Uniformly stable preconditioned mixed
 boundary element method for low-frequency electromagnetic scattering

S.H. Christiansen

Research Report No. 2002-17
September 2002
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Uniformly stable preconditioned mixed boundary element method for low-frequency electromagnetic scattering

S.H. Christiansen
Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule CH-8092 Zürich
Switzerland

Research Report No. 2002-17 September 2002

Abstract

We propose a mixed boundary element discretization of the Electric Field Integral Equation for which we have an Inf-Sup condition which is uniform in both the mesh-width h and the wave-number k, for small enough h and k. For this equation we construct a preconditioner such that the spectral condition number of the preconditioned system is also bounded independently of k and h.

1 The continuous problem

Let Ω_{-}be a bounded domain in \mathbb{R}^{3} with a smooth boundary Γ. The exterior domain $\mathbb{R}^{3} \backslash\left(\Omega_{-} \cup \Gamma\right)$ is denoted Ω_{+}and the outward normal on Γ is denoted n. The tangential trace operator is denoted γ_{T} and the normal trace operator is denoted γ_{n}.

Let Z be a positive constant, called impedance. For each wavenumber $k>0$ the timeharmonic Maxwell equations (in any given open region of \mathbb{R}^{3}) are:

$$
\begin{equation*}
\operatorname{curl} E=+i k Z H, \quad \operatorname{curl} H=-i k / Z E . \tag{1}
\end{equation*}
$$

Given a family $\left(E_{k}^{i n c}, H_{k}^{i n c}\right)$ for small positive k of solutions of Maxwell's equations on a neighborhood of Γ we are interested, for each k, in the solution (E_{k}, H_{k}) of Maxwell's equations in Ω_{-}or Ω_{+}satisfying the perfect conductor boundary condition $\gamma_{\mathrm{T}} E_{k}=-\gamma_{\mathrm{T}} E_{k}^{i n c}$, and (in the exterior domain) the Silver-Müller radiation condition.

We use potentials to represent E_{k}. Let G_{k} denote the standard Green kernel of $-\Delta-k^{2}$ and let Φ_{k} be the single layer potential defined on scalar or tangent fields u on Γ by:

$$
\begin{equation*}
\left(\Phi_{k} u\right)(y)=\int_{\Gamma} G_{k}(x, y) u(x) \mathrm{d} x, \quad G_{k}(x, y)=\frac{e^{i k|x-y|}}{4 \pi|x-y|} . \tag{2}
\end{equation*}
$$

We represent E_{k} as an electric field generated by a tangent field u_{k} on Γ (the electric current). More precisely we put $E_{k}(y)=\left(\operatorname{grad} \operatorname{div}+k^{2}\right)\left(\Phi_{k} u_{k}\right)$. Letting $A_{k}=-\gamma_{\mathrm{T}}\left(\operatorname{grad} \operatorname{div}+k^{2}\right) \Phi_{k}$, the problem is to solve the Electric Field Integral Equation (EFIE) $A_{k} u_{k}=\gamma_{\mathrm{T}} E_{k}^{i n c}$.

The operator A_{k} is continuous from $X=\mathrm{H}_{\text {div }}^{-1 / 2}(\Gamma)$ to its dual $X^{\prime}=\mathrm{H}_{\mathrm{rot}}^{-1 / 2}(\Gamma)$, and the EFIE can be put in variational form:

$$
\begin{equation*}
u_{k} \in X, \forall u^{\prime} \in X \quad\left\langle A_{k} u_{k}, u^{\prime}\right\rangle=\left\langle E_{k}^{i n c}, u^{\prime}\right\rangle . \tag{3}
\end{equation*}
$$

We denote by a_{k} the associated bilinear form ; its expression on smooth fields is:

$$
\begin{equation*}
a_{k}(u, v)=\iint_{\Gamma \times \Gamma} G_{k}(x, y)\left(\operatorname{div} u(x) \operatorname{div} v(y)-k^{2} u(x) \cdot v(y)\right) \mathrm{d} x \mathrm{~d} y \tag{4}
\end{equation*}
$$

Following Bendali [1] this variational problem is solved with the Galerkin method on divconforming Finite Element spaces on the boundary. At low frequencies one sees that the problem is that the limit of the operator A_{k} as $k \rightarrow 0$, is degenerated ; in fact the limit is not even Fredholm since its kernel contains the infinite dimensional space $\operatorname{rot} \mathrm{H}^{1 / 2}(\Gamma)$.

