Mixed boundary element method for eddy current problems

S.H. Christiansen

Research Report No. 2002-16
September 2002
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Mixed boundary element method for eddy current problems

S.H. Christiansen
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Research Report No. 2002-16 September 2002

Abstract

We propose a mixed boundary element method for the eddy current problem. It involves two divergence conforming tangent fields on the surface. The zero divergence condition on one of them is enforced with scalar Lagrange multipliers. An LBB Inf-Sup condition is proved for the resulting discrete saddle-point problem, leading to quasi-optimal convergence rates.

Introduction

The simulation of electromagnetic devices operating at low frequencies is of practical interest to many engineering problems such as the design of electric engines. A basic problem is to determine the total electromagnetic field surrounding a conductor subject to a known electromagnetic excitation. At low frequencies the eddy current model provides a satisfactory approximation of the full Maxwell equations (Ammari, Buffa, Nédélec [1]).

The use of the free-space Green's kernel reduces these equations to integral equations on the surface of the conductor (which might not be connected). Among the many possible choices of integral equations we will use the so-called E-based one. It requires the discretization of divergence-free tangent fields on the surface. Since we are interested in objects with arbitrary topology these are not all rotationals. While Hiptmair [17] uses an explicit (but costly) construction of a supplementary of the space of rotationals in the kernel of the divergence operator, we enforce the constraint on the divergence using Lagrange multipliers. Moreover our proof of stability of the discretization is different from Hiptmair's.

Our analysis is based on the use of discrete Hodge decompositions which for the analysis of integral equations on smooth surfaces was suggested in Christiansen [12]. In most industrial applications the surface is only piecewise smooth, therefore we use also a functional framework proposed by Buffa and Ciarlet [8] and Buffa, Costabel and Sheen [9]. These two techniques have already been successfully combined to study the electric field integral equation both on closed and open surfaces, by Hiptmair and Schwab [18] and Buffa and Christiansen [7]. In addition to these techniques we will use a symmetry argument very similar to the one used in Buffa, Hiptmair, Petersdorff and Schwab [11].

The paper is organized as follows. First we recall the functional setting we will use. Then we provide a quick derivation of the integral equations. Then we turn to their variational formulation, as a saddlepoint problem and show that it is Fredholm. Finally we turn to the Galerkin discretization of this saddlepoint problem and prove the dicrete inf-sup condition under natural hypotheses.

1 Preliminaries

Let Ω_{-}be a bounded Lipschitz domain in \mathbb{R}^{3}. For simplicity we suppose furthermore that Ω_{-}is a piecewise flat polyhedron. It models the conductor. We denote by Γ its surface, and by Ω_{+}the exterior domain. The unit length outward pointing orthogonal vector field on Γ is denoted by n.

For any $k \in \mathbb{C}$, let Φ_{k} denote the single layer potential associated with the operator $-\Delta+k^{2}$. That is, for any field u on $\Gamma, \Phi_{k} u$ is the field on $\mathbb{R}^{3} \backslash \Gamma$ defined by:

$$
\begin{equation*}
\left(\Phi_{k} u\right)(y)=\int_{\Gamma} \frac{e^{-k|x-y|}}{4 \pi|x-y|} u(x) \mathrm{ds}_{x} \tag{1}
\end{equation*}
$$

Let γ denote the trace operator on Γ, which is defined on smooth functions
by:

$$
\begin{equation*}
\gamma:\left.u \mapsto u\right|_{\Gamma} \tag{2}
\end{equation*}
$$

On Γ, Sobolev spaces $\mathrm{H}^{s}(\Gamma)$ can be defined by local charts and dualization, for $s \in[-1 ; 1]$, see e.g. Costabel [16]. One shows that γ has a unique continuous extension to a surjective map:

$$
\begin{equation*}
\gamma: \mathrm{H}^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathrm{H}^{1 / 2}(\Gamma) \tag{3}
\end{equation*}
$$

Following Buffa, Ciarlet [8] and Buffa, Costabel and Sheen [9] we recall the functional framework for traces of vector fields. On vector fields we denote by γ_{T} the tagential trace operator:

$$
\begin{equation*}
\gamma_{\mathrm{T}}:\left.u \mapsto u\right|_{\Gamma}-\left(\left.u\right|_{\Gamma} \cdot n\right) n . \tag{4}
\end{equation*}
$$

We define the space $L_{\mathrm{T}}^{2}(\Gamma)$ by:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)=\left\{u \in \mathrm{~L}^{2}(\Gamma)^{3}: u \cdot n=0\right\} \tag{5}
\end{equation*}
$$

The operator γ_{T} has a unique extension to a continuous map $\mathrm{H}^{1}\left(\mathbb{R}^{3}\right)^{3} \rightarrow \mathrm{~L}_{\mathrm{T}}^{2}(\Gamma)$ and we denote by $\mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)$ the range of this extension.

When considering traces of fields defined in Ω_{-}or Ω_{+}we use the notation γ_{T}^{-}and γ_{T}^{+}. We also define $\gamma_{\times}, \gamma_{\times}^{-}$, and γ_{\times}^{+}by composing $\gamma_{\mathrm{T}}, \gamma_{\mathrm{T}}^{-}$, and γ_{T}^{+}with the rotation operator $(\cdot \times n)$. Thus we have for smooth fields u :

$$
\begin{equation*}
\gamma_{\times} u=u \times n \tag{6}
\end{equation*}
$$

For $s>1$ we denote by $\mathrm{H}^{s}(\Gamma)$ the subspace of $\mathrm{H}^{1}(\Gamma)$ consisting of traces of $\mathrm{H}^{s+1 / 2}\left(\mathbb{R}^{3}\right)$. The gradient operator is defined as a continuous map $\operatorname{grad}_{\Gamma}$: $\mathrm{H}^{1}(\Gamma) \rightarrow \mathrm{L}_{\mathrm{T}}^{2}(\Gamma)$. It maps $\mathrm{H}^{3 / 2}(\Gamma)$ to $\mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)$, continuously. We denote by div Γ the adjoint operator, which is thus continuous $\mathrm{L}_{\mathrm{T}}^{2}(\Gamma) \rightarrow \mathrm{H}^{-1}(\Gamma)$, and $\mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)^{\prime} \rightarrow$ $\mathrm{H}^{3 / 2}(\Gamma)^{\prime}$.

We denote by X the space:

$$
\begin{equation*}
X=\left\{u \in \mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)^{\prime}: \operatorname{div}_{\Gamma} u \in \mathrm{H}^{1 / 2}(\Gamma)^{\prime}\right\} \tag{7}
\end{equation*}
$$

We denote by Δ_{Γ} the Laplace-Beltrami operator defined as the composition $\operatorname{div}_{\Gamma} \circ \operatorname{grad}_{\Gamma}: \mathrm{H}^{1}(\Gamma) \rightarrow \mathrm{H}^{-1}(\Gamma)$. Let $P: X \rightarrow \mathrm{~L}_{\mathrm{T}}^{2}(\Gamma)$ be the map which to any $u \in X$ associates $\operatorname{grad}_{\Gamma} p$ where p is a solution of:

$$
\begin{equation*}
\Delta_{\Gamma} p=\operatorname{div}_{\Gamma} u \tag{8}
\end{equation*}
$$

Proposition 1.1 The map P determines a continuous projector $X \rightarrow X$. In particular we have a direct sum:

$$
\begin{equation*}
X=V \oplus W \tag{9}
\end{equation*}
$$

where W is kernel of P, which is also the kernel of the divergence operator, and V is the range of P.There is $C>0$ such that:

$$
\begin{equation*}
\forall u \in V \quad\|u\|_{X} \leq C|\operatorname{div} u|_{\mathrm{H}^{-1 / 2}(\Gamma)} \tag{10}
\end{equation*}
$$

Moreover the injection of V into $\mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)^{\prime}$ is compact.
-Proof: The norm estimate follows from the fact that $\operatorname{div}_{\Gamma}: X \rightarrow \mathrm{H}^{-1 / 2}(\Gamma)$ has closed range, ans is injective on V hence determines an isomorphism from V onto its range. The compactness follows from the fact that the injection of $\mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)$ into $\mathrm{L}_{\mathrm{T}}^{2}(\Gamma)$ is compact.

