hy ≤ Chx. Let u ∈ H1(K)3 with u|f = 0, and let v be
the Raviart-Thomas projector of degree k on K. Then we have that

∫

f
|v ⊗ nK |2ds ≤ Ch|u|21,K ,
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with h = hx ∼ hy. The constant C is independent of k, and the mesh sizes hx,
and hy.

Proof. The proof for the lateral faces parallel to the z-axis can be carried out as
in the proof of Lemma 7.11. When f is given by z = ±1, we can use the results
in [26, Lemma 6.10] for three-dimensional shape-regular elements and a scaling
argument.

8 Divergence stability on edge patches

Let T n,σ
e be an edge patch on Q̂. We show that Qk −Qk−1 elements are stable

on such patches with an inf-sup constant of the orderO(k−3/2). The main result
of this section is the following theorem.

Theorem 8.1. Let T n,σ
e be an edge patch on Q̂ with a grading factor σ ∈ (0, 1)

and n layers of refinement. Let k ≥ 1. Then

sup
0"=v∈Ṽk

h(T
n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ Ck−3/2‖q‖0,Q̂, q ∈ Qk−1

h (T n,σ
e ; Q̂),

with a constant C > 0 that solely depends on σ, but is independent of k, n, and
the aspect ratio of the elements in T n,σ

e .

Remark 8.1. We emphasize that the result in Theorem 8.1 holds for k = 1,
thus including Q1 − Q0 elements. In particular, the same techniques presented
here lead to a stability result of Q1−Q0 elements on irregular geometric meshes
in two space dimensions. This case was not covered in [26].

The proof of Theorem 8.1 is carried out in the next subsections. We first
use the results in section 7.4, in order to prove a stability property for the
Raviart-Thomas interpolant on edge patches in Corollary 8.1. The proof then
relies on the combination of the two weaker stability results in Lemma 8.2 and
Lemma 8.3, respectively.

8.1 Stability of Raviart-Thomas interpolants on edge patches

We define the Raviart-Thomas interpolant Π = Πk : H1(Q̂)3 → Vk+1
h (T n,σ

e ; Q̂)
by

Πu|K = Πk
K(u|K), K ∈ T n,σ

e . (46)

We note that Πu has a continuous normal component across elements that
match regularly. If the elements match irregularly, the normal component has
jumps; see, e.g., [2, Sect. 3.5]. However, if u ∈ H1

0 (Q̂)3 then Πu belongs to
Ṽk+1

h (T n,σ
e ; Q̂).

We first note the following stability result.
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Figure 3: Edge mesh for σ = 0.5 and n = 4. The patch Mj , j = 3, is the union
of the shaded elements. The four interior faces f j

11, f
j
21, f

j
23 and f j

33 in Mj are
shown in bold lines.

Theorem 8.1. Let T n,σ
e be an edge patch on Q̂ with a grading factor σ ∈ (0, 1)

and n layers of refinement. If u ∈ H1
0 (Q̂)3 and Πku is the Raviart-Thomas

interpolant in (46), then there exists a constant that solely depends on σ, but
is independent of k, n, and the aspect ratio of the elements in T n,σ

e , such that
‖v‖2

h,Q̂
≤ Ck2|u|2

1,Q̂
.

Proof. This follows by combining Lemma 7.10, Lemma 7.11, Lemma 7.12 and
the definition of the penalization function δQ̂.

8.2 Auxiliary stability results

We establish two auxiliary stability results that we need for the proof of our
main result in Theorem 8.1.

