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1. Introduction

In the last years, several mixed discontinuous Galerkin finite element methods
(DGFEM) have been proposed for the discretization of incompressible fluid flow
problems. We mention here only the piecewise solenoidal discontinuous Galerkin
methods introduced in [5, 24], the local discontinuous Galerkin methods of [12, 11],
and the interior penalty methods studied in [23, 32, 17]. Some of the main mo-
tivations that lead to the above methods are the following: First of all, the dis-
continuous nature of the finite element spaces allows one to easily treat convective
terms by suitable upwind fluxes, similarly to the original discontinuous Galerkin
discretizations of (non-linear) hyperbolic equations (see [13, 10, 14] and the refer-
ences therein). Thus, mixed DG methods provide robust and high-order accurate
approximations particularly in transport-dominated regimes; see, e.g., [24, 11, 17]
for mixed DGFEM for the Navier-Stokes and Oseen equations. Moreover, discon-
tinuous Galerkin approaches are extremely flexible in the mesh-design; meshes with
hanging nodes, elements of various types and shapes, and local spaces of different
orders can be easily dealt with. Finally, mixed DG methods are considerably flexi-
ble in the choice of velocity-pressure combinations, without extensive stabilization
techniques. In the discontinuous Galerkin context, for example, no extra stabi-
lization is needed to use optimal mixed-order elements where the approximation
degree for the pressure is of one order lower than that of the velocity; see [23, 32]
for details.

The recent work in [28] presented a unifying framework for the analysis of mixed
hp-DGFEM for pure Stokes flow. For Qk −Qk−1 elements, the dependence of the
discrete inf-sup constant on the polynomial degree k was shown to be of the or-
der O(1/k), for two- and three-dimensional domains. In three dimensions, this is
exactly the same bound as that of [31] for conforming mixed hp-FEM, but with
an optimal gap of one order in the finite element spaces for the velocity and the
pressure. The results in [28] then ensure (slightly suboptimal) error bounds for the
p-version of the DGFEM where convergence is obtained by increasing the polyno-
mial approximation order on a fixed (quasi-uniform) mesh. However, these bounds
give algebraic rates of convergence and are restricted to piecewise smooth solutions;
an assumption that is unrealistic in domains with corners, due to the presence of
corner singularities, see, e.g., [25, 22]. For conforming mixed methods, similar p-
version results can be found in, e.g., [6, 31, 8, 30, 7] and the references therein.

In this paper, we extend the hp-approaches of [28] to mixed hp-DGFEM for
Stokes flow in non-smooth polygonal domains where the exact solutions are piece-
wise analytic, but exhibit singularities at the corners. To describe the regularity
of the exact solutions, we use a recent result from [22] that measures analytic reg-
ularity in terms of the countably normed, weighted spaces that were introduced
by Babuška and Guo for closely related potential and elasticity problems; see
[19, 20, 18, 3, 2, 4, 21, 29] and the references therein. The reduced regularity
near corners imposes several technical difficulties and requires a careful treatment
of the elements and the numerical fluxes near vertices of the domain. By the use of
new trace theorems for functions in weighted Sobolev spaces, we first show that the
mixed hp-DGFEM is in fact well-defined. Then, we employ standard hp-version
mesh design principles to resolve corner singularities: namely, we use meshes that
are geometrically refined towards corners and approximation degrees that increase
linearly away from corners. We show that this combination of h- and p-refinement
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leads to exponential rates of convergence. For hp-DGFEM discretizations of scalar
diffusion problems an analogous result was recently obtained in [34].

To prove exponential convergence for our mixed methods, we use several ingre-
dients from the analysis of conforming mixed hp-FEM for Stokes flow on geometric
meshes; see, e.g., [30, 29, 27], combined with the techniques that were developed
in [34, 33] to treat diffusion and elasticity problems in polygons. Furthermore, we
use the setting [28] to derive the exponential convergence result. Exemplarily, we
consider only the interior penalty DGFEM, but point out that our results hold true
verbatim for all the DG methods studied in [28]. We also note that our analysis can
be straightforwardly extended to mixed formulations of linear elasticity problems
with nearly incompressible materials; see, e.g., [9, 15].

The outline of the paper is as follows: In Section 1.1 we begin by introducing
some notational conventions that we use throughout the paper. Section 2 reviews
the analytic regularity of the Stokes problem in polygonal domains. In Section 3, we
introduce meshes and establish several properties of functions on the elements near
the corners of the domain. The hp-DGFEM discretization of the Stokes problem
is introduced in Section 4. In Section 5, we derive abstract error estimates for
piecewise analytic solutions. Section 6 is devoted to the main result of this paper:
we prove that the hp-DGFEM is exponentially convergent. We end our presentation
with concluding remarks in Section 7.

1.1. Notation. For a bounded Lipschitz domain D in Rd, d ≥ 1, we denote by
Lp(D), 1 ≤ p ≤ ∞, the Lebesgue space of p-integrable functions, endowed with the
norm ‖ · ‖Lp(D). We set L2

0(D) := {q ∈ L2(D) :
∫
D q dx = 0}. The space of p-times

continuously differentiable functions on D is Cp(D), 0 ≤ p ≤ ∞, equipped with
the usual norm ‖ · ‖Cp(D). The standard Sobolev space of functions with integer or
fractional regularity exponent s ≥ 0 is denoted by Hs(D). We write ‖ · ‖Hs(D) and
| · |Hs(D) for its norm and seminorm, respectively, and set H0(D) = L2(D). The

trace space of H1(D) is denoted by H
1
2 (∂D) and, as usual, we define H1

0 (D) as the
subspace of functions in H1(D) with zero trace on ∂D. The dual space of H1

0 (D)
is denoted by H−1(D). For a function space X(D) we write X(D)d and X(D)d×d

to denote vector and tensor fields whose components belong to X(D), respectively.
Without further specification, these spaces are equipped with the usual product
norms (which we simply denote by ‖ · ‖X(D)). For vectors v,w ∈ Rd, and matrices

σ, τ ∈ Rd×d, we use the standard notation (∇v)ij = ∂jvi, (∇ · σ)i =
∑d

j=1 ∂jσij ,

and σ : τ =
∑d

i,j=1 σijτij . Furthermore, we denote by v⊗w the matrix whose ij-th

component is vi wj , and use the identity v · σ ·w =
∑d

i,j=1 viσijwj = σ : (v ⊗w).

