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1 Introduction

Since the seminal paper [8], the pricing of options by means of partial differential equations has
become standard practice in quantitative finance, either by means of explicit solution formulas
for the heat equation (e.g. [24, 26, 22]) in the case of European vanillas or by numerical
methods in the case of American or Barrier options.
In recent years, awareness of the shortcomings of the Black-Scholes model has increased and
more general models for the stochastic dynamics of the risky asset have been proposed: we
mention only stochastic volatility models and ‘stochastic clocks’. The latter lead to price
processes with a jump component: the Wiener process from the Black-Scholes model is replaced
by a Lévy process (see e.g. [32, 29, 4, 18, 28, 11, 15, 9, 10, 38, 40, 39] and the references there
and [7, 41] for fundamentals on Lévy processes).
Abandoning the Wiener process as price process renders the market in the model incomplete
and the martingale measure in the pricing problem non-unique. After selection of an equivalent
martingale measure Q the asset pricing problem becomes once again the problem of solving a
deterministic equation. This equation is a parabolic integro-differential equation (PIDE) with
non-integrable kernel if the jump activity of the Lévy process is infinite.
In case of European vanillas and in logarithmic price, this equation is posed on the whole
real line. The justification, numerical analysis and rigorous derivation of efficient solution
algorithms for this PIDE is the purpose of the present paper. Its outline is as follows: after brief
recapitulation of the Black-Scholes model of asset pricing, and in particular of the functional
setting which accommodates exponentially growing pay-off functions we turn in Section 3 to
the PIDE for pricing options on Lévy driven assets. We establish its well-posedness in spaces
of possibly exponentially growing solutions and give a suitable variational formulation.
Section 4 is devoted to the truncation of the PIDE to a bounded domain – an essential step
for numerical simulation as well as for modeling certain types of contracts. Due to the jump
part of the Lévy process, this localization cannot be effected by simple restriction to the
bounded domain plus suitable local boundary conditions, but must take into account the pay-
off beyond the computational domain. We show how to do this so that the localization error
decays exponentially with the size of the truncation domain; contrary to earlier work in the
Black-Scholes case [23] the proof does not use the maximum principle, but rather a-priori
estimates in exponentially weighted spaces.
Section 5 is devoted to our solution algorithm – the θ-scheme for time-stepping and a wavelet-
Galerkin discretization of the integro-differential operator. We show that the solution algorithm
has the same asymptotic complexity as the Finite Element Method (FEM) for the Black-Scholes
equation. Finally, we present numerical examples of Lévy pricing – European vanillas under
Variance Gamma and CGMY-processes with finite and infinite activity can be handled by our
approach in a unified fashion.

Let us briefly comment on how our approach compares with Fourier techniques [11, 12]. These
methods require the characteristic function of the process and allow, via Fast Fourier Transform
(FFT), the efficient evaluation of the jump operator. Unlike the Fourier Transform, wavelets
are well localized also in price space which allows to treat barrier and American contracts;
moreover, wavelets allow to compress finite intensity jump operators to sublinear complexity.
The wavelet approach requires the distributional kernel of the infinitesimal generator of the
Lévy process, i.e., the inverse Fourier transform of the characteristic function. It allows to
handle barrier, touch-and-out or no-touch type contracts deterministically, i.e. without Monte-
Carlo techniques. It also allows to price American puts on Lévy driven underlyings [31] and,
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more importantly, also accommodates more general infinite activity Markovian processes for
the log-returns of the risky assets where the jump-measures are not translation invariant. The
present results have been announced in [30].

Acknowledgement. We thank Freddy Delbaen and Thorsten Rheinländer for many helpful
discussions on Lévy processes, to Dilip Madan for pointing out [28, 11] to us and to Ali Hirsa
for stimulating discussions and for providing a MATLAB implementation of the closed form
solution for European VG.

2 Pricing European vanillas in the Black-Scholes setting

Our option pricing algorithm will be developed in a variational framework. We present the
necessary function spaces first for a Black-Scholes market [8], following [26].

Classical option pricing theory of Black and Scholes relies on the fact that the pay-off
of every contingent claim can be duplicated by a portfolio consisting of investments in the
underlying stock and in a bond paying a riskless rate of interest. The model of Black and
Scholes consists of one risky asset, a share with spot price St at time t and a riskless asset with
spot S0

t at time t satisfying the following ordinary differential equation

dS0
t = rS0

t dt,

with r > 0 being the riskless interest rate. The price of the risky asset is modelled by the
following stochastic differential equation

dSt = St(µdt+ σdBt),

with µ,σ being constants and Bt the standard Brownian motion built on a probability space
(Ω,F , P ). We denote by (Ft)t its natural filtration. It is well-known, see e.g. [26], that there
exists a unique probability measure Q under which the discounted stock price S̃t := e−rtSt is
a martingale and any option defined by a non-negative, FT -measurable random variable g is
replicable and the value at time t < T of any replicating portfolio is given by

f(t, St) = EQ[e
−r(T−t)g(ST )|Ft].

2.1 Black-Scholes equation

To present the Black-Scholes (BS) equation and its variational formulation, we focus exemplar-
ily on European call options with pay-off (S −K)+ := max{S −K, 0} but emphasize that our
framework accommodates pay-off functions in L2

loc(R+) with polynomial growth as |S| → ∞.
The price f(t, St) has to satisfy the BS equation

∂f

∂t
+

σ2

2
S2 ∂

2f

∂S2
+ rS

∂f

∂S
− rf = 0 in (0, T )× (0,∞) (2.1)

together with the terminal condition at maturity

f(T, S) = (S −K)+. (2.2)

The BS equation (2.1) degenerates at S = 0. To remove the degeneracy, we change to loga-
rithmic return price x = log(S) and write the BS equation (2.1)–(2.2) for u(t, x) := f(t, ex)

∂u

∂t
+

σ2

2

∂2u

∂x2
+

(
r − σ2

2

)
∂u

∂x
− ru = 0 in (0, T )× R

u(T, x) = h(x) := (ex −K)+.

(2.3)
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In the time to maturity τ = T − t, (2.3) for w(τ, x) = u(T − τ, x) reads:

∂w

∂τ
− σ2

2

∂2w

∂x2
−
(
r − σ2

2

)
∂w

∂x
+ rw = 0 in (0, T ) × R

w(0, x) = h(x).

(2.4)

2.2 Variational formulation

We derive the variational formulation to (2.4). We observe that the pay-off function h in (2.3),
(2.4) does not belong to L2(R). Moreover, since we switched to logarithmic price, the payoff
grows exponentially at infinity, therefore we cannot use standard Sobolev spaces as function
spaces for this problem. We introduce weighted Sobolev spaces to account for the exponential
growth of solutions at infinity, following [22].
For ν ∈ R we define the weighted Sobolev space H1

ν (R) by

H1
ν (R) := {v ∈ L1

loc(R) | veν|x|, v′eν|x| ∈ L2(R)}.

Similarly, L2
ν(R) := {v ∈ L1

loc(R) | veν|x| ∈ L2(R)}. With this notation, the pay-off function h
in (2.4) belongs to H1

−µ(R) for any µ > 1.
In order to cast (2.4) in a variational form we consider a test function v ∈ C∞

0 (R) and we
multiply (2.4) by ve−2ν|x|, with ν ∈ R arbitrary, fixed. By integration by parts over R we
obtain

d

dτ

∫

R

w(τ, x)v(x)e−2ν|x| dx−
(
r − σ2

2

)∫

R

∂w

∂x
(τ, x)v(x)e−2ν|x| dx

+
σ2

2

∫

R

{
∂w

∂x
(τ, x)

∂v

∂x
(x)e−2ν|x| − 2νsign(x)

∂w

∂x
(τ, x)v(x)e−2ν|x|

}
dx

+

∫

R

rw(τ, x)v(x)e−2ν|x| dx = 0.

We define the bilinear form a−ν(·, ·) : H1
−ν(R)×H1

−ν(R) → R by

a−ν(v1, v2) :=
σ2

2

∫

R

v′1(x)v
′
2(x)e

−2ν|x| dx+

∫

R

rv1(x)v2(x)e
−2ν|x| dx

−
∫

R

(
νσ2sign(x) +

(
r − σ2

2

))
v′1(x)v2(x)e

−2ν|x| dx.
(2.5)

With µ > 1 the variational formulation to (2.4) reads:
Given h ∈ H1

−µ(R), find w ∈ L2(0, T ;H1
−µ(R)) ∩H1(0, T ; (H1

−µ(R))
∗) such that

d

dτ
(w(τ, ·), v)L2

−µ(R)
+ a−µ(w(τ, ·), v(·)) = 0 ∀ v ∈ H1

−µ(R)

w(0, x) = h(x).
(2.6)

To prove existence and uniqueness for the solution of (2.6), we analyze the properties of the
bilinear form a−ν(·, ·) with respect to the weighted Sobolev spacesH1

−ν(R) for arbitrary ν ∈ R.

