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Switzerland

†This work is supported by the TMR-project “Wavelets and Multiscale Methods in
Numerical Simulation” of the European Union and by the Swiss Government under Grant
No. BBW 97.404.

∗Fakultät für Mathematik, FG Numerische Mathematik, Technische Universität Chem-
nitz, Reichenhainer Str. 41, D-09126 Chemnitz, Germany. Supported by the DFG-
Sonderforschungsbereich 393 “Numerische Simulation auf massiv parallelen Rechnern”.



Multiresolution weighted norm equivalences and applications†

S. Beuchler∗, R. Schneider∗ and C. Schwab†

Seminar für Angewandte Mathematik
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Switzerland

Research Report No. 2002-13 August 2002

Abstract

We establish multiresolution norm equivalences in weighted spaces L2

w
((0, 1))

with possibly singular weight functions w(x) ≥ 0 in (0, 1). Our analysis ex-
ploits the locality of the biorthogonal wavelet basis and its dual basis func-
tions. The discrete norms are sums of wavelet coefficients which are weighted
with respect to the collocated weight function w(x) within each scale. Since
norm equivalences for Sobolev norms are by now well-known, our result can
also be applied to weighted Sobolev norms. We apply our theory to the
problem of preconditioning p-Version FEM and wavelet discretizations of
degenerate elliptic problems.
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1 Introduction

A basic tool in wavelet analysis are norm equivalences in Sobolev and Besov spaces [8, 10, 24].
They play a crucial role in multilevel preconditioning (see e.g. [10, 25]) and also in nonlin-
ear approximation [14, 7]. Accordingly, multilevel norm equivalences have been proved for
many types of multiresolution bases in scales of Sobolev and Besov spaces. In these norm
equivalences, the levels or scales of wavelet expansions are mimicking a Littlewood-Paley de-
composition, exploiting more the frequency behaviour of the basis function. Norm equivalences
in terms of wavelet expansions for Sobolev and Besov spaces have been proved by several au-
thors. First proofs were based on techniques borrowed from Fourier analysis see e.g. [24] and
references therein. We also refer to the articles [8, 6] for surveys. Despite their practical im-
portance weighted spaces where the weight is a function of the space variable, have not been
considered to our knowledge. However, the local support of the wavelet basis is especially
suited to analyze the impact of the weight function w(x) on the norm equivalence. To prove
multilevel norm equivalences in scales of weighted Sobolev spaces with regular or singular
weight function w(x) is the purpose of the present paper.

The proof of such norm equivalences can not be based on explicit Fourier techniques due
to the lack of translation invariance induced by the weight functions. Alternative proofs of
norm equivalences are based exclusively on approximation theory, namely the inverse and the
approximation property, respectively, and its relation with Besov norms [25, 10]. Our proof of
weighted norm equivalences is based on a strengthened Cauchy Schwarz inequality, a technique
borrowed from domain decomposition and applied to multilevel preconditioning by [3]. With
these techniques we prove an upper estimate [29] while the lower estimate can be easily deduced
from the upper estimate for the dual wavelet basis in a biorthogonal setting like in [29]. For
this reason we consider in our proofs the primal and dual wavelet systems simultaneously. We
note that the singularity of the weight must be compensated in certain cases by homogeneous
Dirichlet boundary conditions for the dual wavelet basis.

We consider several applications of our theory, in particular wavelet preconditioning of
the element stiffness matrices for the p- or spectral FEM and the preconditioning of stiffness
matrices from stochastic volatility models in finance. Here, the natural weights are the Jacobi
weights which are singular at the boundary. Further applications of the present tools include
weighted Lp-spaces or weights with singularities in the interior which are not considered ex-
plicitly here.

Let us briefly elaborate on the significance of preconditioning the elemental stiffness matri-
ces in p-FEM, or when combined with mesh-refinement, in the hp-FEM. The hp-FEM applied
to elliptic and parabolic problems allows for exponential convergence rates, in terms of the
number of degrees of freedom, since the solutions are piecewise analytic [30, 28]. Due to the
cost in generating the element stiffness and mass matrices in hp-FEM and the numerical so-
lution of the linear systems, in practical applications, in particular in three dimensions, the
gain in using high polynomial degrees is in part offset by the computational expense in matrix
generation and solution. Matrix generation in high order FEM can be accelerated to near
optimal complexity by sum factorization and spectral quadrature techniques, see e.g. [31, 23].
This leaves the numerical solution of the linear systems as computational bottleneck. Once
the internal degrees of freedom on each element are condensed, effective iterative methods are
available for the solution of the global linear systems (based e.g. on domain decomposition). In
dimension three and for degree p ≥ 4, however, the condensation process becomes extremely
expensive, even if executed in parallel due to mutual independence of the internal degrees
of freedom. Alternatively to condensation by direct solution (elimination), condensation by
iterative methods could be considered. For efficiency, a preconditioner is required, since at
high polynomial degree p, the element matrices can be rather ill-conditioned. p-element pre-
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conditioners were constructed early by spectrally equivalent low order finite - difference or
finite element discretizations on graded tensor product meshes on Lobatto points (see [20],
[15],).

Our norm equivalences suggest a different approach: we build a preconditioner based on
wavelet discretizations on uniform meshes, but with the singular weights taken into account in
each scale. We deduce from our weighted norm equivalences by judicious choice of the weights
a new, spectrally equivalent wavelet preconditioner for the p-version FEM. In addition, the
regular refinements of the sequence of grids and the dyadic structure of the wavelet basis allow
for fast realization of this preconditioner. We close the paper by generalizing the weighted
norm equivalences from L2 to Sobolev spaces of nonzero order and present optimal wavelet
preconditioners for multilevel FEM applied to a class of degenerate elliptic equations of second
order.

The outline of the paper is as follows: In section 2, we present some background material
about multiresolutions and wavelet bases. Section 3 contains the main technical tool of the
paper, the discrete norm equivalences in weighted L2 and higher order norms. Section 4
presents the construction of the preconditioner for the p-FEM, and Section 5 concludes with
applications to anisotropic and degenerate elliptic problems.

2 Wavelets and Multiresolution analysis

Multiresolution analysis is by now a well established tool in signal processing. Among the
many excellent accounts, we refer the reader to the survey paper [9] and the references therein.
Here we collect only some facts which are useful for our purpose. We need wavelets on the
unit interval [0, 1]. There are different approaches to define wavelets on a finite interval. Our
present method is based on the construction of orthogonal compactly supported wavelets on
[0, 1] given in [7] and biorthogonal wavelets [11]. A multiresolution analysis on the interval
[0, 1] consists of a nested family of finite dimensional subspaces

0 ⊂ 1 ⊂ . . . ⊂ j ⊂ j+1 . . . ⊂ . . . ⊂ L2 ((0, 1)) , (2.1)

such that dim l ∼ 2l and
⋃

l∈N0

l = L2 ((0, 1)), where N0 = {0, 1, . . .}.

Each space l is defined by a single scale basis Φl = {ϕl
k}, i.e., l = span {ϕl

k : k ∈ ∆l},
where ∆l denotes a suitable index set with cardinality #(∆l) ∼ 2l. An important requirement
is that these bases are uniformly stable, i.e., for any vector c = {ck, k ∈ ∆l}

‖c‖l2(∆l) ∼

∥

∥

∥

∥

∥

∑

k∈∆l

ckϕ
l
k

∥

∥

∥

∥

∥

0

holds uniformly in j. Furthermore, the single scale bases satisfy a locality condition

diam supp (ϕl
k) ∼ 2−l .

