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1 Introduction

In order to make the iterative solution of large systems of finite element equa-
tions possible and efficient on parallel architectures, domain decomposition (DD)
techniques have been used extensively in recent years; see, e.g., the monographs
[36, 41]. These methods are by now well-understood in various standard situ-
ations; cf. [2, 4, 9, 18, 19, 20, 31] and the references therein for some work on
hp approximations. However many problems in engineering practice are ”less-
standard” at least for three reasons. First, the required meshes may be highly
anisotropic. This feature is known to be essential to ensure optimal resolution
of boundary layers in fluid dynamics for instance. Secondly, the computational
domains may be highly irregular and complex (see, e.g., [42] where various
industrial applications in computational fluid dynamics and computational me-
chanics are described) or extremely thin (such as plates, shells, and thin films).
Finally the equations may be singularly-perturbed due to the presence of small
parameters, as in, e.g., convection dominated flows or shells.

In the worst case, the possible combination of these factors can lead to pro-
hibitively large condition numbers for the stiffness matrix and efficient iterative
solvers are thus needed. Many crucial issues still need to be addressed and
solved in order to obtain robust iterative solvers on highly anisotropic meshes
and very thin domains for both regular and singularly-perturbed problems; see,
e.g., [24, 26] for some work for p-finite elements on thin domains. The goal
of this and of our previous paper [44] is to present a first preliminary analy-
sis and numerical study on some domain decomposition methods of iterative
substructuring type.

Balancing Neumann-Neumann [25] and one-level Finite Element Tearing and
Interconnecting (FETI) [16] methods are considered in this work. They rely on
a non-overlapping partition into subdomains (substructures). They are among
the most popular domain decomposition methods for the iterative solution of
algebraic systems arising from the finite element approximation of elliptic par-
tial differential equations and present certain advantages over other iterative
substructuring methods, like, for instance, the fact that the subdomain par-
tition does not need to be a coarse mesh but very general substructures can
be considered, and that they can equivalently be employed for two and three
dimensional problems. In addition, they share many algorithmic components
such as suitable scaling matrices built with the coefficients of the partial differ-
ential equation, local solvers for both Neumann and Dirichlet problems on the
substructures, and the use of a coarse space to ensure scalability where basis
coarse functions are associated to the single substructures. Both methods lead
to positive definite preconditioned operators on appropriate subspaces allowing
the use of Conjugate Gradient as an iterative solver [7]. A recent theoretical
study has been developed in [44], where the authors proposed some efficient
iterative substructuring methods for hp finite element approximations on two-
dimensional geometrically refined meshes. The main focus in [44] is robustness
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with respect to arbitrarily high aspect ratio of the mesh. The main theoretical
result of that work is that certain Balancing Neumann-Neumann and one-level
FETI methods provide condition numbers independent of the aspect ratio of the
mesh and of potentially large jumps of the coefficients, still retaining a polylog-
arithmic growth in the number of unknowns. This theoretical analysis has been
developed on a simple diffusion problem and few numerical experiments on a
singularly-perturbed reaction-diffusion problem have also been provided. Both
preconditioners have been found to be robust with respect to the perturbation
parameter and the aspect ratio of the mesh. The goal of this paper is to provide
an extensive numerical study to show that the theoretical bounds proven in [44]
also appear to hold for different and more complicated elliptic problems possibly
of singularly-perturbed type.

The remainder of this paper is organized as follows: in section 2, we intro-
duce the model problem for our proposed numerical study. In sections 3 and
4, hp finite element approximations and a class of geometrically refined meshes,
respectively, are introduced. Our domain decomposition preconditioners are
described in section 5. In section 6 we present some bounds on the condi-
tion number of certain unpreconditioned and preconditioned operators, while
an extensive numerical study is presented in section 7. We end this work by
mentioning some perspectives and future developments in section 8.

2 Problem setting

In this paper, we consider the following linear elliptic problem on a bounded
polygonal domain Ω ⊂ R2 :

−εx
∂

∂x
(ρx

∂u

∂x
)− εy

∂

∂y
(ρy

∂u

∂y
) + c u = f, in Ω,

u = uD, on ∂Ω
(1)

where (ρx, ρy) are real and positive diffusion coefficients, (εx, εy) are real and
positive, possibly small, constants and c is a non-negative reaction coefficient.
Throughout this paper we refer to this problem as Problem (M). We note that,
if c > 0 and the source term f is not compatible with the boundary datum uD,
Problem (M) does not admit a solution for εx = 0 or εy = 0 and a boundary
layer of width

√
εx or

√
εy is present along ∂Ω for small values of the parameters.

Thus highly refined meshes near ∂Ω are needed to ensure robust exponential
convergence of the approximate solution; see, e.g., [30, 39, 40].

In our work, Ω is chosen as the unit square (0, 1)2, although the theoretical
analysis provided in [44] is valid for more general polygonal domains. For sim-
plicity, we only consider Dirichlet boundary conditions, but more general Neu-
mann or mixed boundary conditions can also be used. The constants (εx, εy)
can be arbitrarily small in some problems and this leads to a class of singularly-
perturbed problems. The coefficients (ρx, ρy) can be discontinuous, with very
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different values for different subregions of Ω. Finally the scalar function c may
arise from a finite difference discretization of a time derivative for example. We
also note that purely diffusive problems correspond to the case c = 0.

Remark 2.1 Problem (M) is only a model problem for certain diffusion-reaction
phenomena. Convection-dominated problems are another important class of
problems that may require highly stretched meshes and thus can be relevant to
test the performances of our domain decomposition preconditioners. Neverthe-
less this study is left to a future work. We note however that the Robin-Robin
and FETI methods developed for scalar advection-diffusion problems in [1] and
[43], respectively, can be employed.

3 hp finite element approximations

Given an affine quadrilateral mesh T of Ω and a polynomial degree k ≥ 1, we
consider the following finite element space

Xk(Ω; T ) =
{

u ∈ H1(Ω) | u|K ∈ Qk(K), K ∈ T
}

. (2)

Here H1(Ω) is the space of square summable functions with square summable
first derivatives and Qk(K) is the space of polynomials of maximum degree k
in each variable on K. In this paper, interpolating Lagrange polynomials on
Gauss-Lobatto nodes are used as a particular nodal basis ofXk(Ω; T ). We recall
that the set of Gauss-Lobatto points GLL(k) is the set of (distinct and real)
zeros of (1 − x2)L′

k−1(x), with Lk−1 the Legendre polynomial of degree k − 1
(cf. [8, Sect. 3]) and that the quadrature formula based on GLL(k) has order
2k − 1. Exact numerical integration is adopted in this work. Thus quadrature
formulas based either on GLL(k) for purely diffusive problems or GLL(k + 1)
for reaction-diffusion problems are chosen. Given the nodes GLL(k)2 on the
reference element Q̂ = (−1, 1)2, our basis functions on Qk(Q̂) are defined as the
tensor product of k-th order Lagrange interpolating polynomials on GLL(k).
More details on spectral element methods can be found in, e.g., [8] for instance.

Irregular meshes can be employed for conforming hp finite element approxi-
mations. We recall that the mesh T is said to be regular if the intersection be-
tween neighboring elements is either a vertex or an entire edge of both elements.
We only consider regular meshes in this work. Indeed, we cannot treat irregu-
lar meshes with hanging nodes yet. This restriction, explained in [44] in more
details, is due to the difficulty in the construction of iterative substructuring
methods in presence of hanging nodes, especially when they lie on the interface
between subdomains. Presently, we are unaware of any domain decomposition
method of iterative substructuring type that can be applied to approximations
on irregular meshes and that leads to the same condition number bounds (17)
and (23). This issue is left to a future work and seems to be crucial, especially
for three-dimensional applications; see also Section 4 for additional comments.
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The spectral polynomial degree k is also assumed to be the same on all the
elements in our experiments.

4 Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically graded
meshes can be employed. They are determined by a mesh grading factor
σ ∈ (0, 1) and by the refinement level n. The number of layers is n + 1 and
the thinnest layer has a width proportional to σn. With an abuse of notation,
we refer to n as the number of layers in the following. Robust exponential con-
vergence of hp finite element approximations is achieved if n is suitably chosen.
For singularity resolution, n is required to be proportional to the polynomial de-
gree k; see [3, 5]. In the presence of boundary layers, the width of the thinnest
layer needs to be comparable to that of the boundary layer; see [30, 39, 40].
In practical applications, for boundary layers of fixed width, and corner (and
edge, in three dimensions) singularities, n is usually chosen proportional to the
polynomial degree k, with the assumption that k is sufficiently large.

A two-dimensional geometric boundary layer mesh T = T n,σ
bl is, roughly

speaking, the tensor product of meshes that are geometrically refined towards
the edges; see Figures 4 and 6 for two examples of meshes refined towards two
edges.

The mesh T is built by first considering an initial, shape-regular macro-trian-
gulation T 0 which is successively refined. Every macroelement can be refined
isotropically or anisotropically in order to obtain edge or corner patches. Here,
we only describe patches obtained by triangulating the reference square Q̂ := I2,
with I := (−1, 1). A patch for an element K0 ∈ T 0 is obtained by using an
affine mapping FK0 : Q̂ → K0.