One shows that γ_{x}^{-}and γ_{\times}^{+}have unique continuous extensions to maps:

$$
\begin{equation*}
\mathrm{H}_{\text {curl }}\left(\Omega_{-}\right) \rightarrow X \quad \text { and } \quad \mathrm{H}_{\text {curl }}\left(\Omega_{+}\right)_{l o c} \rightarrow X \tag{11}
\end{equation*}
$$

respectively, and that these extensions are surjective. Moreover $\gamma_{\mathrm{T}}^{-}, \gamma_{\mathrm{T}}^{+}$have unique continuous extensions to maps:

$$
\begin{equation*}
\mathrm{H}_{\text {curl }}\left(\Omega_{-}\right) \rightarrow X^{\prime} \quad \text { and } \quad \mathrm{H}_{\text {curl }}\left(\Omega_{+}\right)_{l o c} \rightarrow X^{\prime} \tag{12}
\end{equation*}
$$

Moreover the operator $(\cdot \times n)$ extends to isomorphisms $X \rightarrow X^{\prime}$ and $X^{\prime} \rightarrow X$. We define an operator C_{k} on tangent fields on X by:

$$
\begin{equation*}
C_{k} u=(1 / 2)\left(\gamma_{\mathrm{T}}^{-}+\gamma_{\mathrm{T}}^{+}\right) \operatorname{curl} \Phi_{k} u . \tag{13}
\end{equation*}
$$

Proposition 1.2 The operator C_{k} is well-defined and continuous $X \rightarrow X^{\prime}$. Moreover:

$$
\begin{equation*}
\gamma_{\mathrm{T}}^{ \pm} \operatorname{curl} \Phi_{k} u= \pm u \times n+C_{k} u \tag{14}
\end{equation*}
$$

$C_{k}-C_{0}$ is compact $X \rightarrow X^{\prime}$ and C_{0} is symmetric.
-Proof: We first remark that for any $u \in X$ we have in $\Omega_{-} \cup \Omega_{+}$:

$$
\begin{equation*}
\operatorname{curl} \operatorname{curl} \Phi_{k} u=(\operatorname{grad} \operatorname{div}-\Delta) \Phi_{k} u=\operatorname{grad} \Phi_{k} \operatorname{div}_{\Gamma} u-k^{2} \Phi_{k} u . \tag{15}
\end{equation*}
$$

The continuity of C_{k} and compactness of $C_{k}-C_{0}$ then follow straightforwardly from the mapping properties of the singlelayer potential. The trace relations follow from the jump formulas, see e.g. [13] p. 145.

We now turn to the symmetry of C_{0}. The proof is a variant of the proof of Theorem 3.9 in [11], whcih dealt with the case of positive frequencies.

Choose u and v in X. Put:

$$
\begin{array}{lll}
\gamma_{\mathrm{T}}^{-} \operatorname{curl} \Phi_{0} u=a & , & \gamma_{\mathrm{T}}^{+} \operatorname{curl} \Phi_{0} u=a^{\prime}, \\
\gamma_{\mathrm{T}}^{-} \operatorname{curl} \Phi_{0} v=b & , \quad \gamma_{\mathrm{T}}^{+} \operatorname{curl} \Phi_{0} v=b^{\prime} . \tag{17}
\end{array}
$$

One checks that for any bilinear form c on X one has:

$$
\begin{equation*}
c\left(\left(a-a^{\prime}\right), 1 / 2\left(b+b^{\prime}\right)\right)+c\left(1 / 2\left(a+a^{\prime}\right),\left(b-b^{\prime}\right)\right)=c(a, b)-c\left(a^{\prime}, b^{\prime}\right) \tag{18}
\end{equation*}
$$

We denote by $\langle\cdot, \cdot\rangle$ the dualities of Sobolev spaces on Γ. We have:

$$
\begin{align*}
\left\langle C_{0} u, v\right\rangle & =\left\langle 1 / 2\left(a+a^{\prime}\right),\left(b-b^{\prime}\right) \times n\right\rangle \tag{19}\\
& =-\left\langle\left(a-a^{\prime}\right), 1 / 2\left(b+b^{\prime}\right) \times n\right\rangle+\langle a, b \times n\rangle-\left\langle a^{\prime}, b^{\prime} \times n\right\rangle \tag{20}\\
& =\left\langle C_{0} v, u\right\rangle+\langle a, b \times n\rangle-\left\langle a^{\prime}, b^{\prime} \times n\right\rangle . \tag{21}
\end{align*}
$$

For any $R>0$ let B_{R} be the ball with radius R and senter 0 , let S_{R} be the corresponding sphere and let n_{R} be the outward normal on S_{R}. For any R such that $\Omega_{-} \subset B_{R}$ we can perform the following integrations by parts in $\Omega_{+} \cap B_{R}$:

$$
\begin{align*}
= & -\left\langle a^{\prime}, b^{\prime} \times n\right\rangle \tag{22}\\
& \int_{\Omega_{+} \cap B_{R}} \operatorname{curl} \operatorname{curl} \Phi_{0} u \cdot \operatorname{curl} \Phi_{0} v-\operatorname{curl} \Phi_{0} u \cdot \operatorname{curl} \operatorname{curl} \Phi_{0} v \\
& -\int_{S_{R}} \operatorname{curl} \Phi_{0} u \cdot \operatorname{curl} \Phi_{0} v \times n_{R} \tag{23}\\
= & \int_{\Omega_{+} \cap B_{R}} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u \cdot \operatorname{curl} \Phi_{0} v-\operatorname{curl} \Phi_{0} u \cdot \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} v \\
& -\int_{S_{R}} \operatorname{curl} \Phi_{0} u \cdot \operatorname{curl} \Phi_{0} v \times n_{R} \tag{24}\\
= & \left\langle\gamma_{\mathrm{T}}^{+} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u,\left(\gamma_{\mathrm{T}}^{+} \Phi_{0} v\right) \times n\right\rangle+\left\langle\gamma_{\mathrm{T}}^{+} \Phi_{0} u,\left(\gamma_{\mathrm{T}}^{+} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} v\right) \times n\right\rangle \\
& -\int_{S_{R}} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u,\left(\Phi_{0} v\right) \times n_{R}+\Phi_{0} u \cdot\left(\operatorname{grad} \Phi_{0} \operatorname{div}{ }_{\Gamma} v\right) \times n_{R} \\
& -\int_{S_{R}} \operatorname{curl} \Phi_{0} u \cdot \operatorname{curl} \Phi_{0} v \times n_{R} \tag{25}
\end{align*}
$$

