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Abstract

We propose a mixed boundary element discretization of the Electric Field
Integral Equation for which we have an Inf-Sup condition which is uniform in
both the mesh-width h and the wave-number k, for small enough h and k. For
this equation we construct a preconditioner such that the spectral condition
number of the preconditioned system is also bounded independently of k

and h.



1 The continuous problem

Let Ω− be a bounded domain inR3 with a smooth boundary Γ. The exterior domainR3\(Ω−∪Γ)
is denoted Ω+ and the outward normal on Γ is denoted n. The tangential trace operator is
denoted γT and the normal trace operator is denoted γn.

Let Z be a positive constant, called impedance. For each wavenumber k > 0 the time-
harmonic Maxwell equations (in any given open region of R3) are:

curlE = +ikZ H, curlH = −ik/Z E. (1)

Given a family (Einc
k , H inc

k ) for small positive k of solutions of Maxwell’s equations on a
neighborhood of Γ we are interested, for each k, in the solution (Ek, Hk) of Maxwell’s equations
in Ω− or Ω+ satisfying the perfect conductor boundary condition γTEk = −γTEinc

k , and (in the
exterior domain) the Silver-Müller radiation condition.

We use potentials to represent Ek. Let Gk denote the standard Green kernel of −∆ − k2

and let Φk be the single layer potential defined on scalar or tangent fields u on Γ by:

(Φku)(y) =

∫

Γ

Gk(x, y)u(x)dx, Gk(x, y) =
eik|x−y|

4π|x− y|
. (2)

We represent Ek as an electric field generated by a tangent field uk on Γ (the electric current).
More precisely we put Ek(y) = (grad div +k2)(Φkuk). Letting Ak = −γT(grad div +k2)Φk, the
problem is to solve the Electric Field Integral Equation (EFIE) Akuk = γTEinc

k .

The operator Ak is continuous from X = H−1/2
div (Γ) to its dual X ′ = H−1/2

rot (Γ), and the EFIE
can be put in variational form:

uk ∈ X, ∀u′ ∈ X 〈Akuk, u
′〉 = 〈Einc

k , u′〉. (3)

We denote by ak the associated bilinear form ; its expression on smooth fields is:

ak(u, v) =

∫∫

Γ×Γ

Gk(x, y)(div u(x) div v(y)− k2u(x) · v(y))dxdy (4)

Following Bendali [1] this variational problem is solved with the Galerkin method on div-
conforming Finite Element spaces on the boundary. At low frequencies one sees that the
problem is that the limit of the operator Ak as k → 0, is degenerated ; in fact the limit is not
even Fredholm since its kernel contains the infinite dimensional space rotH1/2(Γ).

The object of this paper is to compute approximations of uk in a stable way for small k.

2 The continuous remedy

For simplicity we suppose that Γ is connected and simply connected. As remarked by De-
LaBourdonnaye [2], if we put V = gradH3/2(Γ) and W = rotH1/2(Γ), then V and W are closed
in X and we have the decomposition:

X = V ⊕W. (5)
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We put S = H1/2(Γ), and for any space Y of scalar fields on Γ we put Y • = {u ∈ Y : 〈u, 1〉 = 0}.
Let Ξk : V × S• → X denote the isomorphism defined by Ξk(v, p) = v + k−1 rot p. The four

blocks of the bilinear form ãk on V × S• defined by ãk((v, p), (v′, p′)) = ak(Ξk(v, p),Ξk(v′, p′)),
have the expression:
( ∫∫

Gk(x, y)(div v(x) div v′(y)− k2v(x) · v′(y))dxdy −k
∫∫

Gk(x, y)v(x) · rot p′(y)dxdy
−k

∫∫

Gk(x, y) rot p(x) · v′(y)dxdy −
∫∫

Gk(x, y) rot p(x) · rot p′(y)dxdy

)

(6)
Since there is C > 0 such that:

∀v ∈ V ‖v‖X ≤ C‖ div v‖H−1/2(Γ), ∀p ∈ S• ‖p‖S ≤ C‖ rot p‖
H

−1/2
T

(Γ)
, (7)

the two diagonal blocks are coercive hence invertible for k = 0. We remark also that the
coupling blocks vanish for k = 0.