Edge and corner patches are given by anisotropic triangulations of the
form

Te := {I ×Ky | Ky ∈ Ty}, Tc := {Kx ×Ky | Kx ∈ Tx, Ky ∈ Ty},

respectively, where Tx and Ty are meshes of I, geometrically refined towards one
vertex (say −1), with grading factor σ ∈ (0, 1) and n layers; see Figure 6, for a
mesh with σ = 0.5 and n = 6. More precisely, Tx and Ty are built recursively, by
subdividing the element that contains the vertex −1 into two smaller intervals
in a σ : (1 − σ) ratio.

The number of degrees of freedom associated to one single element is O(k2).
The number of elements in an edge and corner patch with n layers is O(n) and
O(n2), respectively. Consequently, if n = O(k), as is required for exponential
convergence, the corresponding FE spaces have O(k3) and O(k4) degrees of
freedom, respectively.

A geometric boundary layer mesh T satisfies the following properties:
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Property 4.1 T is obtained from an initial shape-regular coarse mesh T 0 (macromesh)
by local isotropic or anisotropic refinement.

Property 4.2 Anisotropic refinement is always performed towards the bound-
ary ∂Ω of the computational domain Ω and never towards the interior.

Figures 4 and 6 highlight these features. Both properties appear so far to be
essential to derive efficient iterative substructuring methods; see section 6 and
[44] for more details.

We note that boundary layer meshes are regular and can also be employed in
polygonal domains when no boundary layers, but only singularities are present.
However, only refinement towards corners is necessary in this case. This can
be done more efficiently by considering coarser irregular meshes, geometrically
refined only towards corners, which still provide the same accuracy with fewer
elements; see, e.g., Figure 2 in [44]. In this case, a corner patch has indeed O(n)
elements and thus only O(k3) degrees of freedom.

5 Iterative substructuring methods

Given a geometric boundary layer mesh T and a spectral polynomial degree
k, a function u ∈ Xk(Ω; T ) is expanded using the basis functions described in
section 3. The finite element approximation of Problem (M) thus leads to a
linear system

Au = b ,

with A symmetric, positive-definite. The condition number of A can be huge for
large values of k and n (see section 6) and efficient and robust preconditioners are
therefore often mandatory. We investigate Balancing Neumann-Neumann ([25])
and one-level FETI ([16]) iterative methods. A presentation is given in sections
5.2 and 5.3. The theoretical bounds for the condition numbers are presented
in sections 5.2.3 and 5.3.3 respectively without proof. We refer the reader to
[44] for their derivation. More general information on domain decomposition
methods can be found in the monographs [36, 41].

5.1 Subdomain partitions

Iterative substructuring methods rely on a non-overlapping partition of Ω, T DD =
{Ωi}, into substructures. Let N denote the number of substructures with Hi

the diameter of Ωi and H = max(Hi) the maximum of their diameters. A sub-
domain Ωi is called floating if the intersection of ∂Ωi with ∂Ω is empty. We
define the boundaries Γi = ∂Ωi \ ∂Ω and the interface Γ as their union. The
sets of Gauss-Lobatto nodes and the corresponding degrees of freedom on ∂Ωi,
Γ, and ∂Ω are denoted by ∂Ωi,h, Γh, and ∂Ωh, respectively.

In this work, the main geometric assumption on the substructures is that
they be shape-regular. This property appears to be essential to obtain the
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condition number bounds presented in sections 5.2.3 and 5.3.3. Indeed, Property
4.1 allows us to fulfill this condition easily by choosing the macromesh as the
subdomain partition:

T DD = T 0.

A consequence of Property 4.2 is then that, when two substructures share an
interior vertex, the local meshes are shape-regular in the neighborhood of this
vertex, since anisotropic refinement is only performed towards the boundary
∂Ω. This property also appears to be essential to obtain the condition number
bounds in sections 5.2.3 and 5.3.3.

5.2 Balancing Neumann-Neumann methods

5.2.1 Derivation

After subassembling, the stiffness matrix A is reordered according to the domain
decomposition partitioning. The nodal points interior to the substructures (sub-
set I) are ordered first, followed by those on the interface Γ (subset Γ). Similarly,
for the local stiffness matrix relative to a substructure Ωi, we have

A(i) =

(

A(i)
II A(i)

IΓ

A(i)
ΓI A(i)

ΓΓ

)

.

First, the unknowns in the interior of the substructures are eliminated by
block Gaussian elimination. In this step, the Schur complement S = SNN with
respect to the interior variables is formed. The resulting linear system for the
nodal values on Γ can be written as

SNN uΓ = gΓ. (3)

Given the local Schur complement associated to the substructure Ωi

Si = A(i)
ΓΓ −A(i)

ΓIA
(i)−1

II A(i)
IΓ (4)

and the local right-hand side

gΓi = bΓi − A(i)
ΓIA

(i)−1

II b(i)I ,

the global Schur complement can be written as

S = SNN =
N
∑

i=1

RT
i SiRi (5)

and the corresponding right-hand side gΓ as

gΓ =
N
∑

i=1

RT
i gΓi , (6)
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where the restriction matrix Ri is a matrix of zeros and ones which extracts the
variables on the local interface Γi from a vector of nodal values on Γ.

The Balancing Neumann-Neumann preconditioner Ŝ−1 [25] gives a precon-
ditioned operator PNN of the following form

PNN = Ŝ−1SNN = P0 + (I − P0)(
N
∑

i=1

Pi)(I − P0). (7)

Here P0 is associated to a low dimensional global coarse problem, whereas each
operator Pi is associated to one substructure. More precisely, the local operators
Pi are defined as:

Pi = RT
i DiS

†
iDiRiSNN , (8)

where the matrices Di are diagonal and S†
i denotes either the inverse of Si, if Si

is non-singular as for reaction-diffusion problems or for subdomains that touch
∂Ω, or a pseudoinverse of Si, if Si is singular as for floating domains and purely
diffusive problems. In our experiments we employ the Moore-Penrose pseudo-
inverse in [17]. In order to define the matrices {Di}, we need to introduce a
weighted counting function δi, which is associated to Ωi and is piecewise linear
on Γi; cf. [11, 12, 25, 32, 37]. It is defined for γ ∈ [1/2,∞) and, is determined
by a sum of contributions from Ωi and its relevant next neighbors,

δi(xl) =
∑

j∈Nxl

(

a(j)ll /a(i)ll

)γ

, xl ∈ Γi,h , (9)

where a(i)ll denotes the l-th element of the diagonal of the local stiffness matrix
A(i) andNxl

, xl ∈ Γh, is the set of indices j of the subregions such that xl ∈ Γj,h.

In case c = 0, we choose ρi and ρj instead of a(i)ll and a(j)ll . We have chosen

γ = 1 for our numerical experiments. The pseudoinverses δ†i are defined, for
x ∈ Γi,h, by

δ†i (x) = δ−1
i (x), x ∈ Γi,h. (10)

We note that these functions provide a partition of unity:

N
∑

i=1

RT
i δi

†(x) ≡ 1. (11)

Let Di be the diagonal matrix with elements δ†i (x) corresponding to the nodes
in Γi,h.

The coarse space is defined as

V0 = span{RT
i δ

†
i },
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where the span is taken over at least all the floating subdomains. We denote by
RT

0 the prolongation from the coarse to the global space. In analogy with (8),
the coarse operator P0 is defined as:

P0 = RT
0 S

−1
0 R0SNN , (12)

where S0 = R0SNNRT
0 denotes the restriction of SNN to that coarse space.

We refer the reader to [44] for more details. In this work, we have only con-
sidered exact solvers for the local and global problems. Consequently, P0 is an
orthogonal projection; cf. [41].

5.2.2 Algorithm

According to (3) and (7), the preconditioned system can be written in the
following form:

PNNu = Ŝ−1gΓ. (13)

Since P0 is a projection, we have

P0(I − P0) = 0.

Thus a decomposition of the exact solution u of (13) as

u = P0u+ w, P0u = RT
0 S

−1
0 R0gΓ, (14)

with w ∈ Range(I − P0), leads to the following new formulation of (13):

(I − P0)(
N
∑

i=1

Pi)(I − P0)w = Ŝ−1gΓ − P0u, w ∈ Range(I − P0). (15)

One can easily check that SNNP0 = PT
0 SNN , and thus the matrix in (15)

can also be written as

(I − P0)(
N
∑

i=1

Pi)(I − P0) =
[

(I − P0)(
N
∑

i=1

RT
i DiS

†
iDiRi)(I − PT

0 )
]

SNN ,

which gives the expression of the preconditioner Ŝ−1. Consequently, the Bal-
ancing Neumann-Neumann method reduces to a projected preconditioned Con-
jugate Gradient method in the space Range(I − P0) applied to the system:

[

(I − P0)(
N
∑

i=1

RT
i DiS

†
iDiRi)(I − PT

0 )
]

SNN w = Ŝ−1gΓ − P0u (16)

if an initial guess u0 = P0u + w̃, with w̃ ∈ Range(I − P0), is chosen. The
projected Conjugate Gradient method is presented in Table 1. In this table
〈·, ·〉 denotes the Euclidean inner product. Thanks to (14) and to the choice of
u0, the first projection step, corresponding to the application of I −PT

0 , can be
omitted in practice.
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1. Initialize
u0 = RT

0 S
−1
0 R0gΓ + w̃, w̃ ∈ Range(I − P0)

q0 = gΓ − SNN u0

2. Iterate j = 1, 2, · · · until convergence

Project: wj−1 = (I − PT
0 )qj−1

Precondition: zj−1 =
N
∑

i=1
RT

i DiS
†
iDiRiwj−1

Project: yj−1 = (I − P0)zj−1

βj = 〈yj−1, wj−1〉/〈yj−2, wj−2〉 [β1 = 0]

pj = yj−1 + βjpj−1 [p1 = y0]

αj = 〈yj−1, wj−1〉/〈pj , SNN pj〉
uj = uj−1 + αj pj

qj = qj−1 − αjSNN pj

Table 1: Balancing Neumann-Neumann algorithm.