Instead of using only a single scale l one is interested in the supplement of information between
an approximation of a function in the spaces l and l+1. Since l ⊂ l+1 there are several
ways to decompose l+1 = l⊕ l, with some complementary space l, l∩ l = {0}, not
necessarily orthogonal to l. The complementary spaces Wl of l in l+1 are spanned by the
multi scale bases Ψl = {ψl

k : k ∈ ∇l = ∆l+1/∆l}. It is supposed that the collections Φl ∪ Ψl

are also uniformly stable bases of l+1. If Ψ =
∞
⋃

l=−1
Ψl, where Ψ−1 = Φ0, is a Riesz–basis

of L2 ((0, 1)) we will call it a wavelet basis. We consider basis functions ψj
l to be local with
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respect to the corresponding scale l, i.e., diam supp ψl
k ≤ Cψ2−l and we will normalize them by

‖ψl
k‖L2([0,1]) ∼ 1. An important property of these functions are the vanishing moment property

∫ 1

0
xαψl

k(x) dx = 0 , for α = 0, 1, . . . , d̃ . (2.2)

In the dual space ˜ l we have
∫ 1

0
xαψ̃l

k(x) dx = 0 , for α = 0, 1, . . . , d . (2.3)

We suppose that there exists also a biorthogonal, or dual, Riesz–basis

Ψ̃ = {ψ̃l
k : k ∈ ∇l, l = −1, 0, 1, . . .} ⊂ L2 ((0, 1))

such that 〈ψ̃l
k,ψ

i
j〉 = δk,jδi,l and every v ∈ L2 ((0, 1)) has a representation

v =
∞
∑

l=−1

∑

k∈∇l

〈v,ψl
k〉ψ̃l

k =
∞
∑

l=−1

∑

k∈∇l

〈v, ψ̃l
k〉ψl

k (2.4)

and that the norm equivalence

‖v‖20 ∼
∞
∑

l=−1

∑

k∈∇l

|〈v,ψl
k〉|2 ∼

∞
∑

l=−1

∑

k∈∇l

|〈v, ψ̃l
k〉|2

holds. We refer to [9] for further details.
If one is going to use the spaces l and ˜

l = span{ψ̃i
k : k ∈ ∇i, i = −1, 0, 1, . . . , l− 1} as

multiresolution spaces then additional properties are required for our purpose. We suppose that
the following Jackson and Bernstein type estimates, respectively approximation and inverse
property, hold for t ≤ τ ≤ d, t ≤ s < γ0 and uniformly in l

inf
v∈ l

‖u− v‖t ≤ c2−l(τ−t)‖u‖τ , u ∈ Hτ , (2.5)

and
‖v‖s ≤ c2l(s−t)‖v‖t, v ∈ l, (2.6)

where γ0, d > 0 are fixed constants given by

γ0 = sup {s ∈ R : l ⊂ Hs([0, 1])},
d = sup {s ∈ R : ex.b0 > 0 ∀l ≥ 0, u ∈ C∞ : inf

v∈ l

‖u− v‖0 ≤ b02
−ls‖u‖s}.

Usually, d is the maximal degree of polynomials which are locally contained in l and is referred
to as order of exactness of the multiresolution analysis { l}. The parameter γ0 denotes the
regularity or smoothness of the functions in the spaces l. We will assume that γ0 ≤ d, which
is the case in all known examples of wavelet functions. Analogous estimates are supposed to
be valid for the dual multiresolution analysis { ˜ l} with constants γ̃0, d̃.

Beside their importance in the approximation theory, the inequalities (2.5), (2.6) play a
fundamental rule to establish norm equivalences, [8]. They provide a convenient device for
switching between the norms ‖ · ‖t and corresponding sums of weighted wavelet coefficients
from the representation (2.4). In fact the following norm estimates are a consequence of the
approximation and the inverse inequality

‖v‖2t ≤ c
∞
∑

l=−1

22lt
∑

k∈∇l

|vl,k|2, (2.7)
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where v =
∑∞

l=−1

∑

k∈∇l
vl,kψl

k and vl,k = 〈v, ψ̃l
k〉 and t < γ0,

‖v‖2t ≤ c
∞
∑

l=−1

22lt
∑

k∈∇l

|ṽl,k|2 (2.8)

where v =
∑∞

l=−1

∑

k∈∇l
vl,kψ̃l

k and ṽl,k = 〈v,ψl
k〉 and t < γ̃0. We note that by a simple

duality argument there follows the well known norm equivalence

‖v‖2t ∼
∞
∑

l=−1

22lt
∑

k∈∇l

|wl,k|2 , (2.9)

for t ∈ (−γ̃0, γ0) if wl,k = 〈v, ψ̃l
k〉. In the case wl,k = 〈v,ψl

k〉 the above norm equivalence holds
for t ∈ (−γ0, γ̃0), see, e.g., [8] and [29] for the details.

As a technical assumption for proving such norm equivalence in the case of weighted spaces
we need that the wavelets and also the dual wavelets belong to W 1,∞([0, 1]). This is satisfied
for various families of spline wavelets constructed by stable completions, for example. In order
that the wavelets together with their duals belong to the weighted function space, we also
need a decay condition at the end points. Presently, we consider subsets 0

l ⊂ H1
0 ((0, 1)) of

which satisfy homogeneous Dirichlet boundary conditions. For the spaces under consideration
the index sets ∆l can be characterized by the knots ∆l = {k2−l : k = 0, . . . , 2l} or simply by
{k = 0, . . . , 2l} and ∇l = {(k + 1/2)2−l : k = 0, . . . , 2l − 1} or simply by {k = 1, . . . , 2l}. It
was shown in [12] that there are bases in l and ˜

l such that φl
k(0) = δ0,k and φ̃l

k(0) = δ0,k
and vice versa at the other end point. As indicated in [12] one removes the basis functions
φl
0, φ̃

l
0, φ

l
2l and φ̃l

2l to define the subspaces 0
l := span {φl

k : k = 1, . . . , 2l − 1} and ˜ 0
l :=

span {φ̃l
k : k = 1, . . . , 2l − 1}. Obviously, all basis functions are zero at the end points. This

choice induces other wavelet spaces 0
l and wavelet bases {ψl

k} (see [12] for further details).
The only difference is that at the end points there are two basis functions ψl

k with k = 1 and

k = 2l−1 for which
∫ 1
0 ψl

k(x) dx /= 0.
For notational convenience we introduce

∇I
l = {k ∈ , 1 ≤ k ≤ 2l − 1, 0 /∈ supp ψl

k}

as the index set corresponding to all wavelets ψl
k which have a support with a positive distance

to 0 and
∇L

l = {k ∈ ,β − 1 ≤ k ≤ 2l − 1, 0 ∈ supp ψl
k},

as the index set corresponding to all wavelets ψl
k having a support containing 0, and β ∈ is

specified later. Moreover, let ∇̃L
l = {k ∈ ,β − 1 ≤ k ≤ 2l − 1, 0 ∈ supp ψ̃l

k}.

3 Condition number of the mass matrix

Using (2.9), we have in particular

‖ v ‖0 ≡
∞
∑

l=1

∑

k∈∇l

| wl,k |2 .

In this section, we prove an estimate for the condition number of the mass-matrix M of a
weighted L2

w norm given by

M =

(

∫ 1
0 w2(x)ψl

k(x)ψ
l′
k′(x) dx

w(2−lk)w(2−l′k′)

)

(k,l);(k′,l′)

:=
((

ψl
k,ψ

l′
k′

)

w

)

(k,l);(k′,l′)
(3.1)

in a multiresolution basis (ψl
k)(k,l) with the following properties
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• The wavelets ψl
k and their duals are normed such that ‖ ψl

k ‖L1= Cψ2
− l

2 holds.

• The wavelets have a vanishing moment condition, e.g.
∫ 1
0 ψl

k(x) dx = 0.

We split the main result into several lemmas. Throughout, we make the following two assump-
tions.

Assumption 3.1. The nonnegative weight function w(x) is assumed to belong to W 1,∞((δ, 1))
for every δ > 0 and to satisfy

C−1
w ≤ w(x)

xα
≤ Cw, C−1

w ≤ w′(x)

xα−1
≤ Cw,

for some Cw > 0 and some α ∈ .

Here and in the following, Cw denotes a generic positive constant depending only on the
weight function w(x) which can take different values in different places. The parameter α will
be specified in the next assumption.

For the wavelets ψl
k near x = 0, we assume the following kind of multiresolution spaces.