Proposition 2.1 Let ν ∈ R be arbitrary, fixed.
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1. The bilinear form a−ν(·, ·) : H1
−ν(R) × H1

−ν(R) → R is continuous, i.e., there exists a
constant M > 0 such that

|a−ν(u, v)| ≤ M‖u‖H1
−ν (R)

‖v‖H1
−ν (R)

∀u, v ∈ H1
−ν(R).

2. There exists λ0 > 0 depending on ν such that for all λ > λ0 the new bilinear form
a−ν(·, ·) + λ(·, ·)L2

−ν (R)
is coercive, i.e., there exists α > 0 such that for all λ > λ0 it

holds: a−ν(u, u) + λ‖u‖2
L2
−ν (R)

≥ α‖u‖2
H1

−ν (R)
∀u ∈ H1

−ν(R).

Proof. Take v1 = v2 = u in the definition (2.5) of the bilinear form a−ν(·, ·). Then, there exist
some constants γ > 0, β ≥ 0 such that for all u ∈ H1

−ν(R) it holds

a−ν(u, u) =
σ2

2
‖u′e−ν|x|‖2L2(R) −

∫

R

(
νsign(x)σ2 + r − σ2

2

)
u′(x)u(x)e−2ν|x| dx+ r‖ue−ν|x|‖2L2(R)

≥ γ‖u′e−ν|x|‖2L2(R) − β‖ue−ν|x|‖2L2(R).

Choosing now λ0 > β we obtain 2. The assertion 1. follows from the Cauchy-Schwarz inequal-
ity.

Remark 2.2 Without loss of generality we assume from now on that a−ν(·, ·) is coercive with
coercivity constant α > 0. Indeed, by the transformation v(τ, x) = e−λτw(τ, x) the problem
for v reads

∂v

∂τ
− σ2

2

∂2v

∂x2
+

(
σ2

2
− r

)
∂v

∂x
+ (r + λ)v = 0 ∈ (0, T ) × R

v(0, x) = h(x)

(2.7)

and the corresponding bilinear form a−ν(·, ·) + λ(·, ·)L2
−ν (R)

is by Proposition 2.1 2. for all

λ > λ0 coercive.

2.3 Functional setting

2.3.1 Abstract parabolic problems

We give an abstract functional setting for the existence and continuous dependence of weak
solutions of parabolic problems which will be used for (2.3) but also later for Lévy processes.
It is based on the following Gelfand triple:

V ↪→ H ∼= H∗ ↪→ V ∗ (2.8)

where V and H are separable Hilbert spaces and ↪→ means dense, but possibly non-compact
embedding. We assume A ∈ L(V, V ∗) to be an elliptic ‘spatial differential’ operator given in
the weak form

〈Au, v〉V ∗×V = a(u, v), ∀u, v ∈ V (2.9)

where the bilinear form a(·, ·) : V × V → R is continuous and satisfies a G̊arding inequality:
there are constants Ci > 0 such that

∀ u ∈ V, v ∈ V : |a(u, v)| ≤ C0‖u‖V ‖v‖V (2.10)

∀u ∈ V : a(u, u) ≥ C1‖u‖2V − C2‖u‖2H . (2.11)

4



In the triple (2.8) we consider the abstract parabolic problem

u′(t) +Au(t) = f in V ∗, t ∈ (0, T ), u(0) = u0 ∈ H. (2.12)

Without loss of generality we may assume that C2 = 0 in (2.11), since by the substitution

w = e−C2tu (2.13)

we obtain that w solves

w′(t) +Aw(t) + C2w(t) = e−C2tf in V ∗, t ∈ (0, T )
w(0) = u0 in H

(2.14)

and A+C2I is by (2.11) positive.
In our treatment of Lévy processes we need a general parabolic existence result in the triple
(2.8).

Theorem 2.3 Assume (2.8), A ∈ L(V, V ∗) and that the bilinear form a(·, ·) in (2.9) satisfies
(2.11) with C2 = 0. Then

1. A ∈L (V, V ∗) is an isomorphism.

2. −A is the infinitesimal generator of a bounded analytic C0-semi-group E(t) in V ∗.

3. For u0 ∈ H and f ∈ L2(0, T ;V ∗), the evolution problem (2.14) has a unique solution
u ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) which can be represented as

u(t) = E(t)u0 +

∫ t

0
E(t− s)f(s)dx.

Moreover, the following a-priori estimate (cf. e.g., [27]) holds

‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ∗) + ‖u‖C([0,T ];H) ≤ C
(
‖u0‖H + ‖f‖L2(0,T ;V ∗)

)
. (2.15)

Proof. We assume first that f = 0 and proceed in several steps.

Step 1. A is a closed operator, since the graph norm ‖u‖A := ‖Au‖V ∗ + ‖iu‖V ∗ , with V
i
↪→ V ∗,

is an equivalent norm for V .

Step 2. For all λ ∈ C, with Reλ > 0,

(u, v) .→ ((A+ λI)u, v)V ∗×V

is also positive and there holds

‖(λI +A)−1g‖V ≤ 1

α
‖g‖V ∗ , ‖(λI +A)−1g‖V ∗ ≤ 1

|λ|

(
M

α
+ 1

)
‖g‖V ∗ . (2.16)

Step 3. By Step 1. and Step 2. and since 0 ∈ ρ(−A) it follows that there exists 0 < δ < π/2 and
there exists C > 0 such that

ρ(−A) ⊃ Σδ := {λ ∈ C : |argλ| < π/2 + δ} ∪ {0}

5



and

‖(λI +A)−1‖L(V ∗,V ∗) ≤
C

|λ|
∀λ ∈ Σδ, λ 1= 0.

Indeed, by (2.16), ‖(λI +A)−1‖L(V ∗,V ∗) ≤ C/|Imλ| for all Reλ > 0. For λ̄ = ξ+ iζ with
ξ > 0, the Taylor expansion for (λI +A)−1 around λ̄

(λI +A)−1 =
∞∑

k=0

(
(λ̄I +A)−1

)k+1
(λ̄− λ)k

converges in L(V ∗, V ∗) for ‖(λ̄I+A)−1‖L(V ∗,V ∗)|λ̄−λ| ≤ q < 1. Choosing Imλ = ζ we see
that the series converges uniformly in L(V ∗, V ∗) for |ξ−Reλ| ≤ q|ζ|/C. Since ξ > 0 and
q ∈ (0, 1) are arbitrary, ρ(−A) contains all λ ∈ C with Reλ ≤ 0 and |Reλ|/|Im λ| < 1/C
and in particular ρ(−A) ⊃ {λ ∈ C : |argλ| < π/2+δ} with δ = qarctan(1/C), 0 < q < 1,
and in this region we also have ‖(λI +A)−1‖L(V ∗,V ∗) ≤ C/|λ|.

By Theorem 1.7.7 and Theorem 2.5.2 in [34] it follows that −A is the infinitesimal generator
of a uniformly bounded C0-semigroup in V ∗. Moreover, E(t) can be extended to an analytic
semigroup in the sector ∆δ = {z ∈ C : |argz| < δ} and ‖E(t)‖L(V ∗,V ∗) is uniformly bounded
in every closed subsector ∆δ′ , δ′ < δ, of ∆δ.

In the case f 1= 0, we use that the part of u due to f satisfies a Duhamel representation
([2], Proposition III.1.3.1) to conclude.

Remark 2.4 Elements of (H1
−ν(R))

∗ decay exponentially at infinity: consider φ ∈ H1
−ν(R)

arbitrary, fixed and let φn ∈ H1
−ν(R), n ∈ N be given by φn(y) := φ(y − n). Then for each

f ∈ (H1
−ν(R))

∗, ν > 0, there is Cf independent of n with

∀n ∈ N |〈f,φn〉(H1
−ν(R))

∗×H1
−ν(R)

| ≤ Cfe
−νn‖φ‖H1

−ν (R)
.

2.3.2 Application to the Black-Scholes equation

We apply Theorem 2.3 to the BS equation (2.4) with V = H1
−ν(R), H = L2

−ν(R) and with

Au := −σ2

2

∂2u

∂x2
−

(
r − σ2

2

)
∂u

∂x
+ ru.

Then the solution w of (2.4) can be represented as

w(τ, ·) = E−ν(τ)h,

where E−ν is the C0 semigroup in
(
H1

−ν(R)
)∗

with infinitesimal generator A.
The case r = 0. When r = 0, i.e., w solves

∂w

∂τ
− σ2

2

∂2w

∂x2
+

σ2

2

∂w

∂x
= 0, (τ, x) ∈ (0, T ) × R

w(0, x) = h(x) := (ex −K)+.

