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1. Introduction – static model

The theory of rigid ferromagnetic bodies ([17, 18]) assumes that a magnetization m : ω →
IRn, describes the state of the body ω ⊂ IRn, n = 2, 3. Its value depends on a position x ∈ ω
and has a given and temperature dependent magnitude

|m(x ) | = w(ϑ) for almost all x ∈ ω ,

where w(ϑ) = 0 for temperatures ϑ ≥ ϑ0, the so-called Curie point. From now on we
normalize w(ϑ) and assume that |m | = 1 almost everywhere in ω and that ω is a bounded
Lipschitz domain. In the no-exchange formulation the energy of a large rigid ferromagnetic
body ω ⊂ IRn consists of three parts, and the variational principle governing equilibrium
configurations can be stated as follows (see e.g. [2, 3, 4, 12]):

minimize E(m) =

∫

ω

ϕ(m) dx −
∫

ω

H ·m dx +
1

2

∫

IRn

|∇um |2 dx ,(1.1)

where ϕ : IRn → IR is continuous, m : ω → IRn, |m | = 1 a.e. in ω, H : IRn → IRn is an
applied external magnetic field and um : IRn → IR, a potential of an induced magnetic field.
The first term is an anisotropy energy with a density ϕ which is an even nonnegative function
depending on material properties and exhibiting crystallographic symmetry. Throughout the
paper we suppose that ϕ ≥ 0 on Sn−1 := {A ∈ IRn; |A | = 1}, and it is zero only at the points
(0,±1, 0) if n = 3, or (0,±1) if n = 2. Here and in the sequel |A |2 = 〈A,A〉, where 〈·, ·〉 is
the Euclidean dot product in IRn. This means that ϕ corresponds to a uniaxial material with
the easy axis e ∈ IRn which coincides with the y-axis of our Cartesian coordinate system.
The second term is the interaction energy between m and an external magnetic field H and
the last term is a magnetostatic energy penalizing non–divergence free magnetization vectors
and it is coupled with the magnetization field through the equation

div(−∇um +mχω) = 0 in IRn ,(1.2)

where χω : IRn → {0, 1} is the characteristic function of ω. This equation stems from the
Maxwell equations (omitting constants)

div B = 0 , curl H̃ = 0 ,

where B is the magnetic induction and H̃ the intensity of the magnetic field. By definition,
we have B = H̃ +m and H̃ = −∇um .

We assume standard definitions of Lebesgue and Sobolev spaces as given e.g. in [6]. Let
us define the set of admissible magnetizations

A := {m̃ ∈ L2(ω; IRn); | m̃(x ) | = 1 for almost all x ∈ ω} .

Eventually, we are concerned with

inf
m∈A

E(m) , subject to (1.4).(1.3)

We have for any v ∈ W 1,2(IRn) that
∫

IRn

[−∇um +mχω]∇v dx = 0 .(1.4)
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Thus putting v := um , we obtain
∫

IRn

|∇um |2 dx =

∫

ω

m ·∇um dx .

Hölder’s inequality gives the estimate ‖∇um ‖L2(IRn;IRn) ≤ ‖m ‖L2(ω;IRn).
It follows from the Lax-Milgram lemma that (1.4) has a unique solution um ∈ W 1,2(IRn)

for any m ∈ L2(ω; IRn), and that the mapping m +→ ∇um is linear and weakly continuous.
Hence the magnetostatic energy is sequentially weakly lower semicontinuous.

As A is not convex we cannot rely on direct methods (cf. [6]) in proving the existence of a
solution. In fact, the solution to (1.3) need not exist in A; cf. [12, 19] for the uniaxial case.
Due to nonconvexity of A weak limits of minimizing sequences of E do not necessarily exist
in A.

Therefore, we have to look for a more general notion of solution and to solve the relaxed
problem. Roughly speaking, we look for some functional, say E , attaining its infimum and
satisfying the following conditions

• inf E = min E ,
• minimizers of E are weak limits of minimizing (sub)sequences of E and
• minimizing (sub)sequences of E tend weakly to minimizers of E .