Assumption 3.2. ψl
k ∈ 0 ⊂ W 1,∞((0, 1)) and ψ̃l

k ∈ ˜ 0 ⊂ W 1,∞((0, 1)) with k ∈ ∇L
l satisfy

|ψl
k(x)| ≤ Cψ2

l/2(2lx)β, |(ψl
k)

′(x)| ≤ Cψ23l/2(2lx)β−1, x ∈ [0, 2−l], β ∈ 0, (3.2)

|ψ̃l
k(x)| ≤ Cψ2

l/2(2lx)β̃, |(ψ̃l
k)

′(x)| ≤ Cψ23l/2(2lx)β̃−1, x ∈ [0, 2−l], β̃ ∈ 0,

where k ∈ ∇L
l k ∈ ∇̃L

l . We assume that α+ β > −1
2 and −α+ β̃ > −1

2 .

Remark 3.1. The estimate (3.2) is only required for boundary wavelets, that is k = 1, ..., N .
We write k ≈ 1 in this situation. The boundary wavelets ψl

k with k ≈ 1 satisfy homogeneous
Dirichlet boundary conditions up to order β. Constructions of such boundary wavelets can be
found for example in [12, 5].

We note further that these functions generally do not satisfy vanishing moment conditions.

We assume throughout that our wavelets have compact support, in particular that

supp (ψ0
1) ⊆ [0, 2N − 1]

Furthermore, the parameter Cψ is a constant which is independent of the level numbers l and
l′, and, k and k′.

We state now two technical lemmas required in order to estimate the weight function. The
results can be proved by simple estimates.

Lemma 3.1. Let ξ, 2−l′k′ ∈ [2−l(k −N), 2−l(k +N)] and N ∈ with 0 < N < k. Then, the
weight function w satisfies

w2(ξ)

w(2−lk)w(2−l′k′)
< Cw

uniformly with respect to l and k.

Lemma 3.2. Let k′, ξ and w satisfy the assumptions of Lemma 3.1 and let l < l′. Then there
holds

∣

∣

∣

∣

2−l [w2]′(ξ)

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

< Cw.

We are now in position to prove the strengthened Cauchy-Schwarz inequalities. We consider
first the situation when 0 /∈ supp ψl

k. We assume that l′ ≥ l.
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Proposition 3.1. If l = l′ and 0 /∈ supp ψl
k ∪ supp ψl′

k′, then
∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ ≤ CψCw. (3.3)

Proof. The proof is standard.

We prove now an estimate for |(ψl
k,ψ

l′
k′)w|, l′ > l, in the case that ψl

k has a support not
containing 0.

Lemma 3.3. Let l′ > l, 0 /∈ supp ψl
k and ψl

k ∈ W 1,∞(supp ψl′
k′). If supp ψl

k ∩ supp ψl′
k′ /= ∅

then
∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ CψCw2

− 3

2
(l′−l).

Proof. See Appendix.

Remark 3.2. If l′ > l and 0 ∈ supp ψl
k, but k

′ > 2l
′−l, the result

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ CψCw2

− 3
2
(l′−l)

follows by the same arguments.

Next, we consider the case that 0 ∈ supp ψl
k, but 0 /∈ supp ψl′

k′ , l
′ > l and k′ < 2l

′−l.

Lemma 3.4. Let l′ > l, 0 ∈ supp ψl
k and 0 /∈ supp ψl′

k′. If 0 < k′ < 2l
′−l then

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ CwCψ2

− 1

2
(l′−l)(1+2α+2β)k′α+β−1.

Proof. See Appendix.

From now on, we do not distinguish Cw, Cψ and absorb all constants into a generic c which
is independent of l, l′, k, k′.

Summing up the estimate in Lemma 3.4 over all k′ = 1, . . . , 2l
′−l, the next lemma follows

immediately.

Lemma 3.5. Let l′ > l and 0 ∈ supp ψl
k, 0 /∈ supp ψl′

k′. Then

2l
′
−l

∑

k′=1

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c

{

2−
1
2
|l′−l| if α+ β /= 0

2−
1

2
|l′−l||l′ − l| if α+ β = 0

.

In the extreme case 0 ∈ supp ψl
k ∩ supp ψl′

k′ , we note that k
′ ≈ 1. Then, we obtain a similar

estimate as in Lemma 3.4.

Lemma 3.6. Let l′ > l and 0 ∈ supp ψl
k ∩ supp ψl′

k′. Then, there holds
∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c2−

1
2
|l′−l|(1+2α+2β).

Proof. See Appendix.

Next, we prove the boundedness of the matrices M = ((ψl
k,ψ

l′
k′))k,l;k′,l′ in l2 using the well

known Schur lemma. For this purpose, the next proposition determines the number of nonzero
entries for the matrix M .

Proposition 3.2. For fixed integer l′ > l each row of the block matrix Ml,l′ = ((ψl
k,ψ

l′
k′))l,l′

contains at most O(2l−l′) nonzero entries while the columns contain at most O(1) nonzero
matrix entries.
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Proof. The assertion follows directly from the properties of hierarchical basis functions,
cf. [29].

For wavelets ψl
k, k ∈ ∇I

l , we prove now the boundedness of the corresponding block of the
mass matrix. We start with the case 0 /∈ supp ψl

k ∩ supp ψl′
k′ .

Theorem 3.1. The estimate

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ 2−
l
2 ≤ c2−

l′

2 k′ ∈

is valid.

Proof. Let k ∈ ∇I
l and k′ ∈ ∇I

l′ . Then it follows by Lemma 3.3 and Proposition 3.2

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
2−

l
2 ≤ c

∞
∑

l=1

∑

k∈∇I
l

2−
l
2 2−

3
2
|l−l′|δsupp ψl

k
,supp ψl′

k′

≤ c

( l′
∑

l=1

2−
3
2
(l′−l)2−

l
2 +

∞
∑

l=l′+1

2−
3
2
(l−l′)2−

l
22l−l′

)

= c2−
l′

2 ,

where δE,E′ = 0 if two intervals E and E′ satisfy meas(E ∩ E′) = 0 and δE,E′ = 1 otherwise.
Consider now the case k′ ∈ ∇L

l′ . For l < l′ there holds

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
= 0 k ∈ ∇I

l , k
′ ∈ ∇L

l′ (3.4)

and we estimate

∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
2−

l
2 =

∞
∑

l=l′

( 2l−l′

∑

k=1

+
∑

k>2l−l′

)

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
2−

l
2 (3.5)

=: A1 +A2.

We apply now Lemma 3.5 to estimate the first sum A1 of (3.5) by

A1 =
∞
∑

l=l′

2−
l
2 2

l′−l
2 (l − l′) = 2−

l′

2

∞
∑

l=l′

2l
′−l(l − l′) = 2−

l′

2

∞
∑

l=0

2−ll = c2−
l′

2

for α+ β = 0 and

A1 =
∞
∑

l=l′

2−
l
22

l′−l
2

(2α+2β+1) = 2−
l′

2

∞
∑

l=l′

2(l
′−l)(α+β+1) = c2−

l′

2

for α+ β /= 0 and α+ β > −1. The second term A2 of (3.5) can be handled as in the case of
k′ ∈ ∇I

l′ , cf. Remark 3.2.

Remark 3.3. The same proof allows also to obtain the estimate

∀k′ ∈ :
∞
∑

l=1

∑

k∈∇I
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c

7



Next, we consider the case k ∈ ∇L
l and k′ ∈ ∇I

l′ .

Lemma 3.7. There holds
∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c k′ ∈ ∇I

l′ .

Proof. See Appendix.

Remark 3.4. For the sums

2
l
2

∞
∑

l′=1

∑

k′∈∇L
l′

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
2−

l′

2

the estimates can be obtained in the same way. We obtain only a different bound in the case
α+ β = 0 since we have a summation over 1s rather than a convergent series in (A.8). There
holds

∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
2−

l
2 ≤ c

{

2−
l′

2 if α+ β /= 0

l′2−
l′

2 if α+ β = 0
k′ ∈ ∇I

l′ .

The last case to be considered is k ∈ ∇L
l and k′ ∈ ∇L

l′ .

Lemma 3.8. There holds
∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ ≤ c k′ ∈ ∇L
l′ .

Proof. We note that on each level l not more than O(1) wavelets ψl
k satisfy 0 ∈ supp ψl

k.
Therefore the summation over k ∈ ∇L

l is over not more than O(1) scalar products (ψl
k,ψ

l′
k′)w.