(2.17)

By Proposition 2.1 and Theorem 2.3, given h ∈ H1
−ζ(R), ζ > 0, (2.4) admits a unique solution

w ∈ L2(0, T ;H1
−ζ(R)) ∩H1(0, T ;

(
H1

−ζ(R)
)∗

) and (2.15) holds.
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As second application of Theorem 2.3, we show now that w(τ, x) approaches the payoff
h(x) exponentially fast as |x| → ∞ for 0 < τ < T . To this end, we note that w̄ := w−h solves

∂w̄

∂τ
− σ2

2

∂2w̄

∂x2
+

σ2

2

∂w̄

∂x
= f w̄(0, x) = 0, (2.18)

with f := σ2

2 Kδlog(K). Indeed, for µ > 1, Ah ∈ (H1
−µ(R))

∗ is given by

〈Ah,ϕ〉(H1
−µ(R))

∗×H1
−µ(R)

= a−µ(h,ϕ) ∀ϕ ∈ H1
−µ(R)

and there holds

d

dτ
(w̄(τ, ·),ϕ)L2

−µ(R)
+ a−µ(w̄(τ, ·),ϕ) = −a−µ(h,ϕ) ∀ϕ ∈ H1

−µ(R). (2.19)

By the definition of a−µ(·, ·) we obtain that the right hand side in (2.19) is given by

−σ2

2

∞∫

log(K)

exϕ′(x)e−2µ|x| dx+

∞∫

log(K)

(
µσ2sign(x)− σ2

2

)
exϕ(x)e−2µ|x| dx

=
σ2

2
Ke−2µ| log(K)|ϕ(log(K)).

It follows that w̄ solves (2.18). To show that the right hand side in (2.18) f ∈
(
H1

ν (R)
)∗

for
all ν > 0, note that for arbitrary v ∈ H1

ν (R)

|〈f, v〉(H1
ν (R))

∗×H1
ν (R)

| =
∣∣∣∣
σ2

2
Kv(log(K))e2ν| log(K)|

∣∣∣∣ ≤ C(ν,σ,K)|v(log(K))| ≤ C(ν,σ,K)‖v‖H1
ν (R)

.

Multiplying (2.18) by the test function v(x)e2ν|x|, with v ∈ C∞
0 (R) we obtain

d

dτ
(w̄(τ, ·), v)L2

ν (R)×L2
ν(R)

+ aν(w̄, v) = 〈f, v〉(H1
ν(R))

∗×H1
ν(R)

∀ v ∈ C∞
0 (R)

w̄(0, x) = 0.
(2.20)

By Proposition 2.1 and Theorem 2.3, there exists a unique w̄ ∈ L2(0, T ;H1
ν (R))∩H1(0, T ; (H1

ν (R))
∗)

solution to (2.20). It satisfies (2.15) with V = H1
ν (R) for ν > 0 which implies exponential decay

of |w̄| as |x| → ∞.
The case r 1= 0 is reduced to r = 0 by transformation to ‘transformed’ variables

w(τ, x) = e−rτ w̌(τ, x+ rτ) (2.21)

which reduces the original problem for w to a BS equation for w̌ with r = 0:

∂w̌

∂τ
− σ2

2

∂2w̌

∂x2
+

σ2

2

∂w̌

∂x
= 0, w̌(0, x) = h(x).

We shall use (2.21) in several places and refer to quantities like w̌ as ‘transformed’ variables,
without indication by ˇ .
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3 Pricing European Vanillas on Lévy driven assets

3.1 Lévy processes

Let (Ω,F , (Ft)0≤t<∞,P) be a filtered probability space. An adapted process (Xt)t≥0 is called
a Lévy process if

(1) (independent increments) for every s, t ≥ 0, Xt+s −Xs is independent of Xs.

(2) X0 = 0 P - a.s.

(3) (temporal homogeneity or stationary increments property) the distribution of Xt+s−Xs

does not depend on s

(4) it is stochastically continuous, i.e., limt→0+ P[|Xt| > ε] = 0 for any ε > 0.

Since any process Xt satisfying (1) - (4) has a cadlag modification we will always assume Xt

to be cadlag. The Lévy-Khintchine formula describes explicitly a Lévy process in terms of its
Fourier transform EQ[e−iuXt ] under a chosen equivalent martingale measure Q:

EQ[e
−iuXt ] = e−tψ(u) (3.1)

for some function ψ called the Lévy exponent of X. By the Lévy-Khintchine formula,

ψ(u) =
σ2

2
u2 + iαu+

∫

|x|<1
(1− e−iux − iux)νQ(dx) +

∫

|x|≥1
(1− e−iux)νQ(dx) (3.2)

so that a Lévy process is characterized by the Lévy triple σ,α ∈ R and the Lévy-measure νQ
on R\{0} satisfying ∫

min(1, x2)νQ(dx) < ∞. (3.3)

The characteristic exponent ψ turns out to be the symbol of the pseudo-differential operator
A which is the infinitesimal generator of the transition semi-group of Xt under the equivalent
martingale measure Q. We assume here that the equivalent martingale measure Q has been
chosen by some procedure, we refer to [16, 17, 20, 13] and the references therein for various
results in this direction.

3.2 Price processes

In Lévy markets, log returns of the risky assets are modelled by a Lévy process. The spot
price St of the risky asset is

St = S0e
(r−σ2/2+c)t+Xt (3.4)

where Xt is a Lévy process. By (3.2) and (3.3), Xt = σBt + Yt, with Bt a Brownian motion
and Yt a quadratic pure jump Lévy process independent of Bt. The parameter c in (3.4) is
chosen so that the mean rate of return on the asset is risk-neutrally r, i.e. e−ct = EQ[eYt ].

Let µ(dx, dt) denote the integer valued random measure (the jump measure) that counts
the number of jumps of Yt in space-time. By Ito’s formula (e.g. Theorem I.4.57 in [21]), St

solves the following stochastic differential equation

dSt = St−dXt + St−

∫

R

(ey − 1− y)µ(dy, dt) + (r + c)dt. (3.5)
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By stationarity of Lévy processes, the compensator of the measure µ(dx, dt) has the form
νQ(dx)× dt, with dt being the Lebesgue measure.

In the following we will assume that the Lévy measure νQ has a density kQ, i.e., νQ(dz) =
kQ(z)dz and we will drop the subscript Q. The Lévy density k(z) describes the activity of
jumps of size z in Xt. Lévy processes are said to be of finite activity, if k(z) is integrable near
z = 0, otherwise of infinite activity.

In our analysis, we use some or all of the following assumptions on the Lévy measure
ν(dz) = k(z)dz.
(A1) (activity of small jumps) the characteristic function ψ0(u) of the pure jump part Yt of
the Lévy process Xt satisfies: there exist constants c1, C+ > 0 and Y < 2 such that

|ψ0(u)− ic1u| ≤ C+(1 + |u|2)Y/2 ∀u ∈ R. (3.6)

(A2) (semiheavy tails) there are constants C > 0, G > 0 and M > 1 such that

∀|z| > 1 : k(z) ≤ C

{
e−G|z| if z < 0,

e−M |z| if z > 0.
(3.7)

(A3) (smoothness)

∀α ∈ lN0 ∃C(α) : ∀ z 1= 0 : |∂α
z k(z)| ≤ C(α)|z|−(1+Y +α)+ . (3.8)

If σ = 0 the process Xt is pure jump and we assume 0 < Y < 2 and in addition
(A4) (boundedness from below of k(z)): there is C− > 0 such that

∀0 < |z| < 1 :
1

2
(k(−z) + k(z)) ≥ C−

|z|1+Y
. (3.9)

Remark 3.1 (i) By (3.4), (3.1)–(3.2) and by EQ[St] < ∞ we obtain that EQ[eXt ] = e−tψ(i) <
∞, with ψ being the Lévy exponent in (3.2). As a consequence, the Lévy density k has
to satisfy both the integrability condition (3.3) and

∫
|z|>1 e

zk(z)dz < ∞. This holds for k

satisfying (A1)-(A2), due to Y < 2 and M > 1 which we shall assume throughout.
(ii) Assumption (A2) implies in particular that Xt has finite moments of all orders.
(iii) We will require (A3) in particular in the analysis of the wavelet compression of the moment
matrix of k(z); it is, however, required only for a finite range of α.
(iv) A Lévy process Xt with σ = 0 in the Lévy triple is called pure jump process. If Xt is a
pure jump process, we assume that it is of infinite activity, i.e.

k(z) satisfies (A1)-(A4) with 0 < Y < 2 if σ = 0. (3.10)

(v) If the Lévy process is of finite activity, we assume that σ > 0 and that k(z) satisfies
(A1)-(A3) with Y < 0.