The object of this paper is to compute approximations of u_{k} in a stable way for small k.

2 The continuous remedy

For simplicity we suppose that Γ is connected and simply connected. As remarked by DeLaBourdonnaye [2], if we put $V=\operatorname{grad} \mathrm{H}^{3 / 2}(\Gamma)$ and $W=\operatorname{rot} \mathrm{H}^{1 / 2}(\Gamma)$, then V and W are closed in X and we have the decomposition:

$$
\begin{equation*}
X=V \oplus W . \tag{5}
\end{equation*}
$$

We put $S=\mathrm{H}^{1 / 2}(\Gamma)$, and for any space Y of scalar fields on Γ we put $Y^{\bullet}=\{u \in Y:\langle u, 1\rangle=0\}$.
Let $\Xi_{k}: V \times S^{\bullet} \rightarrow X$ denote the isomorphism defined by $\Xi_{k}(v, p)=v+k^{-1} \operatorname{rot} p$. The four blocks of the bilinear form \tilde{a}_{k} on $V \times S^{\bullet}$ defined by $\tilde{a}_{k}\left((v, p),\left(v^{\prime}, p^{\prime}\right)\right)=a_{k}\left(\Xi_{k}(v, p), \Xi_{k}\left(v^{\prime}, p^{\prime}\right)\right)$, have the expression:

$$
\left(\begin{array}{rc}
\iint G_{k}(x, y)\left(\operatorname{div} v(x) \operatorname{div} v^{\prime}(y)-k^{2} v(x) \cdot v^{\prime}(y)\right) \mathrm{d} x \mathrm{~d} y & -k \iint G_{k}(x, y) v(x) \cdot \operatorname{rot} p^{\prime}(y) \mathrm{d} x \mathrm{~d} y \tag{6}\\
-k \iint G_{k}(x, y) \operatorname{rot} p(x) \cdot v^{\prime}(y) \mathrm{d} x \mathrm{~d} y & -\iint G_{k}(x, y) \operatorname{rot} p(x) \cdot \operatorname{rot} p^{\prime}(y) \mathrm{d} x \mathrm{~d} y
\end{array}\right)
$$

Since there is $C>0$ such that:

$$
\begin{equation*}
\forall v \in V \quad\|v\|_{X} \leq C\|\operatorname{div} v\|_{\mathrm{H}^{-1 / 2}(\Gamma)}, \quad \forall p \in S^{\bullet} \quad\|p\|_{S} \leq C\|\operatorname{rot} p\|_{\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma)} \tag{7}
\end{equation*}
$$

the two diagonal blocks are coercive hence invertible for $k=0$. We remark also that the coupling blocks vanish for $k=0$.

Concerning the right-hand sides we remark that:

$$
\begin{equation*}
k^{-1}\left\langle\gamma_{\mathrm{T}} E_{k}^{i n c}, \operatorname{rot} p^{\prime}\right\rangle=i Z\left\langle\gamma_{\mathrm{n}} H_{k}^{i n c}, p^{\prime}\right\rangle \tag{8}
\end{equation*}
$$

If for instance the family of incident waves consists of plane waves:

$$
\begin{equation*}
E_{k}^{i n c}(x)=E_{0} e^{i k \sigma \cdot x}, \quad H_{k}^{i n c}(x)=1 / Z E_{0} \times \sigma e^{i k \sigma \cdot x}, \tag{9}
\end{equation*}
$$

then the limit of $\gamma_{\mathrm{T}} E_{k}^{i n c}$ is a surface gradient and $\gamma_{\mathrm{n}} H_{k}^{i n c}$ has a non-zero limit. Thus both righthand sides in $V^{\star} \times S^{\bullet \star}$ have non-zero limits as $k \rightarrow 0$. It follows that with the decomposition $u_{k}=\Xi_{k}\left(v_{k}, p_{k}\right)$ both v_{k} and p_{k} have a non-zero limit as $k \rightarrow 0$.