By Lemma 3.6 we have the following estimate

∞
∑

l=0

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c

∞
∑

l=0

2−
1
2
|l′−l|(1+2α+2β) ≤ c

iff 1 + 2α+ 2β > 0.

Now, we are able to formulate the main results of this section.

Theorem 3.2. The infinite matrix M = ((ψl
k,ψ

l′
k′)w)(k,l);(k′,l′) is bounded in l2.

Proof. We decompose the matrix M into M = M1 + M2 where the coefficients in M2 are
(ψl

k,ψ
l′
k′)w iff 0 ∈ supp ψl

k ∩ supp ψl′
k′ and M1 does not contain the interaction of wavelets

which are both located at the point zero. By applying Theorem 3.1, Lemma 3.7 and the Schur
Lemma to M1 we have ‖ M1 ‖2≤ c. From Lemma 3.8 we have ‖ M2 ‖1≤ c and ‖ M2 ‖∞≤ c
which shows ‖ M2 ‖2≤ c. Hence, the assertion is proven.

We show now the equivalence of the L2
w norm of a function

u =
∞
∑

l=l0

∑

k

ulkψ
l
k ∈ L2

w ([0, 1])

with its discrete l2w norm of the coefficients (ulk)(k,l) ∈ , i.e.

!ulk!
2
w :=

∑

l

∑

k

w2(2−lk)|ulk|2.

8



Theorem 3.3. Let us assume that Assumptions 3.1 and 3.2 are valid. For any function
u =

∑∞
l=l0

∑

k u
l
kψ

l
k ∈ L2

w ((0, 1)) holds

‖ u ‖2w≈ !ulk !2
w .

Proof. From Theorem 3.2 we conclude

‖ u ‖2w =
∑

l,l′

∑

k,k′

ulku
l′
k′w(2

−lk)w(2l
′

k′)
(

ψl
k,ψ

l′
k′

)

w

≤‖ M ‖2
(

∑

l

∑

k

∣

∣

∣
ulk

∣

∣

∣
w(2−lk)

)2

≤ c ! ulk !2
w .

To prove the lower estimate we consider the dual system

ṽ =
∑

l

∑

k

ṽlkψ̃
l
k = G(ṽlk)

in the dual space L2
w−1 ((0, 1)). We denote by M̃ the mass matrix of the dual wavelet basis ψ̃l

k
with respect to the L2

w−1 ((0, 1)) innerproduct. Then, by the same arguments

‖ ṽ ‖2w−1≤‖ M̃ ‖2 !ṽlk !2
w−1 .

This means G : l2w−1 → L2
w−1 ((0, 1)) is bounded. Therefore, the adjoint operator G∗ :

L2
w ((0, 1)) → l2w is bounded, too. G∗ is explicitly given by

G∗u :=
(

〈u, ψ̃l
k〉

)

l,k
= (ulk)l,k

which proves the lower bound.

Remark 3.5. The presented result is simliar to the result of Zhang, [33]. It would be an
interesting question to charcterize the operators (bilinear forms) for which a diagonal precon-
ditioning in wavelet bases holds. To our knowledge we would like to mention that we are not
aware about any result concerning this question.

4 Application to the p-Version of the FEM

The theory of Chapter 3 can be applied to find a fast solver for the element stiffness matrices
in the p-Version of the FEM in two and three dimensions. As indicated in the introduction,
we precondition the p-FEM stiffness matrices by corresponding h-FEM matrices which are
spectrally equivalent and for which efficient inversion is possible. Previous work focused on
tensor products of linear elements on suitably graded meshes, see Ivanov and Korneev [18],
[19], Jensen and Korneev [20], and the pioneering work by Mund [15].

4.1 Model Problem

We consider the model problem

−5u = f in R = (−1, 1)d̂, d̂ = 2, 3 (4.1)

u = 0 on ∂R. (4.2)

9



We solve (4.1,4.2) approximately using the p−version of the FEM with only one element R.
As finite element space, we choose = {u |R∈ Qp, u = 0 on ∂R}, where Qp is the space of all
polynomials of degree p in each variable. The discretized problem is: find up ∈

∫

R
∇up ·∇vp d(x, y) =

∫

R
fvp d(x, y)

for all vp ∈ . As basis in , we choose the integrated Legendre polynomials, which we define
below.

Let for i = 0, 1, . . . , Li(x) =
1

2ii!
di

dxi (x
2 − 1)i for i ≥ 2 the i-th Legendre polynomial,

L̂i(x) =

√

(2i− 3)(2i − 1)(2i + 1)

4

∫ x

−1
Li−1(s) ds

the i-th integrated Legendre polynomial. L̂0(x) =
1+x
2 , L̂1(x) =

1−x
2 . These scaled integrated

Legendre polynomials were introduced by Jensen and Korneev [20]. As basis in , we choose

L̂ij(x, y) = L̂i(x)L̂j(y), or L̂ijk(x, y, z) = L̂i(x)L̂j(y)L̂k(z), (4.3)

with 2 ≤ i, j, k ≤ p for d̂ = 2 or d̂ = 3.

In order to satisfy (4.2), the polynomials L̂0 and L̂1 are omitted. The stiffness matrix Kd̂

for (4.1) with d̂ = 2 is determined by K2 = (aij,kl)
p
i,j=2;k,l=2, where

aij,kl =

∫

R
∇L̂ij(x, y) ·∇L̂kl(x, y) d(x, y) for d̂ = 2.

By a simple calculation it follows K2 = F ⊗ N + N ⊗ F for d̂ = 2. and K3 = F ⊗ F ⊗ N +
F ⊗N ⊗ F +N ⊗ F ⊗ F for d̂ = 3, where

F =



















1 0 −c2 0 · · ·

1 0 −c3
. . .

1 0
. . .

SYM
.. .

. . .
. . .
1



















is the one-dimensional mass-matrix andN = diag(di)
p
i=2 is the one-dimensional stiffness matrix

with the coefficients ci =
√

(2i−3)(2i+5)
(2i−1)(2i+3) , and di =

(2i−3)(2i+1)
2 , [20]. Using a permutation P of

rows and columns, there holds

P tFP =

(

F1 0

0 F2

)

, P tNP =

(

N1 0

0 N2

)

where N1 = diag(d2, d4, d6, . . .), N2 = diag(d3, d5, d7, . . .),

F1 = tridiag(−ce,1,−ce), F2 = tridiag(−co,1,−co)

with ce = (c2, c4, c6, . . .) and co = (c3, c5, c7, . . .).
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4.2 Preconditioning

We introduce now the following two matrices T and M̂ , given by

T = tridiag(−1,2,−1) and M̂ = tridiag(a,b,a), (4.4)

where a =

(

i2 + i+ 3
10

)n−1

i=1

and b =

(

4i2 + 2
5

)n

i=1

.

These matrices can be used as preconditioniers for the matrices F and N . The following lemma
holds, (cf. [1] and the references therein to Jensen and Korneev [20]).

Lemma 4.1. The following eigenvalue estimates are valid for i = 1, 2

λmin(Ni
− 1

2 M̂Ni
− 1

2 ) ≥ c, λmax(Ni
− 1

2 M̂Ni
− 1

2 ) ≤ C,

λmin(Fi
− 1

2TFi
− 1

2 ) ≥ c

1 + logn
, λmax(Fi

− 1
2TFi

− 1
2 ) ≤ C.

Now, we show how the matrices T and M̂ arise. To this end, we consider the following
auxiliary problem in one dimension: find u ∈ H1

0 ((0, 1)), such that

a1(u, v) = as(u, v) + am(u, v) = 〈g, v〉 (4.5)

holds for all v ∈ H1
0 ((0, 1)). The bilinear forms as(·, ·) and am(·, ·) are defined as follows

as(u, v) =

∫ 1

0
u′(ξ)v′(ξ) dξ = 〈u′, v′〉w=1 ∀u, v ∈ H1

0 ((0, 1)) ,

am(u, v) =

∫ 1

0
x2u(ξ)v(ξ) dξ = 〈u, v〉w=ξ ∀u, v ∈ L2

w ((0, 1)) .