2. Relaxation in terms of Young measures

We need to describe limk→∞E(mk), where {mk}k∈IN ⊂ A is a minimizing sequence of E.
In what follows C(S) stands for the linear space of continuous functions S → IR. There
is a result (see [1, 26, 31]) that for an open bounded set ω ⊂ IRn and from any sequence
{wk}k∈IN of measurable functions ω → S, with S ! IRm a compact set, we can extract a
subsequence (denoted by the same indices) such that there exists a family of probability
measures ν = {νx}x∈ω, where supp νx ⊂ S and

lim
k→∞

v ◦ wk = v •ν weak* in L∞(ω) ,(2.1)

for any continuous function v : IRm → IR. We use the shorthand notation [v •ν](x ) =
∫

S v(A)νx (dA), for almost all x ∈ ω. Conversely, having a family of probability measures
{νx}x∈ω with νx supported on S, x ∈ ω, and with v •ν measurable for any v ∈ C(S), i.e.,
x +→ νx is weakly measurable, then there exists a sequence of functions ω → S such that
(2.1) is fulfilled. A family of parameterized probability measures obtained by this way is
called a Young measure.

Coming back to our problem, we set

Ā =
{

ν = {νx}x∈ω; supp νx ⊂ Sn−1, x +→ νx weakly measurable
}

.(2.2)

It is well-known (see e.g. [8, 23, 25]) that the role of the functional E from above can be
played by the functional Ē, where

Ē(ν,m) :=

∫

ω

∫

Sn−1

ϕ(A)νx (dA) dx −
∫

ω

H ·m dx +
1

2

∫

IRn

|∇um |2 dx .

This functional is minimized over the set Ā × L2(ω; IRn), subject to (1.4) and m(x ) =
∫

Sn−1 Aνx (dA) , for a.a. x ∈ ω .
2



The infimum of Ē is then attained and it is equal to the infimum of E; cf. [23]. Finally,
we can write

Ē(ν,m) = e(ν,m)−
∫

ω

H ·m dx ,(2.3)

where

e(ν,m) =

∫

ω

∫

Sn−1

ϕ(A)νx (dA) dx +
1

2

∫

IRn

|∇um |2 dx .

Relaxation by means of Young measures provides us with averaged macroscopical quanti-
ties such as magnetization vectors (i.e., the first momenta of the Young measure) as well as
with information about a minimizing sequence of E. Namely, the support of νx on the unit
sphere tells us what magnetization vectors from A must be combined in a weakly converg-
ing sequence in order to achieve the observed macroscopical magnetization. This pattern
of the minimizing sequence is called a microstructure and it is fully encoded in the Young
measure; cf. [8] for details. This level of relaxation is usually called mesoscopical as it does
not provide information about processes on an atomic scale but it records more than average
macroscopic quantities.

3. An evolutionary Model

The static model introduced above can describe quasistatic evolution of soft magnetic
materials with sufficient accuracy. As for many uniaxial materials a minimizer of Ē over Ā×
A∗∗ is unique (see [15]), and varying the external magnetic field H just leads to a functional
graph (or a loop with the zero thickness) in a m/H diagram. Therefore minimization of Ē
cannot be used to study hysteresis behavior of hard ferromagnets where the thickness of the
loop is significant.

Recently, a new model describing rate-independent hysteresis losses has been developed in
[16, 29]. For the sake of simplicity we will suppose that we have a uniaxial magnet whose
energy density has only two minima, the north pole and the south pole, laying on the line
through the center of the sphere. In [29] the authors described the mechanism that dissipates
a prescribed amount of energy needed to change magnetization from one pole into the other,
no matter how fast this process is. In fact, there are many contributions to energetic losses
if a ferromagnet is exposed to a switching external magnetic field. Besides hysteresis losses
which are independent of an external field frequency and which we are going to model here
there are also intrinsic damping, disaccommodation and eddy currents. Except for hysteresis
losses all others are rate–dependent. We refer e.g. to [11] for more details. In this sense,
hysteresis losses are considered as a limit for frequencies tending to zero. On the other hand,
for ferromagnets, rate-independence holds with a good approximation in a fairly wide range
of frequencies.

In order to define the evolution t +→ q(t) ≡ ( ν(t),m(·, t) ), where for any time t ∈ [0, T ]

q ∈ Q =
{

( ν(t),m(·, t) ) ∈ Ā× L2(ω; IRn); m(·, t) = id •ν(t)
}

,

we must also postulate the generalized impulse q̇ ≡ ( ν̇, ṁ ) , with the dot indicating the
time derivative. The convex geometry of Q is taken to be induced from the linear space
L1

(

ω;C(Sn−1)
)∗ × L2(ω; IRn). Borrowing from models used in (quasi)plasticity we take a

3
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Figure 1. Frequency dependence of different kinds of energetic losses in a
transformer steel (after [11]).

non-differentiable and degree-1 positively homogeneous dissipative function of the form

R(q̇) ≡ R(ν̇, ṁ) := R̃(ν̇) :=

∫

ω

∣
∣
∣ξ • ν̇

∣
∣
∣ dx .