We now turn to the preconditioning of the variational problem associated with (6) and we recall the remark made in [3] that a preconditioner is obtained by an invertible bilinear form on a dual space. Since the off-diagonal terms are small in norm and compact it is enough to precondition the two diagonal blocks.

For the first block, we proceed as follows. Put $V^{\prime}=\operatorname{grad} \mathrm{H}^{1 / 2}(\Gamma)$. Then we remark that the $\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)$-bilinear form extends continuously to an invertible bilinear form on $V^{\prime} \times V$. Let $\Theta_{1}: V^{\star} \rightarrow V^{\prime}$ be the corresponding isomorphism. We remark furthermore that V^{\prime} is a closed subspace of $\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma)$, hence we can use the bilinear form associated with the single layer operator on tangent fields as a preconditioner.

For the second block, the induced operator on $S^{\bullet} \rightarrow S^{\bullet \star}$ is the main part of the hypersingular operator appearing in acoustics. It can be efficiently preconditioned by the single layer operator [6] [3]. As a matter of notations we put $S^{\prime}=\mathrm{H}^{-1 / 2}(\Gamma)$ so that the $\mathrm{L}^{2}(\Gamma)$-bilinear form extends continuously to an invertible bilinear form on $S^{\bullet \bullet} \times S^{\bullet}$, and let $\Theta_{2}: S^{\bullet \star} \rightarrow S^{\bullet \bullet}$ be the corresponding isomorphism.

Thus, on $V^{\prime} \times S^{\prime \bullet}$ we use the bilinear form b whose block expression is:

$$
\left(\begin{array}{cc}
\iint G_{0}(x, y) v(x) \cdot v^{\prime}(y) \mathrm{d} x \mathrm{~d} y & 0 \tag{10}\\
0 & -\iint G_{0}(x, y) q(x) q^{\prime}(y) \mathrm{d} x \mathrm{~d} y
\end{array}\right)
$$

Letting $\Theta: V^{\star} \times S^{\bullet \star} \rightarrow V^{\prime} \times S^{\bullet \bullet}$ be the map componentwise induced by Θ_{1} and Θ_{2}, and associating an operator $\tilde{\mathcal{A}}_{k}: V \times S^{\bullet} \rightarrow V^{\star} \times S^{\bullet \star}$ with \tilde{a}_{k} and $\mathcal{B}: V^{\prime} \times S^{\prime \bullet} \rightarrow V^{\prime \star} \times S^{\prime \bullet \star}$ with b we have:

Proposition 2.1 There is $\epsilon>0$ such that for all $k \in[0, \epsilon]$ the operator $\Theta^{\star} \mathcal{B} \Theta \tilde{\mathcal{A}}_{k}$ is an automorphism of $V \times S^{\bullet}$ and all terms of the composition are isomorphisms whose norm and norm of the inverse are bounded independently of k in $[0, \epsilon]$.

3 Discretization

Since $V=\operatorname{grad} \mathrm{H}^{3 / 2}(\Gamma)$ it would be cumbersome to implement a conforming Finite Element discretization of the variational problem on $V \times S^{\bullet}$. Instead we propose the following nonconforming method.

Suppose we have (finite dimensional) subspaces X_{h} of $X \cap \mathrm{H}_{\mathrm{div}}^{0}(\Gamma)$ and S_{h} of $S \cap \mathrm{H}^{1}(\Gamma)$, which are stable under complex conjugation, which are such that S_{h} contains the constant fields and we have an exact sequence:

$$
\begin{equation*}
S_{h} \xrightarrow{\text { rot }} X_{h} \xrightarrow{\text { div }} \mathrm{L}^{2}(\Gamma) . \tag{11}
\end{equation*}
$$