We discretize this one-dimensional problem (4.5) by using linear elements on the uniform mesh
⋃n−1

i=0 τ li , where τ li =
(

i
n ,

i+1
n

)

. The number n of elements is assumed to be a power of two, i.e.
n = 2l where l denotes the level number. On this uniform mesh we introduce the standard
one-dimensional hat-functions φ(1,l)

i for i = 1, . . . , n− 1. Let

(Tw)ij = 〈(φ(1,l)
i )′, (φ(1,l)

j )′〉w and (Mw)ij = 〈φ(1,l)
i ,φ(1,l)

j 〉w. (4.6)

Then, an easy calculation shows, cf. [1], T1 = n
2T and Mξ = cM̂ with some constant c

depending on n, where a subscript ξ denotes the weight function w(ξ) = ξ and a subscript 1
denotes unweighted the inner product.

So, we see the reason for introducing the matrices T and M̂ (4.4). By tensor product
arguments, the following theorem holds.

Theorem 4.1. Let A2 = T ⊗ M̂ + M̂ ⊗ T and A3 = T ⊗ T ⊗ M̂ + T ⊗ M̂ ⊗ T + M̂ ⊗ T ⊗ T .
Furthermore let

K̃d̂ = Pd̂blockdiag
[

Ad̂

]2d̂

i=1
P t
d̂

for d̂ = 2, 3,

where P2 and P3 are explicitely given permutation matrices. Then the condition number κ of

K̃
− 1

2

d̂
Kd̂K̃

− 1
2

d̂
can be estimated by

κ(K̃
− 1

2

d̂
Kd̂K̃

− 1
2

d̂
) ≤ c(1 + log p)d̂−1 for d̂ = 2, 3.

Proof. The assertion follows by Lemma 4.1 and tensor product arguments. For more details
see [1].
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4.3 Wavelet Preconditioning

The matrices A2 and A3 are the stiffness matrices for discretizing in Ω = (0, 1)d̂ the following
singular elliptic problems

−x2uyy − y2uxx = f, u |∂Ω= 0 for d̂ = 2,

x2uyyzz + y2uxxzz + z2uxxyy = f, u |∂Ω= 0 for d̂ = 3

using bi- or trilinear finite elements on the graded tensor product mesh τ li × τ lj for d̂ = 2 or

τ li × τ lj × τ lk for d̂ = 3. For more details, see [1].
Using Theorem 3.3 and Theorem 4.1 a wavelet preconditioner for Kd̂ can therefore be built

as follows.
Let Q be the basis transformation matrix from the wavelet basis {ψl

k}k,l to the basis

{φ(1,l)
i }2l−1

i=1 . Define the mass matrix and stiffness matrix in the wavelet basis, Dm,w =
diag

(

〈ψl
k,ψ

l
k〉w

)

, Ds,w = diag
(

〈(ψl
k)

′, (ψl
k)

′〉w
)

. From Theorem 3.3 with w(ξ) = ξ and from
the properties of a multi resolution basis, cf. (2.9), we have

κ(QtD−1
m,ξQM̂) ≤ c and κ(QtD−1

s,1QT ) ≤ c

for some c > 0 independent of p. Thus, from the properties of the Kronecker product follows
κ(Q2A2) ≤ c where

Q2 = (Qt ⊗Qt)(Dm,ξ ⊗Ds,1 +Ds,1 ⊗Dm,ξ)
−1(Q⊗Q) (4.7)

and by Theorem 4.1 κ
(

P2blockdiag [Q2]
4
i=1 P

t
2K2

)

≤ c(1 + log p). Defining a matrix

Q3 = (Qt ⊗Qt ⊗Qt)(Dm,ξ ⊗Ds,1 ⊗Ds,1 (4.8)

+Ds,1 ⊗Dm,ξ ⊗Ds,1 +Ds,1 ⊗Ds,1 ⊗Dm,ξ)
−1(Q⊗Q⊗Q)

a similar holds for d̂ = 3.

Theorem 4.2. Let us assume that Assumptions 3.1, 3.2 with α = 1 and relation (2.9) for
t = 1 are satisfied. Then, the matrices Qd̂ (4.7) and (4.8) satisfy

κ
(

Pd̂blockdiag
[

Qd̂

]2d̂

i=1
P t
d̂
Kd̂

)

≤ c(1 + log p)d̂−1 for d̂ = 2, 3.

Therefore, a nearly optimal preconditioner for the element stiffness matrix Kd̂ in the p-
version of the FEM is found.

Remark 4.1. This approach can be extended to discretizations of (4.1),(4.2) in which the
polynomial degree in the variables x and y is anisotropic. If R = (−a1, a1) × (−a2, a2) or
R = (−a1, a1) × (−a2, a2) × (−a3, a3) the preconditioners Qd̂ can be used, too. However,
instead of (4.7),

Q2 = (Qt ⊗Qt)(
a1
a2

Dm,ξ ⊗Ds,1 +
a2
a1

Ds,1 ⊗Dm,ξ)
−1(Q⊗Q)

should be used. Then, Theorem 4.2 holds with constants independent of the parameters a1
and a2. An analogous modification is possible for Q3 (4.8).
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Figure 1: Wavelets ψ22, ψ24, ψ26

4.4 Numerical results

We now illustrate the performance of the wavelet preconditioner by numerical examples. We
consider exemplarily the following three frequently used multiresolution bases ψ2,s, s = 2, 4, 6,
cf. Figure 1.

The functions ψ2,s are piecewise linear and satisfy (2.3) with d + 1 = 2 and (2.2) with
d̃ + 1 = s, s = 2, 4, 6. Note that ψ̃22 is not continuous. For more details about the wavelet
basis we refer to [13].

4.4.1 Condition number of mass matrix

Figure 2 displays the condition numbers of the matrix M (3.1) with the scaling function
w(ξ) = ξ in the multiresolution bases ψ2,s, s = 2, 4, 6. Note that the entry corresponding to
ψl
k is scaled with w(2−lk)2. With an another choice of diagonal scaling the condition number

cannot be significantly improved in the case of w(ξ) = ξ.
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Figure 2: Condition number of the mass matrix.

From the results it can be concluded that the condition numbers depend strongly on the
choice of the wavelet. The condition numbers appear to grow at worst proportionally to
the logarithm of the number of unknowns for all multiresolution bases considered with large
differences in the actual values. Wavelet ψ22 (not covered by our results) shows the lowest
condition numbers.

4.4.2 Preconditioner for the p-Version FEM

In this subsection, the system Kd̂u = f for d̂ = 2, 3 is considered. In all numerical examples,
the number of iterations of the pcg-method for reducing the error of the residuum in the
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p 3 7 15 31 63 127 255 511 1023 2047 4095
ψ22 2 3 24 33 40 46 52 56 61 65 69
ψ24 2 3 24 41 59 89 123 162 195 220 246
ψ26 2 3 24 41 78 150 309 548 819 1102 1389

p 3 7 15 31 63 127 255
ψ22 2 3 45 55 62 72 84
ψ24 2 3 45 75 112 179 252
ψ26 2 3 45 75 177 483 1082

Table 1: Number of iterations of the pcg for Kd̂ with prec. Qd̂, d̂ = 2 (above), d̂ = 3 (bottom).

preconditioned energy norm to the factor ε = 10−10 is displayed. The matrices Qd̂, (4.7) for

d = 2 and (4.8) for d̂ = 3, are chosen as preconditioner. Figure 1 displays the number of
iterations for d̂ = 2, 3.

In both cases, the number of iterations grows moderately for the wavelet ψ22. However, for
ψ26 the growth is logarithmic, but the absolute number of iterations, i.e. about 1000 for d̂ = 3
and p = 255, are too large.

Now, we compare these iterative methods with direct solvers for K3u = f . Two direct
methods are considered:

• Cholesky-decomposition with lexicographic ordering of the unknowns,

• Cholesky-decomposition with a nested ordering of the unknowns, cf. [16], [17].

Both methods are compared with a pcg-method using the preconditioner Q3, (4.8) and the
wavelet ψ22. The relative accuracy is ε = 10−10. On the left picture of Figure 3, the number of
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Figure 3: Comparison of direct and indirect methods for K3u = f .

floating point operations are compared, on the right one the time for solving K3u = f . From
the results can be concluded, that for p ≤ 15 the nested Cholesky decomposition is faster than
the pcg-method with wavelet-preconditioner. However, for p > 15 the iterative solver is faster.
We observe also that for d̂ = 2 the preconditioner based on ψ22 compares favourably with
algebraic multigrid preconditioners developed in [2], Table 4.3.