Concerning the right-hand sides we remark that:

k−1〈γTE
inc
k , rot p′〉 = iZ〈γnH

inc
k , p′〉. (8)

If for instance the family of incident waves consists of plane waves:

Einc
k (x) = E0 e

ikσ·x, H inc
k (x) = 1/ZE0 × σ eikσ·x, (9)

then the limit of γTEinc
k is a surface gradient and γnH inc

k has a non-zero limit. Thus both right-
hand sides in V " × S•" have non-zero limits as k → 0. It follows that with the decomposition
uk = Ξk(vk, pk) both vk and pk have a non-zero limit as k → 0.

We now turn to the preconditioning of the variational problem associated with (6) and we
recall the remark made in [3] that a preconditioner is obtained by an invertible bilinear form
on a dual space. Since the off-diagonal terms are small in norm and compact it is enough to
precondition the two diagonal blocks.

For the first block, we proceed as follows. Put V ′ = gradH1/2(Γ). Then we remark that
the L2

T
(Γ)-bilinear form extends continuously to an invertible bilinear form on V ′ × V . Let

Θ1 : V " → V ′ be the corresponding isomorphism. We remark furthermore that V ′ is a closed
subspace of H−1/2

T (Γ), hence we can use the bilinear form associated with the single layer
operator on tangent fields as a preconditioner.

For the second block, the induced operator on S• → S•" is the main part of the hypersin-
gular operator appearing in acoustics. It can be efficiently preconditioned by the single layer
operator [6] [3]. As a matter of notations we put S ′ = H−1/2(Γ) so that the L2(Γ)-bilinear form
extends continuously to an invertible bilinear form on S ′• × S•, and let Θ2 : S•" → S ′• be the
corresponding isomorphism.

Thus, on V ′ × S ′• we use the bilinear form b whose block expression is:
( ∫∫

G0(x, y)v(x) · v′(y)dxdy 0
0 −

∫∫

G0(x, y)q(x)q′(y)dxdy

)

(10)

Letting Θ : V " × S•" → V ′ × S ′• be the map componentwise induced by Θ1 and Θ2, and
associating an operator Ãk : V × S• → V " × S•" with ãk and B : V ′ × S ′• → V ′" × S ′•" with b
we have:

2



Proposition 2.1 There is ε > 0 such that for all k ∈ [0, ε] the operator Θ"BΘÃk is an auto-
morphism of V ×S• and all terms of the composition are isomorphisms whose norm and norm
of the inverse are bounded independently of k in [0, ε].

3 Discretization

Since V = gradH3/2(Γ) it would be cumbersome to implement a conforming Finite Element
discretization of the variational problem on V × S•. Instead we propose the following non-
conforming method.

Suppose we have (finite dimensional) subspaces Xh of X ∩ H0
div(Γ) and Sh of S ∩ H1(Γ),

which are stable under complex conjugation, which are such that Sh contains the constant fields
and we have an exact sequence:

Sh
rot
−→

Xh
div
−→

L2(Γ). (11)

We define Vh by:
Vh = {u ∈ Xh : ∀p ∈ Sh 〈u, rot p〉 = 0}. (12)

We keep the notation ãk to denote the extension of ãk to X ×S whose block-wise expression is
given by (6). We solve the system: Find (vkh, pkh) ∈ Vh×S•

h, such that for all (v′, p′) ∈ Vh×S•
h

we have:
ãk((vkh, pkh), (v

′, p′)) = 〈Einc
k , v′〉+ iZ〈H inc

k · n, p′〉. (13)

Recall the definition of the gap : δX(Vh, V ) = supvh∈Vh
infv∈V ‖vh − v‖X/‖vh‖X . Our first

proposition concerns the well posedness of the discrete system.