First we define a seminorm for the space of pressures on edge patches. We
consider the interior faces of an edge patch T n,σ

e on Q̂. For 2 ≤ j ≤ n, the patch
Mj consists of six elements, the cross sections of which are shown in Figure 3.
The patch M1 consists of the four smallest elements of size σn. On a patch Mj ,
j ≥ 2, the four inner faces will have to be treated separately. We denote them
by f j

11, f
j
21, f

j
23 and f j

33, as illustrated in Figure 3.
For 2 ≤ j ≤ n, we introduce the seminorm

|q|2h,j =
∑

i=1,2

hfj
i1

∫

fj
i1

|[[[[[[q]]]]]]|2 ds+
∑

i=2,3

hfj
i3

∫

fj
i3

|[[[[[[q]]]]]]|2 ds.

We then set

|q|2h =
n∑

j=2

|q|2h,j . (47)

First, we prove the following technical result.
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Lemma 8.1. Let T n,σ
e be an edge patch on Q̂ with a grading factor σ ∈ (0, 1)

and n layers of refinement. Then there exists a constant that solely depends on
σ, but is independent of k, n, and the aspect ratio of the elements in T n,σ

e , such
that ∣∣∣∣

∫

EI∩Q̂
[[[[[[q]]]]]] · {{u−Πku}} ds

∣∣∣∣ ≤ C |u|1,Q̂ |q|h,

for u ∈ H1(Q̂)3, q ∈ Qk
h(T n,σ

e ; Q̂), and Πku the interpolant in (46).

Proof. By density, we may assume that u ∈ C∞(Q̂)3. We note that the integral
over EI ∩ Q̂ can be written as a sum of contributions over faces f ⊂ EI . In
addition, if f is a regular face, i.e., it is an entire face of two neighboring
elementsK andK ′, then the second orthogonality condition (40) ensures that its
contribution vanishes. Indeed, in this case u and Πku have a continuous normal
component across f and the normal vector [[[[[[q]]]]]] belongs to Qk,k(f). Therefore,
we obtain

∫

EI∩Q̂
[[[[[[q]]]]]] · {{u−Πku}} ds =

n∑

j=2

∑

i=1,2

∫

fj
i1

[[[[[[q]]]]]] · {{u−Πku}} ds

+
n∑

j=2

∑

i=2,3

∫

fj
i3

[[[[[[q]]]]]] · {{u−Πku}} ds.

We first bound the contribution over f = f j
11. Denote by K1 and K2 the

elements that share f , assuming that f is an entire face of K1. Let q1 and q2
be the restrictions of q to K1 and K2, respectively. Further, we set v = Πku,
as well as u|Ki = ui = (ui

x, u
i
y, u

i
z) and vi = (vix, v

i
y, v

i
z) for i = 1, 2. Therefore,

∫

f
[[[[[[q]]]]]] · {{u−Πku}} ds =

1

2

∫

f
(q1 − q2)(u

1
x − v1x) ds+

1

2

∫

f
(q1 − q2)(u

2
x − v2x) ds

=
1

2
T1 +

1

2
T2.

We start with a bound for T1 and proceed as in the proof of Lemma 7.11. We use
the representation result of Lemma 7.8, the fact that (q1−q2) is a polynomial of
degree k in z-direction, the properties of π0,z

k and the Cauchy-Schwarz inequality
to obtain

|T1| = |
∫

f
(q1 − q2)(u

1
x − π0,z

k π1,x
k+1π

0,y
k u1

x) ds|

= |
∫

f
(q1 − q2)(u

1
x − π1,x

k+1π
0,y
k u1

x) ds|

≤
(
hf

∫

f
|[[[[[[q]]]]]]|2 ds

) 1
2
(
h−1
f

∫

f
(u1

x − π1,x
k+1π

0,y
k u1

x)
2 ds

) 1
2 .

Since π1,x
k+1π

0,y
k is the first component of the two dimensional Raviart-Thomas

projector and since the underlying two-dimensional geometric mesh T n,σ
xy is
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shape-regular, we can apply Lemma 7.4 and obtain

h−1
f

∫

f
(u1

x − π1,x
k+1π

0,y
k u1

x)
2 ds ≤ C‖∂xu1‖20,K1

+ C‖∂yu1‖20,K1
.