We remark that the matrices SNN and S†
i do not need to be calculated in

practice. The action of SNN on a vector requires the solution of a Dirichlet

problem on each substructure (application of the inverse of A(i)
II ), while the

action of S†
i can be calculated by applying a pseudo-inverse of A(i) to a suitable

vector, corresponding to the solution of a Neumann problem; see [41, Chap 4.].
Thus one step of the algorithm in Table 1 involves one application of P0, the
solution of local Neumann problems on each substructure (S†

i ) and the solution
of local Dirichlet problems (SNN ). Since the application of P0 also involves an
application of SNN and the solution of a coarse problem, the total amount of
work per step is given by one Neumann and two Dirichlet problems on each
substructure and one coarse problem.

5.2.3 Condition number bound

A bound for the condition number of the preconditioned operatorPNN restricted
to the subspace Range(I − P0), to which the iterates are confined, has been
proven in [44] for the case (ρx, ρy) = (ρ, ρ), (εx, εy) = (1, 1), and c = 0. We have

κ(PNN ) ≤ C (1− σ)−4

(

1 + log

(

k

1− σ

))2

, (17)

where the constant C is independent of the spectral polynomial degree k, the
level of refinement n, the mesh grading factor σ, the coefficients ρ, and the
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diameters of the substructures Hi. We note that κ(PNN ) does not depend on
the number of substructures or the aspect ratio of the mesh and only depends
polylogarithmically on the spectral polynomial degree k as in the p version on
shape-regular meshes. Finally, we remark that σ is bounded away from one and
zero in practice.

5.3 One-level FETI methods

FETI methods were first introduced in [16]. Since then, considerable work has
been done on FETI methods and many variants and improvements have been
proposed. We refer to [15] for a detailed introduction and to [22, 27] for the
analysis of one-level FETI methods.

5.3.1 Derivation

For brevity, we only present the one-level FETI method in the case of purely
diffusive problems. We refer to section 5.3.4 for some details in the case of
reaction-diffusion problems, i.e., when the local matrices A(i) are invertible.
Instead of solving the Schur complement system (3), a FETI method uses a
space of discontinuous functions across the interface Γ. The continuity of the
solution is then enforced by using a vector of Lagrange multipliers and this leads
to the saddle-point formulation

SFuF +BTλ = gF
BuF = 0

}

, (18)

with

uF =











u(1)

u(2)

...
u(N)











, SF =













S1 O · · · O

O S2
. . .

...
...

. . .
. . . O

O · · · O SN













, gF =











g(1)

g(2)

...
g(N)











where each diagonal block of SF is a Schur complement matrix of the form (4)
and B a matrix consisting of (−1, 0, 1) that enforces the continuity of the solu-
tion at the interfaces between the substructures. In this work, non-redundant
Lagrange multipliers have been considered; thus the matrix B has full rank. In
addition, we denote by R the full-column rank matrix built from all the non-void
null space elements of SF , i.e., those Si corresponding to floating subdomains:

R =













r1 O · · · O

O r2
. . .

...
...

. . .
. . . O

O · · · O rNf
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where Nf denotes the number of floating domains. In fact, for Problem (M)
the columns of R span the kernel of SF . We also define G = BR. In the next
step we eliminate the primal variable uF in (18) and derive an equation for the
Lagrange multiplier λ only. This leads to

uF = SF
†(gF −BTλ) +Rα, (gF −BTλ) ⊥ Kernel(SF ),

with S†
F denoting a pseudo-inverse of SF and

Fλ−Gα = d
GTλ = e

}

, (19)

with F = BSF
†BT , d = BSF

†gF , and e = RT gF . After introducing a suitable
orthogonal projection operator P onto the orthogonal complement of Range(G)
and a preconditioner M−1 (both defined below), the one-level FETI method
reduces to the preconditioned Conjugate Gradient method applied in the space
of Lagrange multipliers to the following system:

PM−1PTFλ = PM−1PTd, (20)

with an initial approximation λ0 that satisfies the second of (19). We can choose

λ0 = QG(GTQG)−1RT gF + w̃, w̃ ∈ Range(P ) , (21)

where Q is a symmetric invertible matrix to be chosen. Here P is an orthogonal
projection operator defined as P = I −QG(GTQG)−1GT .

Many choices have been proposed for the preconditionerM−1 and the matrix
Q. The choice

M−1 = (BD−1BT )−1BD−1SFD
−1BT (BD−1BT )−1, Q = M−1 (22)

ensures a condition number that is independent of the jumps in the coefficients;
see [22]. Here D is a block diagonal matrix: each block Di corresponds to one
substructure Ωi, and is equal to the local scaling matrix introduced in section
5.2.1.

5.3.2 Algorithm

The FETI method is a projected preconditioned Conjugate Gradient method
in the space of Lagrange multipliers Range(P ) applied to the system (20) with
an initial approximation chosen as in (21). This algorithm is given in Table 2.
Note that due to the choice of the initial iterate λ0, the first projection step
(application of PT ) can be omitted in practice.
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1. Initialize
λ0 = QG(GTQG)−1RT gF + w̃, w̃ ∈ Range(P )

q0 = d− F λ0

2. Iterate j = 1, 2, · · · until convergence

Project: wj−1 = PT qj−1

Precondition: zj−1 = M−1wj−1

Project: yj−1 = Pzj−1

βj = 〈yj−1, wj−1〉/〈yj−2, wj−2〉 [β1 = 0]

pj = yj−1 + βjpj−1 [p1 = y0]

αj = 〈yj−1, wj−1〉/〈pj , Fpj〉
λj = λj−1 + αjpj

qj = qj−1 − αjFpj

Table 2: FETI algorithm.

We remark that F and M−1 do not need to be calculated in practice. The
action of M−1 on a vector basically requires the solution of a Dirichlet problem
on each substructure (application of SF , and thus the Si). Indeed, the ma-
trix BD−1BT is block diagonal: each block corresponds to a node on Γ and
its dimension is equal to the number of constraints imposed on that node by
the second of (18): it can then be easily inverted. The action of F can be
calculated by solving Neumann problems on the substructures (application of
the pseudoinverses S†

i ). Finally, one application of P is required at each step
and involves the solution of a coarse problem (application of (GTQG)−1) and
an additional application of M−1. The total amount of work per step is then
comparable to that of the Neumann-Neumann algorithm and requires the solu-
tion of one Neumann and two Dirichlet problems on each substructure and one
coarse problem.

5.3.3 Condition number bound

We denote by PF = PM−1PTF the preconditioned operator in system (20). A
bound for the condition number of PF restricted to the appropriate subspace
Range(P ) to which the iterates are confined has been proven in [44] for the case
(ρx, ρy) = (ρ, ρ), (εx, εy) = (1, 1) and c = 0:

κ(PF ) ≤ C (1− σ)−4

(

1 + log

(

k

1− σ

))2

. (23)
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We stress the fact that the constant in the estimate is independent of k, n, σ,
the coefficients ρ and the diameters Hi of the substructures. Note that κ(PF )
does not depend on the number of substructures or the aspect ratio of the mesh
and only depends polylogarithmically on the spectral polynomial degree.

5.3.4 Reaction-diffusion problems

In the case of reaction-diffusion problems, the local Schur complements (4) and
thus SF are always non-singular. Thus the modification for one-level FETI
methods proposed in [13] has been employed. The system for the Lagrange
multiplier λ (19) is now replaced by Fλ = d with F = BS−1

F BT and d =
BS−1

F gF . Following [43], a new projection operator P can be defined as

P = I −QG(GTQFQG)−1GTQF.

With these new notations, the preconditioned system can be written as in
(20) with now an initial guess of the form:

λ0 = QG(GTQFQG)−1GTQd+ w̃, with w̃ ∈ Range(P ).

The same preconditioner M−1 and scaling matrix Q as in (22) are employed.
Our domain decomposition operators have condition numbers that are indepen-
dent of the jumps in the coefficients; see section 7.6.2.

We note that a new class of FETI methods has recently been introduced,
the so-called dual-primal FETI methods; see [14]. In two dimensions variables
associated to the vertices of the substructures are eliminated together with the
internal degrees of freedom. The constrained problem in (18) only involves de-
grees of freedom in the interior of the edges of the subdomains and the resulting
Schur complement SF is now invertible. The equation for the Lagrange multi-
plier λ is now: Fλ = d, instead of (19). The same preconditioner M−1, which
gives the preconditioned operatorM−1F . We refer to [28, 23] for the analysis of
certain dual primal FETI methods. One of the main advantages of dual-primal
FETI methods is that they can be implemented in exactly the same way for
purely diffusive and reaction-diffusion problems, since the local Schur comple-
ments are always invertible. In addition, they do not require the introduction of
the projection P and thus of a scaling matrix Q. These methods can be defined
for our approximations as well and the proof can be carried out as in [28, 23].