Proposition 3.1 If δX(Vh, V ) → 0 as h → 0 then there is ε > 0, h0 > 0 and C > 0 such that
for all k ∈ [0, ε], all h < h0 we have :

inf
(v,p)∈Vh×S•

h

sup
(v′,p′)∈Vh×S•

h

|ãk((v, p), (v′, p′))|

‖(v, p)‖X×S‖(v′, p′)‖X×S
≥ 1/C. (14)

–Proof: Actually we prove uniform coercivity. By the continuity of the operators with respect
to k it suffices to prove coercivity for k = 0. Let P be the projector with range V and kernel
W . We have:

∀v ∈ Vh ‖v‖X ≤ ‖v − Pv‖X + ‖Pv‖X (15)

≤ ‖I − P‖δ(Vh, V )‖v‖+ ‖ div v‖H−1/2(Γ). (16)

Therefore we have an estimate of the form : There is h0 > 0 and C > 0 such that for all h < h0:

∀v ∈ Vh ‖v‖X ≤ C‖ div v‖H−1/2(Γ). (17)

The result entails. !
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In general we do not have a basis of Vh, hence solving this system requires some extra work.
In our case this will be carried out by the preconditioner which we define now. It should be
checked that in what follows only bases of Xh and Sh are needed.

Let Θ1h : X"
h → Xh denote the map which to any & ∈ X"

h associates the solution of:

v ∈ Vh, ∀v′ ∈ Vh 〈v, v′〉 = &(v′). (18)

For & ∈ X"
h, Θ1h& can be computed simply as the solution u of:

p ∈ S•
h, ∀p′ ∈ S•

h 〈rot p, rot p′〉 = &(rot p′),
u ∈ Xh, ∀u′ ∈ Xh 〈u, u′〉 = &(u′)− 〈rot p, u′〉.

(19)

We define the discretization Θ2h of Θ2 to be the map which to & ∈ S"
h associates the solution

p of:
p ∈ S•

h, ∀p′ ∈ S•
h 〈p, p′〉 = &(p′). (20)

Let Θh : X"
h × S"

h → Xh × Sh be the association of Θ1h and Θ2h. We keep the notation b

for the extension of b from V ′ × S ′• to H−1/2
T (Γ) × S ′ keeping the block expression (10). Let

Bh : Xh×Sh → X"
h ×S"

h be the map induced by b. We also denote by Ãkh the map induced by
ãk on Xh × Sh → X"

h × S"
h.

One sees that the operator Θ"
hBhΘh is a surjection onto Vh × S•

h. For & ∈ (Xh × S•
h)

",
Θ"

hBhΘh& depends only on &|Vh×S•

h
. It follows that the conjugate gradient algorithm for Ãkh on

Xh × S•
h, preconditioned by Θ"

hBhΘh yields iterates in Vh × S•
h converging to the solution of

(13). Morevover Θ"
hBhΘhÃkh determines a bijection Vh×S•

h → Vh×S•
h whose spectral condition

number κkh is bounded independently of k in an interval [0, ε].
More precise estimates on κkh and the convergence of Krylov subspace methods, depend

on the actual Galerkin spaces. Examples of Finite Element spaces which satisfy the above
conditions include the case where we have quasi-uniform triangulations of Γ and take for Xh

Raviart-Thomas vector FE of degree n and for Sh the scalar continuous piecewise P n+1 FE.
Then we also have the following stability property:

Proposition 3.2 There is ε > 0, h0 > 0 and C1, C2 > 0 such that for all k ∈ [0, ε], all h < h0

we have:

‖Θ"
hBhΘhÃkh(u, p)‖0 ≤ C1‖(u, p)‖0 (21)

with ‖(u, p)‖20 = ‖u‖2H0
div

(Γ) + ‖p‖2H1(Γ),

‖Θ"
hBhΘhÃkh(u, p)‖−1/2 ≥ C−1

2 ‖(u, p)‖−1/2 (22)

with ‖(u, p)‖2−1/2 = ‖u‖2
H−1/2

div
(Γ)

+ ‖p‖2H1/2(Γ).

–Proof: We show the proof for the case of fixed k = 0 and then indicate how the proof extends
to the the case of k in an interval [0, ε].

At k = 0 the operator Ãkh decouples and we can study the action on Vh and S•
h separately.