Combining with the analogous argument for T2 gives

|
∫

f
[[[[[[q]]]]]] · {{u−Πku}} ds| ≤ C

(
hf

∫

f
|[[[[[[q]]]]]]|2 ds

) 1
2

·
(
‖∂xu1‖20,K1

+ ‖∂xu1‖20,K1
+ ‖∂xu2‖20,K2

+ ‖∂xu2‖20,K2

) 1
2 .

The contributions of the other faces f j
ik can be bounded analogously. Summing

over all faces and using the Cauchy-Schwarz inequality complete the proof.

The previous lemma allows us to prove a stability result that is weaker than
the inf-sup condition in Theorem 8.1.

Lemma 8.2. Let T n,σ
e be an edge patch on Q̂ with grading factor σ ∈ (0, 1) and

n layers of refinement. Then, for k ≥ 1,

sup
0"=v∈Ṽk

h(T
n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ Ck−1‖q‖0,Q̂

(

1−
|q|h

‖q‖0,Q̂

)

, q ∈ Qk−1
h (T n,σ

e ; Q̂),

with a constant C > 0 that solely depends on σ, but is independent of k, n, and
the aspect ratio of the elements in T n,σ

e .

Proof. Let q ∈ Qk−1
h (T n,σ

e ; Q̂). Thanks to the continuous inf-sup condition (3)

for Ω = Q̂, there exists u ∈ H1
0 (Q̂)3 such that

B(u, q) = ‖q‖2
0,Q̂

, |u|1,Q̂ ≤ (1/γΩ) ‖q‖0,Q̂. (48)

We choose v = Πk−1u, with Πk−1 the interpolant in (46). We then have

Bh,Q̂(v, q) = B(u, q)−Bh,Q̂(u−Πk−1u, q) ≥ ‖q‖2
0,Q̂

− |Bh,Q̂(u−Πk−1u, q)|.

Using (24) and the first orthogonality property in (40), we can write

Bh,Q̂(u−Πk−1u, q) =

∫

Q̂
(v −Πk−1u) ·∇hq dx−

∫

EI∩Q̂
[[[[[[q]]]]]] · {{u−Πk−1u}} ds

= −
∫

EI∩Q̂
[[[[[[q]]]]]] · {{u−Πk−1u}} ds.

Using Lemma 8.1 and the second bound of (48) thus yields

Bh(v, q) = Bh(u, q) +Bh(v − u, q) ≥ ‖q‖2
0,Q̂

− C‖q‖0,Q̂|q|h. (49)

Using Corollary 8.1 and (48) gives

‖v‖h,Q̂ ≤ Ck|u|1,Q̂ ≤ Ck‖q‖0,Q̂,

which concludes the proof.
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We end this section by providing a second inf-sup condition in terms of the
pressure seminorm | · |h in (47). Its proof is given in appendix A.

Lemma 8.3. Let T n,σ
e be an edge patch on Q̂ with a grading factor σ ∈ (0, 1)

and n layers of refinement. For k ≥ 1,

sup
0"=v∈Ṽk

h(T
n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ C k−3/2|q|h, q ∈ Qk−1

h (T n,σ
e ; Q̂),

with a constant C > 0 that solely depends on σ, but is independent of k, n, and
the aspect ratio of the elements in T n,σ

e .

8.3 Proof of Theorem 8.1

We now combine Lemma 8.2 and Lemma 8.3. If t denotes the ratio |q|h/‖q‖0,Q̂,
we find

sup
0"=v∈Ṽk

h(T
n,σ
e ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ Ck−3/2‖q‖0,Q̂ min

t≥0
f(t), q ∈ Qk−1

h (T n,σ
e ; Q̂),

where f(t) = max{1−t, t}. The proof is concluded by noting that the minimum
in the inf-sup condition above is equal to 1/2.

9 Divergence stability on geometric edge meshes

In this section, we consider geometric edge meshes on Ω and prove Theorem 5.1.