6 Remarks on condition numbers

In this section we make some remarks on what type of condition number bounds
can be expected for S and some iterative substructuring methods. Our upper
bounds are then confirmed by the numerical experiments in section 7.
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We consider a simple Laplace problem, corresponding to the choice (εx, εy) =
(1, 1), (ρx, ρy) = (1, 1), and c = 0 in Problem (M). The analysis in [29] for gen-
eral shape-regular, quasi-uniform meshes and nodal basis functions on Gauss-
Lobatto nodes can be applied to the case T DD = T 0 = T and ensures a growth
like k/h2 for κ(S), where h denotes the diameter of the fine triangulation; cf.
section 7.1 and Figure 1. We note that in this case H = h. On the other hand,
following [10], where estimates for h approximations are provided, we expect a
growth like k/(hH), for the case of shape-regular and quasi-uniform meshes and
more general partitions into subdomains.

For meshes that are not shape regular or quasi-uniform, h needs to be re-
placed by a characteristic minimum size of the elements. For our geometrically
refined meshes we have h ∼ σnH , and thus

κ(S) ≤ C
k

hH
∼ C

k

H2
(1/σ)n ∼ C

k

H2
(1/σ)k, (24)

with n ∼ k as required for exponential convergence in the presence of singular-
ities. We then expect that the condition number of S grows exponentially with
k and linearly in the number of subdomains (N ∼ (1/H)2). This is consistent
with the results in section 7.4; see Figure 5 in particular.

For quasi-uniform and shape-regular meshes iterative substructuring meth-
ods generally lead to condition numbers varying as a power of log(kH/h) for hp
finite element approximations; see, e.g., [2, 4, 9, 18, 19, 20, 31]. Such estimates
usually rely on stable decompositions of finite element functions into terms as-
sociated to geometrical objects. In two dimensions they typically involve terms
associated to edges and internal vertices; see, e.g., [44, Eq. 29]. When the local
meshes are not quasi-uniform, the mesh size h in the ratio must be replaced
by a characteristic minimum size of the elements in the neighborhood of inter-
nal vertices. Property 4.2 ensures that anisotropic refinement is only carried
out towards ∂Ω and thus far from the internal vertices of the subdomains. By
construction, in the neighborhood of a vertex, the ratio H/h is bounded by
(1 − σ)−1. This explains the bounds for the condition numbers of our pre-
conditioned Neumann-Neumann and FETI operators in (17) and (23). These
estimates are confirmed by our numerical experiments.

In our tests, we have also considered more general meshes than those intro-
duced in section 4. Indeed, certain problems may require geometric refinement in
the interior of the computational domain; see section 7.5. In this case, h ∼ Hσn

and we thus expect

κ(PNN ) ∼ κ(PF ) ≤ C

(

1 + log

(

kH

h

))2

∼ C
(

1 + log
(

kσ−n
))2 ≤ C k2,

with n ∼ k. We note that the condition number bound is in this case quadratic
with the polynomial degree, but it provides however an improvement over the
exponentially varying one of the original Schur complement. Indeed, the results

14



in section 7.5 are consistent with a linear growth in k and very small iteration
counts are obtained in practice.

7 Numerical experiments

The purpose of this section is to investigate the convergence behaviour of Bal-
ancing Neumann-Neumann (denoted byNN) and of one-level FETI (denoted by
FETI) methods when applied to six sets of elliptic problems - all derived from
Problem (M). Particular attention is devoted to a comparison between the con-
dition numbers κ(PNN ) and κ(PF ) obtained numerically and the corresponding
theoretical bounds (17) and (23). The six problems considered are derived from
Problem (M) defined in section 2 by an appropriate choice of the coefficients
(εx, εy, ρx, ρy, c). The first three test cases (Problems I, II, III) are standard
test problems for domain decomposition preconditioners; see [25, 33, 41]. These
problems defined on shape-regular and uniform meshes have been chosen here
as a first evaluation step before tackling more involved problems. The last three
test cases (Problems IV, V, VI) are defined on highly anisotropic meshes (ex-
cept those in section 7.6.2). These more difficult problems have been chosen as
a natural extension of Problems I and II approximated on highly anisotropic
meshes.

Results for the two unpreconditioned systems (κ(SNN ) and κ(F ) , respec-
tively) have also been included to provide an idea of the difficulty of the prob-
lems. These condition numbers are obtained by computing the eigenvalues of
the tridiagonal symmetric Lanczos matrix built by the Conjugate Gradient (CG)
iterative process; see [7] for details. The minimum and maximum eigenvalues
(λmin and λmax, respectively) are also reported. The number of iterations It to
reduce the Euclidean norm of the residual ‖r‖2 by fourteen orders of magnitude

‖rIt‖2/‖r0‖2 ≤ 10−14 (25)

is also reported. We have chosen this rather strict stopping criterion, since the
primal solution in the FETI formulation is only continuous at convergence. As
initial guess, a zero initial field (w̃ = 0 in Tables 1 and 2) is used for all problems.
Finally in these numerical experiments uD has been chosen as an analytical
function that leads to non-homogeneous Dirichlet boundary conditions. All the
numerical experiments presented here have been carried out in Matlab 6.1.

7.1 Problem I: a Laplace problem

In order to have reference results for later comparison (Problem IV), we have
first considered the Laplace operator with inhomogeneous Dirichlet boundary
conditions ((εx, εy) = (1, 1), (ρx, ρy) = (1, 1), c = 0 in Problem (M)):

−∆u = f, in Ω,
u = uD, on ∂Ω.

(26)
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The source term f is derived in such a way that uD is the exact solution of this
problem. The unrefined T mesh is of Cartesian type and consists of Nx × Ny

rectangles. Since in Problems I, II, and III unrefined meshes are used, T DD and
T are identical. Thus the total number of substructures is N = Nx ×Ny.

The results for the Balancing Neumann-Neumann and FETI preconditioners
are shown in Table 3 and Table 4, respectively. In the upper half of the tables,
the number of substructures is kept fixed (Nx ×Ny = 3× 3), while the spectral
polynomial degree k is varying from 2 to 12. In the lower half the spectral
degree k is fixed to 4, while the number of substructures is increased from 2× 2
to 12×12. The first four columns report the iteration counts required to satisfy
the stopping criterion (25), the maximum and minimum eigenvalues, and the
condition number for the unpreconditioned operators SNN and F . The next four
columns show the same data, when Balancing Neumann-Neumann or one-level
FETI methods are employed with CG.

The condition number of the unpreconditioned Schur operator κ(SNN ) is
plotted in Figure 1. As expected (cf. section 6), κ(SNN ) grows like k when
the number of substructures is fixed (Figure 1, right), while κ(SNN ) grows like
1/H2 when the spectral degree is fixed (Figure 1, left). Whatever the choice
of the preconditioner, the iteration count for preconditioned CG appears to
be bounded independently of Nx ×Ny; see lower parts of Tables 3 and 4. The
condition numbers κ(PNN ) and κ(PF ) are plotted in Figure 2 versus the spectral
polynomial degree. As expected, the growth is quadratically in log(k). Also note
that the minimum eigenvalues of PNN and PF satisfy the lower bounds proven
in [44, Lemmas 6.2 and 6.4], respectively. Unless otherwise stated, this feature
will also be true for the other problems investigated in this paper. Note finally
that the condition numbers presented in Table 3 are in good agreement with
those obtained in [33, Table 6.1] for the same problem. As for Table 4, we are
unaware of any theoretical or numerical study on FETI methods for spectral
element approximations.

7.2 Problem II: a Laplace problem with jump coefficients

The theoretical bounds for the condition number provided in (17) and (23) are
independent of arbitrary jumps on the coefficients between the substructures.
The purpose of this test case, also considered in [25] is to check this prop-
erty. Therefore the following problem, corresponding to the choice (εx, εy) =
(1, 1), c = 0, f = 1 in Problem (M), has been considered

−∇ · (ρ∇u) = 1, in Ω,
u = uD, on ∂Ω,

(27)

where the coefficient ρ = ρx = ρy possibly changes between the substructures
by many orders of magnitude. Non-homogeneous Dirichlet boundary conditions
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Fixed number of substructures Nx ×Ny = 3× 3

No preconditioning NN

k It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
2 9 5.3161 0.6667 7.9741 6 1.076 1 1.076

3 19 5.6508 0.3964 14.2544 9 1.4364 1 1.4364

4 26 5.7291 0.28 20.4629 10 1.7542 1 1.7542

5 31 5.7737 0.2157 26.7612 11 2.1137 1 2.1137

6 34 5.8029 0.1752 33.1169 12 2.4471 1 2.4471

7 38 5.8264 0.1474 39.5316 13 2.7688 1 2.7688

8 42 5.8465 0.1271 45.995 13 3.07 1 3.07

9 45 5.8644 0.1117 52.5011 13 3.3575 1 3.3575

10 48 5.8807 0.0996 59.0453 14 3.629 1 3.629

11 52 5.896 0.0898 65.624 14 3.8884 1 3.8884

12 55 5.9103 0.0818 72.2349 14 4.1352 1 4.1352

Fixed spectral degree k = 4

No preconditioning NN

Nx ×Ny It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
2 x 2 10 5.5968 0.544 10.2891 3 1.5034 1 1.5034