The properties of the single layer potential yield:

$$
\begin{align*}
\left|\Phi_{0} u\right| & =O(1 /|x|) \tag{26}\\
\left|\operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u\right| & =O\left(1 /|x|^{2}\right) \tag{27}\\
\left|\operatorname{curl} \Phi_{0} u\right| & =O\left(1 /|x|^{2}\right) \tag{28}
\end{align*}
$$

Thus we can consider the limit as $R \rightarrow \infty$:

$$
\begin{align*}
& -\left\langle a^{\prime}, b^{\prime} \times n\right\rangle= \tag{29}\\
& \left\langle\gamma_{\mathrm{T}}^{+} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u,\left(\gamma_{\mathrm{T}}^{+} \Phi_{0} v\right) \times n\right\rangle+\left\langle\gamma_{\mathrm{T}}^{+} \Phi_{0} u,\left(\gamma_{\mathrm{T}}^{+} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} v\right) \times n\right\rangle
\end{align*}
$$

In the interior domain Ω_{-}we apply the same integration by parts formula. Since the orientation of n appears twice, the signs cancel and we obtain:

$$
\begin{align*}
& -\langle a, b \times n\rangle= \tag{30}\\
& \left\langle\gamma_{\mathrm{T}}^{-} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} u,\left(\gamma_{\mathrm{T}}^{-} \Phi_{0} v\right) \times n\right\rangle+\left\langle\gamma_{\mathrm{T}}^{-} \Phi_{0} u,\left(\gamma_{\mathrm{T}}^{-} \operatorname{grad} \Phi_{0} \operatorname{div}_{\Gamma} v\right) \times n\right\rangle
\end{align*}
$$

Noticing that the singlelayer does not jump across Γ, nor the tangential component of its gradient, we obtain:

$$
\begin{equation*}
\left\langle a^{\prime}, b^{\prime} \times n\right\rangle=\langle a, b \times n\rangle . \tag{31}
\end{equation*}
$$

This yields the symmetry of C_{0}.
We will also use a normal trace operator defined on smooth vector fields by:

$$
\begin{equation*}
\gamma_{\mathrm{n}}:\left.u \mapsto u\right|_{\Gamma} \cdot n . \tag{32}
\end{equation*}
$$

It has unique continuous extensions to a linear maps $\mathrm{H}_{\text {div }}\left(\Omega_{ \pm}\right) \rightarrow \mathrm{H}^{-1 / 2}(\Gamma)$.

2 E-based boundary integral equation for the eddy current problem

The eddy current problem is to find the electromagnetic field (E, H) solution of:

$$
\begin{align*}
\operatorname{curl} E & =-i \mu_{r} H \text { in } \mathbb{R}^{3}, \tag{33}\\
\operatorname{curl} H & =\left\{\begin{array}{lll}
\tau^{2} E & \text { in } \Omega_{-}, \\
J_{s} & \text { in } \Omega_{+} .
\end{array}\right. \tag{34}
\end{align*}
$$

where $\mu_{r}=1$ in $\Omega_{+}, \tau>0$ and, for simplicity, J_{s} is a divergence-free excitation with compact support in Ω_{+}. Moreover we impose the decay conditions:

$$
\begin{equation*}
E(x)=O(1 /|x|) \quad \text { and } \quad H(x)=O(1 /|x|) \tag{35}
\end{equation*}
$$

Define E_{s} by:

$$
\begin{equation*}
E_{s}(x)=-i \int_{\mathbb{R}^{3}} \frac{J_{s}(y)}{4 \pi|x-y|} \mathrm{d} y . \tag{36}
\end{equation*}
$$

Then the eddy current problem can be reformulated as the following transmission problem for the electric field E :

$$
\begin{align*}
& \operatorname{curl} \operatorname{curl} E+i \tau^{2} \mu_{r} E=0 \quad \text { in } \Omega_{-}, \tag{37}\\
& \operatorname{curl} \operatorname{curl} U=0, \operatorname{div} U=0 \quad \text { in } \Omega_{+}, \tag{38}\\
& \gamma_{\mathrm{T}}^{-} E-\gamma_{\mathrm{T}}^{+} U=\gamma_{\mathrm{T}}^{-} E_{s}, \tag{39}\\
& \left(1 / \mu_{r}\right) \gamma_{\mathrm{T}}^{-} \operatorname{curl} E-\gamma_{\mathrm{T}}^{+} \operatorname{curl} U=\gamma_{\mathrm{T}}^{-} \operatorname{curl} E_{s}, \tag{40}
\end{align*}
$$

where E is recovered in Ω_{+}as $E=U+E_{s}$. This system of equations is supplied with the decay condition:

$$
\begin{equation*}
U /\left(1+|x|^{2}\right)^{1 / 2} \in \mathrm{~L}^{2}\left(\Omega_{+}\right)^{3} \quad \text { and } \quad \operatorname{curl} U \in \mathrm{~L}^{2}\left(\Omega_{+}\right)^{3} . \tag{41}
\end{equation*}
$$

Define κ by:

$$
\begin{equation*}
\kappa=(\sqrt{2} / 2)(1+i) \tau \sqrt{\mu}_{r}, \tag{42}
\end{equation*}
$$

so that we have:

$$
\begin{equation*}
i \tau^{2} \mu_{r}=\kappa^{2} \tag{43}
\end{equation*}
$$

In the interior domain Ω_{-}we have:

$$
\begin{equation*}
\operatorname{curl} \operatorname{curl} E+\kappa^{2} E=0 . \tag{44}
\end{equation*}
$$

from which one deduces the following representation formula:

$$
\begin{equation*}
E=\left(1-1 / \kappa^{2} \operatorname{grad} \operatorname{div}\right) \Phi_{\kappa} \gamma_{\times}^{-} \operatorname{curl} E+\operatorname{curl} \Phi_{\kappa} \gamma_{\times}^{-} E . \tag{45}
\end{equation*}
$$

It gives the following two identities:

$$
\begin{equation*}
\gamma_{\mathrm{T}}^{-} E=\gamma_{\mathrm{T}}^{-}\left(1-1 / \kappa^{2} \operatorname{grad} \operatorname{div}\right) \Phi_{\kappa} \gamma_{\times}^{-} \operatorname{curl} E+1 / 2 \gamma_{\mathrm{T}}^{-} E+C_{\kappa} \gamma_{\times}^{-} E, \tag{46}
\end{equation*}
$$

and:

$$
\begin{equation*}
\gamma_{\mathrm{T}}^{-} \operatorname{curl} E=1 / 2 \gamma_{\mathrm{T}}^{-} \operatorname{curl} E+C_{\kappa} \gamma_{\times}^{-} \operatorname{curl} E+\gamma_{\mathrm{T}}^{-}\left(-\kappa^{2}+\operatorname{grad} \operatorname{div}\right) \Phi_{\kappa} \gamma_{\times}^{-} E . \tag{47}
\end{equation*}
$$

In the exterior domain Ω_{+}we have:

$$
\begin{equation*}
\Delta U=0 \quad \text { and } \quad \operatorname{div} U=0 \tag{48}
\end{equation*}
$$

which gives the representation formula:

$$
\begin{equation*}
U=-\Phi_{0} \gamma_{\times}^{+} \operatorname{curl} U-\operatorname{grad} \Phi_{0} \gamma_{\mathrm{n}}^{+} U-\operatorname{curl} \Phi_{0} \gamma_{\times}^{+} U \tag{49}
\end{equation*}
$$