(i) Proof of estimate (21). Let PVh
denote the L2

T
(Γ)-orthogonal projection onto Vh, and

PS•

h
denote the L2(Γ)-orthogonal projection onto S•

h. Let S and ST denote the single layer
operator acting on scalar and tangent fields respectively.
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The discrete operator Θ"
hBhΘhÃkh decouples into the two operators:

Vh ⊂ H0
div(Γ)

div
−→

L2(Γ)
S

−→
H1(Γ)

grad
−→

L2
T
(Γ)

PVh

−→
Vh

ST

−→
H1

T
(Γ)

PVh

−→
Vh, (23)

and:

S•
h ⊂ H1(Γ)

rot
−→

L2
T
(Γ)

ST

−→
H1

T
(Γ)

rot
−→

L2(Γ)
PS•

h

−→
S•
h

S

−→
H1(Γ)

PS•

h

−→
S•
h. (24)

For the first operator it thus suffices to show that the last occurrence of PVh
satisfies an

estimate of the form:
∀u ∈ H1

T
(Γ) ‖PVh

u‖H0
div

(Γ) ≤ C‖u‖H1
T
(Γ). (25)

Let PXh
denote the L2

T
-orthogonal projection onto Xh and let Πh denote the standard interpo-

lator onto Xh (interpolating the fluxes through the edges of the curved triangles). Using the
fact that Vh is L2

T
-orthogonal to the kernel of div on Xh, and standard inverse inequalities we

have for any u ∈ H1
T
(Γ):

‖ divPVh
u‖L2(Γ) = ‖ divPXh

u‖L2(Γ) (26)

≤ ‖ div(PXh
u− Πhu)‖L2(Γ) + ‖ divΠhu‖L2(Γ) (27)

≤ Ch−1‖ div(PXh
u−Πhu)‖H−1(Γ) + ‖ divΠhu‖L2(Γ) (28)

≤ Ch−1‖PXh
u− Πhu‖L2

T
(Γ) + ‖ divΠhu‖L2(Γ) (29)

≤ Ch−1‖u−Πhu‖L2
T
(Γ) + ‖ divΠhu‖L2(Γ) (30)

The estimate (25) now follows from the well-known properties of Πh.
For the second operator the H1(Γ)-stability follows from the well-known H1(Γ)-stability of

the L2(Γ)-projector onto S•
h (in the last occurrence of PS•

h
).

Thus estimate (21) is proved.

(ii) Proof of estimate (22). Since Bh and Ã0h are coercive on Vh × S•
h in the H−1/2

T (Γ) ×

H−1/2(Γ) and H−1/2
div (Γ) × H1/2(Γ) norms respectively it suffices to show that the L2-dualities

used for the projections are uniformly (with respect to h) continuous on Vh and S•
h in these

norms. For the L2-duality on Sh in the H−1/2(Γ)×H1/2(Γ) norm this is trivial. For the case of
Vh we proceed as follows:

Let P denote the projector with range V and kernel W . It preserves the divergence. As we
remarked in [4] we have an estimate of the form:

∀v ∈ Vh ‖v − Pv‖L2
T
(Γ) ≤ Ch‖ div v‖L2(Γ). (31)

For any v, v′ ∈ Vh we have:

|〈v, v′〉| ≤ |〈v − Pv, v′〉|+ |〈Pv, v′〉| (32)

≤ C‖v − Pv‖H0
div

(Γ)‖v
′‖H−1

rot
(Γ) + ‖Pv‖

H1/2
T

‖v′‖
H−1/2

T
(Γ)

(33)

≤ Ch‖ div v‖L2(Γ)‖v
′‖L2

T
(Γ) + C‖ div v‖H−1/2(Γ)‖v

′‖
H

−1/2
T

(Γ)
(34)

≤ C‖ div v‖H−1/2(Γ)‖‖v
′‖

H−1/2
T

(Γ)
. (35)

This completes the proof of estimate (22).
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To extend the results to to k ∈ [0, ε] we simply remark that Bh and Ãkh are uniformly
continuous for the norms used in the proof of (21) and uniformly coercive for the norms used
in the proof of (22), with respect to k in an interval [0, ε]. !

It follows that κkh is bounded by C1C2 for (k, h) in the range [0, ε]×]0, h0[.
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Poincaré du problème extérieur de l’électromagnétisme ; C. R. Acad. Sci. Paris Sér. I Math.,
Vol. 316, No. 4, p. 369-372, 1993.
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