3 x 3 26 5.7291 0.28 20.4629 10 1.7542 1 1.7542

4 x 4 36 5.7773 0.1655 34.9023 14 1.8179 1 1.8179

5 x 5 45 5.8 0.1084 53.5172 16 1.8528 1 1.8528

6 x 6 57 5.8124 0.0762 76.287 16 1.8725 1 1.8725

7 x 7 67 5.8199 0.0564 103.2052 16 1.8854 1 1.8854

8 x 8 76 5.8248 0.0434 134.269 16 1.8939 1 1.8939

9 x 9 85 5.8281 0.0344 169.477 16 1.8998 1 1.8998

10 x 10 94 5.8305 0.0279 208.8288 16 1.9041 1 1.9041

11 x 11 103 5.8323 0.0231 252.3238 16 1.9073 1 1.9073

12 x 12 111 5.8336 0.0194 299.9618 16 1.9098 1 1.9098

Table 3: Laplace problem. Conjugate Gradient method for the Schur com-
plement system without preconditioning and with Neumann-Neumann precon-
ditioner: iteration counts, maximum and minimum eigenvalues, and condition
numbers versus polynomial degree and number of subdomains, respectively.

uD have also been considered. Given a partition of Ω into Nx×Ny substructures
(T = T DD = Nx ×Ny), a checkerboard distribution is considered for ρ which
is equal to either ρ1 or ρ2 as in [25].

17



Fixed number of substructures Nx ×Ny = 3× 3

No preconditioning FETI

k It λmax λmin κ(F ) It λmax λmin κ(PF )
2 24 8.309 0.57385 14.4793 9 2.0516 1.0002 2.0512

3 36 11.089 0.62896 17.6308 11 2.7284 1.0001 2.7281

4 39 13.685 0.64515 21.2113 12 3.4415 1.0002 3.4409

5 42 16.263 0.65642 24.7761 12 4.0378 1.0003 4.0364

6 44 18.867 0.65997 28.5881 12 4.5902 1.0003 4.5888

7 48 21.51 0.66639 32.2776 14 5.0849 1.0001 5.0843

8 47 24.186 0.66492 36.3747 13 5.5443 1.0007 5.5404

9 52 26.892 0.67048 40.1091 14 5.9669 1.0006 5.9633

10 50 29.622 0.66676 44.427 14 6.3628 1.0011 6.3558

11 56 32.37 0.67049 48.2788 15 6.7327 1.0009 6.7267

12 53 35.134 0.66716 52.6613 15 7.0821 1.0016 7.0708

Fixed spectral degree k = 4

No preconditioning FETI

Nx ×Ny It λmax λmin κ(F ) It λmax λmin κ(PF )
2 x 2 15 10.846 0.65997 16.4338 4 2.2515 1 2.2515

3 x 3 39 13.685 0.64515 21.2113 12 3.4415 1.0002 3.4409

4 x 4 49 14.076 0.63808 22.0603 16 3.0693 1.0002 3.0686

5 x 5 61 14.443 0.45086 32.0348 18 3.0485 1.0006 3.0467

6 x 6 69 14.652 0.34379 42.618 19 2.9854 1.0004 2.9844

7 x 7 75 14.777 0.29059 50.852 20 2.9877 1.0004 2.9864

8 x 8 81 14.858 0.26057 57.0227 19 2.9769 1.0004 2.9758

9 x 9 88 14.913 0.24195 61.6358 19 2.9768 1.0004 2.9757

10 x 10 92 14.952 0.2296 65.1196 20 2.9769 1.0003 2.9759

11 x 11 97 14.98 0.22098 67.7892 20 2.9771 1.0003 2.9761

12 x 12 101 15.001 0.21471 69.8672 20 2.9768 1.0003 2.9759

Table 4: Laplace problem. Conjugate Gradient method for the FETI system
without and with preconditioning: same legend as Table 3.
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Figure 1: Laplace problem. Dependence of the condition number of the
Schur complement matrix κ(SNN ) on the number of substructures (left) and
the spectral degree (right) (results from Table 3).
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Figure 2: Laplace problem. Estimated condition numbers (circles) and least-
square second order logarithmic polynomial fit (solid line) versus the spectral
degree for the Balancing Neumann-Neumann (left, results from Table 3) and
the FETI preconditioned operators (right, results from Table 4).

7.2.1 Fixed jumps between the substructures

In this part, we fix the values ρ1 = 10−3 and ρ2 = 103. We consider four
different partitions with Nx × Ny = (2 × 2, 3 × 3, 4 × 4, 5 × 5) and we vary
the spectral polynomial degree k from 2 to 12 as in the previous experiments.
For brevity, the results are not presented here in form of tables. As before, the
condition numbers κ(PNN ) and κ(PF ) are plotted in Figure 3 versus the spectral
degree for each partition and for both preconditioned operators. The condition
numbers κ(PNN ) and κ(PF ) grow as the squared logarithm of the spectral degree
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k and are bounded independently of the number of subdomains. This is again
in agreement with the bounds (17) and (23). Despite the bad conditioning of
the original system (ρ2/ρ1 = 106), Balancing Neumann-Neumann and one-level
FETI methods provide very good preconditioners in this case.
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Figure 3: Laplace problem with jump coefficients. Case of ρ1 = 10−3

and ρ2 = 103. Estimated condition numbers (circles) and least-square second
order logarithmic polynomial fit (solid line) versus the spectral degree for the
Balancing Neumann-Neumann (left) and the FETI (right) methods.

7.2.2 Variable coefficient jumps

In this part, the spectral polynomial degree k is fixed to 10. For two different
partitionsNx×Ny = (3×3, 5×5), we have investigated the influence of the jump
ρ2/ρ1 on the convergence behaviour of Balancing Neumann-Neumann and one-
level FETI methods. In this experiment, ρ1 is fixed to 1, whereas ρ2 is varying
from 1 to 106. A checkerboard distribution has also been used.

The results are presented in Table 5. Whatever the choice of the precon-
ditioner, the number of preconditioned CG iterations in order to satisfy the
stopping criterion (25) is bounded independently of the ratio ρ2/ρ1, in agree-
ment with the bounds (17) and (23). Note that a smallest eigenvalue equal to
one is not always found for some values of the jump. This may be due to a loss
of orthogonality in the iterates of the CG iteration; see [6].

7.3 Problem III: a Laplace problem with anisotropic dif-
fusion

Problems I and II are considered as standard test problems for iterative sub-
structuring methods. In addition we have investigated the Laplace problem with
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Fixed number of substructures Nx ×Ny = 3× 3

NN FETI

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PF )
1 14 3.629 1 3.629 14 6.3628 1.0011 6.3557

10 12 2.8612 1 2.8612 12 4.2857 1.0007 4.2828

102 9 2.5372 1 2.5372 10 3.234 1.0001 3.2337

103 8 2.4877 1 2.4877 8 3.1098 1 3.1097

104 7 2.4825 1 2.4825 7 3.0972 1 3.0972

105 6 2.482 1 2.482 7 3.0959 1 3.0959

106 7 2.482 1 2.482 6 3.0958 1 3.0958

Fixed number of substructures Nx ×Ny = 5× 5

NN FETI

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PF )
1 24 3.786 1 3.786 23 5.6907 1.0009 5.6856

10 19 2.9479 1 2.9479 20 3.9292 1.0006 3.9269

102 14 2.5198 1 2.5198 16 3.0279 1.0002 3.0273

103 12 2.4671 1 2.4671 13 2.9214 1.0001 2.9212

104 17 2.4614 0.96131 2.5605 12 2.9106 1.0001 2.9106

105 14 2.4612 0.99456 2.4746 12 2.9095 1.0001 2.9095

106 24 2.4617 0.9651 2.5508 13 2.9098 1.0001 2.9098

Table 5: Laplace problem with jump coefficients. Case of k = 10 and
ρ1 = 1. Conjugate Gradient method for the Balancing Neumann-Neumann
and FETI methods: iteration counts, maximum and minimum eigenvalues, and
condition numbers versus ρ2.

anisotropic diffusion defined by (ρx, ρy) = (1, 1), c = 0, f = 1, and (εx, εy) =
(ε, 1) in Problem (M).

−ε
∂2u

∂x2
− ∂2u

∂y2
= 1, in Ω,

u = uD, on ∂Ω.
(28)

In these experiments, ε is a small positive parameter. In the following we are
interested in assessing the behaviour of the proposed preconditioners for small
values of ε.

Note also that Problem III is equivalent to solve a standard Laplace problem
on the following domain Ωε = [0, 1/

√
ε]× [0, 1], i.e., for small parameters Ωε is a
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thin domain. This kind of domain is needed e.g. in computational mechanics to
capture boundary layer effects or in biomedical applications to compute viscous
blood flows in large arteries; see, e.g., [34].

We have considered two partitions (Nx ×Ny = 3× 1 and Nx ×Ny = 6× 1)
and have investigated the behaviour of the condition numbers κ(PNN ) and
κ(PF ) when varying the perturbation parameter ε for a fixed spectral degree
k = 4. The results are collected in Tables 6 and 7 for the Balancing Neumann-
Neumann and one-level FETI preconditioners, respectively. Note that both
preconditioners are extremely efficient on this problem, since for moderate values
of ε, they already tend to be direct solvers as expected in the limit case ε = 0.
The same property holds when the partition is fixed and the spectral polynomial
degree k is varying (the results are not presented here). Both preconditioners
are therefore robust with respect to the perturbation parameter for this problem
in case a partition of Ω into strips is employed. We note that FETI without
preconditioning provides a fairly good performance when ε is close to zero, as
opposed to the unpreconditioned Schur complement system.