Since $\gamma_{\mathrm{T}}^{+} \circ \operatorname{grad}=\operatorname{grad}_{\Gamma} \circ \gamma^{+}$, it follows that:

$$
\begin{equation*}
\gamma_{\mathrm{T}}^{+} U=-\gamma_{\mathrm{T}}^{+} \Phi_{0} \gamma_{\times}^{+} \operatorname{curl} U-\operatorname{grad}_{\Gamma} \gamma^{+} \Phi_{0} \gamma_{\mathrm{n}}^{+} U+1 / 2 \gamma_{\mathrm{T}}^{+} U-C_{0} \gamma_{\times}^{+} U \tag{50}
\end{equation*}
$$

and since curl grad $=0$ and $\Delta=\operatorname{grad} \operatorname{div}-$ curl curl we also have:

$$
\begin{equation*}
\gamma_{\mathrm{T}}^{+} \operatorname{curl} U=1 / 2 \gamma_{\mathrm{T}}^{+} \operatorname{curl} U-C_{0} \gamma_{\times}^{+} \operatorname{curl} U-\gamma_{\mathrm{T}}^{+} \operatorname{grad} \operatorname{div} \Phi_{0} \gamma_{\times}^{+} U . \tag{51}
\end{equation*}
$$

Substracting (50) from (46), with the transmission condition (39), and testing against divergence-free μ gives:

$$
\begin{align*}
& \left\langle\gamma_{\mathrm{T}}^{-} \Phi_{\kappa} \gamma_{\times}^{-} \operatorname{curl} E+C_{\kappa} \gamma_{\times}^{-} E, \mu\right\rangle+ \\
& \left\langle\gamma_{\mathrm{T}}^{+} \Phi_{0} \gamma_{\times}^{+} \operatorname{curl} U+C_{0} \gamma_{\times}^{+} U, \mu\right\rangle=\left\langle(1 / 2) \gamma_{\mathrm{T}} E_{s}, \mu\right\rangle . \tag{52}
\end{align*}
$$

Substracting (51) from $1 / \mu_{r}(47)$ and using with the transmission condition (40) gives:

$$
\begin{align*}
& 1 / \mu_{r}\left(C_{\kappa} \gamma_{\times}^{-} \operatorname{curl} E+\gamma_{\mathrm{T}}^{-}\left(-\kappa^{2}+\operatorname{grad\operatorname {div})} \Phi_{\kappa} \gamma_{\times}^{-} E\right)+\right. \\
& \quad C_{0} \gamma_{\times}^{+} \operatorname{curl} U+\gamma_{\mathrm{T}}^{-} \operatorname{grad} \operatorname{div} \Phi_{0} \gamma_{\times}^{+} U=(1 / 2) \gamma_{\mathrm{T}} \operatorname{curl} E_{s} . \tag{53}
\end{align*}
$$

We now introduce the quantities:

$$
\begin{align*}
u & =\gamma_{\times}^{-} E \tag{54}\\
\lambda & =1 / \mu_{r} \gamma_{\times}^{-} \operatorname{curl} E . \tag{55}
\end{align*}
$$

We remark first that λ is divergence-free. Indeed by (40) we have:

$$
\begin{align*}
\operatorname{div}_{\Gamma} \lambda & =\gamma_{\mathrm{n}}^{+} \text {curl } \operatorname{curl} U+\gamma_{\mathrm{n}} \operatorname{curl} \operatorname{curl} E_{s} \tag{56}\\
& =\gamma_{\mathrm{n}}(\operatorname{grad} \operatorname{div}-\Delta) E_{s}=0 . \tag{57}
\end{align*}
$$

In the above equations (52) and (53) we eliminate $\gamma_{\times}^{+} U$ and γ_{\times}^{+}curl U using the transmission conditions (39) and (40). Put into variational form these equations give rise to the system:

$$
\left\{\begin{array} { l }
{ u \in X } \tag{58}\\
{ \lambda \in W }
\end{array} \quad \left\{\begin{array}{ll}
\forall v \in X & a(u, v)+c(\lambda, v)=f(v) \\
\forall \mu \in W & c(\mu, u)+b(\lambda, \mu)=g(\mu)
\end{array}\right.\right.
$$

where the bilinear forms are given on smooth fields by:

$$
\begin{align*}
a(u, v)= & -\iint\left(1 / \mu_{r}\right) G_{\kappa}(x, y)\left(\operatorname{div}_{\Gamma} u(x) \operatorname{div}_{\Gamma} v(y)+\kappa^{2} u(x) \cdot v(y)\right) \mathrm{ds}_{x} \mathrm{ds}_{y} \\
& -\iint G_{0}(x, y) \operatorname{div}_{\Gamma} u(x) \operatorname{div}_{\Gamma} v(y) \operatorname{ds}_{x} \mathrm{ds}_{y} \tag{59}\\
b(\lambda, \mu)= & +\iint\left(\mu_{r} G_{\kappa}(x, y)+G_{0}(x, y)\right) \lambda(x) \mu(y) \mathrm{ds}_{x} \mathrm{ds}_{y} \tag{60}\\
c(\lambda, v)= & \left\langle\left(C_{\kappa}+C_{0}\right) \lambda, v\right\rangle \tag{61}
\end{align*}
$$

and extended to X and W by continuity.
The right hand sides are given by:

$$
\begin{align*}
& f(v)=\left\langle\left(-1 / 2(\cdot \times n)+C_{0}\right) \gamma_{\times} \operatorname{curl} E_{s}, v\right\rangle-\left\langle\gamma \Phi_{0} \operatorname{div}_{\Gamma} \gamma_{\times} E_{s}, \operatorname{div}_{\Gamma} v\right\rangle, \tag{62}\\
& g(\mu)=\left\langle\left(-1 / 2(\cdot \times n)+C_{0}\right) \gamma_{\times} E_{s}, \mu\right\rangle-\left\langle\gamma_{\mathrm{T}} \Phi_{0} \gamma_{\times} \operatorname{curl} E_{s}, \mu\right\rangle \tag{63}
\end{align*}
$$

3 Fredholm property of the integral equations

Let d be the bilinear form on $X \times W$ defined by:

$$
\begin{equation*}
d((u, \lambda),(v, \mu))=a(u, v)+c(\lambda, v)+c(\mu, u)+b(\lambda, \mu) . \tag{64}
\end{equation*}
$$

Let Θ be the isomorphism $(u, \lambda) \rightarrow\left(-P u-1 / \kappa^{2}(I-P) u, \lambda\right)$. The analysis of the system (58) relies on:

Proposition 3.1 There is a compact bilinear form k on $X \times W$ such that for $a C>0$ it holds:

$$
\begin{equation*}
\mathfrak{R e}(d+k)((u, \lambda), \overline{\Theta(u, \lambda)}) \geq 1 / C\|(u, \lambda)\|_{X \times W}^{2} . \tag{65}
\end{equation*}
$$

-Proof: We denote by s the bilinear form associated with the single layer operator, both on scalar and on vector fields. Thus for scalar fields:

$$
\begin{equation*}
s(p, q)=\iint G_{\kappa}(x, y) p(x) q(y) \mathrm{ds}_{x} \mathrm{ds}_{y} . \tag{66}
\end{equation*}
$$