2. The Stokes Problem with Piecewise Analytic Data

2.1. The Stokes Equations. Let Ω ⊂ R2 be a polygonal and bounded domain.
The Stokes problem is to find a velocity field u and a pressure p such that

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,(2.1)

u = g on ∂Ω.

Here, the right-hand side f ∈ H−1(Ω)2 is an exterior body force, and g ∈ H
1
2 (∂Ω)2

a prescribed Dirichlet datum satisfying the compatibility condition
∫
∂Ω g ·n ds = 0,
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with n denoting the outward unit normal vector to ∂Ω. Due to the continuous
inf-sup condition, the Stokes system (2.1) has a unique solution (u, p) in H1

0 (Ω)
2 ×

L2
0(Ω); see, e.g., [9, 16] for details.

2.2. Analytic Regularity in Polygonal Domains. For piecewise analytic data,
the regularity of the exact solution (u, p) of (2.1) was recently described by Guo and
Schwab [22] in terms of the weighted Sobolev spaces that were originally introduced
by Babuška and Guo for closely related elasticity and potential problems; see [19,
20, 18, 3, 2, 4, 21, 29] and the references therein. To define these weighted spaces,
let {Ai}Mi=1 denote the vertices of the domain Ω. To each vertex Ai we assign a
weight βi ≥ 0 and store these numbers in the M -tuple β = (β1, . . . ,βM ). We define
β± j := (β1± j, . . . ,βM ± j) and use the shorthand notation C1 > β > C2 to mean
C1 > βi > C2 for i = 1, . . . ,M . For r∗i (x) = min{1, |x−Ai|} we define the weight

function Φβ(x) :=
∏M

i=1 r
∗
i (x)

βi , and introduce the seminorms

|u|2
Hk,l

β (Ω)
:=

k∑

|α|≥l

‖Φβ+|α|−lD
αu‖2L2(Ω), k ≥ l ≥ 0.

We denote by Hk,l
β (Ω) the completion of C∞(Ω) with respect to the norm

‖u‖2
Hk,l

β (Ω)
:= ‖u‖2Hl−1(Ω) + |u|2

Hk,l
β (Ω)

, l ≥ 1,

‖u‖2
Hk,0

β
(Ω)

:=
k∑

|α|≥0

‖Φβ+|α|D
αu‖2L2(Ω).

Definition 2.1. For anM -tuple β = (β1, . . . ,βM ) and l ≥ 0, the countably normed

space Bl
β(Ω) consists of all functions u for which u ∈ Hk,l

β (Ω) for k ≥ l and

‖Φβ+k−lD
αu‖L2(Ω) ≤ Cd(k−l)(k − l)!, |α| = k ≥ l,

for some constants C > 0, d ≥ 1 independent of k.

We remark that, in general, B2
β(Ω) +⊂ H2(Ω) and B1

β(Ω) +⊂ H1(Ω). However,

B2
β(Ω) ⊂ C0(Ω) and B1

β(Ωint) ⊂ C0(Ωint), for all interior domains Ωint with Ωint ⊂
Ω \ {Ai}Mi=1.

For a noninteger exponent k, the space Hk,l
β (Ω) is defined by interpolation. Fi-

nally, we define H
k− 1

2
,l− 1

2

β (∂Ω) and B
l− 1

2

β (∂Ω) as spaces of traces of functions in

Hk,l
β (Ω) and Bl

β(Ω), respectively. The space H
k− 1

2
,l− 1

2

β (∂Ω) is endowed with the
norm

‖g‖
H

k−
1
2
,l− 1

2
β (∂Ω)

= inf{ ‖u‖Hk,l
β (Ω) : u|∂Ω = g }.

The following regularity result will be the basis of our analysis; its proof can be
found in [22].

Theorem 2.2. There exist a weight vector 0 ≤ β
min

< 1 depending on the opening

angles of Ω at the vertices {Ai}Mi=1 such that for weight vectors β with β
min

< β < 1
and piecewise analytic data

(2.2) f ∈ B0
β(Ω)

2, g ∈ B
3
2

β (∂Ω)
2,
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the solution (u, p) of the Stokes system (2.1) satisfies

(2.3) u ∈ B2
β(Ω)

2, p ∈ B1
β(Ω).

We point out that, in particular, Theorem 2.2 implies that

(2.4) u ∈ H2,2
β (Ω)2, p ∈ H1,1

β (Ω), ∇u ∈ H1,1
β (Ω)2×2,

and

(2.5) −∆u+∇p = f in H0,0
β (Ω)2.

Throughout the paper, the smoothness property in Theorem 2.2 is assumed to hold
for a weight vector β with β

min
< β < 1.

3. Meshes and Trace Operators

In this section, we introduce the trace operators that are needed to define the
interelemental terms in our discontinuous Galerkin methods. Furthermore, we prove
a series of technical results that allow us to properly treat the elements at the
vertices of the domains. Similar results were used recently in [34, 33] to analyze
hp-DGFEM for diffusion and elasticity problems.