Time t is the process time, being zero at the beginning of our process. Recall that we
have [ξ • ν̇](x ) :=

∫

Sn−1 ξ(A)ν̇x (dA). On a mesoscopical level, the function ξ : Sn−1 → IR
reflects the dissipation mechanism during pole transformation; the simplest form of ξ is a
linear function. As in [29], we call ξ the pole indicator. Thus one can find that the energy
/north−south needed for pole transformation between the north and the south pole (per unit
volume) equals

/north−south = | ξ(Anorth)− ξ(Asouth) | .
Motivated by plasticity models in metals and shape-memory alloys (see also [21, 22, 27, 28])
we showed that the desired dissipation/hysteretic effects can be achieved by the evolution
t +→ q(t) governed by the following first-order evolution inclusion:

∂R(
dq

dt
) + e′(q) +NQ(q) 0 H ⊗ id , q(0) = q0 ,(3.1)

where ∂R denotes the subdifferential of R which is a set-valued monotone mapping and
NQ(q) is the normal cone to Q at q . The operation “⊗” is defined for any h ∈ L2(ω; IRn)
and any S, a continuous mapping Sn−1 → IRn, by [h ⊗ S](x , A) =

∑n
i=1 hi(x )Si(A). Also,

q0 ≡ ( ν0,m0 ) is the initial configuration; in fact, only the momenta of q0 involved in R are
to be set up which means that one must set up the initial volume fraction of both (i.e., one)
poles.

The following regularization of e, eζ , ζ > 0, has been considered in [29]

eζ(ν,m) = e(ν,m) +
ζ

2
‖Dγ(ξ •ν) ‖2L2(ω;IRn) ,(3.2)

where Dγ denotes the fractional derivative, γ ∈ (0, 0.5).
4



For the sake of simplicity, we will put ζ = 0 in the sequel, but at the end we comment on
the extension of our results also to the case ζ > 0.

4. Approximation of weak solutions

We will approximate a solution to (3.1) by the implicit Euler formula in time (with a time
step τ) and for 1 ≤ k ≤ T/τ ∈ IN

∂R

(
qk
τ − qk−1

τ

τ

)

+ e(qk
τ ) +NQ(q

k
τ ) 0 H k

τ ⊗ id .(4.1)

where

qk
τ = ( νk

τ ,m
k
τ ) , ν0

τ = ν0 ,m0
τ = id •ν0

τ , mk
τ := id •νk

τ , H k
τ (x ) :=

1

τ

∫ kτ

(k−1)τ

H (t, x ) dt .

It is shown in [29] that an approximate solution to (4.1) can be obtained as a solution to
the following minimization problem







minimize e(ν,m) +

∫

ω

τ

∣
∣
∣
∣
ξ •

ν − νk−1
τ

τ

∣
∣
∣
∣
−
∫

ω

H k
τ ·m dx ,

subject to (1.4) , ν∈Ā , m = id •ν ∈ L2(ω; IRn) ,
(4.2)

whose solution, denoted by ( νk
τ ,m

k
τ ), exists by a direct method argument. We refer to [13]

for an effective numerical solution to (4.2).

In what follows we specialize ourselves to the case where ξ : Sn−1 → IR can be affinely
extended to the ball {A ∈ IRn; |A| ≤ 1}. Then, if µ is a probability measure on Sn−1 we
have

∫

Sn−1 ξ(A)µ(dA) = ξ(
∫

Sn−1 Aµ(dA)).
In particular, the dissipative term in (4.2) can be written as

∫

ω

τ

∣
∣
∣
∣
ξ •

ν − νk−1
τ

τ

∣
∣
∣
∣
dx =

∫

ω

∣
∣
∣
∣

∫

Sn−1

ξ(A)νx (dA)−
∫

Sn−1

ξ(A)νk−1
τ,x (dA)

∣
∣
∣
∣
dx

=

∫

ω

∣
∣
∣
∣
ξ

(∫

Sn−1

Aνx (dA)

)

− ξ

(∫

Sn−1

Aνk−1
τ,x (dA)

)∣
∣
∣
∣
dx

=

∫

ω

∣
∣ξ(m)− ξ(mk−1

τ )
∣
∣ dx ,

where we use the fact that m(x ) =
∫

Sn−1 Aνx (dA), for almost all x ∈ ω and, similarly,
mk−1

τ (x ) =
∫

Sn−1 Aνk−1
τ,x (dA), for almost all x ∈ ω.