3.3 Examples of Lévy Processes

All price processes used in Lévy market models known to us have densities which satisfy (A1)-
(A3). For example, the generalized hyperbolic motions [4, 18, 38] satisfy (A1) with Y = 1.
Further specific examples of Lévy processes follow; for their explicit characteristic functions
we refer to [43].
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3.3.1 Merton model

In the classical Merton Model [32], the spot price St is modelled by a drifted Brownian Motion
with finitely many jumps, i.e. Xt = σBt +

∑Nt
i=1 Yi where {Yi} are independent, identically

distributed random variables with distribution function f(z) and where {Nt} is a Poisson
process with intensity λ. The Lévy measure is ν(dz) = k(z)dz with k(z) = λf(z).

Merton assumed a normal distribution with mean µM and standard deviation σM where
fM (z) = (

√
2πσM )−1 exp(−(z − µM)2/(2σ2

M )). With this density, Merton’s model is a finite
intensity Lévy process which satisfies (A1)-(A3) with Y = −∞. To accommodate asym-
metric distributions of positive and negative jumps in returns, Kou [25] proposed fKou(z) =
p+M exp(−Mz)χR+

(z) + p−G exp(Gz)χR−
(z), p+ + p− = 1. Then Xt is a finite activity Lévy

process with k satisfying (A1)-(A3) for Y = −1.

3.3.2 CGMY process

The CGMY process [11] assumes an infinitely divisible four parameter distribution of the log-
returns that allows the resulting Lévy process to have both finite or infinite activity and finite
or infinite variation. The Lévy density of the CGMY process is given by ([11])

kCGMY (z) = C






e−G|z|

|z|1+Y
if z < 0

e−M |z|

|z|1+Y
if z > 0,

(3.11)

where C > 0, G,M ≥ 0 and Y < 2. The case Y = 0 is the special case of the variance gamma
process. The density (3.11) satisfies (A1)–(A4).

3.3.3 Normal Inverse Gaussian Process

With (B1, B2) being a bivariate Brownian Motion starting at (µ, 0) and with constant drift
vector (β, γ), let τ denote the time at which the second component B2 hits the line B2 = δ > 0
for the first time. Then, with α =

√
β2 + γ2, the law of B1(τ) is NIG(α,β, µ, δ) [3]. The

three-parameter Lévy density of the NIG Lévy process takes the form

kNIG(z) =
1

π
δα

1

|z|
K1(α|z|)eβz , (3.12)

where K1 is the modified Bessel function of the third kind. It satisfies (A1)-(A4) with Y = 1.

3.3.4 Meixner Process

The Meixner process was proposed in [43]. It is an infinite activity pure jump process with a
three parameter Lévy density given by

kMeixner(z) = δ
exp(βz/α)

z sinh(πz/α)
. (3.13)

It easily verified that kMeixner(z) satisfies (A1)–(A3) with Y = 1 and suitable G(α,β), M(α,β)
if α, δ > 0 and |β| < π.
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3.4 Partial integro-differential equation (PIDE)

Let f(t, St) denote the price at time t of a contingent claim on the asset St in (3.4). We consider
here an European call option, i.e. f(T, ST ) = g(ST ) := (ST − K)+, with strike price K and
maturity T . The price f(t, St) can be calculated for all dates t < T by taking conditional
expectations. Assuming that the savings account process is given by S0

t = ert, the process
e−rtSt is a martingale under Q, since Q is assumed to be the risk-neutral measure. The same
holds true for the value process f(t, St) of the option, therefore

f(t, St) = EQ[e
r(t−T )g(ST )|Ft].

The key to fast deterministic valuation of f(t, St) is the following result (e.g. [33, 40]). It
characterizes f(t, St) with sufficient regularity as solution of a deterministic partial integro-
differential equation (PIDE).
Unless explicitly stated otherwise, we assume in the following that Xt has a non-zero diffusion
component, i.e. σ > 0. We also change to logarithmic price x = log(S) ∈ R and time to
maturity τ = T − t.

Theorem 3.2 Assume u(τ, x) ∈ C1,2((0, T ) × R) ∩ C0([0, T ] × R) solves the PIDE

∂u

∂τ
− σ2

2

∂2u

∂x2
+ (

σ2

2
− r + cexp)

∂u

∂x
+A[u] + ru = 0 in (0, T ) × R (3.14)

where A denotes the integro-differential operator

A[ϕ](x) := −
∫

R

{ϕ(x + y)− ϕ(x)− yϕ′(x)χ{|y|≤1}}k(y) dy (3.15)

and cexp ∈ R is given by

cexp := −e−xA[exp(·)](x) =
∫

R

{ey − 1− yχ{|y|≤1}}k(y) dy (3.16)

together with the initial condition
u(0, x) = h(x) (3.17)

where h(x) := g(ex). Then f(t, S) := u(T − t, log(S)) satisfies

f(t, St) = EQ[e
r(t−T )g(ST )|Ft]. (3.18)

Conversely, if f(t, S) in (3.18) is sufficiently regular, then u(τ, x) := f(T − τ, ex) is solution
of (3.14), (3.17).

For the numerical solution below, it will be important to have information on the spectrum of
the integral operator A.

Remark 3.3 A+A∗ ≥ 0. More precisely, for all ϕ, ψ ∈ H1(R) there holds

(A[ϕ],ψ)L2(R) + (A[ψ],ϕ)L2(R) =

∫

R

∫

R

(ϕ(x + y)− ϕ(x))(ψ(x + y)− ψ(x))k(y)dydx. (3.19)
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3.5 Variational formulation

Our pricing methodology is based on the numerical solution of the PIDE (3.14). Numerical
solution of PIDEs for European vanillas by characteristic functions and FFT techniques has
been advocated in [12]. Our solution algorithm aims at American put and Barrier options (see
[31]). It will be based on a variational formulation of the PIDE which we now give. As in the
Black-Scholes setting, the variational formulation of the PIDE (3.14) will be based on weighted
Sobolev spaces allowing exponential growth of the solution at ∞.

3.5.1 Weighted spaces

Let η ∈ L1
loc(R), η

′ ∈ L∞(R). We denote by H1
η (R) the weighted Sobolev space given by

H1
η (R) := {ϕ ∈ L1

loc(R) : eηϕ, eηϕ′ ∈ L2(R)}.

We observe that the pay-off function h in (3.17) satisfies h ∈ H1
−ζ(R) for all ζ of the form

ζ(x) =

{
µ1|x| if x < 0
µ2|x| if x > 0

(3.20)

for all µ1 > 0 and µ2 > 1. We will denote by A the spatial operator in (3.14) given by

A[ϕ](x) := −σ2

2

d2ϕ

dx2
(x) +

(
σ2

2
− r + cexp

)
dϕ

dx
(x) + rϕ+A[ϕ](x). (3.21)

For ϕ,ψ ∈ C∞
0 (R) we associate with A the bilinear form

aη(ϕ,ψ) :=

∫

R

A[ϕ](x)ψ(x)e2η(x)dx. (3.22)

In the case η = 0, we write a(ϕ,ψ) in place of a0(ϕ,ψ), i.e.

a(ϕ,ψ) =

∫

R

(
σ2

2
ϕ′ψ′ +

[
σ2

2
− r + cexp

]
ϕ′ψ + rϕψ

)
dx+ 〈A[ϕ],ψ〉H1(R)∗×H1(R). (3.23)

For certain weighting functions η ∈ L1
loc(R), η

′ ∈ L∞(R), the bilinear form aη(·, ·) can
be extended continuously to H1

η (R) × H1
η (R). Moreover, under certain conditions on η this

bilinear form is, up to a L2
η-scalar product, coercive on H1

η (R) ×H1
η (R) in the sense that the

following analogue of Proposition 2.1 holds.

Theorem 3.4 Let η ∈ L1
loc(R) such that η′ ∈ L∞(R) and assume that r = 0 in (3.21), (3.22).