5 Application to degenerate elliptic problems

Second order elliptic problems with degenerate diffusion arise in a number of applications. We
mention here only axisymmetric problems in three dimensions and the pricing of contracts on
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assets driven by Brownian motion with stochastic volatility (see, e.g., [27]). The weighted norm
equivalences established in this paper allow us to precondition finite element discetizations of
such equations optimally. To our knowledge preconditioning of degenerate diffusion coefficients
is considered only in few papers.

There exists some papers about diffusion coefficients with jumps, [3], [26]. In [21], a precon-
ditioner for a degenerate problem is proposed by considering a problem with jumping diffusion
coeffcients. It is conceivable to extend these results to the present problems.

5.1 1-d Model Problem

We consider the following model problem in the one-dimensional domain Ω = (0, 1): find
u ∈ H1

w,0(Ω) such that

a(u, v) := 〈u′, v′〉w + 〈u, v〉 =
∫ 1

0

(

ξ2u′v′ + uv
)

dξ =

∫ 1

0
fv dx ∀v ∈ H1

w,0(Ω) (5.1)

where H1
w,0(Ω) denotes the H1 space with weight w(ξ) = ξ, i.e.

H1
w,0(Ω) = {u ∈ L2(0, 1) : ξu′ ∈ L2(0, 1), u(1) = 0}.

The space H1
w,0(Ω) equipped with the norm ‖ u ‖21,w:= a(u, u) is a Hilbert space and hence

the problem (5.1) admits, for every f ∈ (H1
w,0(Ω))

∗, a unique solution by the Lax-Milgram
Lemma.

We discretize (5.1) by piecewise linear finite elements on a uniform mesh of meshwidth
h = 2−L, L ≥ 1, with zero Dirichlet boundary conditions at the right end point x = 1.
Denoting by 0

L ⊂ H1
w,0(Ω) the corresponding subspace and, as in the case of H1

0 ((0, 1)), we

denote the corresponding spline wavelet spaces by 0
l , l = 0, ..., L and the wavelet bases by

{ψl
k}, again normalized so that

||ψl
k||L2(Ω) = 1. (5.2)

The stiffness matrix A corresponding to the form a(·, ·) is then given by

A = Dξ +G1, (5.3)

where
Dw =

(

〈(ψl
k)

′, (ψl′
k′)

′〉w
)

, Gw =
(

〈ψl
k,ψ

l′
k′〉w

)

. (5.4)

Due to the normalization (5.2), we have a norm equivalence analogous to (2.9)

‖u‖2t ∼
∞
∑

l=−1

22lt
∑

k∈∇l

|ul,k|2 (5.5)

for all u ∈ H1
0 (Ω) and for t ∈ (−γ̃0, γ0), where ul,k = 〈u, ψ̃l

k〉. Analogous to Theorem 3.3 we
can prove

Theorem 5.1. Suppose that Assumptions 3.1 and 3.2 are satisfied for {(ψl
k)

′} and {(ψ̃l
k)

′}.
Assume further that relation (5.5) holds with t = 0, i.e. that {ψl

k} is a Riesz basis. Let γ0 > 1.

Then, for u =
∑L

l=l0

∑

k u
l
kψ

l
k holds the norm equivalence

‖ u′ ‖2w≈
∑

l

22l
∑

k

w2(2−lk)|ulk|2 =
∑

l

∑

k

k2|ulk|2

uniformly in L.
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Note that the summation over k runs, in level l, from k = 1 to kmax = O(2l), i.e. the
weight in the discrete norm equivalence ranges from L2 for the contributions near x = 0 to H1

near x = 1.
As a corollary, we obtain a preconditioner for the matrix A in (5.1) where w(x) = x.

Proposition 5.1. Denote by C the matrix with entries given by

C(l,k),(l′,k′) = kδk,k′δl,l′ .

Then there is c > 0 independent of L such that for the stiffness matrix A of (5.1) holds

cond2(C
−1AC−1) ≤ c < ∞.

5.2 2-d selfadjoint anisotropic problems

Here, we consider diffusion problems with coefficients which degenerate at the boundary. They
are models for the pricing of contracts on assets driven by Brownian motion with stochastic
volatility, as e.g. in [27]. Note particularly that these differential equations from finance are
parabolic with degenerate elliptic operator. The singular weight function in these applications
is always a tensor product of univariate singular weights. Various singular weight functions
appear in practice, depending on the particular stochastic volatility model. Rather than giving
a detailed presentation of these models (containing numerous parameters and lower order
differential operators), we show in the following how our univariate preconditioning results
extend readily to the higher dimensional case.

We consider exemplarily the following two problems with degenerate coefficients in the
two-dimensional domain Ω = (0, 1)2.

• find u ∈ H1
w,0(Ω) such that

∫

Ω
(w2(x)w2(y)uxvx + uyvy + uv) d(x, y) =

∫

Ω
fv d(x, y) ∀v ∈ H1

w,0(Ω) (5.6)

• find u ∈ H1
w,w,0(Ω) such that

∫

Ω
(w2(x)w2(y)(uxvx + uyvy) + uv) d(x, y) =

∫

Ω
fv d(x, y) ∀v ∈ H1

w,w,0(Ω) (5.7)

where H1
w,0(Ω) denotes a weighted H1 space, i.e.

H1
w,0(Ω) = {u ∈ L2(Ω), uy, w(x)w(y)ux ∈ L2(Ω), u(x, 1) = u(1, y) = 0}

and H1
w,w,0(Ω) is the weighted Sobolev space

H1
w,w,0(Ω) = {u ∈ L2(Ω), w(x)w(y)ux, w(x)w(y)uy ∈ L2(Ω), u(x, 1) = u(1, y) = 0}.

We discretize (5.6), (5.7) by piecewise bilinear finite elements on the uniform tensor product
mesh τ li × τ lj. The stiffness matrix in the wavelet basis {ψl

k(x)ψ
l′
k′(y)}(k,l),(k′,l′) is given by

B2 = Dξ ⊗Gξ +G1 ⊗D1 +G1 ⊗G1 for (5.6),

B3 = Dξ ⊗Gξ +Gξ ⊗Dξ +G1 ⊗G1 for (5.7)

with the matrices Dw and Gw introduced by relation (5.4). Denote by Cs,w and Cm,w the
diagonal matrices with entries given by

(Cs,w)(l,k),(l′,k′) = δk,k′δl,l′2
2lw2(2−lk), (Cm,w)(l,k),(l′,k′) = δk,k′δl,l′w

2(2−lk)
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and let

C2 = (Cs,ξ ⊗ Cm,ξ + Cm,1 ⊗ Cs,1 + Cm,1 ⊗ Cm,1)
1
2 ,

C3 = (Cs,ξ ⊗ Cm,ξ + Cm,ξ ⊗ Cs,ξ + Cm,1 ⊗ Cm,1)
1
2 .

Then, by Theorem 5.1, Theorem 3.3, relation (2.9) and tensor product arguments we find

Theorem 5.2. There holds for i = 2, 3, cond2(C
−1
i BiC

−1
i ) ≤ c < ∞ where the constant c is

independent of the level number L.

We give now numerical experiments for the condition number of C−1AC−1 in the l2-norm
for the wavelets ψ22. Note that this wavelet does not satisfy the assumptions of Theorem 5.1.
Unlike in the one-dimensional case, there are now several ways to extract a preconditioner
from the stiffness matrix A. We compare here numerically three different constructions of
preconditioners C. Cases I and III correspond to the usual block-diagonal preconditioners
similar to those employed in one dimension. The numerical experiments revealed that although
the condition number is bounded uniformly in the number of levels L, its absolute value is
still rather large. In the construction of the preconditioner, the most delicate problem are
the wavelets at the boundary x = 0. For improving the condition number of C−1AC−1 we
consider therefore as case II a matrix CII in which the entries corresponding to wavelets ψl

k
with 0 ∈ supp ψl

k, i.e. with k = 1, are not set to 0. Then, for solving CIIw = r a linear
system of dimension log2 n has to be solved via Cholesky decomposition. Specifically, below
the following three types of preconditioning matrices C are considered.