3.1. Meshes. Throughout, let Th = {K} be a shape-regular affine mesh on Ω con-
sisting of parallelograms. For each K ∈ Th, we denote by nK the outward unit
normal vector to the boundary ∂K, and by hK the elemental diameter. Further-
more, we assign to each element K ∈ Th an approximation order kK ≥ 1. The local
quantities hK and kK are stored in the vectors h = {hK}K∈Th

and k = {kK}K∈Th
,

respectively. We set h = maxK∈Th
hK and |k| = maxK∈Th

kK .
An interior edge of Th is the (non-empty) one-dimensional interior of ∂K+∩∂K−,

where K+ and K− are two adjacent elements of Th. Similarly, a boundary edge
of Th is the (non-empty) one-dimensional interior of ∂K ∩ ∂Ω which consists of
entire edges of ∂K. We denote by EI the union of all interior edges of Th, by
ED the union of all boundary edges, and set E = EI ∪ ED. Generally, we allow for
irregular meshes, i.e., meshes with hanging nodes (see [29, Sect. 4.4.1]), but suppose
that the intersection between neighboring elements is either a common vertex or
a common edge of one of the two elements. We also assume the local mesh sizes
and approximation degrees to be of bounded variation: that is, there is a constant
κ > 0 such that

(3.1) κhK ≤ hK′ ≤ κ−1hK , κkK ≤ kK′ ≤ κ−1kK ,

whenever K and K ′ share a common edge.

3.2. Averages and Jumps. Next, we define average and jump operators. To that
end, let K+ and K− be two adjacent elements of Th; let x be an arbitrary point
of the interior edge e = ∂K+ ∩ ∂K− ⊂ EI . Let q, v, and τ be scalar-, vector-,
and matrix-valued functions, respectively, that are smooth inside each element K±,
and let us denote by (q±,v±, τ±) the traces of (q,v, τ ) on e taken from within the
interior of K±. Then, we define the following averages at x ∈ e

{{q}} = (q+ + q−)/2, {{v}} = (v+ + v−)/2, {{τ}} = (τ+ + τ−)/2.
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Similarly, the jumps at x ∈ e are given by

[[[[[[q]]]]]] = q+ nK+ + q− nK− , [[[[[[v]]]]]] = v+ · nK+ + v− · nK− ,

[[v]] = v+ ⊗ nK+ + v− ⊗ nK− , [[[[[[τ]]]]]] = τ+nK+ + τ−nK− .

On boundary edges e ⊂ ED, we set {{q}} = q, {{v}} = v, {{τ}} = τ , as well as
[[[[[[q]]]]]] = qn, [[v]] = v · n, [[v]] = v ⊗ n, and [[[[[[τ]]]]]] = τn.

3.3. Elements Near Vertices. To account for the singular behavior of solutions
near the vertices {Ai}Mi=1 of the domain, we define the sets

Kvert = {K ∈ Th : K ∩ Ai += ∅ for some 1 ≤ i ≤ M },
Kint = {K ∈ Th : K ∩ Ai = ∅ for all 1 ≤ i ≤ M }.

Let K ∈ Kvert. We always assume that the partitions Th are fine enough so that ex-
actly one vertex belongs to K. We denote this vertex by AK and the corresponding
weight exponent by βK ∈ (0, 1). The spaces Hk,$

βK
(K) are defined as in Section 2,

but equipped with the weight function ΦβK (x) = rβK , with r denoting the distance
to the corner AK . We have the following auxiliary results.

Lemma 3.1. Let K ∈ Kvert. Then:

(1) We have H0,0
βK

(K) ⊂ L1(K) and

‖ϕ‖L1(K) ≤ Ch1−βK

K ‖ϕ‖H0,0
βK

(K), ∀ϕ ∈ H0,0
βK

(K).

(2) Let ϕ ∈ H0,0
βK

(K) and v ∈ L∞(K). Then the integral
∫
K ϕv dx is well-

defined and |
∫
K ϕv dx| ≤ Ch1−βK

K ‖v‖L∞(K)‖ϕ‖H0,0
βK

(K).

(3) Let ϕ ∈ H1,1
βK

(K). Then the trace ϕ|∂K belongs to L1(∂K) and satisfies

‖ϕ‖L1(∂K) ≤ C
(
‖ϕ‖L2(K) + h1−βK

K |ϕ|H1,1
βK

(K)

)
.

All the constants C > 0 are independent of h and k.

Proof. For ϕ ∈ H0,0
βK

(K), we have
∫

K
|ϕ| dx ≤ ‖r−βK‖L2(K)‖rβKϕ‖L2(K) = ‖r−βK‖L2(K)‖ϕ‖H0,0

βK
(K).

Since ‖r−βK‖L2(K) ≤ Ch1−βK

K , the first assertion follows. The second assertion fol-
lows then straightforwardly from Hölder’s inequality. To prove the third assertion,
let ϕ ∈ H1,1

βK
(K). From the standard trace theorem and a scaling argument, we

have
‖ϕ‖L1(∂K) ≤ C

(
h−1
K ‖ϕ‖L1(K) + ‖∇ϕ‖L1(K)

)
.

First, we note that h−1
K ‖ϕ‖L1(K) ≤ C‖ϕ‖L2(K). Next, since ∇ϕ ∈ H0,0

βK
(K)2, we

have ‖∇ϕ‖L1(K) ≤ Ch1−βK

K |ϕ|H1,1
βK

(K), which is a consequence of the first assertion

and the definition of the seminorm | · |H1,1
βK

(K). This completes the proof. !

Lemma 3.2. Let K ∈ Kvert, τ ∈ H1,1
βK

(K)2×2 and v ∈ C1(K)2. Then the following
integration by parts formula holds

∫

K
∇ · τ · v dx = −

∫

K
τ : ∇v dx+

∫

∂K
τ : (v ⊗ nK) ds,
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where the term on the left and the boundary term are understood as L1 × L∞

pairings.

Proof. We start by noting that all the integrals above are well-defined due to
Lemma 3.1 and the fact that ∇ · τ ∈ H0,0

βK
(K)2. Furthermore, since C∞(K) is

dense in H1,1
βK

(K), there exists a sequence {τn} ⊂ C∞(K)2×2 with τn → τ in

H1,1
βK

(K)2×2. Clearly,
∫

K
∇ · τn · v dx = −

∫

K
τn : ∇v dx+

∫

∂K
τn : (v ⊗ nK) ds.

The trace estimate from Lemma 3.1 yields
∣∣∣
∫

∂K
(τ − τn) : (v ⊗ nK) ds

∣∣∣ ≤ C‖v‖L∞(∂K)‖τ − τn‖H1,1
βK

(K).