1. If
η(x+ θy)− η(x) ≤ η(y) ∀x, y ∈ R ∀ θ ∈ [0, 1] (3.24)

and

C(η) :=

∫

R

eη(y)|y|χ{|y|≤1}(y)k(y) dy < +∞ (3.25)

hold, there exist αη, βη > 0 and Cη > 0 such that

|a−η(ϕ,ψ)| ≤ Cη‖ϕ‖H1
−η(R)

‖ψ‖H1
−η(R)

∀ϕ,ψ ∈ H1
−η(R)

a−η(ϕ,ϕ) ≥ αη‖ϕ‖2H1
−η(R)

− βη‖ϕ‖2L2
−η(R)

∀ϕ ∈ H1
−η(R).
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2. If η is such that

−η(x+ θy) + η(x) ≤ η(−y) ∀x, y ∈ R ∀ θ ∈ [0, 1] (3.26)

and

C̃(−η) :=

∫

R

eη(−y)|y|χ{|y|≥1}(y)k(y)dy < +∞ (3.27)

hold, there exist α′
η, β

′
η > 0 and C ′

η > 0 such that

|aη(ϕ,ψ)| ≤ C ′
η‖ϕ‖H1

η (R)
‖ψ‖H1

η (R)
∀ϕ,ψ ∈ H1

η (R)

aη(ϕ,ϕ) ≥ α′
η‖ϕ‖2H1

η (R)
− β′

η‖ϕ‖2L2
η(R)

∀ϕ ∈ H1
η (R).

The proof of this theorem is given in Appendix A.

3.5.2 Reduction to homogeneous initial condition

We return to (3.14)–(3.17). Since h ∈ H1
−ζ(R) for all ζ as in (3.20), we cast (3.14)–(3.17) in

the following weak form: find u ∈ L2(0, T ;H1
−ζ(R)) ∩H1(0, T ; (H1

−ζ(R))
∗) such that

d

dτ
(u(τ, ·), v)L2

−ζ (R)
+ a−ζ(u(τ, ·), v) = 0 ∀ v ∈ H1

−ζ(R), (3.28)

u(0, ·) = h in H1
−ζ(R).

By Theorem 3.4, Item 1., and Theorem 2.3, applied in the triple X = H1
−ζ(R) ↪→ L2

−ζ(R)
∼=(

L2
−ζ(R)

)∗
↪→ X∗, (3.28) admits a unique weak solution u ∈ L2(0, T ;H1

−ζ(R))∩H1(0, T ; (H1
−ζ(R))

∗).

For numerical computations we compute the excess to ‘transformed’ payoff on a bounded
domain with homogeneous initial and artificial zero boundary conditions. We transform to
r = 0 by (2.21) and remove inhomogeneous initial condition by a particular solution. To this
end, we analyze the image of the pay-off function h(x) under the operator A and write the
operator A as

A = −σ2

2

d2

dx2
+

(
σ2

2
− r

)
d

dx
+ r + Â,

with

Â[φ](x) := −
∫

R

[φ(x+ z)− φ(x)− zφ′(x)χ{|z|≤1}]k(z)dz + cexpφ
′(x), (3.29)

with density function k(z) satisfying the integrability conditions (3.3) and
∫
|z|≥1 e

zk(z)dz < ∞,

see also Remark 3.1, (i). The constant cexp is chosen as in (3.16) so that Â[ex] = 0 and, by
(2.21), we may and will assume r = 0 in what follows.

The operator Â in (3.29) satisfies a strong pseudo-local property: it preserves singular
support and exponential decay at ∞. We exemplify this here for a European call.

Theorem 3.5 Assume that the Lévy measure of Xt has the form ν(dz) = k(z)dz with k(z)
satisfying (A1), (A2). Let h be the payoff for a European call, h(x) = (ex −K)+ and set ψ :=
−Â[h]. Then ψ ∈ C∞(R\{log(K)}) ∩ L1

loc(R) and ψ decays exponentially at ±∞: there exist
C1, C2 > 0 such that 0 ≤ ψ(x) ≤ C1e−Gx for x > 0 sufficiently large and 0 ≤ ψ(x) ≤ C2eMx

for x < 0 and |x| sufficiently large. Hence, ψ ∈ (H1
η (R))

∗ for all η ≥ 0 satisfying (3.26), (3.27)
and, in particular, for η = 0.
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Proof. Let x > log(K). Then there holds

ψ(x) =

∫

R

[
(ex+z −K)+ − (ex −K)+ − z((ex −K)+)

′χ{|z|≤1})
]
k(z)dz − cexp((e

x −K)+)
′

=

∫ log(K)−x

−∞

[
0− (ex −K)− zexχ{|z|≤1}

]
k(z)dz

+

∫ ∞

log(K)−x

[
ex+z − ex − zexχ{|z|≤1}

]
k(z)dz − cexpe

x.

By the choice of cexp in (3.16) we obtain that

ψ(x) =

∫ log(K)−x

−∞

[
K − ex − zexχ{|z|≤1}

]
k(z)dz −

∫ log(K)−x

−∞

[
ex+z − ex − zexχ{|z|≤1}

]
k(z)dz

=

∫ log(K)−x

−∞
(K − ex+z)k(z)dz, log(K)− x < 0.

Analogously we obtain that

ψ(x) =

∫ ∞

log(K)−x
(ex+z −K)k(z)dz, log(K)− x > 0.

With k satisfying (A1),(A2) and with

ψ(x) =






∫ log(K)−x

−∞
(K − ex+z)k(z)dz, x > log(K)

∫ ∞

log(K)−x
(ex+z −K)k(z)dz, x < log(K),

we obtain that ψ ∈ C∞(R\{log(K)}, i.e. sing suppψ = {log(K)}.

We claim that | log(K)−x|pψ(x) ∈ L∞(R) for p = Y−1. Indeed, with C∗ := limz→0− |z|1+Y k(z)

limx↓log(K) | log(K)− x|pψ(x) = limε↓0 ε
p
∫ −ε

−∞
(K −Keεez)k(z)dz

= limε↓0Kεp
∫ ∞

ε
(1− eεe−z)k(−z)dz

= limε↓0
K

p
εp+1

∫ ∞

ε
e−zk(−z)dz

= K
C∗

p(p+ 1)
limε↓0ε

p+2−Y−1 = K
C∗

p(p+ 1)
.

Since Y < 2, p = Y − 1 < 1, therefore ψ ∈ C∞(R\{log(K)}) ∩ L1
loc(R). Moreover, ψ decays

exponentially at ±∞. More precisely, for x > max{log(K) + 1, 0}, ψ(x) ≤ CKG+1e−Gx, and
for x ≤ min{log(K) − 1, 0}, ψ(x) ≤ CK1−MeMx. Consequently, ψ ∈ (H1

η (R))
∗ for all η ≥ 0

satisfying (3.26) and (3.27), in particular, for η = 0.
Positive weighting exponents η satisfying (3.26), (3.27) are, e.g.,

η(x) =

{
η−|x|, x < 0
η+|x|, x > 0,

for 0 < η− < M and 0 < η+ < G with G,M as in (A2).
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Proposition 3.6 Assume r = 0 in (3.21). Then, for h as in Theorem 3.5, −A[h] ∈ (H1
η (R))

∗

for all η as in (3.26), (3.27) and, in particular, for η = 0.

Proof. By the transformation (2.21), it is sufficient to consider A = −σ2

2
d2

dx2 + σ2

2
d
dx + Â.

Therefore, −A[h] = σ2

2 Kδlog(K) − Â[h]. By Theorem 3.5, −A[h] ∈ (H1
η (R))

∗ for all η as in
(3.26), (3.27) and, in particular, for η = 0.

Let u denote the solution of the parabolic evolution problem (3.14)–(3.17) and denote by A
the spatial operator given by (3.21) with r = 0. By Proposition 3.6, −A[h] ∈ (H1

η (R))
∗ for

all η satisfying (3.27) and (3.26) and the excess to ‘transformed’ payoff U := u− e−rth(·+ rt)
solves

∂U

∂τ
+A[U ] = f := −A[h] in (0, T ) × R, (3.30)

U |τ=0 = 0 in R (3.31)

or, in variational form: find U ∈ L2((0, T );H1
η (R)) ∩H1(0, T ;

(
H1

η (R)
)∗
) such that

(
d

dτ
U(τ, ·), v)L2

η (R)
+ aη(U(τ, ·), v) = 〈f, v〉(H1

η(R))
∗

×H1
η(R)

∀ v ∈ H1
η (R) (3.32)

U |τ=0 = 0. (3.33)

With V := H1
η (R) and H := L2

η(R) we have V ↪→ H ∼= H∗ ↪→ V ∗ with dense embeddings. By

Theorem 3.4 and Theorem 2.3, applied to A ∈L (V, V ∗), V = H1
η (R), given f ∈

(
H1

η (R)
)∗
,

there exists a unique weak solution U ∈ L2(0, T ;H1
η (R))∩H1(0, T ;

(
H1

η (R)
)∗
) of (3.32)–(3.33).

Indeed, by Theorem 3.4, item 2., there exists λ > 0 such that the shifted operator A + λ · id
induces a coercive bilinear form on H1

η (R)×H1
η (R).