7.4 Problem IV: a Laplace problem on a boundary layer
mesh

So far, we have only considered model problems on uniform meshes and shown
that, from Problems I, II and III, the numerical experiments are in agreement
with the theoretical bounds (17) and (23). In the remainder of this paper, our
goal is to investigate the convergence property on highly anisotropic meshes.
The domain decomposition partition T DD is now different from the refined
mesh T .

Problem IV is a natural extension of Problem I: it is a Laplace problem
((εx, εy) = (1, 1), (ρx, ρy) = (1, 1), c = 0, f = 1 in Problem (M)) with nonhomo-
geneous Dirichlet boundary conditions defined on a boundary layer mesh.

−∆u = 1, in Ω,
u = uD, on ∂Ω.

(29)

Here only a refinement toward the two intersecting edges x = 0 and y = 0
has been considered; see Figure 4. We note that this is a genuine hp approxi-
mation. As shown in [3, 5, 30, 39], in order to obtain exponential convergence
in presence of singularities in polygonal domains, the number of layers n must
be at least equal to the spectral degree k, thus better accuracy is achieved by
simultaneously increasing the polynomial degree and the number of layers. In
our experiments we have chosen n = k.

7.4.1 Fixed spectral degree

In this part, the spectral polynomial degree k is fixed to 4. Given a uniform
macromesh T 0 of size Nx × Ny, we consider refinements with 4 layers in each
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Fixed number of substructures Nx ×Ny = 3× 1

No preconditioning NN

ε It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
1 22 5.336 0.44784 11.9151 6 1.1268 1 1.1268

10−1 22 3.0688 0.15677 19.5747 4 1.0007 1 1.0007

10−2 22 2.8013 0.054723 51.1902 3 1 1 1

10−3 22 2.7739 0.030654 90.4903 2 1 1 1

10−4 22 2.7711 0.027647 100.2326 2 1 1 1

10−5 22 2.7708 0.027338 101.3562 2 1 1 1

10−6 22 2.7708 0.027307 101.4703 2 1 1 1

10−7 22 2.7708 0.027304 101.4817 1 1 1 1

10−8 22 2.7708 0.027303 101.4828 1 1 1 1

Fixed number of substructures Nx ×Ny = 6× 1

No preconditioning NN

ε It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
1 49 5.386 0.1301 41.399 12 2.14 1 2.14

10−1 66 3.1314 0.060223 51.9968 7 1.0681 1 1.0681

10−2 83 2.8633 0.025927 110.4379 3 1 1 1

10−3 87 2.8359 0.0099745 284.3096 2 1 1 1

10−4 77 2.8331 0.00719 394.0288 2 1 1 1

10−5 67 2.8328 0.0068822 411.6134 2 1 1 1

10−6 52 2.8328 0.0068509 413.4915 2 1 1 1

10−7 50 2.8328 0.0068477 413.6805 1 1 1 1

10−8 49 2.8328 0.0068474 413.6994 1 1 1 1

Table 6: Laplace problem with anisotropic diffusion. Case of k = 4.
Conjugate Gradient method for the Schur complement system without precon-
ditioning and with Neumann-Neumann preconditioner: iteration counts, maxi-
mum and minimum eigenvalues, and condition numbers versus the perturbation
parameter.

direction (see Figure 4). Mesh grading factors σx = 0.5 and σy = 0.5 have been
used. The non-uniform geometrically refined grid T contains (Nx+4)×(Ny+4)
elements (see Fig. 4 for a partition with Nx × Ny = 12 × 12), whereas the
subdomain partition T DD has Nx ×Ny substructures.

Table 8 and Table 9 show the results for the Neumann-Neumann and FETI
preconditioners, respectively, for different partitions T DD. For both precondi-
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Fixed number of substructures Nx ×Ny = 3× 1

No preconditioning FETI

ε It λmax λmin κ(F ) It λmax λmin κ(PF )
1 20 11.179 0.74974 14.9101 6 1.2602 1.0001 1.2602

10−1 22 25.55 1.3036 19.6001 3 1.0014 1 1.0014

10−2 22 73.096 1.428 51.1858 2 1 1 1

10−3 18 130.49 1.442 90.489 2 1 1 1

10−4 15 144.68 1.4435 100.2306 1 1 1 1

10−5 11 146.32 1.447 101.1152 1 1 1 1

10−6 8 146.48 1.5135 96.7833 1 1 1 1

10−7 3 146.5 9.8775 14.8318 1 1 1 1

10−8 1 1 1 1 1 1 1 1

Fixed number of substructures Nx ×Ny = 6× 1

No preconditioning FETI

ε It λmax λmin κ(F ) It λmax λmin κ(PF )
1 51 54.714 0.74284 73.6545 11 3.4988 1 3.4988

10−1 53 68.505 1.2785 53.5808 6 1.1178 1 1.1178

10−2 59 154.29 1.3973 110.4185 3 1.0001 1 1.0001

10−3 57 401.29 1.4108 284.4416 2 1 1 1

10−4 42 556.43 1.4128 393.8609 2 1 1 1

10−5 28 581.24 1.4188 409.669 1 1 1 1

10−6 19 583.87 1.4398 405.5268 1 1 1 1

10−7 7 584.13 6.7258 86.8493 1 1 1 1

10−8 1 581.75 581.75 1 1 1 1 1

Table 7: Laplace problem with anisotropic diffusion. Case of k = 4.
Conjugate Gradient method for the FETI system without and with precondi-
tioning: iteration counts, maximum and minimum eigenvalues, and condition
numbers versus the perturbation parameter.

tioners, the iteration counts are uniformly bounded as the number of elements
grow. Note that due to mesh refinement, the condition number of the Schur op-
erators κ(SNN ) and κ(F ) are much higher than in Problem I; see section 6. Here
the aspect ratio of the mesh is proportional to σ−k. According to (24), κ(SNN )
should grow like H−2 for a fixed polynomial degree and this is confirmed by the
results in Figure 5, left.
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Figure 4: Boundary layer mesh. Refinement near two edges (x = 0 and
y = 0) with 4 layers in each direction and mesh grading factors equal to σx = 0.5
and σy = 0.5. The macromesh is a Cartesian grid of size Nx ×Ny = 12× 12.
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Figure 5: Laplace problem on a boundary layer mesh. Dependence of the
condition number of the Schur matrix κ(SNN ) on the number of substructures
(left) and dependence of the logarithm of the condition number of the Schur
matrix κ(SNN ) on the spectral degree (right) (results from Tables 8 and 10).

7.4.2 Fixed partition

We now fix a macromesh T DD = Nx×Ny = 3×3 and investigate the dependence
of the condition number on the spectral polynomial degree. The geometrically
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Fixed spectral degree k = 4

No preconditioning NN

Nx ×Ny It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
2 x 2 28 32.708 0.26499 123.4328 9 2.3291 1 2.3291

3 x 3 71 43.421 0.19866 218.5623 12 2.8522 1 2.8522

4 x 4 105 43.422 0.1445 300.5059 15 2.9477 1 2.9477

5 x 5 132 43.422 0.10372 418.6499 17 2.9678 1 2.9678

6 x 6 149 43.423 0.075972 571.5622 19 2.978 1 2.978

7 x 7 164 43.423 0.057376 756.8057 20 2.9828 1 2.9828

8 x 8 179 43.423 0.044626 973.0352 20 2.986 1 2.986

9 x 9 194 43.423 0.035605 1219.5714 20 2.9881 1 2.9881

10 x 10 210 43.423 0.029025 1496.0529 21 2.9896 1 2.9896

11 x 11 226 43.423 0.024093 1802.2736 21 2.9908 1 2.9908

12 x 12 240 43.423 0.020309 2138.108 21 2.9916 1 2.9916

Table 8: Laplace problem on a boundary layer mesh with σx = σy = 0.5
and n = 4. Conjugate Gradient method for the Schur complement system
without preconditioning and with Neumann-Neumann preconditioner: iteration
counts, maximum and minimum eigenvalues, and condition number versus the
number of subdomains.

refined grid T contains (3+ k)× (3 + k) elements; see Fig. 6 for the case k = 6.