We define V_{h} by:

$$
\begin{equation*}
V_{h}=\left\{u \in X_{h}: \forall p \in S_{h} \quad\langle u, \operatorname{rot} p\rangle=0\right\} . \tag{12}
\end{equation*}
$$

We keep the notation \tilde{a}_{k} to denote the extension of \tilde{a}_{k} to $X \times S$ whose block-wise expression is given by (6). We solve the system: Find $\left(v_{k h}, p_{k h}\right) \in V_{h} \times S_{h}^{\bullet}$, such that for all $\left(v^{\prime}, p^{\prime}\right) \in V_{h} \times S_{h}^{\bullet}$ we have:

$$
\begin{equation*}
\tilde{a}_{k}\left(\left(v_{k h}, p_{k h}\right),\left(v^{\prime}, p^{\prime}\right)\right)=\left\langle E_{k}^{i n c}, v^{\prime}\right\rangle+i Z\left\langle H_{k}^{i n c} \cdot n, p^{\prime}\right\rangle \tag{13}
\end{equation*}
$$

Recall the definition of the gap : $\delta_{X}\left(V_{h}, V\right)=\sup _{v_{h} \in V_{h}} \inf _{v \in V}\left\|v_{h}-v\right\|_{X} /\left\|v_{h}\right\|_{X}$. Our first proposition concerns the well posedness of the discrete system.

Proposition 3.1 If $\delta_{X}\left(V_{h}, V\right) \rightarrow 0$ as $h \rightarrow 0$ then there is $\epsilon>0, h_{0}>0$ and $C>0$ such that for all $k \in[0, \epsilon]$, all $h<h_{0}$ we have :

$$
\begin{equation*}
\inf _{(v, p) \in V_{h} \times S_{\boldsymbol{h}}^{\bullet}\left(v^{\prime}, p^{\prime}\right) \in V_{h} \times S_{h}^{\bullet}} \sup \frac{\left|\tilde{a}_{k}\left((v, p),\left(v^{\prime}, p^{\prime}\right)\right)\right|}{\|(v, p)\|_{X \times S}\left\|\left(v^{\prime}, p^{\prime}\right)\right\|_{X \times S}} \geq 1 / C . \tag{14}
\end{equation*}
$$

-Proof: Actually we prove uniform coercivity. By the continuity of the operators with respect to k it suffices to prove coercivity for $k=0$. Let P be the projector with range V and kernel W. We have:

$$
\begin{align*}
\forall v \in V_{h} \quad\|v\|_{X} & \leq\|v-P v\|_{X}+\|P v\|_{X} \tag{15}\\
& \leq\|I-P\| \delta\left(V_{h}, V\right)\|v\|+\|\operatorname{div} v\|_{\mathrm{H}^{-1 / 2}(\Gamma)} . \tag{16}
\end{align*}
$$

Therefore we have an estimate of the form : There is $h_{0}>0$ and $C>0$ such that for all $h<h_{0}$:

$$
\begin{equation*}
\forall v \in V_{h} \quad\|v\|_{X} \leq C\|\operatorname{div} v\|_{\mathrm{H}^{-1 / 2}(\Gamma)} . \tag{17}
\end{equation*}
$$

The result entails.

In general we do not have a basis of V_{h}, hence solving this system requires some extra work. In our case this will be carried out by the preconditioner which we define now. It should be checked that in what follows only bases of X_{h} and S_{h} are needed.

Let $\Theta_{1 h}: X_{h}^{\star} \rightarrow X_{h}$ denote the map which to any $\ell \in X_{h}^{\star}$ associates the solution of:

$$
\begin{equation*}
v \in V_{h}, \forall v^{\prime} \in V_{h} \quad\left\langle v, v^{\prime}\right\rangle=\ell\left(v^{\prime}\right) \tag{18}
\end{equation*}
$$