Therefore, (4.2) can now be written as






minimize e(ν,m) +

∫

ω

∣
∣ξ(m)− ξ(mk−1

τ )
∣
∣ dx −

∫

ω

H k
τ ·m dx ,

subject to (1.4) , ν∈Ā , m = id •ν ∈ L2(ω; IRn).
(4.3)

Assuming that m = id •ν, we denote

Ēk
τ (ν) := e(ν,m) +

∫

ω

∣
∣ξ(m)− ξ(mk−1

τ )
∣
∣ dx −

∫

ω

H k
τ ·m dx ,(4.4)
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and we get

Ēk
τ (ν) =

∫

ω

∫

Sn−1

ϕ(A)νx (dA) dx +
1

2

∫

IRn

|∇um |2 dx −
∫

ω

H k
τ ·m dx(4.5)

+

∫

ω

| ξ(m)− ξ(mk−1
τ ) | dx .

Defining still

(4.6) ϕ̂(m) =

{

ϕ(m) if |m | = 1 ,
+∞ otherwise ,

and the convex envelope of ϕ̂

ϕ∗∗ = sup
{

f : IRn → IR convex; f ≤ ϕ̂
}

,

we can set the following functional
(

E∗∗
τ

)k
(m) =

∫

ω

ϕ∗∗(m) dx +
1

2

∫

IRn

|∇um |2 dx −
∫

ω

H k
τ ·m dx(4.7)

+

∫

ω

∣
∣ξ(m)− ξ(mk−1

τ )
∣
∣ dx ,

and

A∗∗ =
{

m ∈ L2(ω; IRn); |m(x ) | ≤ 1 for a.a. x ∈ ω
}

.(4.8)

We have the following proposition.

Proposition 4.1. There exists m̂ ∈ A∗∗ such that
(

E∗∗
τ

)k
(m̂) = minm∈A∗∗

(

E∗∗
τ

)k
(m).

Proof. The functional
(

E∗∗
τ

)k
is convex and continuous w.r.t. the strong topology of L2(ω, IRn)

and therefore weakly lower semicontinuous. Moreover, A∗∗ is weakly closed. The assertion
therefore follows by the direct method. "

Proposition 4.2. If ϕ is a nonnegative continuous function on Sn−1, we haveminν∈Ā Ēk
τ (ν) =

minm∈A∗∗

(

E∗∗
τ

)k
(m).

Proof. Let ν ∈ Ā and take m ∈ A∗∗ such that m = id •ν. Then we have by Jensen inequality
∫

ω

∫

Sn−1

ϕ(A)νx (dA) dx ≥
∫

ω

ϕ∗∗(m) dx ,

and the other terms of
(

E∗∗
τ

)k
and Ēk

τ are the same. Thus Ek
τ (ν) ≥

(

E∗∗
τ

)k
(m). Therefore

for a given ν ∈ Ā we always find m ∈ A∗∗ such that Ek
τ (ν) ≥

(

E∗∗
τ

)k
(m). Consequently,

minν∈Ā Ēk
τ (ν) ≥ minm∈A∗∗

(

E∗∗
τ

)k
(m).

Conversely, if m ∈ A∗∗ by the definition of ϕ∗∗ we can always find ν ∈ Ā (see [23, p. 93]
such that

ϕ∗∗
(

m(x )
)

=

∫

Sn−1

ϕ(A)νx (dA)(4.9)

and

m(x ) =

∫

Sn−1

Aνx (dA) .

6



Therefore, for a given m ∈ A∗∗ we always find ν ∈ Ā such that Ēk
τ (ν) =

(

E∗∗
τ

)k
(m).

Consequently, minν∈Ā Ēk
τ (ν) ≤ minm∈A∗∗

(

E∗∗
τ

)k
(m). The proposition is proved. "

The problems of minimizing Ēk
τ and

(

E∗∗
τ

)k
are equivalent in the following sense.

Corollary 4.1. Let ϕ be continuous and nonnegative. If ν ∈ Ā is a minimizer of Ēk
τ , its

first moment, m = id •ν, is a minimizer of
(

E∗∗
τ

)k
and (4.9) holds for almost all x ∈ ω.

Conversely, if m ∈ A∗∗ minimizes
(

E∗∗
τ

)k
and ν ∈ Ā is such that (4.9) holds for almost all

x ∈ ω, then ν minimizes Ēk
τ .

Proof. Suppose that ν ∈ Ā is a minimizer of Ēk
τ with the first moment m and suppose that

∫

ω

∫

Sn−1

ϕ(A)νx (dA) dx >

∫

ω

ϕ∗∗
(

m(x )
)

dx .