9.1 Trivial patch

We have the following result.

Theorem 9.1. Let T̂ be the trivial patch given by the mesh T̂ = {Q̂}. For
k ≥ 1,

sup
0"=v∈Ṽk

h(T̂ ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ C k−1 ‖q‖0,Q̂, q ∈ Qk−1

h (T̂ ; Q̂),

with a constant C > 0 independent of k.

Proof. Since T̂ only consists of one element, given u ∈ H1
0 (Q̂)3, we have

Bh,Q̂(Π
k−1
Q̂

u, q) = B(u, q), ‖Πk−1
Q̂

u‖h,Q̂ ≤ Ck|u|1,Q̂,

for all q ∈ Qk−1
h (T̂ ; Q̂), where Πk−1

Q̂
is the Raviart-Thomas interpolant from

section 7.3 on Q̂ and we have used the orthogonality properties in (40) and the
results in [26, Lemma 6.9 and Lemma 6.10]. We note that Πk−1

Q̂
u ∈ Ṽk

h(T̂ ; Q̂).

The divergence stability property is then a consequence of the continuous inf-sup
condition (3) for Ω = Q̂.
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9.2 Corner patches

The stability of corner patches is proven by using the macroelement technique.

Theorem 9.2. Let T n,σ
c be a corner patch on Q̂ with a grading factor σ ∈ (0, 1)

and n layers of refinement. For k ≥ 2,

sup
0"=v∈Ṽk

h(T
n,σ
c ;Q̂)

Bh,Q̂(v, q)

‖v‖h,Q̂
≥ Ck−3/2‖q‖0,Q̂, q ∈ Qk−1

h (T n,σ
c ; Q̂),

with a constant C > 0 that solely depends on σ, but is independent of k, n, and
the aspect ratio of the elements in T n,σ

c .

Proof. We use the macroelement technique in Theorem 6.1 and Proposition 6.1
with Ω = Q̂, the edge mesh T = T n,σ

c and the macro-element mesh Tm = T n,σ
c,m .

The stability result (27) for piecewise constant pressures on Tm then trivially
holds by choosing Xh as the space of continuous, piecewise quadratic velocities;
see [31] for regular meshes and [33] for irregular meshes. Condition (35) in
Proposition 6.1 is satisfied due to Theorem 9.1 (trivial patch) and by noting
that the anisotropically refined elements in T n,σ

c,m are particular edge patches
that are stable according to Theorem 8.1.

9.3 Proof of Theorem 5.1

The proof of Theorem 5.1 follows now similarly from the macroelement tech-
nique in Theorem 6.1 and Proposition 6.1. Indeed, the low-order stability result
(27) on Tm holds by choosing Xh again as the space of continuous, piecewise
quadratic velocities; see [31]. Condition (35) in Proposition 6.1 is satisfied due
to Theorem 9.1 (trivial patch), Theorem 8.1 (edge patch) and Theorem 9.2
(corner patch).

Remark 9.1. Since we choose the low-order space Xh in (27) as the space of
continuous, piecewise quadratic velocities, Theorem 5.1 and Theorem 9.2 only
hold for k ≥ 2.

A Proof of Lemma 8.3

We proceed in several steps.
Step 1: A lifting operator. Let K = Kxyz = Ix × Iy × Iz with Ix = (x1, x2)

and hx = x2 − x1. Consider the face fx1
= {x = x1}. We define the operator

Efx1

k,K : Qk,k(fx1
) → Qk+1,k,k(K) by

(Efx1

k,Kϕ)(x, y, z) = M
fx1

k (x)ϕ(y, z), M
fx1

k (x) =
(−1)k+1

2
(Lk+1(x)− Lk(x)),

where {Li} here denote the Legendre polynomials on Ix. This lifting oper-
ator was originally proposed in [2] and then employed in [26]. Note that
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Figure 4: Two-dimensional illustration of the elements and faces in a patch Mj ,
for σ = 0.5.