For any $u \in X$ consider its decomposition $u=u^{V}+u^{W}$ with $u^{V}=P u \in V$ and $u^{W}=(I-P) u \in W$. Associate with it $v=-\bar{u}^{V}-1 / \kappa^{2} \bar{u}^{W}$. Then we have:

$$
\begin{align*}
a(u, v)= & \left(1 / \mu_{r}+1\right) s\left(\operatorname{div}_{\Gamma} u^{V}, \operatorname{div}_{\Gamma} \bar{u}^{V}\right)+\left(1 / \mu_{r}\right) s\left(u^{W}, \bar{u}^{W}\right) \tag{67}\\
& +\left(\kappa^{2} / \mu_{r}\right)\left(s\left(u^{V}, \bar{u}^{V}\right)+s\left(u^{V}, 1 / \kappa^{2} \bar{u}^{W}\right)+s\left(u^{W}, \bar{u}^{V}\right)\right) . \tag{68}
\end{align*}
$$

It follows from the compactness of the injection $V \rightarrow \mathrm{H}_{\mathrm{T}}^{1 / 2}(\Gamma)^{\prime}$ (Proposition 1.1), that all the terms on line (68) are compact. Moreover it follows from the coercivity on $\mathrm{H}^{-1 / 2}(\Gamma)$ of the single layer operator that, up to compact bilinear forms, the sum of the terms on line (67) is coercive on X.

Using also $\mu=\bar{\lambda}$ we have:

$$
\begin{equation*}
c(\lambda, v)+c(\mu, u)=c\left(\lambda,-\bar{u}^{V}\right)+c\left(\bar{\lambda}, u^{V}\right)+c\left(\lambda,-1 / \kappa^{2} \bar{u}^{W}\right)+c\left(\bar{\lambda}, u^{W}\right) . \tag{69}
\end{equation*}
$$

It follows from the symmetry of C_{0} (Proposition 1.2 and the compactness of $C_{\kappa}-C_{0}$ that the sum of the first two terms is, up to a compact term, purely imaginary. Moreover the two last terms are compact.

It follows that if d is left injective then it determines an isomorphism $X \times$ $W \rightarrow(X \times W)^{\star}$ and we have the Inf-Sup estimate:

$$
\begin{equation*}
\inf _{(u, \lambda) \in X \times W} \sup _{(v, \mu) \in X \times W} \frac{|d((u, \lambda),(v, \mu))|}{\|(u, \lambda)\|\|(v, \mu)\|}>0 \tag{70}
\end{equation*}
$$

where $\|\cdot\|$ denotes the standard norm on $X \times W$.
Aiming at the discretization of this equation, we remark that it is in general a hard problem to construct explicit subspaces of W, when Γ is allowed to have arbitrary topology. In particular the algorithm proposed by Hiptmair [17] involves an N^{2} algorithm to determine surface cycles of trianglulations with N vertices. This is far more than the $N(\log N)^{a}$ complexity of multipole matrixvector products.

We therefore chose to enforce the condition that $\lambda \in W$ with Lagrange multipliers. Let $\left(\Gamma_{i}\right)_{i \in I}$ be the family of connected components of Γ. Let Y denote the space:

$$
\begin{equation*}
Y=\left\{q \in \mathrm{H}^{-1 / 2}(\Gamma): \forall i \in I \quad\langle q, 1\rangle_{\Gamma_{i}}=0\right\} . \tag{71}
\end{equation*}
$$

Notice first that $Y=\operatorname{div}_{\Gamma} X$ and that if $q \in Y$, if $u \in V$ is the solution of $\operatorname{div}_{\Gamma} u=q$ then by Proposition 1.1 we have an estimate of the form $\|u\|_{X} \leq$ $C\|q\|_{Y}$.

Next let s_{0} be the bilinear form obtained by substituting 0 for κ in s. We define a form e by:

$$
\begin{equation*}
e((u, \lambda), q)=s_{0}\left(\operatorname{div}_{\Gamma} \lambda, q\right) \tag{72}
\end{equation*}
$$

By the coercivity of s_{0} on $\mathrm{H}^{-1 / 2}(\Gamma)$ it follows that we have the Babuska-Brezzi compatibility estimate:

$$
\begin{equation*}
\inf _{q \in Y} \sup _{(u, \lambda) \in X \times X} \frac{|e((u, \lambda), q)|}{\|(u, \lambda)\|\|q\|}>0 . \tag{73}
\end{equation*}
$$

We extend d from a bilinear form on $X \times W$ to one on $X \times X$ by keeping the expressions (59), (60) and (61) in the definition (64) of d. The original problem (58) is equivalent to one of the form: find $(u, \lambda) \in X \times X$ and $q \in Y$, such that:

$$
\left\{\begin{array}{lll}
\forall(v, \mu) \in X \times X & d((u, \lambda),(v, \mu))+e((v, \mu), q) & =l((v, \mu)) \tag{74}\\
\forall p \in Y & e((u, \lambda), p) & =0
\end{array}\right.
$$

Here $l((v, \mu))=f(v)+\tilde{g}(\mu)$ where \tilde{g} is any continuous extension of g from W to X. By the above Inf-Sup conditions it follows from Nicolaides' [22] theorem that this problem is uniquely solvable when d is left injective.

Notice that for our purposes, in (72), s_{0} can be replaced by any bilinear form which is coercive on $\mathrm{H}^{-1 / 2}(\Gamma)$.

4 Discrete Inf-Sup condition

Suppose we have Galerkin spaces $X_{h} \subset X$ and $Y_{h} \subset Y$. Then we consider the problem of finding $(u, \lambda) \in X_{h} \times X_{h}$ and $q \in Y_{h}$, such that:

$$
\left\{\begin{array}{lll}
\forall(v, \mu) \in X_{h} \times X_{h} & d((u, \lambda),(v, \mu))+e((v, \mu), q) & =l((v, \mu)) \tag{75}\\
\forall p \in Y_{h} & e((u, \lambda), p) & =0
\end{array}\right.
$$

In general this problem does not satisfy discrete uniform Inf-Sup conditions. Therefore we shall make some additional assumptions on X_{h} and Y_{h}. First we suppose that:

$$
\begin{equation*}
Y_{h}=\operatorname{div}_{\Gamma} X_{h}=\left\{\operatorname{div}_{\Gamma} u: u \in X_{h}\right\} . \tag{76}
\end{equation*}
$$

Furthermore we define:

$$
\begin{equation*}
W_{h}=\left\{u \in X_{h}: \operatorname{div}_{\Gamma} u=0\right\} \tag{77}
\end{equation*}
$$

and:

$$
\begin{equation*}
V_{h}=\left\{u \in X_{h}: \forall w \in W_{h} \quad \int u \cdot w=0\right\} . \tag{78}
\end{equation*}
$$

Then we have:

$$
\begin{equation*}
X_{h}=V_{h} \oplus W_{h}, \tag{79}
\end{equation*}
$$

but in general V_{h} is not a subspace of V.
Recall that for any two closed subspaces X_{0} and X_{1} of X the gap $\delta\left(X_{0}, X_{1}\right)$ is defined by:

$$
\begin{equation*}
\delta\left(X_{0}, X_{1}\right)=\sup _{u_{0} \in X_{0}} \inf _{u_{1} \in X_{1}}\left\|u_{0}-u_{1}\right\| /\left\|u_{0}\right\| . \tag{80}
\end{equation*}
$$