• case I:

CI
(l,k),(l′,k′) =

√

〈(ψl
k)

′, (ψl
k)

′〉wδk,k′δl,l′ ,

• case II:

(CII
(l,k),(l′,k′))

2 =



















〈(ψl
k)

′, (ψl′
k′)

′〉w if k = k′, l = l′

〈(ψl
k)

′, (ψl′
k′)

′〉w if k = k′ = 1

0 else

,

• case III:
CIII
(l,k),(l′,k′) = kδk,k′δl,l′ .

10
1

10
2

10
1

Number of unknowns

C
o

n
d

it
io

n
 n

u
m

b
e

rs

I
II
III

Figure 4: Condition number of the matrix A.
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Figure 4 displays the condition numbers of C−1AC−1 choosing the wavelets ψ22. One can see
in all cases the same asymptotic behaviour. However, the condition number is about 8 for the
case CII, in contrast to about 30 for the other cases.

Next, we consider the matrices C−1
i BiC

−1
i . In the corresponding one dimensional example,

we have seen that the matrix C = CII reduces the condition number of C−1AC−1 in comparison
to diagonal matrices C = CI or C = CIII. Thus, instead of C−1

i BiC
−1
i , i = 2, 3 we consider

(CII
i )

−1Bi where

CII
2 = CII ⊗ Cm,ξ + Cm,1 ⊗ Cs,1 + Cm,1 ⊗ Cm,1,

CII
3 = CII ⊗ Cm,ξ + Cm,ξ ⊗ CII + Cm,1 ⊗ Cm,1.

Note, that the matrices Cm,1, Cs,1 and Cm,ξ are diagonal matrices. Moreover, the matrix CII

can be written as

CII =

(

DII 0

0 RII

)

where DII is a diagonal matrix and RII is a fully populated matrix of dimension log2 n, cor-
responding to the wavelets with k = 1. Thus, for solving the n2 × n2 system CII

2 w = r we
have to solve n symmetric, positive definite linear systems of dimension log2 n and a diagonal
system of dimension n2 − n log2 n. Using here a Cholesky decomposition, the total cost for
these solves is asymptotically n2 + 1

6n(log2 n)
3. With analogous arguments it can be shown

that the total cost for solving CII
3 w = r is asymptotically n2 + 1

6(2n− 1)(log2 n)
3 + 1

6(log2 n)
6.

Table 2 displays the condition numbers of (CII
i )

− 1
2Bi(CII

i )
− 1

2 for i = 2, 3 in the l2-norm using
the wavelets ψ22.

Level 3 4 5 6

cond2((CII
2 )

− 1

2B2(CII
2 )

− 1

2 ) 9.9 12.1 13.9 15.4

cond2((CII
3 )

− 1

2B3(CII
3 )

− 1

2 ) 6.0 11.3 15.7 19.8

Table 2: Condition numbers of (CII
i )

− 1
2Bi(CII

i )
− 1

2 .

We observe moderate growth of the condition numbers with respect to small n.

5.3 Nonselfadjoint degenerate problem

We consider a degenerate parabolic problem. In Ω = (0, 2)×
(

− 1
2 ,

1
2

)

, QT = Ω× (0, T ), T > 0
and ΣT = ∂Ω× (0, T ) we solve the parabolic differential equation

ut −
1

2
x2|y|2uxx −

1

2
β2uyy − ρβx|y|uyx − r

(

xux − u
)

− α(m− y)uy = g in QT

u = 0 on ΣT

u(·, 0) = u0 in Ω,

which arises in option pricing for stochastic volatility models [27]. In this example, the elliptic
part of the operator degenerates at y = 0, which is in the interior of the domain Ω. We
consider the constants α = 1, β = 1√

2
, ρ = −0.5, r = 0.05 and m = 0.2 and cast the problem

in variational form: given g ∈ V ∗, find u ∈ L2(0, T ;V ) such that

d

dt
(u, v)L2(Ω) + a(u, v) = 〈g, v〉V ∗×V ∀v ∈ V, (5.8)

u(0, ·) = 0,
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where the bilinear form a(·, ·) is given by

a(u, v) =
1

2

∫

Ω
x2w2(y)

∂u

∂x

∂v

∂x
dxdy +

∫

Ω
xw2(y)

∂u

∂x
vdxdy +

1

2
β2

∫

Ω

∂u

∂y

∂v

∂y
dxdy

+ρβ

∫

Ω

(

xw(y)
∂u

∂y

∂v

∂x
+ w(y)

∂u

∂y
v

)

dxdy − r

∫

Ω
x
∂u

∂x
vdxdy

+α

∫

Ω
(y −m)

∂u

∂y
vdxdy + r

∫

Ω
uvdxdy

with w(y) = |y| (various other, singular w(y) could be chosen depending on the volatility
model). In (5.8) the time derivative is taken in the sense of distributions and V denotes the
weighted Sobolev space

V =

{

v |
(

v,
∂v

∂y
, xw(y)

∂v

∂x

)

∈
(

L2(Ω)
)3

}

. (5.9)

which is equipped with the norm

‖v‖2V =

∫

Ω

(

v2 +

(

∂v

∂y

)2

+ x2w2(y)

(

∂v

∂x

)2)

dxdy (5.10)

By V ∗ we denote the dual of V with respect to the pivot space L2(Ω).
We discretize (5.8) in time by the θ-scheme with time step k = 10−2 and in Ω by tensor

product wavelets with levels L = (L + 1, L). The stiffness matrix of the form a(·, ·) is, with
the univariate advection matrix

Bw =

(

〈(ψl
k)

′,ψl′
k′〉w

)

(k,l),(k′,l′)

,

given by (with B√
ξ +Bt√

ξ
+M1 = 0)

K :=
1

2
θD(x)

ξ ⊗G(y)
|ξ| + θB(x)√

ξ
⊗

(

G(y)
|ξ| − rG(y)

1 − βρB(y)√
|ξ|

)

(5.11)

+θG(x)
1 ⊗

(

(

1/(kθ) + r
)

G(y)
1 +

1

2
β2D(y)

1 + αB(y)√
ξ−m

)

.

We only consider the preconditioner of type II

(

CII
)2

:=
θ

2
CII ⊗ Cm,|ξ| + θCm,1 ⊗

(

(

1/(kθ) + r
)

Cm,1 +
1

2
β2Cs,1

)

,

which is spectrally equivalent to K uniformly in L and in k. We choose θ = 1
2 in the θ-scheme

and the levels L = 1, . . . , 5, yielding linear systems of size N :=
(

2L+1 − 1
)(

2L − 1
)

. In the
θ-scheme, the nonsymmetric linear systems are solved by GMRES. The residuals r' of the 0-th
GMRES step satisfy

‖r'‖ ≤
(

1− α(K)−2
)'/2‖r0‖, (5.12)

where the convergence measure is given by

α(K) =
‖K‖2

λmin(
1
2 (K+K)))

. (5.13)

Table 3 shows the values α forK with preconditioners of type I and II. Also in the nonselfadjoint
case the preconditioner of type II appears to be best. We found this to hold over a wide range
of parameters k, θ, r and m.

Acknowledgement: This work was supported by the TMR-project ”Wavelets and Multi-
scale Methods in Numerical Simulation” and by the Swiss Government under Grant No. BBW
97.404 and by the DFG-Sonderforschungsbereich 393 ”Numerische Simulation auf massiv par-
allelen Rechnern”.
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Level L 2 3 4 5
α
(

K
)

2.890 8.264 43.76 200.0
α
(

(CI)−1K(CI)−1
)

2.82 8.264 25.0 47.16
α
(

(CII)−1K(CII)−1
)

2.13 3.77 6.75 11.62

Table 3: GMRES convergence measure α(K) for preconditioners of type I and II.

A Appendix: Proofs of Lemmas 3.3, 3.4, 3.6 and 3.7

Proof of Lemma 3.3. Denote by Ω = suppψl′
k′ . We write u(x) = w2(x)ψl

k(x) at y = 2−l′k′ in
the form

u(x) = u(y) +R1u(x), R1u(x) =

∫ x

y
u′(ξ)dξ.