Furthermore, again with Lemma 3.1,
∣∣∣
∫

K
∇ · (τ − τn) · v dx

∣∣∣ ≤ ‖v‖L∞(K)‖∇ · (τ − τn)‖L1(K)

≤ Ch1−βK

K ‖v‖L∞(K)‖τ − τn‖H1,1
βK

(K),

and
∣∣∣
∫

K
(τ − τn) : ∇v dx

∣∣∣ ≤ ‖∇v‖L2(K)‖τ − τn‖L2(K)

≤ ‖∇v‖L2(K)‖τ − τn‖H1,1
βK

(K).

Passing to the limit finishes the proof. !

Lemma 3.3. Let the exact solution (u, p) of the Stokes system satisfy (2.3). For
an interior edge e ⊂ EI, we have that [[[[[[∇u− pI]]]]]] = 0 on e.

Proof. We note that ∇u − pI belongs to C0(Ωint) for all interior domains Ωint

with Ωint ⊂ Ω \ {Ai}Mi=1. Hence, if e ∩ {Ai}Mi=1 = ∅, we immediately have that
[[[[[[∇u − pI]]]]]] = 0 on e. Let us then consider the case where e ∩ {Ai}Mi=1 = Aj for a
vertex Aj . We may assume that the edge is parameterized by e = ϕ(t), t ∈ [0, 1],
with ϕ(0) = Aj . Then,

∫ 1

ε
|[[[[[[∇u− pI]]]]]]| |ϕ′(t)| dt = 0,

for all ε > 0. Thanks to (2.4), we have ∇u − pI ∈ H1,1
β (Ω)2×2. Thus, [[[[[[∇u −

pI]]]]]] ∈ L1(e)2, according to Lemma 3.1. We conclude with Lebesgue’s dominated
convergence theorem that

∫ 1

0
|[[[[[[∇u− pI]]]]]]| |ϕ′(t)| dt = 0,

and thus [[[[[[∇u− pI]]]]]] = 0 on e. !

4. Discontinuous Galerkin Discretization

In this section, we introduce discontinuous Galerkin methods for the Stokes
problem and review their well-posedness, using the recent results in [28].
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4.1. Mixed DGFEM. Given a mesh Th and a degree vector k = {kK}, kK ≥ 1,
we approximate the Stokes problem by finite element functions (uh, ph) ∈ Vh×Qh

where

Vh = {v ∈ L2(Ω)2 : v|K ∈ QkK (K)2, K ∈ Th },
Qh = { q ∈ L2

0(Ω) : q|K ∈ QkK−1(K), K ∈ Th }.

Here, Qk(K) denotes the space of polynomials of degree at most k ≥ 0 in each
variable on K. For further reference, we also define the space

Q̃h = { q ∈ L2(Ω) : q|K ∈ QkK−1(K), K ∈ Th }.

We consider the mixed method: find (uh, ph) ∈ Vh ×Qh such that

(4.1)

{
Ah(uh,v) + Bh(v, ph) = Fh(v)

−Bh(uh, q) = Gh(q)

for all (v, q) ∈ Vh × Qh. The forms Ah and Bh are discontinuous Galerkin forms
that discretize the Laplacian and the incompressibility constraint, respectively, with
corresponding right-hand sides Fh and Gh. These forms are given by

Ah(u,v) =

∫

Ω
∇hu : ∇hv dx−

∫

E

(
{{∇hv}} : [[u]] + {{∇hu}} : [[v]]

)
ds

+

∫

E
c[[u]] : [[v]] ds,

Bh(v, q) =−
∫

Ω
q∇h · v dx +

∫

E
{{q}}[[v]] ds,

Fh(v) =

∫

Ω
f · v dx−

∫

Ω
(g⊗ n) : ∇hv ds+

∫

ED

cg · v ds,

Gh(q) =−
∫

ED

q g · n ds.

(4.2)

Here, ∇h and ∇h· denote the discrete gradient and divergence operator, taken
elementwise. The function c ∈ L∞(E) is the so-called discontinuity stabilization
function that is chosen as follows. Define the functions h ∈ L∞(E) and k ∈ L∞(E)
by

h(x) :=

{
min{hK , hK′}, x ∈ e = ∂K ∩ ∂K ′ ⊂ EI ,
hK , x ∈ e = ∂K ∩ ∂Ω ⊂ ED,

k(x) :=

{
max{kK , kK′}, x ∈ e = ∂K ∩ ∂K ′ ⊂ EI ,
kK , x ∈ e = ∂K ∩ ∂Ω ⊂ ED.

Then we set

(4.3) c = γh−1
k
2,

with a parameter γ > 0 that is independent of h and k.

Remark 4.1. It can be seen from (2.4) and the trace properties in Lemma 3.1
that the forms Ah and Bh are well-defined when inserting the exact solution (u, p)
satisfying (2.3). Similarly, Fh and Gh are well-defined due to (2.2) and Lemma 3.1.
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Remark 4.2. The form Ah corresponds to the so-called symmetric interior penalty
discretization of the Laplace operator; see [1] and [28] where the presentation and
analysis of several different DG methods were unified for diffusion problems and
the Stokes system, respectively. We emphasize that all the results presented in
this paper hold true verbatim for all the mixed discontinuous Galerkin methods
investigated in [28].

4.2. Well-posedness and Basic Error Estimates. Well-posedness of the dis-
crete system (4.1) was established in [28]. Indeed, by introducing the space V(h) =
Vh +H1(Ω)2, endowed with the broken norm

‖v‖2h = ‖∇hv‖2L2(Ω) +

∫

E
h
−1

k
2|[[v]]|2 ds, v ∈ V(h),

we first note that the forms Ah and Bh are continuous on Vh and Qh, that is

|Ah(v,w)| ≤ C‖v‖h‖w‖h, v, w ∈ Vh

|Bh(v, q)| ≤ C‖v‖h‖q‖L2(Ω), v ∈ Vh, q ∈ Qh,

with continuity constants C > 0 independent of h and k. Furthermore, there exists
a parameter γmin > 0 independent of h and k such that for any γ ≥ γmin there
exists a coercivity constant C > 0 independent of h and k with

Ah(v,v) ≥ C‖v‖2h, v ∈ Vh.