We say that the family $\left(X_{h}\right)$ of spaces is approximating if:

$$
\begin{equation*}
\forall u \in X \quad \lim _{h \rightarrow 0} \inf _{u_{h} \in X_{h}}\left\|u-u_{h}\right\|=0 . \tag{81}
\end{equation*}
$$

Theorem 4.1 If d is left injective, $\left(X_{h}\right)$ is approximating and $\delta\left(V_{h}, V\right) \rightarrow 0$ then the system (75) satisfies uniform discrete Inf-Sup conditions for small enough h.
-Proof: (i) Compatibility condition: Let P be the projector onto V parallel to W. Then we have:

$$
\begin{align*}
\forall u_{h} \in V_{h} \quad\left\|u_{h}\right\| & \leq\left\|u_{h}-P u_{h}\right\|_{X}+\left\|P u_{h}\right\| \tag{82}\\
& \leq\|I-P\| \delta\left(V_{h}, V\right)\left\|u_{h}\right\|+\left\|\operatorname{div}_{\Gamma} u_{h}\right\|_{Y} . \tag{83}
\end{align*}
$$

Therefore we have an estimate of the form there is $h_{0}>0$ and $C>0$ such that for all $h<h_{0}$:

$$
\begin{equation*}
\forall u_{h} \in V_{h} \quad\left\|u_{h}\right\|_{X} \leq C\left\|\operatorname{div}_{\Gamma} u_{h}\right\|_{Y} . \tag{84}
\end{equation*}
$$

Then, given $q \in Y$, if $u_{h} \in V_{h}$ is the solution of $\operatorname{div}_{\Gamma} u_{h}=q$ we have:

$$
\begin{equation*}
e\left(\left(0, \bar{u}_{h}\right), q\right) /\left\|u_{h}\right\|_{X}=s_{0}\left(\operatorname{div}_{\Gamma} \bar{u}_{h}, q\right) \geq 1 / C\|q\| . \tag{85}
\end{equation*}
$$

(ii) Inf-Sup condition on the kernel. Remark that for all $(u, \lambda) \in X_{h} \times X_{h}$ if:

$$
\begin{equation*}
\forall q \in Y_{h} \quad e((u, \lambda), q)=0 \tag{86}
\end{equation*}
$$

then $\operatorname{div}_{\Gamma} \lambda=0$, hence:

$$
\begin{equation*}
\forall q \in Y \quad e((u, \lambda), q)=0 \tag{87}
\end{equation*}
$$

In other words the left kernel of e on $\left(X_{h} \times X_{h}\right) \times Y_{h}$ is $X_{h} \times W_{h}$ which is a subspace of $X \times W$. Unfortunately this subspace is not stable under Θ. Let Θ_{h} denote the map:

$$
\begin{equation*}
\Theta_{h}\left(u_{h}, \lambda_{h}\right) \mapsto\left(-u_{h}^{V_{h}}-1 / \kappa^{2} u_{h}^{W_{h}}, \lambda_{h}\right), \tag{88}
\end{equation*}
$$

where u_{h} is decomposed as $u_{h}=u_{h}^{V_{h}}+u_{h}^{W_{h}}$ with $\left(u_{h}^{V_{h}}, u_{h}^{W_{h}}\right) \in V_{h} \times W_{h}$. By Lemma 6.1 part (ii), putting $\delta_{h}=\delta\left(V_{h}, V\right)$ we have an estimate of the form:

$$
\begin{equation*}
\left\|\Theta_{h}\left(u_{h}, \lambda_{h}\right)-\Theta\left(u_{h}, \lambda_{h}\right)\right\| \leq C \delta_{h}\left\|\left(u_{h}, \lambda_{h}\right)\right\| . \tag{89}
\end{equation*}
$$

Using equation (65) it follows that for small enough h we have an estimate of the form:

$$
\begin{equation*}
\mathfrak{R e}(d+k)\left(\left(u_{h}, \lambda_{h}\right), \overline{\Theta_{h}\left(u_{h}, \lambda_{h}\right)}\right) \geq 1 / C\left\|\left(u_{h}, \lambda_{h}\right)\right\|_{X \times X}^{2}, \tag{90}
\end{equation*}
$$

from which we can deduce the discrete Inf-Sup condition: There is $h_{0}>0$ and $C>0$ such that for all $h<h_{0}$:

$$
\begin{equation*}
\inf _{\left(u_{h}, \lambda_{h}\right) \in X_{h} \times W_{h}} \sup _{\left(v_{h}, \mu_{h}\right) \in X_{h} \times W_{h}} \frac{\left|(d+k)\left(\left(u_{h}, \lambda_{h}\right),\left(v_{h}, \mu_{h}\right)\right)\right|}{\left\|\left(u_{h}, \lambda_{h}\right)\right\|\left\|\left(v_{h}, \mu_{h}\right)\right\|} \geq 1 / C . \tag{91}
\end{equation*}
$$

By virtue of the general theorems on injective compact pertubations of bilinear forms, a similar estimate holds with $(d+k)$ replaced by d when $\left(X_{h}\right)$ is approximating, which is our claimed result.

Examples of Galerkin spaces for which the condition $\delta\left(V_{h}, V\right) \rightarrow 0$ holds include the case when we have triangulations \mathcal{T}_{h} on Γ upon which we consider Raviart-Thomas finite elements for X_{h} and piecewise polynomials of degree one less and with zero integral on each Γ_{i} (this condition can be enforced with one Lagrange multiplier per connected component of Γ) for Y_{h}. This was proved in Hiptmair-Schwab [18]. A detailed proof can also be found in Christiansen [13]. Thus for lowest order finite elements we have two degrees of freedom per edge and one per face of the triangulation.

As is well-known the Inf-Sup condition implies quasi-optimal convergence of the Galerkin solution $\left(u_{h}, \lambda_{h}\right)$ towards the continuous solution (u, λ), i.e:

$$
\begin{equation*}
\left\|(u, \lambda)-\left(u_{h}, \lambda_{h}\right)\right\|_{X \times X} \leq C \inf _{\left(u^{\prime}, \lambda^{\prime}\right) \in X_{h} \times X_{h}}\left\|(u, \lambda)-\left(u^{\prime}, \lambda^{\prime}\right)\right\|_{X \times X} . \tag{92}
\end{equation*}
$$

5 Extension to curved boundaries

In many applications the scatterer is not piecewise flat, but only piecewise smooth. In this case parametric Finite Elements should be used, and it is our goal to define them here.

Suppose we have a triangulation \mathcal{T}_{h} of Γ. We denote by Γ_{h}^{1} the affine polyhedron it determines. We equip each triangle $T \in \mathcal{T}_{h}$ with the set Σ_{T}^{p} of points with barycentric coordinates which are multiples of $1 / p$. Put $\Sigma_{h}^{p}=\cup_{T \in \mathcal{T}_{h}} \Sigma_{T}^{p}$. We suppose we are given a map $F_{h}^{p}: \Sigma^{p} \rightarrow \Gamma$. We extend F_{h}^{p} to a function $\bar{F}_{h}^{p}: \Gamma_{h}^{1} \rightarrow \mathbb{R}^{3}$ by enforcing that on each $T \in \mathcal{T}_{h}$ its restriction is the P^{p} function coinciding with F_{h}^{p} on Σ_{T}^{p}. Then the P^{p}-approximation of Γ is defined as the range of \bar{F}_{h}^{p} and denoted Γ_{h}^{p}. In the following \bar{F}_{h}^{p} is denoted F_{h}^{p}.