For $\ell \in X_{h}^{\star}, \Theta_{1 h} \ell$ can be computed simply as the solution u of:

$$
\begin{array}{r}
p \in S_{\bullet}^{\bullet}, \forall p^{\prime} \in S_{h}^{\bullet} \quad\left\langle\operatorname{rot} p, \operatorname{rot} p^{\prime}\right\rangle=\ell\left(\operatorname{rot} p^{\prime}\right), \\
u \in X_{h}, \forall u^{\prime} \in X_{h} \quad\left\langle u, u^{\prime}\right\rangle=\ell\left(u^{\prime}\right)-\left\langle\operatorname{rot} p, u^{\prime}\right\rangle . \tag{19}
\end{array}
$$

We define the discretization $\Theta_{2 h}$ of Θ_{2} to be the map which to $\ell \in S_{h}^{\star}$ associates the solution p of:

$$
\begin{equation*}
p \in S_{h}^{\bullet}, \forall p^{\prime} \in S_{h}^{\bullet} \quad\left\langle p, p^{\prime}\right\rangle=\ell\left(p^{\prime}\right) \tag{20}
\end{equation*}
$$

Let $\Theta_{h}: X_{h}^{\star} \times S_{h}^{\star} \rightarrow X_{h} \times S_{h}$ be the association of $\Theta_{1 h}$ and $\Theta_{2 h}$. We keep the notation b for the extension of b from $V^{\prime} \times S^{\prime \bullet}$ to $\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma) \times S^{\prime}$ keeping the block expression (10). Let $\mathcal{B}_{h}: X_{h} \times S_{h} \rightarrow X_{h}^{\star} \times S_{h}^{\star}$ be the map induced by b. We also denote by $\tilde{\mathcal{A}}_{k h}$ the map induced by \tilde{a}_{k} on $X_{h} \times S_{h} \rightarrow X_{h}^{\star} \times S_{h}^{\star}$.

One sees that the operator $\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h}$ is a surjection onto $V_{h} \times S_{h}^{\bullet}$. For $\ell \in\left(X_{h} \times S_{h}^{\bullet}\right)^{\star}$, $\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h} \ell$ depends only on $\left.\ell\right|_{V_{h} \times S_{r}}$. It follows that the conjugate gradient algorithm for $\tilde{\mathcal{A}}_{k h}$ on $X_{h} \times S_{h}^{\bullet}$, preconditioned by $\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h}$ yields iterates in $V_{h} \times S_{h}^{\bullet}$ converging to the solution of (13). Morevover $\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h} \tilde{\mathcal{A}}_{k h}$ determines a bijection $V_{h} \times S_{h}^{\bullet} \rightarrow V_{h} \times S_{h}^{\bullet}$ whose spectral condition number $\kappa_{k h}$ is bounded independently of k in an interval $[0, \epsilon]$.

More precise estimates on $\kappa_{k h}$ and the convergence of Krylov subspace methods, depend on the actual Galerkin spaces. Examples of Finite Element spaces which satisfy the above conditions include the case where we have quasi-uniform triangulations of Γ and take for X_{h} Raviart-Thomas vector FE of degree n and for S_{h} the scalar continuous piecewise $P^{n+1} \mathrm{FE}$. Then we also have the following stability property:

Proposition 3.2 There is $\epsilon>0, h_{0}>0$ and $C_{1}, C_{2}>0$ such that for all $k \in[0, \epsilon]$, all $h<h_{0}$ we have:

$$
\begin{align*}
\left\|\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h} \tilde{\mathcal{A}}_{k h}(u, p)\right\|_{0} \leq & C_{1}\|(u, p)\|_{0} \tag{21}\\
& \text { with }\|(u, p)\|_{0}^{2}=\|u\|_{\mathrm{H}_{\mathrm{div}}^{0}(\Gamma)}^{2}+\|p\|_{\mathrm{H}^{1}(\Gamma)}^{2}, \\
\left\|\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h} \tilde{\mathcal{A}}_{k h}(u, p)\right\|_{-1 / 2} \geq & C_{2}^{-1}\|(u, p)\|_{-1 / 2} \tag{22}\\
& \text { with }\|(u, p)\|_{-1 / 2}^{2}=\|u\|_{\mathrm{H}_{\text {div }}^{-1 / 2}(\Gamma)}^{2}+\|p\|_{\mathrm{H}^{1 / 2}(\Gamma)}^{2} .
\end{align*}
$$

-Proof: We show the proof for the case of fixed $k=0$ and then indicate how the proof extends to the the case of k in an interval $[0, \epsilon]$.