The remainder R1u satisfies for u ∈ W 1,∞(Ω) the estimate, cf. [4],

‖ R1u ‖L∞(Ω)≤ C diam(Ω) | u |W 1,∞(Ω) .

Thus, there holds

∣

∣

∣

∣

∫ 1
0 w2(x)ψl

k(x)ψ
l′
k′(x) dx

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1
0 (u(y) +R1u(x))ψl′

k′(x) dx

w(2−lk)w(2−l′k′)

∣

∣

∣

∣

.

According to the vanishing moment condition, we can conclude

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ =

∣

∣

∣

∣

1

w(2−lk)w(2−l′k′)

∫ 1

0
R1u(x)ψl′

k′(x) dx

∣

∣

∣

∣

≤
‖ R1u ‖L∞(Ω)

w(2−lk)w(2−l′k′)

∫ 1

0

∣

∣

∣ψl′
k′(x)

∣

∣

∣ dx

≤ diam(Ω)
| u |W 1,∞(Ω)

w(2−lk)w(2−l′k′)

∫ 1

0

∣

∣ψl′
k′(x)

∣

∣ dx

≤ Cψ2
−l′ | u |W 1,∞(Ω)

w(2−lk)w(2−l′k′)
2−l′/2

Moreover, by u(x) = w2(x)ψl
k(x)

| u |W 1,∞(supp ψl′

k′
)

w(2−lk)w(2−l′k′)
=

Cψ

w(2−lk)w(2−l′k′)
‖ (w2)′ψl

k + w2(ψl
k)

′ ‖L∞(supp ψl′

k′
)

≤
Cψ

w(2−lk)w(2−l′k′)

{

‖ (w2)′ ‖L∞ 2
l
2+ ‖ w2 ‖L∞ 2

3l
2

}

.

Due to Lemma 3.2 and Lemma 3.1, we estimate

‖ (w2)′ ‖L∞

w(2−lk)w(2−l′k′)
≤ 2lCw and

‖ w2 ‖L∞

w(2−lk)w(2−l′k′)
≤ Cw,

which gives the desired result.

Proof of Lemma 3.4. We develop u(x) = w2(x)ψl
k(x) around y = 2−l′k′ in a Taylor series:

u(x) = w2(x)ψl
k(x) = w2(y)ψl

k(y) +R1u(x).
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According to the vanishing moment
∫ 1
0 ψl′

k′(x) dx = 0 we obtain

∫ 1

0
w2(x)ψl

k(x)ψ
l′
k′(x) dx =

∫

supp ψl′

k′

R1u(x)ψ
l′
k′(x) dx. (A.1)

We note that, for x ∈ [0, 2−l]

|ψl
k(x)| ≤ Cψ2

l
2 (2lx)β ,

cf. (3.2) and

|(ψl
k)

′(x)| ≤ Cψ2
l
2
(1+2β)xβ−1. (A.2)

Inserting this fact and |(w2)′(x)| ≤ Cwx2α−1 into the relation (A.1) we get

I :=

∫ 1

0
w2(x)ψl

k(x)ψ
l′
k′(x) dx ≤ ‖ R1u ‖L∞(suppψl′

k′
)

∫ 1

0
|ψl′

k′(x)| dx

≤ Cψ2
−3l′/2 ‖ (w2)′ψl

k + (ψl
k)

′w2 ‖L∞(suppψl′

k′
)

≤ CψCw

∣

∣(2−l′k′)2α+β−12−
3
2
l′2

l
2
(1+2β)

∣

∣

due to the assumption 0 /∈ supp ψl′
k′ . Since 0 ∈ supp ψl

k, there holds k ≈ 1 or, equivalently,
2−lk ≈ 2−l. Inserting the above results, we obtain

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
=

I

w(2−lk)w(2−l′k′)
=

I

(2−lk)α(2−l′k′)α

≤ Cw
I

2−lα(2−l′k′)α
≤ CwCψ

∣

∣(2−l′k′)α+β−12−
3
2
l′2

l
2
(1+2β+2α)

∣

∣.

Finally, we obtain
∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ CψCw

∣

∣2−
1
2
|l′−l|(1+2α+2β)k′α+β−1∣

∣,

which is the desired result.

Proof of Lemma 3.6. We split

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ =

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx+

∫ 2−l′N

2−l′

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

. (A.3)

We estimate now the first integral on the right hand side of (A.3). From Assumption 3.2 and
0 ∈ supp ψl

k ∩ supp ψl′
k′ we have

|ψl
k(x)| ≤ c2

l
2 (2lx)β ≤ c2

l
2
(1+2β)xβ for x ∈ [0, 2−l]

and |ψl′
k′(x)| ≤ 2

l′

2
(1+2β)xβ for x ∈ [0, 2−l′ ]. Therefore, using w2(x) ≤ cx2α we deduce the

bound

∣

∣

∣

∣

∫ 2−l′

0
w2(x)ψl

k(x)ψ
l′
k′(x) dx

∣

∣

∣

∣

≤ c2
l+l′

2
(1+2β)

∫ 2−l′

0
x2α+2β dx = c2

l+l′

2
(1+2β)2−l′(1+2β+2α)
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if 2α + 2β > −1, cf. Assumption 3.2. Otherwise this integral does not exist. Furthermore,
from 0 ∈ supp ψl

k and 0 ∈ supp ψl′
k′ , we can conclude 2−lk ∼ 2−l and 2−l′k′ ∼ 2−l′ . Hence,

∣

∣

∣

∣

∫ 2−l′

0

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

≤ c2
l+l′

2
(1+2β+2α)2−l′(1+2β+2α) = c2

l−l′

2
(1+2β+2α). (A.4)

We estimate now the second sum on the right hand side of (A.3). By w(x) : w(2−l′k′) :
w(2−l′) for x ∈ supp ψl′

k′\[0, 2−l′ ) and w(2−lk) : w(2−l) we have

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

∫ 2−l′N

2−l′

w(x)

2−lα
ψl
k(x)ψ

l′
k′(x) dx

∣

∣

∣

∣

≤ c2lα2
l′

2

∣

∣

∣

∣

∫ 2−l′N

2−l′
w(x)ψl

k(x) dx

∣

∣

∣

∣

.

Now apply w(x) ≤ cxα and |ψl
k(x)| ≤ c2

l
2
(1+2β)xβ. The integrals yield the following estimate

∣

∣

∣

∣

∫ 2−l′N

2−l′

w2(x)ψl
k(x)ψ

l′
k′(x)

w(2−lk)w(2−l′k′)
dx

∣

∣

∣

∣

≤ c2
l−l′

2
(1+2α+2β). (A.5)

Inserting (A.4) and (A.5) into (A.3) proves the lemma.

Proof of Lemma 3.7. We note that for l > l′ holds
∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ = 0 k ∈ ∇L
l , k

′ ∈ ∇I
l′ , (A.6)

cf. (3.4). Then, we can conclude

∞
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
=

l′
∑

l=1

∑

k∈∇L
l

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
.

Using Proposition 3.2, we note the second summation
∑

k∈∇L
l
has only O(1) nonzero sum-

mands. We distinguish now the two cases 1 < k′ < 2l
′−l and k′ ≥ 2l

′−l. We start with
1 < k′ < 2l

′−l and obtain by Lemma 3.4

l′
∑

l=1

∑

k

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣ ≤ c
l′

∑

l=1

2−
1
2
(l′−l)(1+2α+2β)(k′)α+β−1.

If α+ β ≥ 1 then (k′)α+β−1 ≤ (2l
′−l)α+β−1. Then, we can conclude

l′
∑

l=1

∑

k

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c

l′
∑

l=1

2
3
2
(l−l′) ≤ c. (A.7)

In the case α+ β < 1 we estimate (k′)α+β−1 ≤ 1 and obtain by the geometric series

l′
∑

l=1

∑

k

∣

∣

∣

(

ψl
k,ψ

l′
k′

)

w

∣

∣

∣
≤ c (A.8)

if 2α+ 2β + 1 > 0. If k′ ≥ 2l
′−l we obtain using Lemma 3.3 the estimate (A.7) directly for all

α,β ∈ .
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