We prove an a-priori estimate for the weak solution U of (3.32)–(3.33). To this end, let us
denote by TA+λ·id(·) the analytic semi-group induced by the operator A + λ · id in (H1

η (R))
∗

and let f := −A[h]. Then U admits the Duhamel’s representation in (H1
η (R))

∗, see e.g. [2],
Proposition III.1.3.1,

U(τ) =

∫ τ

0
TA+λ·id(s)[f ]e−λsds. (3.34)

Recall that by Theorem 3.5 and Proposition 3.6, f = σ2/2Kδlog(K)+ψ, with ψ ∈ C∞(R\ log(K))∩
L1
loc(R) decaying exponentially at ±∞. Therefore, f ∈ (H1/2+ε

η (R))∗ for all ε > 0.

We denote by Vθ := [V ∗, V ]θ,2 the interpolation space for 0 ≤ θ ≤ 1 between V ∗ and V
(V0 = V ∗ and V1 = V ). Then there exists θ > 0 such that f ∈ Vθ and there exist C, d > 0 such
that for all t > 0 (see [42], Theorem 1)

‖(TA+λ·id)(k)(τ)‖L(Vθ ,V ) ≤ Cdk+1/2−θ
√

Γ(2k + 2− 2θ)τ−(k+1)+θ.

By the representation (3.34) we obtain that

‖U(τ, ·)‖V + τ‖∂U
∂τ

(τ, ·)‖V ≤ Cτ θeλτ‖f‖Vθ . (3.35)
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4 Localization

Our numerical solution of (3.14)–(3.17) will require truncation of the range R of log returns
to a bounded computational domain ΩR = (−R,R). Likewise, certain types of contracts (no-
touch, touch-and-out) directly lead to the PIDE on the bounded domain. Here, we formulate
the PIDE on the bounded domain ΩR and establish its well-posedness.
In the Black-Scholes case, the localization error can be estimated by local considerations near
∂ΩR and a maximum principle (see, e.g., [23]). For the PIDE (4.1) - (4.3), local arguments do
not apply and we resort to the weighted norm estimates for the PIDE to control the domain
truncation error.

4.1 PIDE on the bounded domain

Instead of solving (3.30)–(3.31) in J × R, where we denote by J the time interval J = (0, T ),
we solve the following problem for the excess to ‘transformed’ payoff in J × ΩR:

∂UR

∂τ
+AR[UR] = −A[h]|ΩR in J × ΩR (4.1)

UR(τ, ·)|∂ΩR = 0 on ∂ΩR ∀ 0 < τ ≤ T (4.2)

UR|τ=0 = 0 in ΩR, (4.3)

with AR denoting the restriction of A to ΩR. It is defined as follows: for any function u with
support in ΩR, denote by ũ its extension by zero to all of R. Based on a(·, ·) in (3.23), we
define

aR(u, v) := a(ũ, ṽ), u, v ∈ H1
0 (ΩR). (4.4)

Then aR(·, ·) : H1
0 (ΩR)×H1

0 (ΩR) .→ R, induces AR : H1
0 (ΩR) → H−1(ΩR) = (H1

0 (ΩR))∗ via

aR(ϕ,ψ) := 〈AR[ϕ],ψ〉H−1(ΩR)×H1
0 (ΩR) = 〈A[ϕ̃], ψ̃〉(H1(R))∗×H1(R) ∀ϕ,ψ ∈ H1

0 (ΩR). (4.5)

Note that, unlike in the Black-Scholes case, the non-local operator A requires the pay-off h
also outside of ΩR. To cast (4.1) - (4.3) into the parabolic setting, we select V := H1

0 (ΩR) and

we identify L2(ΩR) with its dual so that V
d
↪→ L2(ΩR)

d
↪→ V ∗ with dense embeddings and with

V ∗ = H−1(ΩR).
The variational formulation of (4.1)–(4.3) reads: given f := −A[h]|ΩR ∈ H−1(ΩR), find

UR ∈ L2(J, V ) ∩ H1(J, V ∗) such that UR(0) = 0 and such that for every v ∈ V and every
ϕ ∈ C∞

0 (J)

−
∫

J
(UR(τ, ·), v)L2(ΩR)ϕ

′(τ)dτ +

∫

J
aR(UR(τ, ·), v)ϕ(τ)dτ = 〈f, v〉V ∗×V , (4.6)

where by 〈·, ·〉V ∗×V we denote the extension of (·, ·)L2(ΩR) as duality pairing in V ∗ × V . By
Theorem 3.4 with η = 0, there exist C > 0 and α > 0, β ≥ 0 such that

∀ ϕ,ψ ∈ V : |aR(ϕ,ψ)| ≤ C‖ϕ‖V ‖ψ‖V (4.7)

∀ϕ ∈ V : aR(ϕ,ϕ) + β‖ϕ‖2 ≥ α ‖ϕ‖2V . (4.8)

Without loss of generality we assume from now on that the bilinear form aR is positive on
V × V , since by the substitution

VR = e−βτUR (4.9)
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VR solves
d

dτ
VR + (AR + β · id)VR = e−βτf in J,

and the operator AR+β · id is, by (4.8), coercive. Hence, by Theorem 2.3 there exists a unique
solution of (4.1)–(4.3).

4.2 Localization error estimates

The restriction of the excess to ‘transformed’ payoff U from R to ΩR introduces a localization
error eR := ŨR − U which we now estimate. Since we work in ‘transformed’ quantities, r = 0
throughout.

Theorem 4.1 Let ΩR/2 := {|x| ≤ R/2}. Then there exist positive constants C = C(T ),α > 0
independent of R such that the localization error eR = UR − U satisfies for all R > 1

‖eR(τ, ·)‖2L2(ΩR/2)
+

∫ τ

0
‖eR(s, ·)‖2H1(ΩR/2)

ds ≤ Ce−αR. (4.10)

Proof. Take the weighting exponent η > 0 as in (3.26)–(3.27). Inserting v = U(τ) in (3.32)–
(3.33) and integrating from 0 to τ implies the following a-priori estimate

‖U(τ)‖2L2
η(R)

+

∫ τ

0
‖U(s)‖2H1

η (R)
ds ≤ C‖f‖2(H1

η(R))
∗ ∀ τ ∈ (0, T ) (4.11)

for some constant C = C(T ) > 0 independent C = C(T ) > 0 of R. Likewise,

‖ŨR(τ)‖2L2
η(R)

+

∫ τ

0
‖ŨR(s)‖2H1

η(R)
ds ≤ C‖f‖2(H1

η(R))
∗ ∀ τ ∈ (0, T ) (4.12)

with same constant C as in (4.11). In particular, C is independent of R ≥ 1. Note also that
the error eR = ŨR − U satisfies on R

(
d

dτ
eR(τ), ṽ

)

L2(R)

+ a(eR(τ), ṽ) = 0 ∀ v ∈ H1
0 (ΩR). (4.13)

Denote by φ a cut-off function with the properties: φ ∈ C∞
0 (ΩR), φ ≡ 1 on ΩR/2 and

‖φ′‖L∞(ΩR) ≤ C for some constant C > 0 independent of R.
Inserting v = φ2(x)eR(τ, x) in (4.13) we obtain

1

2

d

dτ
‖φeR(τ)‖2L2(ΩR) + aR(φeR(τ),φeR(τ)) = ρR(τ), (4.14)

where the residual ρR(τ) is given by ρR(τ) := aR(φeR(τ),φeR(τ)) − a(eR(τ),φ2eR(τ)). We
observe that

ρR(τ) =
σ2

2

∫

R

|φ′(x)|2|eR(τ, x)|2dx+

(
σ2

2
+ c′exp

)∫

R

φ′(x)φ(x)|eR(τ, x)|2dx+ ρ̄R(τ) (4.15)

where we denote by ρ̄R(τ) the residual

ρ̄R(τ) = ā(φeR(τ),φeR(τ))− ā(eR(τ),φ
2eR(τ)) (4.16)
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from the bilinear form ā(ϕ,φ) :=
∫
R
Ā[ϕ](x)φ(x)dx with Ā defined by

ϕ .→ Ā[ϕ](x) := −
∫

R

{ϕ(x+ y)− ϕ(x) − yϕ′(x)}k(y)dy (4.17)

and by c′exp the constant

c′exp =

∫

R

{ey − 1− y}k(y)dy.

The first two integral terms in the expression (4.15) of the residual ρR(τ) are supported in
ΩR\ΩR/2 and can be estimated by

∣∣∣∣
σ2

2

∫

R

|φ′(x)|2|eR(τ, x)|2dx+

(
σ2

2
+ c′exp

)∫

R

φ′(x)φ(x)|eR(τ, x)|2dx
∣∣∣∣

≤ C

∫

ΩR\ΩR/2

|eR(τ, x)|2eη(x)e−η(x)dx ≤ Ce−αR‖eR(τ)‖2L2
η(R)

, (4.18)

for some positive constants C,α independent of R.