At $k=0$ the operator $\tilde{\mathcal{A}}_{k h}$ decouples and we can study the action on V_{h} and S_{h}^{\bullet} separately.
(i) Proof of estimate (21). Let $P_{V_{h}}$ denote the $\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)$-orthogonal projection onto V_{h}, and $P_{S_{h}^{\bullet}}$ denote the $L^{2}(\Gamma)$-orthogonal projection onto S_{h}^{\bullet}. Let \mathfrak{S} and $\mathfrak{S}_{\mathrm{T}}$ denote the single layer operator acting on scalar and tangent fields respectively.

The discrete operator $\Theta_{h}^{\star} \mathcal{B}_{h} \Theta_{h} \tilde{\mathcal{A}}_{k h}$ decouples into the two operators:

$$
\begin{equation*}
V_{h} \subset \mathrm{H}_{\mathrm{div}}^{0}(\Gamma) \xrightarrow{\operatorname{div}} \mathrm{L}^{2}(\Gamma) \xrightarrow{\mathfrak{S}} \mathrm{H}^{1}(\Gamma) \xrightarrow{\operatorname{grad}} \mathrm{L}_{\mathrm{T}}^{2}(\Gamma) \xrightarrow{P_{V_{h}}} V_{h} \xrightarrow{\mathfrak{S}_{\mathrm{T}}} \mathrm{H}_{\mathrm{T}}^{1}(\Gamma) \xrightarrow{P_{V_{h}}} V_{h}, \tag{23}
\end{equation*}
$$

and:

$$
\begin{equation*}
S_{h}^{\bullet} \subset \mathrm{H}^{1}(\Gamma) \xrightarrow{\text { rot }} \mathrm{L}_{\mathrm{T}}^{2}(\Gamma) \xrightarrow{\mathfrak{S}_{\mathrm{T}}} \mathrm{H}_{\mathrm{T}}^{1}(\Gamma) \xrightarrow{\text { rot }} \mathrm{L}^{2}(\Gamma) \xrightarrow{P_{S_{\boldsymbol{h}}}} S_{h}^{\bullet} \xrightarrow{\mathfrak{S}} \mathrm{H}^{1}(\Gamma) \xrightarrow{P_{S_{\boldsymbol{h}}}} S_{h}^{\bullet} . \tag{24}
\end{equation*}
$$

For the first operator it thus suffices to show that the last occurrence of $P_{V_{h}}$ satisfies an estimate of the form:

$$
\begin{equation*}
\forall u \in \mathrm{H}_{\mathrm{T}}^{1}(\Gamma) \quad\left\|P_{V_{h}} u\right\|_{\mathrm{H}_{\mathrm{div}}^{0}(\Gamma)} \leq C\|u\|_{\mathrm{H}_{\mathrm{T}}^{1}(\Gamma)} . \tag{25}
\end{equation*}
$$

Let $P_{X_{h}}$ denote the $\mathrm{L}_{\mathrm{T}}^{2}$-orthogonal projection onto X_{h} and let Π_{h} denote the standard interpolator onto X_{h} (interpolating the fluxes through the edges of the curved triangles). Using the fact that V_{h} is $\mathrm{L}_{\mathrm{T}}^{2}$-orthogonal to the kernel of div on X_{h}, and standard inverse inequalities we have for any $u \in \mathrm{H}_{\mathrm{T}}^{1}(\Gamma)$:

$$
\begin{align*}
\left\|\operatorname{div} P_{V_{h}} u\right\|_{\mathrm{L}^{2}(\Gamma)} & =\left\|\operatorname{div} P_{X_{h}} u\right\|_{\mathrm{L}^{2}(\Gamma)} \tag{26}\\
& \leq\left\|\operatorname{div}\left(P_{X_{h}} u-\Pi_{h} u\right)\right\|_{\mathrm{L}^{2}(\Gamma)}+\left\|\operatorname{div} \Pi_{h} u\right\|_{\mathrm{L}^{2}(\Gamma)} \tag{27}\\
& \leq C h^{-1}\left\|\operatorname{div}\left(P_{X_{h}} u-\Pi_{h} u\right)\right\|_{\mathrm{H}^{-1}(\Gamma)}+\left\|\operatorname{div} \Pi_{h} u\right\|_{\mathrm{L}^{2}(\Gamma)} \tag{28}\\
& \leq C h^{-1}\left\|P_{X_{h}} u-\Pi_{h} u\right\|_{\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)}+\left\|\operatorname{div} \Pi_{h} u\right\|_{\mathrm{L}^{2}(\Gamma)} \tag{29}\\
& \leq C h^{-1}\left\|u-\Pi_{h} u\right\|_{\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)}+\left\|\operatorname{div} \Pi_{h} u\right\|_{\mathrm{L}^{2}(\Gamma)} \tag{30}
\end{align*}
$$

The estimate (25) now follows from the well-known properties of Π_{h}.
For the second operator the $\mathrm{H}^{1}(\Gamma)$-stability follows from the well-known $\mathrm{H}^{1}(\Gamma)$-stability of the $\mathrm{L}^{2}(\Gamma)$-projector onto S_{h}^{\bullet} (in the last occurrence of $P_{S_{\boldsymbol{h}}}$).

Thus estimate (21) is proved.
(ii) Proof of estimate (22). Since \mathcal{B}_{h} and $\tilde{\mathcal{A}}_{0 h}$ are coercive on $V_{h} \times S_{h}^{\bullet}$ in the $\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma) \times$ $\mathrm{H}^{-1 / 2}(\Gamma)$ and $\mathrm{H}_{\text {div }}^{-1 / 2}(\Gamma) \times \mathrm{H}^{1 / 2}(\Gamma)$ norms respectively it suffices to show that the L^{2}-dualities used for the projections are uniformly (with respect to h) continuous on V_{h} and S_{h}^{\bullet} in these norms. For the L^{2}-duality on S_{h} in the $\mathrm{H}^{-1 / 2}(\Gamma) \times \mathrm{H}^{1 / 2}(\Gamma)$ norm this is trivial. For the case of V_{h} we proceed as follows:

Let P denote the projector with range V and kernel W. It preserves the divergence. As we remarked in [4] we have an estimate of the form:

$$
\begin{equation*}
\forall v \in V_{h} \quad\|v-P v\|_{\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)} \leq C h\|\operatorname{div} v\|_{\mathrm{L}^{2}(\Gamma)} \tag{31}
\end{equation*}
$$

For any $v, v^{\prime} \in V_{h}$ we have:

$$
\begin{align*}
\left|\left\langle v, v^{\prime}\right\rangle\right| & \leq\left|\left\langle v-P v, v^{\prime}\right\rangle\right|+\left|\left\langle P v, v^{\prime}\right\rangle\right| \tag{32}\\
& \leq C\|v-P v\|_{\mathrm{H}_{\mathrm{div}}^{0}(\Gamma)}\left\|v^{\prime}\right\|_{\mathrm{H}_{\mathrm{rot}}^{-1}(\Gamma)}+\|P v\|_{\mathrm{H}_{\mathrm{T}}^{1 / 2}}\left\|v^{\prime}\right\|_{\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma)} \tag{33}\\
& \leq C h\|\operatorname{div} v\|_{\mathrm{L}^{2}(\Gamma)}\left\|v^{\prime}\right\|_{\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)}+C\|\operatorname{div} v\|_{\mathrm{H}^{-1 / 2}(\Gamma)}\left\|v^{\prime}\right\|_{\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma)} \tag{34}\\
& \leq C\|\operatorname{div} v\|_{\mathrm{H}^{-1 / 2}(\Gamma)}\| \| v^{\prime} \|_{\mathrm{H}_{\mathrm{T}}^{-1 / 2}(\Gamma)} . \tag{35}
\end{align*}
$$

This completes the proof of estimate (22).