By way of F_{h}^{p} standard finite element spaces on Γ_{h}^{1} can be transported to Γ_{h}^{p}. The problem is now to define a transport function G_{h}^{p} from Γ_{h}^{p} to Γ. When Γ is globally smooth the orthogonal projection was used in Nédélec [20]. We extend the technique to piecewise smooth boundaries by a method used in Lenoir [19] to define parametric volume finite elements in smooth domains.

We suppose Γ can be decomposed as:

$$
\begin{equation*}
\Gamma=\cup_{i \in I_{2}} \gamma_{i}^{2} \cup_{i \in I_{1}} \gamma_{i}^{1} \cup_{i \in I_{0}} \gamma_{i}^{0} . \tag{93}
\end{equation*}
$$

such that the sets γ_{i}^{j} are pairwise disjoint and such that for each i, j, γ_{i}^{j} is a smooth j-dimensional manifold.

We suppose the triangulation \mathcal{T}_{h} is maid up of triangulations for the patches γ_{i}^{2} which coincide along the edges γ_{j}^{1} and cointain the vertices γ_{k}^{0}. A more precise definition would require the theory of simplicial complexes.

We now construct G_{h}^{p} for a patch γ_{i}^{2}. Let T be a triangle of \mathcal{T}_{h}. If T contains at most one point of $\partial \gamma_{i}^{2}$ then G_{h}^{p} is the orthogonal projection, which is well defined. If T contains two points on $\partial \gamma_{i}^{2}$, say P_{0} and $P 1$ belonging to a set $\overline{\gamma_{j}^{1}}$ we let the third point be P_{3} and denote $\lambda_{0}, \lambda_{1}, \lambda_{2}$ the barycentric coordinates in T. The orthogonal projection onto $\overline{\gamma_{j}^{1}}$ induces a bicontinuous bijection P_{j}^{1} from the edge $\left[P_{0}, P_{1}\right]$ to its range in $\overline{\gamma_{j}^{1}}$. We let $G_{h}^{p}(P)$ be the orthogonal projection onto $\overline{\gamma_{i}^{2}}$ of the point:

$$
\begin{equation*}
\left(\lambda_{0}+\lambda_{1}\right) P_{j}^{1}\left(1 /\left(\lambda_{0}+\lambda_{1}\right)\left(\lambda_{0} P_{0}+\lambda_{1} P_{1}\right)\right)+\lambda_{2} P_{2} \tag{94}
\end{equation*}
$$

The other possibilities (in particular three points on the boundary) we rule out. On two neighouring triangles the definitions coincide, leading to a globally defined map $G_{h}^{p}: \Gamma_{h}^{p} \rightarrow \Gamma$. The triangulations are constructed such that this map is a bicontinuous bijection.

Let Ξ_{h}^{p} be the inverse of $G_{h}^{p} \circ F_{h}^{p}$. The Raviart-Thomas vector fields on Γ_{h}^{1} are the transported to Γ by $G_{h}^{p} \circ F_{h}^{p}$ using Piola's transform:

$$
\begin{equation*}
u \mapsto \mathrm{Jac} \Xi_{h}^{p} \mathrm{D}^{-1} \Xi_{h}^{p} u \circ \Xi_{h}^{p} . \tag{95}
\end{equation*}
$$

Piece-wise polynomials on Γ_{h}^{1} are transported to Γ according to:

$$
\begin{equation*}
u \mapsto \mathrm{Jac} \Xi_{h}^{p} u \circ \Xi_{h}^{p} . \tag{96}
\end{equation*}
$$

The transport formulas were chosen in order to satisfy the property:

$$
\begin{equation*}
\operatorname{div}_{\Gamma} \operatorname{Jac} \Xi_{h}^{p} \mathrm{D}^{-1} \Xi_{h}^{p} u \circ \Xi_{h}^{p}=\operatorname{Jac} \Xi_{h}^{p} \operatorname{div}_{\Gamma_{h}^{1}} u \circ \Xi_{h}^{p} . \tag{97}
\end{equation*}
$$

With this property the analysis of the preceding sections carry over to the case of curved boundaries.

6 Appendix

Lemma 6.1 Let X be a Banach space and $X=V \oplus W$ be a splitting of X into a direct sum of closed subspaces. Suppose $\left(X_{h}\right)$ is a family of closed subspaces that can be split into direct sums of closed subspaces $X_{h}=V_{h} \oplus W_{h}$ such that $\delta_{h}=\max \left\{\delta\left(V_{h}, V\right), \delta\left(W_{h}, W\right)\right\} \rightarrow 0$.
(i) Then there is $h_{0}>0$ and $C>0$ such that for all $h<h_{0}$ and $\left(v_{h}, w_{h}\right) \in$ $V_{h} \times W_{h}$:

$$
\begin{equation*}
\left\|v_{h}\right\|+\left\|w_{h}\right\| \leq C\left\|v_{h}+w_{h}\right\| . \tag{98}
\end{equation*}
$$

(ii) Moreover there is $h_{0}>0$ and $C>0$ such that for all $h<h_{0}$ and $u_{h} \in X_{h}$, if $\left(v_{h}, w_{h}\right)$ is its decomposition in $V_{h} \times W_{h}$ and (v, w) is the one in $V \times W$ then:

$$
\begin{equation*}
\left\|v-v_{h}\right\|+\left\|w-w_{h}\right\| \leq C \delta_{h}\left\|u_{h}\right\| \tag{99}
\end{equation*}
$$

-Proof: (i) Let P denote the projection with range V and kernel W. For any $\left(v_{h}, w_{h}\right) \in V_{h} \times W_{h}$, with $u_{h}=v_{h}+w_{h}$ we have:

$$
\begin{align*}
\left\|v_{h}\right\| & \leq\left\|P\left(v_{h}+w_{h}\right)\right\|+\left\|P w_{h}\right\|+\left\|P v_{h}-v_{h}\right\| \tag{100}\\
& \leq\|P\|\left\|u_{h}\right\|+\|P\| \delta_{h}\left\|w_{h}\right\|+\|I-P\| \delta_{h}\left\|v_{h}\right\| . \tag{101}
\end{align*}
$$

Similarly:

$$
\begin{equation*}
\left\|w_{h}\right\| \leq\|I-P\|\left\|u_{h}\right\|+\|I-P\| \delta_{h}\left\|v_{h}\right\|+\|P\| \delta_{h}\left\|w_{h}\right\| \tag{102}
\end{equation*}
$$

Putting $M=\max \{\|P\|,\|I-P\|\}$, adding and rearranging we have:

$$
\begin{equation*}
\left\|v_{h}\right\|+\left\|w_{h}\right\| \leq 2 M /\left(1-\delta_{h} 2 M\right)^{-1}\|u\|_{h} . \tag{103}
\end{equation*}
$$

This proves the first part of the lemma.
(ii) With the above notations we have:

$$
\begin{align*}
\left\|P u_{h}-v_{h}\right\| & \leq\left\|P v_{h}-v_{h}\right\|+\left\|P w_{h}\right\| \tag{104}\\
& \leq M \delta_{h}\left\|v_{h}\right\|+M \delta_{h}\left\|w_{h}\right\| . \tag{105}
\end{align*}
$$

Similarly we have:

$$
\begin{equation*}
\left\|(I-P) u_{h}-w_{h}\right\| \leq M \delta_{h}\left\|w_{h}\right\|+M \delta_{h}\left\|v_{h}\right\| . \tag{106}
\end{equation*}
$$

Together with the first estimate this gives the second part of the lemma.