It remains to estimate the residual ρ̄R(τ). To this end, let us denote by k(−1) the first anti-
derivative of the Lévy kernel k vanishing as |x| → ∞

k(−1)(x) =






−
∫ ∞

x
k(y)dy if x > 0

∫ x

−∞
k(y)dy if x < 0.

Observe that for k satisfying (A1)-(A3) with Y < 2, G > 0 and M > 1 the first antiderivative
kernel k(−1) has the same rate of exponential decay as k as ±x → ∞ and yk(−1)(y) is in L1(R).
Integration by parts implies for Ā as in (4.17) the representation

Ā[ϕ](x) =

∫

R

{ϕ′(x+ y)− ϕ′(x)}k(−1)(y)dy ∀ϕ ∈ H1(R).

With these notations we get from (4.16),

ρ̄R(τ) =

∫∫

R2

(
∂eR
∂x

(τ, x+ y)φ(x+ y) + eR(τ, x+ y)φ′(x+ y)

− ∂eR
∂x

(τ, x)φ(x) − eR(τ, x)φ
′(x)

)
k(−1)(y)eR(τ, x)φ(x)dydx

−
∫∫

R2

(
∂eR
∂x

(τ, x+ y)− ∂eR
∂x

(τ, x)

)
k(−1)(y)eR(τ, x)φ

2(x)dydx

or, equivalently,

ρ̄R(τ) =

∫∫

R2

∂eR
∂x

(τ, x+ y)(φ(x + y)− φ(x))k(−1)(y)eR(τ, x)φ(x)dydx (4.19)

+

∫∫

R2

(eR(τ, x+ y)φ′(x+ y)− eR(τ, x)φ
′(x))k(−1)(y)eR(τ, x)φ(x)dydx

= I1 + I2.
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We observe that the integrand in the first term of ρR(τ) in (4.19) is supported by |x+y| ≥ R/2
or |x| ≥ R/2 (otherwise φ(x+ y)− φ(x) = 1− 1 = 0), i.e.,

I1 =

∫∫

{|x+y|≥R/2} ∪ {|x|≥R/2}

∂eR
∂x

(τ, x+ y)(φ(x+ y)− φ(x))k(−1)(y)eR(τ, x)φ(x)dydx.

It implies that

|I1| ≤ C

∫∫

|x+y|≥R/2
|∂eR
∂x

(τ, x+ y)|eη(x+y)e−η(x+y)|y||k(−1)(y)||eR(τ, x)|φ(x)dydx

+

∫∫

|x|≥R/2
|∂eR
∂x

(τ, x+ y)||y||k(−1)(y)||eR(τ, x)|eη(x)e−η(x)dydx

≤ Ce−αR

(
‖∂eR
∂x

(τ)‖L2
η(R)

‖eR(τ)‖L2(R) + ‖∂eR
∂x

(τ)‖L2(R)‖eR(τ)‖L2
η(R)

)
, (4.20)

for some positive constants C,α independent of R. Analogous reasoning applies to the second
integral term in (4.19) after we split it into

I2 =

∫∫

R2

(eR(τ, x+ y)− eR(τ, x))φ
′(x)k(−1)(y)eR(τ, x)φ(x)dydx (4.21)

+

∫∫

R2

eR(τ, x+ y)(φ′(x+ y)− φ′(x))k(−1)(y)eR(τ, x)φ(x)dydx = I21 + I22.

The integrand function in the first integral I21 in (4.21) is supported on {|x| ≥ R/2}, so that
I21 can be estimated as follows:

|I21| =

∣∣∣∣∣

∫∫

|x|≥R/2
(eR(τ, x+ y)− eR(τ, x))φ

′(x)k(−1)(y)eR(τ, x)e
η(x)e−η(x)φ(x)dydx

∣∣∣∣∣

≤ Ce−αR‖eR(τ)‖H1(R)‖eR(τ)‖H1
η (R)

. (4.22)

The term I22 in (4.21) can be treated similarly to I1 and satisfies

|I22| ≤ Ce−αR‖eR(τ)‖L2
η(R)

‖eR(τ)‖L2(R). (4.23)

Integrating (4.14) from 0 to τ and using the estimates for ρR(τ) from (4.18), (4.20), (4.22) and
(4.23) together with the a-priori estimates (4.11)–(4.12) yields (4.10).

4.3 Pure Jump case: σ = 0

In Section 4.1 we introduced the PIDE on ΩR for σ > 0 and discussed its well-posedness in
the space V = H1

0 (ΩR). To cast the PIDE in the case σ = 0 of pure jump processes into the
abstract form (2.12), we require for 0 ≤ s ≤ 1 the spaces

H̃s(ΩR) =
{
u|ΩR

∣∣∣ u ∈ Hs(lR), u|lR\ΩR
= 0

}
. (4.24)

For s = 0 we have H̃s(ΩR) = L2(ΩR), for s = 1 we have H̃s(ΩR) = H1
0 (ΩR). In the case

0 < s < 1 we define the norm ‖v‖H̃s(ΩR) by

‖v‖2
H̃s(ΩR)

= ‖v‖2L2(ΩR) + |v|2
H̃s(ΩR)

, |v|2
H̃s(ΩR)

=

∫

lR

∫

lR

|ṽ(x)− ṽ(y)|2

|x− y|1+2s
dx dy (4.25)
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where we recall that ṽ(x) denotes the extension of v(x) by zero for x ∈ lR. Note that one can
use for s ∈ (0, 1), s 1= 1

2 in (4.25) integrals over ΩR instead of lR. For s = 1
2 , however, which

frequently occurs in practice (e.g. [5, 18, 43]), using the integral over ΩR in (4.25) would give the

norm for the space H1/2(ΩR) which is different from H̃1/2(ΩR): in fact, H̃1/2(ΩR) = H1/2
00 (ΩR)

and (see [27]),

‖v‖2
H̃1/2(ΩR)

= ‖v‖2L2(ΩR) +

∫

ΩR

∫

ΩR

|v(x)− v(y)|2

|x− y|2
dx dy +

∫

ΩR

|v(x)|2

R2 − x2
dx.

We show now that for σ = 0 the PIDE (3.14) fits, for 0 < Y < 2, into the abstract parabolic
framework (2.8) - (2.12) based on

V = H̃Y/2(ΩR) ↪→ L2(ΩR) ↪→ V ∗ = H−Y/2(ΩR).

We begin by showing the G̊arding inequality.

Proposition 4.2 Assume that Xt is a pure jump Lévy process with Lévy density k satisfying
(A1)-(A4) for some 0 < Y < 2. Then, there exist two positive constants c1 = c1(R) > 0 and
c2 = c2(R) > 0 such that

∀u ∈ H̃Y/2(ΩR) : aR(u, u) ≥ c1‖u‖2H̃Y/2(ΩR)
− c2‖u‖2L2(ΩR). (4.26)

Proof. By a localization argument and (A2), (A3), we may assume that R = 1/2 and, by
density, that u ∈ C∞

0 (ΩR). Then (u′, u) = 0. As before, we denote by ũ the extension of
u by zero to lR. By asR(ϕ,ψ) = (aR(ϕ,ψ) + aR(ψ,ϕ))/2 we denote the bilinear form for the

symmetric part Âs := 1
2(Â+ Â∗) = 1

2(A+A∗) =: As of Â. Noting that Â[1] = 0, A[1] = 0, we
find

aR(u, u) = asR(u, u) = 〈Asũ, ũ〉 =
∫

R

∫

R

1

2
[k(x− y) + k(y − x)] |ũ(x)− ũ(y)|2dydx.

Due to R = 1/2, x, y ∈ supp(ũ) ⊆ ΩR implies |x− y| < 1 and we obtain from (A4), (4.25)

aR(ũ, ũ) ≥ C−

∫

R

∫

R

|ũ(x)− ũ(y)|2

|x− y|1+Y
dydx = C−

(
‖u‖2

H̃Y/2(ΩR)
− ‖u‖2L2(ΩR)

)

which implies (4.26).
Proposition 4.2 gives the G̊arding inequality (2.11) for aR(·, ·) in the pure jump case σ = 0

for all values of Y ∈ (0, 2).
The continuity aR(·, ·) on H̃Y/2(ΩR)× H̃Y/2(ΩR) in the pure jump case σ = 0 is obtained

as follows: for u, v ∈ C∞
0 (ΩR), we have in ‘transformed’ variables that r = 0 and

aR(u, v) = 〈Aũ, ṽ〉+ cexp〈ũ′, ṽ〉.