(Efx1

k,Kϕ)(x1, y, z) = ϕ(y, z) and (Efx1

k,Kϕ)(x2, y, z) = 0, thanks to the proper-
ties of {Li}, cf. [7, Sect. 3]. From the results in [26, Lemma 6.8] and a scaling
argument we have

‖Mfx1

k,K‖20,Ix ≤ Chxk
−1, |Mfx1

k,K |21,Ix ≤ Ch−1
x k3. (50)

Analogous definitions and bounds hold for the other faces of K. Furthermore,
for ϕ ∈ Qk,k(fx1

), we have
∫

K
(Efx1

k,Kϕ)w dx = 0, ∀w ∈ Qk−1,k,k(K). (51)

This follows from the definition of the lifting operators and orthogonality prop-
erties of the Legendre polynomials. Analogous results are valid for the other
faces.

Step 2: Stability on the layer j. Let Mj , 2 ≤ j ≤ n, denote the patch of
elements illustrated in Figure 3. It consists of 6 elements: we denote the inner
elements by Ki, i = 1, 2, 3, and the outer ones by K ′

i, i = 1, 2, 3. The four
interior faces connecting elements {Ki} and {K ′

i} are denoted by f11, f21, f23,
and f33. These faces are entire faces of the inner elements only. The faces
connecting the inner elements are g12 and g23. The exterior faces are denoted
by f1, f ′

1 and f3, f ′
3, respectively. In Figure 4, we show the configuration of the

elements and faces in Mj.

Let q ∈ Qk−1
h (T n,σ

e ; Q̂) for k ≥ 1. We denote q|Ki by qi and q|K′
i
by q′i,

i = 1, 2, 3. Using the lifting operators from Step 1, we define the function
v ∈ Vk

h(T n,σ
e ; Q̂) by

v|K1
= v1 =

(
− hf11E

f11
k−1,K1

(q1 − q′1), 0, 0
)
,

v|K2
= v2 =

(
− hf21E

f21
k−1,K2

(q2 − q′1),−hf23E
f23
k−1,K2

(q2 − q′3), 0
)
,

v|K3
= v3 =

(
0,−hf33E

f33
k−1,K3

(q3 − q′3), 0
)
,
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and by v|K = 0 on the remaining elements of Te. In particular, note that the
function v is equal to zero on the faces adjacent to layer j + 1 and layer j − 1
and satisfies v ∈ Ṽk

h(T n,σ
e ; Q̂).

We first note that
∫
Ki

∇q · v dx = 0, i = 1, 2, 3. This follows from the
definition of v and property (51). We define Bh,Mj (·, ·) and ‖ · ‖0,Mj as in (21)
and (22), respectively. Thus,

Bh,Q̂(v, q) = Bh,Mj (v, q) = −
∫

EI∩Mj

[[[[[[q]]]]]] · {{v}} ds

=
1

2

∑

i=1,2

∫

fi1

hfi1 |[[[[[[q]]]]]]|2 ds+
1

2

∑

i=2,3

∫

fi3

hfi3 |[[[[[[q]]]]]]|2 ds =
1

2
|q|2h,j.

(52)

Next, we bound the norm ‖v‖h,Mj in terms of |q|h,j .
We start by considering the element K1. Writing K1 = Ix× Iy × (−1, 1), we

have

‖∂xv1‖20,K1
= h2

f11 |M
f11
k−1|

2
1,Ix

∫

f11

|[[[[[[q]]]]]]|2 ds ≤ Chf11k
3

∫

f11

|[[[[[[q]]]]]]|2 ds.