Throughout, we assume that γ ≥ γmin. Finally, for kK ≥ 2, the following discrete
inf-sup condition for the finite element spaces Vh and Qh holds true:

inf
0(=q∈Qh

sup
0 (=v∈Vh

Bh(v, q)

‖v‖h‖q‖L2(Ω)
≥ C|k|−1 > 0,

with a constant C > 0 that is independent of h and k.
The above properties of the forms Ah and Bh show the well-posedness of the sys-

tem (4.1). The following abstract error bounds were obtained in [28, Sect. 3 and 4]:
let (u, p) be the exact solution of the Stokes system and (uh, ph) the discontinuous
Galerkin approximation (4.1). Then we have

(4.4) ‖u−uh‖h ≤ C|k|
[

inf
w∈Vh

‖u−w‖h+ inf
q∈Qh

‖p− q‖L2(Ω)+ sup
v∈Vh

|Rh(u, p;v)|
‖v‖h

]
,

as well as
(4.5)

‖p− ph‖L2(Ω) ≤ C|k|2
[

inf
q∈Qh

‖p− q‖L2(Ω) + inf
w∈Vh

‖u−w‖h + sup
v∈Vh

|Rh(u, p;v)|
‖v‖h

]
,

where the constants C > 0 are independent of h and k. In the above estimates (4.4)
and (4.5), the term Rh(u, p;v) is a residual term that stems from the nonconformity
of the method and is defined and investigated next.

To define the term Rh(u, p;v), we introduce the auxiliary space

Σh := { τ ∈ L2(Ω)2×2 : τ ∈ QkK (K)2×2, K ∈ Th }.
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Moreover, we introduce the lifting operatorsL : V(h) → Σh, as well asM : V(h) →
Qh given by

∫

Ω
L(v) : τ dx =

∫

E
[[v]] : {{τ}} ds, ∀τ ∈ Σh,

∫

Ω
M(v)q dx =

∫

E
[[v]]{{q}} ds, ∀q ∈ Qh.

The residual can be expressed as follows; see [28] for details.

Lemma 4.3. Let f ∈ B0
β(Ω)

2. For test functions v ∈ Vh, we have

Rh(u, p;v) =

∫

Ω
[∇u−pI] : ∇hv dx−

∫

Ω
∇u : L(v) dx+

∫

Ω
pM(v) dx−

∫

Ω
f ·v dx.

Remark 4.4. We point out that the regularity assumption (2.3) is not needed to
obtain the abstract error estimates (4.4) and (4.5) and the expression for the residual
in Lemma 4.3. The reason for this is that Ah and Bh can be extended in a non-
consistent way to continuous forms onV(h)×V(h) and V(h)×L2(Ω), respectively;
see [28] for details. The only assumption that is needed in Lemma 4.3 is that
f ∈ B0

β(Ω)
2 so as to make the integral

∫
Ω f · v dx well-defined for test function

v ∈ Vh. We will invoke the regularity assumption (2.3) in the next section in order
to show that Rh is convergent.

5. Error Analysis

In this section, we present an error analysis valid for piecewise analytic solutions.
Special care is needed for the elements K ∈ Kvert near the vertices.

5.1. The Residual. For smooth solutions, the residual expression in Lemma 4.3
has been shown to be optimally convergent in [28]. For solutions satisfying the
regularity assumption (2.3) a more careful investigation is needed.

Lemma 5.1. Assume (2.2) and (2.3). Let P : L2(Ω)2×2 → Σh and P : L2
0(Ω) →

Qh denote the L2-projections onto Σh and Qh, respectively. Then we have

Rh(u, p;v) =

∫

E
{{∇u− P (∇u)}} : [[v]] ds−

∫

E
{{p− P (p)}}[[v]] ds

for all v ∈ Vh.

Proof. We first note that, by definition of the lifting operators,
∫

Ω
∇u : L(v) dx =

∫

Ω
P (∇u) : L(v) dx =

∫

E
{{P (∇u)}} : [[v]] ds

and ∫

Ω
pM(v) dx =

∫

Ω
P (p)M(v) dx =

∫

E
{{P (p)}}[[v]] ds.

Furthermore, integrating by parts the expression in Lemma 4.3 over each element
K ∈ Th gives

Rh(u, p;v) =

∫

Ω
[−∆u+∇p− f ] · v dx+

∑

K∈Th

∫

∂K
(∇u− pI) : (v ⊗ nK) ds

−
∫

E
{{P (∇u)}} : [[v]] ds+

∫

E
{{P (p)}}[[v]] ds.
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Note that all the integrals are well-defined thanks to Lemma 3.1, Lemma 3.2, (2.4)
and (2.5). Elementary manipulations then show that
∑

K∈Th

∫

∂K
(∇u−pI) : (v⊗nK) ds =

∫

EI

[[[[[[∇u−pI]]]]]] ·{{v}} ds+
∫

E
{{∇u−pI}} : [[v]] ds.

Application of Lemma 3.3 yields
∑

K∈Th

∫

∂K
(∇u− pI) : (v ⊗ nK) ds =

∫

E
{{∇u}} : [[v]] ds−

∫

E
{{p}}[[[[[[v]]]]]] ds.

Combining the above results and observing that −∆u+∇p = f in H0,0
β (Ω)2, from

(2.5), yields the assertion. !

We have the following estimate of Rh.

Lemma 5.2. Assume (2.2) and (2.3). For v ∈ Vh, we have

|Rh(u, p;v)| ≤C‖v‖h
[
‖u−w‖h + ‖p− q‖L2(Ω)

]

+
∣∣∣
∫

E
{{∇u−∇w}} : [[v]] ds−

∫

E
{{p− q}}[[v]] ds

∣∣∣

for any (w, q) ∈ Vh ×Qh.