Table 10 and Table 11 collect the results for the Balancing Neumann-Neumann
and FETI preconditioners, respectively. Note the high condition numbers of un-
preconditioned operators κ(SNN) and κ(F ) for large k. Following (24) in section
6, we expect κ(SNN ) to grow as k σ−(β k), for a fixed partition. In Figure 5,
right, log(κ(SNN )) is plotted versus the spectral degree. The results in Table 10
provide an estimated β = 0.3014, which is consistent with (24). On the other
hand, as expected, κ(PNN ) and κ(PF ) only grow as the square of the logarithm
of the spectral degree; see Figure 7. This is in agreement with the bounds in
(17) and (23). These results show that the condition numbers are independent
of the aspect ratio of the mesh for this problem. Additional experiments (not
presented here) on Problem IV on a geometric edge mesh with refinement only
near one edge also lead to the same conclusion. We stress the fact that the
original Schur complement has a condition number that grows exponentially
with k, while our preconditioners provide a condition number that only grows
logarithmically with k.
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Fixed spectral degree k = 4

No preconditioning FETI

Nx ×Ny It λmax λmin κ(F ) It λmax λmin κ(PF )
2 x 2 47 17.68 0.13699 129.0591 10 2.9958 1.0011 2.9924

3 x 3 101 21.528 0.092123 233.6839 16 4.1547 1.0003 4.1536

4 x 4 123 23.334 0.092123 253.2879 21 3.9317 1.0005 3.9296

5 x 5 137 24.216 0.092123 262.8681 22 3.9216 1.0006 3.9191

6 x 6 148 24.691 0.092123 268.0171 23 3.9204 1.0006 3.9179

7 x 7 153 24.971 0.092123 271.0594 24 3.9202 1.0004 3.9185

8 x 8 158 25.149 0.092123 272.9957 24 3.9202 1.0006 3.9179

9 x 9 161 25.269 0.092123 274.3008 24 3.9202 1.0004 3.9187

10 x 10 163 25.354 0.092123 275.2208 24 3.9202 1.0005 3.9181

11 x 11 166 25.416 0.092123 275.8932 24 3.9202 1.0004 3.9187

12 x 12 168 25.463 0.092123 276.3992 24 3.9202 1.0005 3.9182

Table 9: Laplace problem on a boundary layer mesh with σx = σy = 0.5
and n = 4. Conjugate Gradient method for the FETI system without and
with preconditioner: iteration counts, maximum and minimum eigenvalues, and
condition numbers versus the number of subdomains.

7.5 Problem V: an interface problem

Singularities may sometimes occur not only in the neighborhood of boundaries
of polygonal domains, as is investigated in Problem IV, but also at the interfaces
of regions with different material properties. For example, interface problems in
oil industry (cf. [45]) or electronic semiconductor device modeling (cf. [35]) may
require highly refined meshes inside the computational domain. Such problems
involving simultaneously jump coefficients and large aspect ratios of the mesh
are extremely important in practice.

The interface problem is defined as in Problem II:

−∇ · (ρ∇u) = 1, in Ω,
u = uD, on ∂Ω.

(30)

We assume that Ω is divided into four equal squares and that the coefficient
ρ has a checkerboard distribution, given by ρ1 = 104 and ρ2 = 1. As domain
decomposition partition T DD we choose that given by ρ. We then have Nx ×
Ny = 2 × 2 substructures. In order to capture the interface effects, we have
employed a geometrically refined mesh towards both sides of the interfaces x =
1/2 and y = 1/2. Since the purpose of this test case is to assess the properties
of our preconditioners if anisotropic refinement takes place in the interior of Ω,
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Figure 6: Boundary layer mesh. Refinement near two edges (x = 0 and
y = 0) with 6 layers and mesh grading factors equal to σx = 0.5 and σy = 0.5.
The unrefined grid is a fixed Cartesian grid of size Nx ×Ny = 3× 3.
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Fixed number of substructures Nx ×Ny = 3× 3

No preconditioning NN

k It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
2 18 13.09 0.47009 27.8466 8 1.2093 1 1.2093

3 39 23.584 0.27906 84.5135 10 1.5992 1 1.5991

4 71 43.421 0.19866 218.5623 12 2.7807 1 2.7806

5 118 82.489 0.15446 534.0585 13 3.5809 1.0001 3.5806

6 185 160.4 0.12649 1268.082 14 4.321 1.0001 4.3204

7 272 315.84 0.10716 2947.3406 15 5.034 1.0002 5.0331

8 344 625.76 0.092981 6729.9791 17 5.6913 1.0001 5.6906

9 424 1243.8 0.082121 15145.9124 17 6.2769 1.0001 6.2759

10 512 2476.8 0.073532 33683.7624 17 6.7937 1.0002 6.7924

11 608 4937.9 0.066568 74178.645 18 7.2527 1.0002 7.251

12 712 9852.1 0.060824 161978.5169 19 7.6679 1.0002 7.666

Table 10: Laplace problem on a boundary layer mesh with σx = σy = 0.5
and n = k. Conjugate Gradient method for the Schur complement system with-
out preconditioning and with Balancing Neumann-Neumann preconditioner: it-
eration counts, maximum and minimum eigenvalues, and condition numbers
versus the polynomial degree.

we have neglected the effects of the singularities at ∂Ω. We are unaware of any
theoretical study of this type of singularities. Figure 8 shows the refined mesh
T . As in Problem IV, the number of layers is determined only by the spectral
polynomial degree k. Thus the highly refined mesh T consists of (2 + 2k) ×
(2 + 2k) quadrilaterals, thus providing an hp approximation of this problem.
Mesh grading factors σx = 0.75 and σy = 0.75 have been considered in these
numerical experiments.

The spectral polynomial degree k is varying from 2 to 8. Balancing Neumann-
Neumann and one-level FETI preconditioners have been employed to solve Prob-
lem V; see Tables 12 and 13, respectively. The number of preconditioned Con-
jugate Gradient iterations seems to be bounded uniformly for growing k. The
obtained results for the two preconditioners are not satisfactory. Figure 9 shows
κ(PNN ) and κ(PF ) versus the spectral degree k in a log-log plot: a linear be-
haviour is obtained, in contrast to all the other numerical experiments shown in
this paper. Numerically log(κ(PNN )) and log(κ(PF )) are found to grow like kp

with p = 0.8 and p = 0.74, respectively. In section 6 we have provided a more
pessimistic quadratic bound. We note the very small iteration counts obtained
in this case, despite a linear growth in k.
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Fixed number of substructures Nx ×Ny = 3× 3

No preconditioning FETI

k It λmax λmin κ(F ) It λmax λmin κ(PF )
2 40 11.092 0.3057 36.283 13 2.5551 1.0002 2.5545

3 69 16.1727 0.1696 95.3514 14 3.3502 1.0003 3.3490

4 101 21.5275 0.09212 233.6839 16 4.15468 1.00025 4.1536

5 157 27.0024 0.04849 556.8545 17 4.8423 1.0005 4.8399

6 214 32.4910 0.0249 1302.8742 18 5.4769 1.0006 5.4732

7 280 37.9728 0.01268 2994.9336 18 6.0492 1.0013 6.4125

8 352 43.4460 0.00649 6688.1144 19 6.5801 1.0012 6.5721

9 432 48.9158 0.0048 10140.5428 20 7.0699 1.0014 7.0597

10 520 54.38492 0.002428 22398.1226 20 7.5287 1.0013 7.5183

11 616 59.8554 0.0012 48165.1532 21 7.9582 1.0016 7.9449

12 720 65.3276 0.00065 99925.7334 20 8.3638 1.0018 8.3484

Table 11: Laplace problem on a boundary layer mesh with σx = σy = 0.5
and n = k. Conjugate Gradient method for the FETI system without and
with preconditioner: iteration counts, maximum and minimum eigenvalues, and
condition numbers versus the polynomial degree.

Fixed number of substructures Nx ×Ny = 2× 2

No preconditioning NN

k It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
2 19 26848 839.29 31.9891 4 2.1464 1 2.1464

3 34 27946 302.87 92.2692 6 2.9672 1 2.9672

4 47 28313 143.42 197.4121 6 3.7049 1 3.7049

5 60 28561 79.144 360.8691 6 4.4046 1 4.4046

6 73 28753 48.261 595.7833 6 5.0814 1 5.0814

7 85 28910 31.587 915.2486 7 5.7424 1 5.7424

8 98 29043 21.797 1332.4393 7 6.3915 1 6.3915

Table 12: Interface problem. Same legend as Table 10.

7.6 Problem VI: a reaction-diffusion problem

So far we have only considered purely diffusive problems. We now consider the
following reaction-diffusion problem

−ε∇ · (ρ∇u) + u = 1, in Ω,
u = uD, on ∂Ω.

(31)
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Figure 8: Interface problem. Anisotropic mesh with interior refinement for
the case n = k = 4. Mesh grading factors σx = 0.75 and σy = 0.75.

Fixed number of substructures Nx ×Ny = 2× 2

No preconditioning FETI

k It λmax λmin κ(F ) It λmax λmin κ(PF )
2 24 18.903 0.00024261 7.7915E+04 4 2.8336 1 2.8335

3 34 41.593 0.00033396 1.2455E+05 4 3.6267 1 3.6265

4 40 79.826 0.00041491 1.9239E+05 4 4.3742 1.0001 4.3738

5 47 138.04 0.00049044 2.8147E+05 4 5.0978 1.0002 5.0971

6 50 220.55 0.00056243 3.9213E+05 4 5.8046 1.0002 5.8033

7 49 331.61 0.00063183 5.2485E+05 3 6.4982 1.0013 6.4899

8 48 475.52 0.00069917 6.8012E+05 3 7.1814 1.0015 7.171

Table 13: Interface problem. Same legend as Table 11.

The modified algorithm for the FETI method presented in section 5.3.4 has
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Figure 9: Interface problem . Condition numbers of the Balancing Neumann-
Neumann (results from Table 12) and FETI (results from Table 13) precondi-
tioners versus the spectral degree (log-log plot).

been adopted.