Then minµ∈Ā Ēk
τ (µ) = Ek

τ (ν) >
(

E∗∗
τ

)k
(m), which contradicts Proposition 4.2. Hence,

∫

ω

(∫

Sn−1

ϕ(A)νx (dA)− ϕ∗∗(m(x ))

)

dx ≤ 0 .(4.10)

But since
∫

Sn−1 ϕ(A)νx (dA)− ϕ∗∗
(

m(x )
)

≥ 0 for a.a. x ∈ ω, we have equality in (4.10), m
is a minimizer of E∗∗ k

τ , and (4.9) holds for a.a. x ∈ ω.
If m ∈ A∗∗ minimizes E∗∗ k

τ , m = id •ν and (4.9) holds then for a.a. x ∈ ω; we have
(

E∗∗
τ

)k
(m) = Ēk

τ (ν) and therefore ν minimizes Ēk
τ . "

We set the following problem for k = 1, . . . , T/τ and an initial condition m0
τ ∈ A∗∗:

(4.11)

{

minimize
(

E∗∗
τ

)k
(m), m ∈ A∗∗,

subject to (1.4).

Defining for any m ∈ A∗∗ and ξ affine the Helmholtz (or “stored”) energy by

e∗∗(m) =

∫

ω

ϕ∗∗(m) dx +
1

2

∫

IRn

|∇um |2 dx

and the dissipation

R∗∗(ṁ) :=

∫

ω

|ξ(ṁ)|dx ,

where ṁ = ∂m/∂t we see that (3.1) can be rewritten as

∂R∗∗(
∂m

∂t
) + (e∗∗)′(m) +NÂ(m) 0 H , m(0) = m0 ,(4.12)

where NÂ(m) denotes the normal cone to Â := {m(·, t) ∈ A∗∗} at m. The advantage of
(4.12) over (3.1) is that the evolutionary problem is formulated in physical quantities, i.e., in
the macroscopic magnetization rather than in Young measures which are just a mathematical
tool to handle the problem. Of course, if one does not know the convex envelope ϕ∗∗ explicitly,
then the obvious program is to employ Young measures and to use (3.1) for the numerical

7



treatment. Analogously as in [29] we get the formal energy balance per the process time
[0, T ]

∫ T

0

∂R∗∗(ṁ(t)) · ṁ(t) dt
︸ ︷︷ ︸

dissipated energy

+ e∗∗(m(T ))− e∗∗(m(0))
︸ ︷︷ ︸

gain of Helmholtz’s energy

=

∫ T

0

H(t) · ṁ(t) dt
︸ ︷︷ ︸

work of external field

.

Suppose now, that n = 2 and that ϕ(A1, A2) = c 〈A, e⊥〉2, c > 0. Then it is well-known
(see [8]) that ϕ∗∗(A1, A2) = c 〈A, e⊥〉2, |A| ≤ 1.

Proposition 4.3. Let ϕ∗∗(A) = c 〈A, e⊥〉2, c > 0, |A| ≤ 1 and let n = 2. Then the problem

minm∈A∗∗

(

E∗∗
τ

)k
has a unique solution for any k ≥ 1.

Proof. We will proceed by induction. In what follows, we suppose that m0
τ ∈ A∗∗ is given.

Suppose that mk−1
τ ∈ A∗∗, is given uniquely.

Let m, m̂ ∈ A∗∗ be two different minimizers to
(

E∗∗
τ

)k
. Then ∇um = ∇um̂ a.e. in IR2.

Indeed, if they were different, by convexity of
(

E∗∗
τ

)k
, strict convexity of the demagnetizing

field energy, i.e. of ‖ · ‖2
L2(IR2;IR2)

, and linearity of the map A∗∗ → L2(IR2, IR2) : m +→ ∇um ,

we could construct a magnetization θm + (1 − θ)m̂ ∈ A∗∗, 0 < θ < 1 which gives a strictly
lower energy than m and m̂. Similarly, since ϕ∗∗ is strictly convex in the first variable we get
that m1 = m̂1, a.e. in ω. Put δ := m−m̂. Then δ ·(1, 0) = 0 a.e. in ω, div δ = 0 a.e. in ω, and
uδ = 0 a.e. in ω. So, we are exactly at the same situation as in the proof of [5, Th. 2.1]. We
will follow its reasoning. We extend δ to the whole IR2 by zero and as the normal components
of δ at ∂ω are continuous we see (cf. [10, Th. 3.1, p. 37]) that δ ∈ {v ∈ L2(ω; IR2); div v = 0},
and therefore δ = (∂η/∂x2,−∂η/∂x1) for some stream function η ∈ W 1,2(ω). Moreover, as
δ = 0 outside ω, η is constant there. Further, as δ · (1, 0) = 0 we see that ∇η is parallel to
(1, 0) and, hence, η depends only on x1. Finally, we see that η must be constant on ω and
thus δ = 0. The proposition is proved. "