To extend the results to to $k \in[0, \epsilon]$ we simply remark that \mathcal{B}_{h} and $\tilde{\mathcal{A}}_{k h}$ are uniformly continuous for the norms used in the proof of (21) and uniformly coercive for the norms used in the proof of (22), with respect to k in an interval $[0, \epsilon]$.

It follows that $\kappa_{k h}$ is bounded by $C_{1} C_{2}$ for (k, h) in the range $\left.[0, \epsilon] \times\right] 0, h_{0}[$.

References

[1] A. Bendali : Numerical analysis of the exterior boundary value problem for the timeharmonic Maxwell equations by a boundary finite element method; Part 1: The continuous problem ; Math. Comp., Vol. 43, No. 167, p. 29-46, 1984. Part 2: The discrete problem; Math. Comp., Vol. 43, No. 167, p. 47-68, 1984.
[2] A. DeLaBourdonnaye : Décomposition de $\mathrm{H}_{\text {div }}^{-1 / 2}(\Gamma)$ et nature de l'opérateur de SteklovPoincaré du problème extérieur de l'électromagnétisme; C. R. Acad. Sci. Paris Sér. I Math., Vol. 316, No. 4, p. 369-372, 1993.
[3] S.H. Christiansen, J.-C. NÉdélec : Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique; C. R. Acad. Sci. Paris Sér. I Math., Vol. 330, No. 7, p. 617-622, 2000.
[4] S.H. Christiansen, J.-C. Nédélec: Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme ; C. R. Acad. Sci. Paris, Sér. I Math., Vol. 331, No. 9, p. 733-738, 2000.
[5] J.-C. NÉdélec : Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems ; Springer-Verlag, 2001.
[6] O. Steinbach, W.L. Wendland : The construction of some efficient preconditioners in the boundary element method; Adv. Comput. Math., Vol. 9, No. 1-2, p. 191-216, 1998.

Research Reports

No. Authors

02-17 S.H. Christiansen

02-16 S.H. Christiansen

02-15 A. Toselli, X. Vasseur

02-14 Th.P. Wihler
02-13 S. Beuchler, R. Schneider, Multiresolution weighted norm equivalences C. Schwab

02-12 M. Kruzik, A. Prohl
02-11 A.-M. Matache, C. Schwab, T. von Petersdorff

02-10 D. Schötzau, C. Schwab, A. Toselli

02-09 Ph. Frauenfelder, Ch. Lage
02-08 A.-M. Matache, J.M. Melenk

02-07 G. Schmidlin, C. Lage, C. Schwab

02-06 M. Torrilhon

02-05 C. Schwab, R.-A. Todor

02-04 R. Jeltsch, K. Nipp

02-03 L. Diening, A. Prohl, M. Ruzicka

02-02
A. Toselli

02-01 F.M. Buchmann, W.P. Petersen

01-09 A.-M. Matache

Uniformly stable preconditioned mixed boundary element method for low-frequency electromagnetic scattering Mixed boundary element method for eddy current problems
Neumann-Neumann and FETI preconditioners for $h p$-approximations on geometrically refined boundary layer meshes in two dimensions
Locking-Free DGFEM for Elasticity Problems in Polygons and applications
Macroscopic modeling of magnetic hysteresis Fast deterministic pricing of options on Lévy driven assets

Mixed $h p$-DGFEM for incompressible flows

Concepts - An object-oriented software package for partial differential equations
Two-Scale Regularity for Homogenization Problems with Non-Smooth Fine Scale Geometry
Rapid solution of first kind boundary integral equations in \mathbb{R}^{3}
Exact Solver and Uniqueness Conditions for Riemann Problems of Ideal Magnetohydrodynamics
Sparse Finite Elements for Elliptic Problems with Stochastic Data
CSE Program at ETH Zurich: Are we doing the right thing?
On Time-Discretizations for Generalized Newtonian Fluids
$h p$ Discontinuous Galerkin Approximation for the Stokes Problem
Solving Dirichlet problems numerically using the Feynman-Kac representation
Sparse Two-Scale FEM for Homogenization Problems