References

[1] H. Ammari, A. Buffa, J.-C. Nédélec : A justification of eddy currents model for the maxwell equations ; SIAM. J. Appl. Math. Vol. 60, p. 1805-1823, 2000.
[2] I. Babuska : Error bounds for the finite element method ; Numer. Math., Vol. 16, p. 322-333, 1971.
[3] A. Bendali : Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method ; Part 1 : The continuous problem ; Math. Comp., Vol. 43, No. 167, p. 29-46, 1984. Part 2 : The discrete problem ; Math. Comp., Vol. 43, No. 167, p. 47-68, 1984.
[4] A. DeLaBourdonnaye : Décomposition de $\mathrm{H}_{\text {div }}^{-1 / 2}(\Gamma)$ et nature de l'opérateur de Steklov-Poincaré du problème extérieur de l'électromagnétisme ; C. R. Acad. Sci. Paris Sér. I Math., Vol. 316, No. 4, p. 369-372, 1993.
[5] F. Brezzi : On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers ; RAIRO Anal. Numér., Vol. 8, No. R-2, p. 129-151, 1974.
[6] F. Brezzi, M. Fortin : Mixed and hybrid finite element methods ; SpringerVerlag, 1991.
[7] A. Buffa, S. Christiansen : The electric field integral equation on Lipschitz screens: definitions and numerical approximation ; Numer. Math., to appear, 2002.
[8] A. Buffa, P. Ciarlet Jr.: On traces for functional spaces related to Maxwell's equations; Part I: An integration by parts formula in Lipschitz polyhedra; Math. Meth. Appl. Sci., Vol. 21, No. 1, p. 9-30, 2001. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications; Math. Meth. Appl. Sci., Vol. 21, No. 1, p. 31-48, 2001.
[9] A. Buffa, M. Costabel, D. Sheen : On traces for $\mathrm{H}(\mathrm{curl}, \Omega)$ in Lipschitz domains ; J. Math. Anal. Appl., to appear, 2002.
[10] A. Buffa, M. Costabel, C. Schwab : Boundary element methods for Maxwell's equations on non-smooth domains ; Technical Report, SAM-ETH Zürich, 2001.
[11] A. Buffa, R. Hiptmair, T. von Petersdorff, C. Schwab: Boundary element methods for Maxwell equations in Lipschitz domains; Technical Report, SAM-ETH Zürich, 2001.
[12] S.H. Christiansen : Discrete Fredholm properties and convergence estimates for the EFIE ; CMAP Tech. Rep. 454 (submitted), 2000.
[13] S.H. Christiansen : Résolution des équations intégrales pour la diffraction d'ondes acoustiques et électromagnétiques - Stabilisation d'algorithmes itératifs et aspects de l'analyse numérique ; PhD Thesis, Ecole Polytechnique, Palaiseau, 2002.
[14] S.H. Christiansen, J.-C. Nédélec: Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme; C. R. Acad. Sci. Paris, Sér. I Math., Vol. 331, No. 9, p. 733-738, 2000.
[15] D.L. Colton, R. Kress : Integral equation methods in scattering theory; John Wiley \& Sons, New York, 1983.
[16] M. Costabel : Boundary integral operators on Lipschitz domains : elementary results ; SIAM J. Math. Anal., Vol. 19, No. 3, p. 613-626, 1988.
[17] R. Hiptmair : Boundary element methods for eddy current computation; Sonderforschungsbereich 382, Universität Tübingen, 2001.
[18] R. Hiptmair, C. Schwab : Natural BEM for the electric field integral equation on polyhedra ; Technical Report, SAM-ETH Zürich, 2001.
[19] M. Lenoir : Optimal isoparametric finite elments and error estimates for domains involving curved boundaries ; SIAM J. Numer. Anal., Vol 23, No 3, p. 562-580, 1986.
[20] J.-C. NÉdélec : Curved finite element methods for the solution of singular integral equations on surfaces in \mathbb{R}^{3}; Comput. Methods Appl. Mech. Engrg., Vol. 8, No. 1, p. 61-80, 1976.
[21] J.-C. NÉdéLEC : Acoustic and electromagnetic equations, Integral representations for harmonic problems; Springer-Verlag, 2001.
[22] R.A. NiColaides : Existence, uniqueness and approximation for generalized saddle point problems ; SIAM J. Numer. Anal., Vol. 19, No. 2, p. 349-357, 1982.
[23] S.S.M. Rao, D.R. Wilton, A.W. Glisson : Electromagnetic scattering by surfaces of arbitrary shape ; IEEE Trans. Ant. Prop. AP-30, p. 409-418, 1982.
[24] J.E. Roberts, J.-M. Thomas : Mixed and hybrid methods ; p. 523-640, in P.G. Ciarlet, J.-L. Lions (eds.), "Handbook of numerical analysis, Vol. II, Finite element methods (Part 1)", North-Holland, 1991.
[25] L. Tartar : On the characterization of traces of a Sobolev space used for Maxwell's equation ; Proceedings of a meeting held in honour of M. Artola, Bordeaux, 1997.

Research Reports

No. Authors
02-16 S.H. Christiansen
02-15 A. Toselli, X. Vasseur

02-14 Th.P. Wihler

02-13 S. Beuchler, R. Schneider, C. Schwab

02-12 M. Kruzik, A. Prohl
02-11 A.-M. Matache, C. Schwab, T. von Petersdorff

02-10 D. Schötzau, C. Schwab, A. Toselli

02-09 Ph. Frauenfelder, Ch. Lage
02-08 A.-M. Matache, J.M. Melenk

02-07 G. Schmidlin, C. Lage, C. Schwab

02-06 M. Torrilhon

02-05 C. Schwab, R.-A. Todor
02-04 R. Jeltsch, K. Nipp
02-03 L. Diening, A. Prohl, M. Ruzicka

02-02 A. Toselli

02-01 F.M. Buchmann, W.P. Petersen

01-09 A.-M. Matache
01-08 C. Lasser, A. Toselli

Title
Mixed boundary element method for eddy current problems
Neumann-Neumann and FETI preconditioners for $h p$-approximations on geometrically refined boundary layer meshes in two dimensions
Locking-Free DGFEM for Elasticity Problems in Polygons
Multiresolution weighted norm equivalences and applications
Macroscopic modeling of magnetic hysteresis Fast deterministic pricing of options on Lévy driven assets

Mixed $h p$-DGFEM for incompressible flows
Concepts - An object-oriented software package for partial differential equations
Two-Scale Regularity for Homogenization Problems with Non-Smooth Fine Scale Geometry
Rapid solution of first kind boundary integral equations in \mathbb{R}^{3}
Exact Solver and Uniqueness Conditions for Riemann Problems of Ideal Magnetohydrodynamics
Sparse Finite Elements for Elliptic Problems with Stochastic Data
CSE Program at ETH Zurich: Are we doing the right thing?
On Time-Discretizations for Generalized Newtonian Fluids
$h p$ Discontinuous Galerkin Approximation for the Stokes Problem
Solving Dirichlet problems numerically using the Feynman-Kac representation
Sparse Two-Scale FEM for Homogenization Problems
Convergence of some two-level overlapping domain decomposition preconditioners with smoothed aggregation coarse space