7.6.1 Reaction-diffusion problem on a boundary layer mesh

In this first part, we choose (εx, εy) = (ε, ε), (ρx, ρy) = (1, 1), c = 1, f = 1 in
Problem (M)) with inhomogeneous Dirichlet boundary conditions. The source
term is not compatible with the boundary conditions and thus boundary layers
appear for ε small. Geometrically refined meshes are then needed in order
to achieve exponential convergence and robustness with respect to ε; see, e.g.,
[30, 40]. Our main goal is here to analyse the convergence behaviour of Balancing
Neumann-Neumann and one-level FETI preconditioners for different values of
ε. In [44] some numerical experiments on the same problem were reported. Here
however exact numerical integration is performed by using GLL(k + 1) nodes,
while GLL(k) nodes are employed in [44]. We note that the analysis provided
in [44] does not cover the case of reaction-diffusion problems.

Since boundary layer effects are present, the size of the thinnest layer Hσk

should be comparable to the size of the boundary layer
√
ε; see [30, 40]. In

addition, singularity resolution requires that n be comparable to k. These as-
sumptions lead to the following relation to determine the level of refinement n

32



and the spectral polynomial degree k when ε < 1:

n = n(ε) =

[

log(
√
ε/H)

log σ

]

+ 1, k = k(ε) = n(ε),

where [x] denotes the integer part of x. For ε = 1, no refinement is performed
(n = 0) and the spectral polynomial degree k is fixed to 2. The macromesh T DD

consists of 5 × 5 substructures (H = 1/5). Geometric refinement is performed
towards the two intersecting edges x = 0 and y = 0 only, with mesh grading
factors σ = σx = σy = 0.5 as in Problem IV. The refined grid T contains thus
(5 + k)× (5 + k) elements. We stress the fact that ε determines both n and k,
and that we have here a genuinely hp approximation.

Fixed number of substructures Nx ×Ny = 5× 5

No preconditioning NN

ε It λmax λmin κ(SNN ) It λmax λmin κ(PNN )
1 26 5.2014 2.6711E-01 19.473 8 1.1283 1 1.1283

10−1 26 5.2365E-01 3.7749E-02 13.872 8 1.118 1 1.118

10−2 38 1.2148E-01 8.7128E-03 13.943 9 1.201 1 1.201

10−3 46 2.2411E-02 8.8427E-04 25.344 7 1.1215 1 1.1214

10−4 96 7.9440E-03 5.1737E-05 153.55 6 1.0962 1. 1.0962

10−5 98 1.5527E-03 7.4854E-06 207.42 5 1.0668 1 1.0668

10−6 156 6.0903E-04 8.5442E-07 712.80 5 1.079 1 1.079

10−7 226 2.4205E-04 1.2950E-07 1869.1 4 1.0724 1 1.0724

10−8 278 8.0628E-05 3.5222E-08 2289.2 4 1.0686 1 1.0686

Table 14: Reaction-diffusion problem on a boundary layer mesh. Same
legend as Table 6.

Table 14 and Table 15 show the results for both preconditioners. We note
that for ε = 0 the stiffness matrix A reduces to the mass matrix but mass matri-
ces arising from spectral elements are not necessarily uniformly well-conditioned
with respect to k even for shape-regular meshes. For one single spectral element,
their condition number is expected to grow as k2; see [44]. Both Balancing
Neumann-Neumann or FETI preconditioners lead to very satisfactory results
and the convergence behaviour is thus robust with respect to ε as well. In [44],
fewer preconditioned CG iterations were found for ε very small. There how-
ever integrals were calculated using a lower precision quadrature formula and
diagonal mass matrices were obtained, which might explain this difference.
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Fixed number of substructures Nx ×Ny = 5× 5

No preconditioning FETI

ε It λmax λmin κ(F ) It λmax λmin κ(PF )
1 90 369.71 0.715 517.0762 14 1.7019 1.0005 1.7011

10−1 65 387.73 7.1105 54.5294 13 1.5924 1.0005 1.5916

10−2 59 776.62 34.002 22.8405 12 1.4339 1.0008 1.4328

10−3 67 5303.3 182.53 29.0546 10 1.149 1.0003 1.1486

10−4 135 77900.27 509.25 152.9706 9 1.0987 1.0005 1.0981

10−5 144 556787.37 2598.3 214.2891 8 1.0742 1.001 1.0731

10−6 234 5091439.9 6603.1 771.0798 9 1.0858 1.0011 1.0845

10−7 355 34374460 16586.1 2072.4985 8 1.0802 1.0009 1.0793

10−8 453 127239000 49764 2556.85 8 1.0766 1.0007 1.0758

Table 15: Reaction-diffusion problem on a boundary layer mesh. Same
legend as Table 7.

7.6.2 Reaction-diffusion problem with variable coefficient jumps

In this part, we investigate a reaction-diffusion problem with variable coefficient
jumps corresponding to the choice (εx, εy) = (1, 1), (ρx, ρy) = (ρ, ρ), c = 1, f = 1
in Problem (M), with inhomogeneous Dirichlet boundary conditions. Since ε is
fixed, the same uniform meshes as in section 7.2.2 are employed. In particular,
we consider two partitions with Nx × Ny = 3 × 3 and Nx × Ny = 5 × 5 and a
checkerboard distribution for ρ as in the test cases in section 7.2. The spectral
polynomial degree is fixed to 10. In addition, ρ1 = 1 is fixed, whereas ρ2 is
varying from 1 to 106. Since unrefined meshes are used, T DD and T coincide
here.

The results are presented in Table 16 for both partitions and preconditioners.
In section 7.2.2, the GLL(k) basis has been chosen for numerical integration. As
already stated, this basis leads to exact numerical integration for purely diffusive
problems with piecewise constant coefficients. In order to allow a comparison
with Table 5, this basis has also been used here, although it does not lead to
exact integration for Problem VI due to the presence of the reaction term. The
same behaviour as in section 7.2.2 (see Table 5) is observed. For growing ρ2, the
iteration count It decreases, whereas the condition number of the preconditioned
operators is bounded independently of the ratio ρ2/ρ1. Our preconditioners are
thus found to be robust with respect to the jump of the coefficients also for
reaction-diffusion problems.
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Fixed number of substructures Nx ×Ny = 3× 3

NN FETI

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PF )
1 14 3.6148 1 3.6148 14 6.1865 1.0011 6.1798

10 14 2.8565 1 2.8565 12 4.2766 1.0004 4.2747

102 11 2.5369 0.99389 2.5525 9 3.2335 1.0003 3.2324

103 8 2.4877 1 2.4877 8 3.1097 1.0001 3.1094

104 7 2.4825 1 2.4825 7 3.0972 1 3.0971

105 6 2.482 1 2.482 6 3.0959 1 3.0959

106 7 2.482 1 2.482 5 3.0958 1 3.0958

Fixed number of substructures Nx ×Ny = 5× 5

NN FETI

ρ2 It λmax λmin κ(PNN ) It λmax λmin κ(PF )
1 24 3.7605 1 3.7605 22 5.64 1.0009 5.6348

10 19 2.9473 1 2.9472 20 3.9267 1.0008 3.9236

102 14 2.5197 1 2.5197 15 3.0278 1.0004 3.0264

103 12 2.4671 1 2.4671 12 2.9214 1.0002 2.9209

104 11 2.4616 0.99714 2.4687 11 2.9106 1 2.9106

105 10 2.4611 0.99998 2.4611 11 2.9095 1 2.9095

106 10 2.461 0.99992 2.4612 10 2.9094 1 2.9094

Table 16: Reaction-diffusion problem with variable coefficient jumps.
Case of k = 10 and ρ1 = 1. Conjugate Gradient method for the Balanc-
ing Neumann-Neumann and FETI preconditioned operators: iteration counts,
maximum and minimum eigenvalues, and condition numbers versus ρ2.

8 Perspectives

Many important issues remain to be partially or fully addressed:
We have only considered exact solvers for systems involving local Schur com-
plements or their inverses. Approximate local solvers (see, e.g., [21]) are often
needed for very large problems. This aspect is especially important for three-
dimensional applications in order to reduce the computational cost of this step.

As already stated, a crucial issue to be addressed is the treatment of hang-
ing nodes in our framework. This would allow to treat specific problems that
may mix difficulties (corner singularities, boundary layer effects) defined on
more complicated domains. In our numerical experiments, we have shown that
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boundary layer meshes can handle such situations. Nevertheless mesh including
hanging nodes are better suited when only singularities are present, since they
involve fewer degrees of freedom and thus give smaller algebraic linear systems
to solve; see the remarks at the end of section 4. We believe that the analy-
sis and the development of iterative substructuring methods for general meshes
with hanging nodes still need to be fully addressed. The algorithms in [31] for
instance can be certainly be employed when hanging nodes are present on the
interface Γ and the analysis proposed in [44] can be carried out using stable
extensions for meshes with hanging nodes (see, e.g., [38, Sect. 4.6.3]). However
there is not a straightforward way of defining a Neumann-Neumann or a FETI
algorithm in this case; see Remark 6.1 in [44].

We have only considered scalar elliptic problems. The generalization of our
preconditioners to advection-diffusion problems (see Remark 2.1) or to saddle-
point problems on geometrically refined meshes remains open.

Finally the development and analysis of Neumann-Neumann and FETI meth-
ods for three dimensional approximations on geometrically refined meshes also
remain open problems.
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