Here, we used the second estimate in (50) and the fact that all mesh sizes
are comparable in the underlying two-dimensional mesh T n,σ

xy . Then, from the
inverse estimate for polynomials in [27, Theorem 3.91] and the first estimate in
(50), we have

‖∂yv1‖20,K1
= h2

f11‖M
f11
k−1‖

2
0,Ix

∫

f11

|∂y[[[[[[q]]]]]]|2 ds

≤ Ch3
f11k

−1h−2
f11

k4
∫

f11

|[[[[[[q]]]]]]|2 ds = Chf11k
3

∫

f11

|[[[[[[q]]]]]]|2 ds.

Similarly,

‖∂zv1‖20,K1
= h2

f11‖M
f11
k−1‖

2
0,Ix

∫

f11

|∂z[[[[[[q]]]]]]|2 ds

≤ Ch3
f11k

−1k4
∫

f11

|[[[[[[q]]]]]]|2 ds = Chf11k
3

∫

f11

|[[[[[[q]]]]]]|2 ds.

Again, we used (50) and the inverse estimate in [27, Theorem 3.91] on the
interval (−1, 1) in z–direction.

The same techniques yield the analogous estimates for v on the elements K2

and K3. It remains to bound the jumps of v over the various faces.
We start by considering the jump over f11. Thanks to (16), we have

∫

f11

δ|[[v]]|2 ds ≤ Ck2h−1
f11

∫

f11

h2
f11 |[[[[[[q]]]]]]|

2 ds = Ch2
f11k

2

∫

f11

|[[[[[[q]]]]]]|2 ds.

The jump over f33 can be bounded similarly. Let us now consider the face g12.
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Writing g12 = Ix × {y1}× (−1, 1), we have

∫

g12

δ|[[v]]|2 ds ≤ k2h−1
g12C

∫

g12

h2
f11 |E

f11
k−1,K1

(q1 − q′1)|2 ds

+k2h−1
g12C

∫

g12

h2
f21 |E

f21
k−1,K2

(q2 − q′1)|2 ds

≤ Ck2hf11‖M
f11
k−1‖

2
0,Ix

∫ 1

−1
|[[[[[[q]]]]]]|f11 (y1, z)|

2 dz

+Ck2hf21‖M
f21
k−1‖0,Ix

∫ 1

−1
|[[[[[[q]]]]]]|f21 (y1, z)|

2 dz

≤ Ckh2
f11

∫ 1

−1
|[[[[[[q]]]]]]|f11 (y1, z)|

2 dz + Ckh2
f21

∫ 1

−1
|[[[[[[q]]]]]]|f21 (y1, z)|

2 dz

≤ Ck3hf11

∫

f11

|[[[[[[q]]]]]]|2 ds+ Ck3hf21

∫

f21

|[[[[[[q]]]]]]|2 ds.

Here, we used the definition of v, the fact that all mesh sizes are comparable
in the underlying two–dimensional mesh T n,σ

xy , the L2-bound in (50), and the
inverse estimate in [27, Theorem 3.91] for polynomials.

Exactly the same techniques allow us to bound the jumps over g23, f23, f21,
f1 and f3 in terms of |q|h,j . Finally, the same approach gives bounds for the
top and bottom faces z = ±1.

Combining the above estimates yields

‖v‖2
h,Q̂

= ‖v‖2h,Mj
≤ Ck3|q|2h,j . (53)

Step 3: The assertion. Let q ∈ Qk−1
h (T n,σ

e ; Q̂). On Mj, there is a velocity
field vj that satisfies (52) and (53). We set v =

∑n
j=2 vj . By construction,

v ∈ Ṽk
h(T n,σ

e ; Q̂). Using (52), we find

Bh,Q̂(v, q) =
n∑

j=2

Bh,Q̂(vj , q) =
n∑

j=2

Bh,Mj (vj , q) ≥ C
m∑

j=2

|q|2h,j = C|q|2h.

Furthermore, from (53) and the fact that the support of the fields vj is locally
in the patch Mj, we have ‖v‖2

h,Q̂
≤ C|q|2h. This concludes the proof.
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