Proof. Let (w, q) ∈ Vh ×Qh be arbitrary. From the result in Lemma 5.1 and since
the L2-projections reproduce polynomials in Σh and Qh, respectively, we obtain

Rh(u, p;v) =

∫

E
{{∇u−∇hw−P (∇u−∇hw)}} : [[v]] ds−

∫

E
{{p−q−P (p−q)}}[[v]] ds.

The term T with the L2-projections can be bounded by

|T | =
∣∣∣
∫

E
{{P (∇u−∇hw)}} : [[v]] ds−

∫

E
{{P (p− q)}}[[v]] ds

∣∣∣

≤ C‖v‖h
∑

K∈Th

[hK

k2K
‖P (∇u−∇hw)‖2L2(∂K) +

hK

k2K
‖P (p− q)‖2L2(∂K)

]1/2

≤ C‖v‖h
[
‖P (∇u−∇hw)‖L2(Ω) + ‖P (p− q)‖L2(Ω)

]

≤ C‖v‖h
[
‖u−w‖h + ‖p− q‖L2(Ω)

]
.

Here, we used the Cauchy-Schwarz inequality, the definition of h and k, the fact
that |[[v]]|2 ≤ |[[v]]|2, the discrete trace inequality

‖ϕ‖2L2(∂K) ≤ Ck2Kh−1
K ‖ϕ‖2L2(K),

valid for polynomials ϕ ∈ QkK (K), and the stability of the L2-projections. The
triangle inequality completes the proof. !

5.2. Error Estimates. In this section, we combine the bounds (4.4) and (4.5)
with the ones in Lemma 5.2 to obtain the following result.

Theorem 5.3. Let the exact solution (u, p) of the Stokes system satisfy (2.3), and
let (uh, ph) be the discontinuous Galerkin approximation (4.1) with kK ≥ 2, for all
K ∈ Th. Then, for any (w, q̃) ∈ Vh × Q̃h, we have the error bound

‖u− uh‖h + ‖p− ph‖L2(Ω) ≤ C |k|3
[
E1 + E2 + E3

]
,
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where

E2
1 =

∑

K∈Th

[
|u−w|2H1(K) + h−2

K ‖u−w‖2L2(K) + ‖p− q̃‖2L2(K)

]
,

E2
2 =

∑

K∈Kint

h2
K

[
|u−w|2H2(K) + |p− q̃|2H1(K)

]
,

E2
3 =

∑

K∈Kvert

h2(1−βK)
K

[
|u−w|2

H2,2
βK

(K)
+ |p− q̃|2

H1,1
βK

(K)

]
.

The constant C > 0 is independent of h and k.

Proof. Let w ∈ Vh, q̃ ∈ Q̃h be arbitrary. Set q := q̃ − 1
|Ω|

∫
Ω q̃ dx ∈ Qh. Then, the

bounds from (4.4), (4.5) and Lemma 5.2 yield

‖u− uh‖h + ‖p− ph‖L2(Ω)

≤ C|k|2
[
‖u−w‖h + ‖p− q‖L2(Ω) + sup

v∈Vh

|Eh(u−w, p− q;v)|
‖v‖h

]
,

(5.1)

with Eh given by

Eh(u−w, p− q;v) =

∫

E
{{∇u−∇hw}} : [[v]] ds−

∫

E
{{p− q}}[[v]] ds.

In the following, we estimate the right-hand side of (5.1) in terms of {Ei}3i=1.
First, using the shape-regularity of the mesh, property (3.1), and the trace in-

equality

‖ϕ‖2L2(∂K) ≤ C
[
h−1
K ‖ϕ‖2L2(K) + hK |ϕ|2H1(K)

]
, ∀ϕ ∈ H1(K),

valid with a constant C > 0 independent of h and k, yields

‖u−w‖2h =
∑

K∈Th

|u−w|2H1(K) +

∫

E
h
−1

k
2|[[u−w]]|2 ds

≤
∑

K∈Th

|u−w|2H1(K) + C
∑

K∈Th

h−1
K k2K‖u−w‖2L2(∂K)

≤ C|k|2
∑

K∈Th

[
h−2
K ‖u−w‖2L2(K) + |u−w|2H1(K)

]

≤ C|k|2E2
1 .

(5.2)

Next, since
∫
Ω p dx =

∫
Ω q dx = 0, we have

‖p− q‖L2(Ω) = ‖p− q̃ − |Ω|−1

∫

Ω
(p− q̃) dx‖L2(Ω)

≤ ‖p− q̃‖L2(Ω) + |Ω|−1/2

∫

Ω
|p− q̃| dx

≤ 2‖p− q̃‖L2(Ω)

≤ 2E1.

(5.3)
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Moreover,

|Eh(u−w, p− q;v)| ≤
∑

e⊂E

∫

e

[
|{{∇u−∇hw}} : [[v]]|+ |{{p− q}}[[v]]|

]
ds

≤
∑

e⊂E

∫

e

[
|{{∇u−∇hw}}|+ |{{p− q}}|

]
|[[v]]| ds

≤
∑

e⊂E

‖[[v]]‖L∞(e)

∫

e

[
|{{∇u−∇hw}}|+ |{{p− q}}|

]
ds.

Note that [[v]] is a polynomial on each edge e ⊂ E . Applying a standard inverse
inequality for polynomials (see, e.g., [26]) and using property (3.1) yields

‖[[v]]‖L∞(e) = ‖|[[v]]|2‖1/2
L∞(e) ≤ C

k|e√
h|e

‖|[[v]]|2‖1/2
L1(e) ≤ C

k|e√
h|e

‖[[v]]‖L2(e).