Corollary 4.2. If n = 2, ϕ(A) = c 〈A, e⊥〉2, c > 0, |A| = 1 and ξ is affine on the unit ball
in IR2 the hysteresis loop coming from the solution to (4.11) for k ≥ 0 is given uniquely.
Consequently, the energy dissipated during the process is given uniquely in almost all material
points x ∈ ω.

Proof. This is obvious, since the hysteresis loop is a plot of H k
τ applied in some direction v

vs. |ω |−1
∫

ω m dx · v, where m solves (4.2), k ≥ 0. "

In order to show uniqueness of the Young measure solution to (4.2) we see from Corol-
lary 4.1 that we must find a Young measure ν such that (4.9) holds. So, let m ∈ A∗∗

minimize
(

E∗∗
τ

)k
. It has been shown in [8] that such a measure is unique and always at most

two-atomic, i.e., νx = θ(x )δA(x) + (1 − θ(x ))δB(x), where A,B ∈ Sn−1, and for almost all
x ∈ ω

A(x ) = (1−m1(x )
2)1/2(0, 1) +m1(x )(1, 0) ,

B(x ) = −(1−m1(x )
2)1/2(0, 1) +m1(x )(1, 0) ,
8



where θ(x ) = 1 if m(x ) = (1, 0), or

θ(x ) =
1

2
+

m2(x )

2(1−m1(x )2)1/2
otherwise .

Combining the uniqueness of the Young measure with Proposition 4.3 and Corollary 4.2 we
have the following result.

Proposition 4.4. If n = 2, ϕ(A) = c 〈A, e⊥〉2, c > 0, |A| = 1 and ξ is affine on the unit
ball in IR2, then (4.2) has a unique solution.

Since we would like to derive Euler–Lagrange equations of
(

E∗∗
τ

)k
, we have to regularize

the dissipative term. Thus instead of |ξ(m)− ξ(mk−1
τ )|, we use

√

(ξ(m)− ξ(mk−1
τ ))2 + ε, ε > 0 .

Therefore we set
(

E∗∗
τ,ε

)k
(m) =

∫

ω

ϕ∗∗(m) dx +
1

2

∫

IRn

|∇um |2 dx −
∫

ω

H k
τ ·m dx

+

∫

ω

√

(ξ(m)− ξ(mk−1
τ ))2 + ε dx ,

and consider for every k ≥ 1 and a given m0
τ ∈ A∗∗,

(4.13)

{

minimize
(

E∗∗
τ,ε

)k
(m), m ∈ A∗∗,

subject to (1.4).

We take ξ(m) = Hc(m · e), where Hc is the so-called coercive force. In general it is a
rate-dependent material parameter and its value is related to the thickness of the hysteresis
loop. In our setting, Hc denotes the limit of coercive forces along frequencies going to zero.
Our choice of ξ is in accordance with the experimental observation that the thickness of the
hysteresis loop vanishes if we magnetize the specimen in a direction perpendicular to the
easy axis e. Existence and uniqueness of a solution to (4.13) can be proven in the identical

way as it was done for ε = 0. Note that
(

E∗∗
τ,ε

)k
is even strictly convex and therefore the

uniqueness of a solution easily follows. We see that for given k ≥ 0, (4.13) is equivalent to

(4.14)







∇u+Dϕ∗∗(m) +
ξ(m)− ξ(mk−1

τ )
√

(ξ(m)− ξ(mk−1
τ ))2 + ε

Dξ(m) + λm = H k
τ , a.e. in ω ,

subject to (1.4) ,m ∈ A∗∗ ,λ(1− |m |)+ = 0 a.e. in ω ,

almost everywhere in ω. Above, “D” denotes the gradient operator with respect tom. Model
(4.14) is very similar to the one introduced by Visintin in [30].

5. Numerical Realization and Scientific Computation

In order to solve numerically (4.14), we follow the approach by [5, 24] and limit far field
effects of the demagnetizing field by assuming that u = 0 outside a domain IR2 ⊃ Ω # ω, cf.
Figure 2.
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" u=0
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u=0

Figure 2. Geometry of the domains Ω and ω and the boundary conditions.

Given m0 ∈ A∗∗, we need to solve1 for every k ≥ 1

(5.1)











∇u+Dϕ∗∗(m) +
ξ(m)− ξ(mk−1)

√

(ξ(m)− ξ(mk−1))2 + ε
Dξ(mk) + λm = H k, a.e. in ω ,

subject to
∫

Ω ∇u ·∇w dx =
∫

ω m ·∇w dx ∀w ∈ W 1,2
0 (Ω),

m ∈ A∗∗ ,λ(1− |m |)+ = 0 a.e. in ω ,

for almost every x ∈ ω.
The domain Ω is discretized by means of a regular triangular mesh Th with h > 0 being

the diameter of triangular elements K ∈ Th.
We also denote H k

h

∣
∣
K
:= |K |−1

∫

K H k dx , for every K ∈ Th. Moreover, we use the following
notation for the formulation of the problem:

L0(Th

∣
∣
ω
) =

{

vh ∈ L∞(ω) : ∀K ∈ Th
∣
∣
ω
, vh

∣
∣
K

constant
}

,

S1,NC(Th) =
{

vh ∈ L∞(Ω) : vh
∣
∣
K

affine, vh(z) continuous ∀ z ∈ Mh

}

,

S1,NC
0 (Th) =

{

vh ∈ S1,NC(Th) : vh(z) = 0 ∀ z ∈ Mh ∩ ∂ω
}

.

The latter two are assembled from Crouzeix-Raviart type finite elements, which are contin-
uous along midpoints of edges Γ ⊂ ∂K, for all K ∈ Th. The set of all these midpoints is
denoted by Mh.

We denote

A∗∗
h = A∗∗ ∩ L0(Th

∣
∣
ω
) .

For every k ≥ 1, and given m0
h ∈ L0(T

∣
∣
ω
)2, a penalized finite element version then reads

for a given triangulation Th of Ω: Find ( uh,mh,λh ) ∈ S1,NC
0 (Th)×L0(Th

∣
∣
ω
)2×L0(Th

∣
∣
Ω
) that

satisfies













∇huh +Dϕ∗∗(mh) +
ξ(mh)− ξ(mk−1

h )
√

(ξ(mh)− ξ(mk−1
h ))2 + ε

Dξ(mh) + λhmh = H k
h , a.e. in ω ,

subject to
∫

Ω ∇huh ·∇wh dx =
∫

ω mh ·∇wh dx ∀wh ∈ S1,NC
0 (Th) ,

λh = 1
δ
(|mh |−1)+

|mh | , δ > 0 a.e. in ω.

(5.2)

1In the sequel, we drop the index τ to ease notation.
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Definition 5.1. A solution {mk
h}

T/τ
k=1 to minA∗∗

h

(

E∗∗
τ

)k
, k = 1, . . . , T/τ with an initial con-

dition m0
h is called periodic if mT/τ

h = m0
h.

Proposition 5.1. There exists a periodic solution to minA∗∗

h

(

E∗∗
τ

)k
, k = 1, . . . , T/τ .

Proof. Let m0
h ∈ A∗∗

h be an initial condition and let limj→∞m0
h,j = m0

h in L2(ω; IR2) for some
{m0

h,j}j∈IN ⊂ A∗∗
h . Denote further

F(m0
h;m) :=

∫

ω

ϕ∗∗(m) dx +
1

2

∫

IRn

|∇um |2 dx −
∫

ω

H k
h ·m dx(5.3)

+

∫

ω

∣
∣ξ(m)− ξ(m0

h)
∣
∣ dx .

Then limj→∞F(m0
h,j; ·) = F(m0

h; ·) uniformly. By Proposition 4.3, F(m0
τ ; ·) has a unique

minimizer; we get by [7, Cor. 7.24] that minimizers of F(m0
h,j; ·) converge to a minimizer of

F(m0
h; ·) in L2(ω; IR2) as j → ∞. This shows that a mapping M1 : A∗∗

h → A∗∗
h such that

M1(m0
h) := m1

h is continuous. Repeating the argument we finally see that there exists a
continuous mapping Mk : A∗∗

h → A∗∗
h such that Mk(m0

h) := mk
h . As A∗∗

h 6= ∅ is convex and
compact in IRN for N = 2∗(number of elements) we have by Brouwer’s fixed point theorem
that Mk has a fixed point in A∗∗

h and the proposition follows . "

Remark 5.1. The existence of periodic solutions to (4.13) can be proved exactly the same
way.