Therefore, using the shape-regularity of the mesh it follows that

|Eh(u−w, p− q;v)|

≤ C
∑

e⊂E

∥∥∥
k√
h
[[v]]

∥∥∥
L2(e)

∫

e

[
|{{∇u−∇hw}}|+ |{{p− q}}|

]
ds

≤ C
[ ∫

E
h
−1

k
2|[[v]]|2 ds

]1/2[ ∑

K∈Th

‖∇u−∇hw‖2L1(∂K) + ‖p− q‖2L1(∂K)

]1/2

≤ C ‖v‖h
[ ∑

K∈Th

‖∇u−∇hw‖2L1(∂K) + ‖p− q‖2L1(∂K)

]1/2
.

In addition, the third assertion in Lemma 3.1 implies that

|Eh(u−w, p− q;v)|
‖v‖h

≤ C
[ ∑

K∈Th

[
|u−w|2H1(K) + ‖p− q‖2L2(K)

]

+
∑

K∈Kint

h2
K

[
|u−w|2H2(K) + |p− q|2H1(K)

]

+
∑

K∈Kvert

h2−2βK

K

[
|u−w|2

H2,2
βK

(K)
+ |p− q|2

H1,1
βK

(K)

]]1/2
.

Finally, applying (5.3) and using the fact ∇(q − q̃) ≡ 0 results in

|Eh(u−w, p− q;v)|
‖v‖h

≤ C
[
E2

1 +
∑

K∈Kint

h2
K

[
|u−w|2H2(K) + |p− q̃|2H1(K)

]

+
∑

K∈Kvert

h2−2βK

K

[
|u−w|2

H2,2
βK

(K)
+ |p− q̃|2

H1,1
βK

(K)

]]1/2

≤ C(E1 + E2 + E3),

(5.4)

for all v ∈ Vh. Combining (5.2)–(5.4) with (5.1) completes the proof. !

6. Exponential Rates of Convergence

The aim of this section is to show that the error estimates in Theorem 5.3 are
exponentially convergent on geometric meshes.
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6.1. Geometric Meshes. In order to resolve singular solution behavior near cor-
ners we introduce meshes that are geometrically refined towards the vertices of Ω.
First, we define the basic geometric meshes on Q̂ = (0, 1)2.

Definition 6.1. Fix n ∈ N0 and σ ∈ (0, 1). On Q̂, the geometric mesh ∆n,σ

with n + 1 layers and grading factor σ is created recursively as follows: If n = 0,
∆0,σ = {Q̂}. Given ∆n,σ for n ≥ 0, ∆n+1,σ is generated by subdividing the square
K with 0 ∈ K into four smaller rectangles by dividing its sides in a σ : (1 − σ)
ratio.

An example of a basic geometric mesh is shown in Figure 1. We denote the
elements in the basic geometric mesh by {Kij} as indicated there. We say that the
elements K1j , K2j and K3j constitute layer j for j ≥ 2 while K11 is the element at
the origin.

Figure 1. The geometric mesh ∆n,σ with n = 3 and σ = 0.5.
The elements are numbered as indicated.

Definition 6.2. A geometric mesh Tn,σ in the polygon Ω ⊂ R2 is obtained by
mapping the basic geometric meshes ∆n,σ from Q̂ affinely to a vicinity of each
convex corner of Ω. At reentrant corners three suitably scaled copies of ∆n,σ are
used (as shown in Figure 2). The remainder of Ω is subdivided with a fixed affine
and quasi-uniform partition.

In Figure 2 this local geometric refinement is illustrated. For ease of exposition,
we consider only mesh patches that are identically refined with the same parame-
ters σ and n, although different grading factors and numbers of layers may be used
for the partition of each corner patch.

Definition 6.3. A polynomial degree distribution k on a geometric mesh Tn,σ is
called linear with slope µ > 0 if the elemental polynomial degrees are layerwise
constant in the geometric patches and given by kj := max(2, 3µj4) in layer j,
j = 1, . . . , n+ 1. In the interior of the domain the elemental polynomial degree is
set constant to max(2, 3µ(n+ 1)4).
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Figure 2. Local geometric refinement near vertices {Ai} of Ω.
At the reentrant corner A4 three suitably scaled copies of ∆n,σ are
used. In all corners, n = 3 and σ = 0.5.

6.2. Exponential Convergence. Our main result establishes exponential conver-
gence of the mixed hp-DGFEM.

Theorem 6.4. Assume that the exact solution (u, p) of the Stokes equations satis-
fies (2.3) with β

min
< β < 1. Let (uh, ph) ∈ Vh×Qh be the DGFEM approximation

(4.1) on geometric meshes Tn,σ. Then there exists µ0 = µ0(σ,β) > 0 such that for
linear degree vectors k with slope µ ≥ µ0 there holds the error estimate

‖u− uh‖h + ‖p− ph‖L2(Ω) ≤ C exp(−bN
1/3)

with constants C, b > 0 independent of N = dim(Vh) ≈ dim(Qh).

Remark 6.5. If the polynomial degree is chosen to be constant throughout the mesh,
i.e., kK = k for all K ∈ Th, exponential convergence is still obtained by choosing k
proportionally to the number n of layers. This is due to the fact that the interpolant
constructed for the proof of Theorem 6.4 still can be used for k = max(2, 3µ(n+1)4).

Proof. We proceed in two steps.
Step 1: We consider first the case where Ω = Q̂ and Tn,σ = ∆n,σ is the basic

geometric mesh from Definition 6.1. From [27, Proposition 27] and [19] or [29,
Lemma 4.25], there exist q̃11 ∈ Q0(K11) and w11 ∈ Q1(K11)2 such that

‖p− q̃11‖2L2(K11)
+ h

2−2βK11

K11
|p− q̃11|2H1,1

βK11
(K11)

≤ Cσ2n(1−βK11
)|p|2

H1,1
βK11

(K11)

and

h−2
K11

‖u−w11‖2L2(K11) + |u−w11|2H1(K11) + h
2−2βK11

K11
|u−w11|2H2,2

βK11
(K11)

≤ Cσ2n(1−βK11
)|u|2

H2,2
βK11

(K11)
.
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Moreover, for Kij ∈ Kint there are q̃ij ∈ QkKij
−1(Kij) and wij ∈ QkKij (Kij)2 such

that

‖p− q̃ij‖2L2(Kij) + h2
Kij

|p− q̃ij |2H1(Kij)

≤ Cσ2(n+2−j)(1−βKij
)Γ(kKij − sij + 1)

Γ(kKij + sij − 1)

(*
2

)2sij
‖p‖2

H
sij+3,1

βkKij

(Kij)

and

h−2
Kij

‖u−wij‖2L2(Kij) + |u−wij |2H1(Kij) + h2
Kij

|u−wij |2H2(Kij)

≤ Cσ2(n+2−j)(1−βKij
)Γ(kKij − sij + 1)

Γ(kKij + sij − 1)

(*
2

)2sij
‖u‖2

H
sij+3,2

βkKij

(Kij)

for any 1 ≤ i ≤ 3, 2 ≤ j ≤ n+ 1 and sij ∈ [1, kKij ]. Here, * = max(1,σ−1(1 − σ)).
This was proved, e.g., in [27, Sect. 5.2] in all details. Referring to Theorem 5.3
implies that

‖u− uh‖2h + ‖p− ph‖2L2(Ω) ≤ Cσ2n(1−βK11
)
[
Ψ2,1

βK11
(u, p)

+
3∑

i=1

n+1∑

j=2

σ2(2−j)(1−βKij
)Γ(kKij − sij + 1)

Γ(kKij + sij − 1)

(*
2

)2sij
Ψ

sij+3,sij+3
βKij

(u, p)
]
,

(6.1)

where

Ψm,l
βK

(u, p) := ‖u‖2
Hm,2

βK
(K)

+ ‖p‖2
Hl,1

βK
(K)

.

In [3, 18] or [29, Sect. 4.5.3] it was shown that there exist sij , 1 ≤ i ≤ 3, 2 ≤ j ≤ n+1
and µ0 > 0 such that, for linear polynomial degree distributions as in Definition 6.3
with slope µ ≥ µ0, the right-hand side of (6.1) is exponentially small with respect
to N . More precisely, there holds:

‖u− uh‖h + ‖p− ph‖L2(Q̂) ≤ C exp(−bN
1/3).

Step 2: Let now Tn,σ be a geometric mesh on the polygon Ω, as in Definition 6.3.
We recall that Tn,σ is obtained by mapping affinely up to three geometric mesh
patches ∆n,σ to a neighborhood of each corner. On each of these patches, we can
construct an interpolant (w, q) as in Step 1, remarking that a generalization of the
result there to affinely mapped meshes can be established straightforwardly; see,
e.g., [19, 18, 29] and the references therein.

This completes the proof. !

7. Conclusions

In this paper, we have presented the first proof of exponential convergence for
mixed hp-DGFEM for Stokes flow on geometric meshes with linearly increasing
approximation orders. The proof relies on a combination of new trace theorems for
functions in weighted Sobolev spaces and standard hp-approximation techniques.
We point out that the exponential convergence result proved in this work can be
straightforwardly extended to mixed formulations of linear elasticity problems with
nearly incompressible materials. The numerical validation of the hp-scheme pro-
posed in this paper is the subject of ongoing work and will be presented elsewhere.
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[4] I. Babuška and B.Q. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data, II. SIAM J. Math. Anal., 20:763–781, 1989.

[5] G.A. Baker, W.N. Jureidini, and O.A. Karakashian. Piecewise solenoidal vector fields and
the Stokes problem. SIAM J. Numer. Anal., 27:1466–1485, 1990.

[6] C. Bernardi and Y. Maday. Approximations Spectrales de Problèmes aux Limites Elliptiques.
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[12] B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab. Local discontinuous Galerkin meth-
ods for the Stokes system. SIAM J. Numer. Anal., 40:319–343, 2002.

[13] B. Cockburn, G.E. Karniadakis, and C.-W. Shu. The development of discontinuous Galerkin
methods. In B. Cockburn, G.E. Karniadakis, and C.-W. Shu, editors, Discontinuous Galerkin

Methods: Theory, Computation and Applications, volume 11 of Lect. Notes Comput. Sci.

Eng., pages 3–50. Springer–Verlag, 2000.
[14] B. Cockburn and C.-W. Shu. Runge–Kutta discontinuous Galerkin methods for convection–

dominated problems. J. Sci. Comput., 16:173–261, 2001.
[15] L. Franca and R. Stenberg. Error analysis of some Galerkin-least-squares methods for the

elasticity equations. SIAM J. Numer. Anal., 28:1680–1697, 1991.
[16] V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations. Springer–

Verlag, New York, 1986.
[17] V. Girault, B. Rivière, and M.F. Wheeler. A discontinuous Galerkin method with non-

overlapping domain decomposition for the Stokes and Navier-Stokes problems. Technical
Report 02-08, TICAM, UT Austin, 2002.

[18] B.Q. Guo. The hp-version of the finite element method for elliptic equations of order 2m.
Numer. Math., 53:199–224, 1988.
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[21] B.Q. Guo and I. Babuška. On the regularity of elasticity problems with piecewise analytic
data. Adv. Appl. Math., 14:307–347, 1993.



17

[22] B.Q. Guo and C. Schwab. Analytic regularity of Stokes flow in polygonal domains. Technical
Report 2000-18, SAM, ETH Zürich, 2000.

[23] P. Hansbo and M.G. Larson. Discontinuous finite element methods for incompressible and
nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech.

Engrg., 191:1895–1908, 2002.
[24] O.A. Karakashian and W.N. Jureidini. A nonconforming finite element method for the sta-

tionary Navier-Stokes equations. SIAM J. Numer. Anal., 35:93–120, 1998.
[25] M. Orlt. Regularity and FEM-Error Estimates for General Boundary Value Problems of the

Navier-Stokes Equations. PhD thesis, Dept. of Math., Universität Stuttgart, 1998.
[26] A. Quarteroni. Some results of Bernstein and Jackson type for polynomial approximation in

Lp spaces. Japan J. Appl. Math., 1:173–181, 1984.
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