We now turn to (5.2), where the constraint |mk
h(x) | ≤ 1 is enforced by penalization;

this problem has been studied numerically in [5] for the case where the term leaded by

sgnε
(

ξ(mh) − ξ(mk−1
h )

)

:=
ξ(mh)−ξ(mk−1

h
)√

(ξ(mk
h
)−ξ(mk−1

h
))2+ε

is absent; it has been shown that δ = O(h)

gives an optimal scaling in this problem for a quasiuniform mesh Th. Besides uniqueness of
related solutions (uh,mh,λh ), convergence is shown

‖∇h(u− uh) ‖L2(Ω,IR2) + ‖Dϕ∗∗(m)−Dϕ∗∗(mh) ‖L2(Ω,IR2) + ‖ λm − λhmh ‖L2(ω,IR2) ≤ c h ,

provided that (u,m,λ ) ∈ W 2,2(Ω) × W 1,2(ω, IR2) × W 1,2(ω). Note that we are not pro-
vided with any convergence result in direction of the easy axis e ∈ IR2 due to degeneracy of
the problem, which prevents any information regarding convergence mh → m in L2(ω, IR2);
however, computational experiments in [24] indicate strong convergence of computed mag-
netizations at optimal rate even in direction of e ∈ IR2.

Uniqueness of solutions to (5.2) can again be verified as in Proposition 4.3 by an inductive-
type argument, exploiting discrete Helmholtz decomposition for the used finite element pair-
ing as in [5] or by using the strict convexity argument. A convergence analysis for (5.2)
requires mk

h → mk in L2(ω, IR2) to control contributions ξ(mk
h) → ξ(mk) in L2(ω).

On the other hand, our computational experiments indicate stability and convergence of
discretization (5.2) also in the present case of nonstationary relaxed micromagnetics for cases
where ε > 0 is sufficiently large with respect to (h, k ); cf. Figure 4.
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Remark 5.2. Convergence mh → m in L2(ω, IR2) in the stationary case can be verified
for a finite element approach that employs additional stabilizing terms; cf. [24]. For the
present situation, a corresponding stabilizing finite element formulation leads to the fol-
lowing modifications of (5.2): firstly, nonconforming functions from S1,NC

0 (Th) are replaced
by (W 1,2

0 (Ω)-)conforming functions wh ∈ S1
0 (Th), where S1(Th

∣
∣
ω
) = S1,NC(Th

∣
∣
ω
) ∩ C(ω)

(resp. S1
0 (Th) = S1,NC(Th) ∩ C0(Ω)). Secondly, the first line in (5.2) is replaced by the

following one for mh ∈ S1(Th

∣
∣
ω
), and every χh ∈ S1(Th

∣
∣
ω
),

δ0
∑

Γ

∫

Γ

〈

[∂nmh], [∂nχh]
〉

dx + δ1 (∇mh,∇χh) + (∇uh,χh) +
(

Dϕ∗∗(mh),χh

)

+
(

sgnε

(

ξ(mh)− ξ(mk−1
h )

)

Dξ(mh),χh

)

+ (λhmh,χh) = (H k
h ,χh) ,(5.4)

λh =
1

δ2

(|mh | − 1)+
|mh |

, ∂nmh

∣
∣
∂ω
= 0 .

Throughout this numerical realization, unphysical homogeneous Neumann boundary con-
ditions for the computed magnetization are required. An optimal scaling δi = O(h1+i/2),
i = 0, 1, 2 was found in [24].

Computational hysteresis studies were performed for ω = (0.25, 0.75)2, Ω = (0, 1)2, with
e = (0, 1), and H k = 100 ∗ sin(5 · 10−3πk), for 1 ≤ k ≤ 600, Hc = 1 and T = 1; the results
are reported in Figures 3 and 4. Figures 4 evidence the effect of ‘asymptotic’ penalization of
the side constraint |mk | = 1 (in (a)), and instability for small choices of ε > 0 (which leads
up to failure of convergence for too small choices; cf. (b)).
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Figure 3. Plot of magnetization mk
h close to first switching time at six sub-

sequent time steps (h = 1
32), (ε = 10−3; color bars in the last row are scaled

by 0.1)
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Figure 4. Hysteresis loops: applied field H k
h vs. (averaged) magnetization

|ω |−1
∫

ω m
k
h ·e dx . (a) Usage of different h = 1

16 ,
1
32 (ε = 10−3). (b) Instabilities

visible as bubbles at saturation state for too small ε = 10−4 (h = 1
16).
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[26] T. Roub́ıček, Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin,

1997.
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