By using (A1) and the Fourier transform, the operator A : HY/2(R) → H−Y/2(R) boundedly
for Y ≥ 1. For the drift term, we estimate for Y ≥ 1

|〈ũ′, ṽ〉| = c|〈iξ ˆ̃u, ˆ̃v〉| ≤ c‖ũ‖H1/2(R)‖ṽ‖H1/2(R) ≤ C‖u‖H̃Y/2(ΩR)‖v‖H̃Y/2(ΩR)

which implies the continuity of aR(·, ·) for Y ≥ 1. Therefore, (2.10) holds for σ = 0 with
V = H̃Y/2(ΩR) for 1 ≤ Y ≤ 2.
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4.4 Removal of drift

In order to prove (2.10) for aR(·, ·) in the case σ = 0 for 0 < Y < 1, it is important that
we can transform (4.1) - (4.3) to remove the drift term so that the transformed equation will
still satisfy (2.11) in V = H̃Y/2(ΩR) and also the continuity estimate (2.10) for all 0 < Y < 2
for σ = 0. As our numerical scheme below exploits the parabolic nature of (3.14), numerical
instabilities might result from a dominant first order term, even if σ 1= 0, so that removal of
drift is also of interest then. To this end, recall

AR[u] = −σ2

2
uxx +

(
σ2

2
− r

)
ux + ru+ ÂR[u], (4.27)

with ÂR being the restriction to ΩR of the integro-differential operator Â in (3.29). By the
reduction (2.21) to ‘transformed’ variables, r = 0 and we also assume Y < 1. Then the operator
ÂR in (4.27) can be written as the sum of a first order term and an integro-differential operator
C which is continuous and coercive on H̃Y/2(ΩR): for every ϕ,ψ ∈ C∞

0 (ΩR) holds

〈ψ, ÂR[ϕ]〉 = c1〈ψ,ϕ′〉 −
∫

R

∫

R

ψ̃(x)k(y − x)(ϕ̃(y)− ϕ̃(x))dydx =: c1〈ψ,ϕ′〉+ 〈ψ, Cϕ〉 (4.28)

with

c1 :=

∫

y∈R
(ey − 1)k(y)dy.

Note that 〈ψ, ÂR[exp]〉 = 0 for all ψ and, as before, by (A1) it holds

|〈ψ, Cϕ〉| ≤ C‖ψ‖H̃Y/2(ΩR)‖ϕ‖H̃Y/2(ΩR) (4.29)

and, arguing as before, by (A4) there are C1, C2 > 0 such that

∀ϕ ∈ H̃Y/2(ΩR) : 〈ϕ, Cϕ〉 ≥ C1‖ϕ‖2H̃Y/2(ΩR)
− C2‖ϕ‖2L2(ΩR). (4.30)

We remove the term c1ϕ′ in ÂR (which obstructs H̃Y/2(ΩR)-continuity of 〈ψ, ÂR[ϕ]〉) by

UR(τ, x) = VR
(
τ, x− (σ2/2 + c1)τ

)
. (4.31)

This yields in (4.1)–(4.3) the equation

∂VR

∂τ
− σ2

2

∂2VR

∂x2
+ rVR + C[VR] = (−A[h]|ΩR)(x+ (σ2/2 − r + c1)τ),

VR(0, x) = 0 in ΩR.
(4.32)

Hence, for 0 < Y < 2, σ ≥ 0, r ≥ 0 and under (A4) if σ = 0 the bilinear form aR(·, ·) : V ×V →
R satisfies (2.10), (2.11) (cf. Proposition 4.2) in the Gelfand triple V

d
↪→ L2(ΩR)

d
↪→ V ∗ with

V := H̃ρ/2(ΩR) where ρ =

{
2 if σ > 0 ,

Y if σ = 0 .
(4.33)
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5 Numerical solution

We obtain on the bounded domain ΩR = (−R,R) the following parabolic problem for τ ∈ [0, T ]:
Find U ∈ L2([0, T ], V ) ∩H1([0, T ], V ∗) such that

〈
d

dτ
U, v

〉
+ aR(U, v) = 〈f, v〉V ∗×V for all v ∈ V (5.1)

U(0) = 0 (5.2)

with V as in (4.33) and aR(φ,ψ) = a(φ̃, ψ̃) given by (3.23) where φ̃, ψ̃ denote the extensions by
zero. Because of the transformation (2.21) we assume that r = 0. Here the function U = u−h
is the excess to payoff and the functional f ∈ V ∗ is given by 〈f,φ〉 := −a(h, φ̃).

In the case σ = 0 and Y < 1 we obtain after the additional transformation in Section 4.4 a
problem of form (5.1), (5.2) with aR(φ,ψ) :=

〈
C[φ̃], ψ̃

〉
and f given by 〈f(τ),φ〉 := −a(h(· +

c1τ), φ̃).
In all cases the bilinear form aR satisfies (2.10), (2.11), therefore the problem (5.1), (5.2)

has a unique solution by Theorem 2.3.

5.1 Non-translation-invariant operators

So far we discussed the case where the log-price Xt = logSt is a Lévy process under the risk-
neutral measure. Our numerical method, however, applies also to the more general case where
the log-price process Xt is a nonstationary Markov process where the increments Xt −Xs are
no longer independent of Xs for t > s. In this case we can have a volatility σ(x) depending on
x, and the singular jump measure can also depend on x. Instead of the translation-invariant
operator A from (3.21) with A[φ] defined by (3.15) we now consider a more general operator
A which may depend on x: Let

A[ϕ](x) := −σ(x)2

2

d2ϕ

dx2
(x) +

(
σ(x)2

2
− r

)
dϕ

dx
(x) + rϕ+ Â[ϕ](x). (5.3)

with the integral operator Â[φ] given by

A[φ](x) := −
∫

R

{φ(y)− φ(x)− (y − x)φ′(x)χ[−1,1](y − x)}k(x, y − x) dy, (5.4)

Â[φ] := A[φ](x) + cexp(x)φ
′(x) (5.5)

and cexp(x) chosen such that Â[exp(·)] = 0. We assume that σ(x) is bounded for all x ∈ ΩR

0 < σ0 ≤ σ(x) ≤ σ1

and that k(x, z) satisfies assumptions (A1), (A2) uniformly for x ∈ ΩR. Instead of (A3) we
require the Calderón-Zygmund estimates: For all α,β ∈ lN0 there holds for z 1= 0

∣∣∣∂α
x ∂

β
z k(x, z)

∣∣∣ ≤ C(α,β) |z|−(1+Y+α+β) . (5.6)

In the case σ = 0 we require (A4) uniformly for x ∈ ΩR.
We define U(τ, x) := u(x)− e−rτh(x+ rτ) as the excess to the transformed payoff (cf. Sec-

tion 4.1) and obtain the parabolic evolution problem (5.1), (5.2) with aR(φ,ψ) :=
〈
A[φ̃], ψ̃

〉

and 〈f(τ),φ〉 := −a(h(· + rτ), φ̃). Then in the case of σ > 0 or Y ≥ 1 the bilinear form aR
satisfies (2.10), (2.11). Hence the problem (5.1), (5.2) has a unique solution by Theorem 2.3.
In the case of σ = 0 and Y < 1 we need to assume that we can transform the problem such
that aR satisfies (2.10).

22



5.2 Discretization

For the space discretization we use the Galerkin method with a finite element subspace Vh ⊂ V
of piecewise polynomials. We use a uniform mesh with n subintervals of size h = 2R/n on the
interval ΩR = (−R,R) and denote by p ∈ lN the polynomial degree. We then define Vh as the
space of continuous piecewise polynomials of degree p on the mesh which vanish at x = −R
and at x = R.

The semi-discrete problem reads: Given f ∈ V ∗, find Uh ∈ H1(J, Vh) such that

(
d

dτ
Uh, vh

)
+ aR(Uh, vh) = 〈f, vh〉V ∗×V for all vh ∈ Vh (5.7)

Uh(0) = 0. (5.8)

For the time discretization we use the θ-scheme with M steps and step size k = T/M . The
fully discretized method reads as follows: Let U0

h = 0. For m = 0, 1, . . . ,M −1 find Um+1
h ∈ Vh

such that

(Um+1
h − Um

h

k
, vh

)
+ aR

(
Um+θ
h , vh

)
= 〈f, vh〉V ∗×V for all vh ∈ Vh (5.9)

holds. Here Um+θ
h := θUm+1

h + (1− θ)Um
h . In matrix form, (5.9) reads

(k−1M+ θA)Um+1 = k−1MUm − (1− θ)AUm + f, m = 0, 1, ...,M − 1.

where Um is the coefficient vector of Um
h with respect to a basis of Vh. The matrices M,A de-

note the mass- and stiffness matrix, respectively, with respect to a basis of Vh. By Remark 3.3,
all eigenvalues of A have positive real part.

5.3 Wavelet Compression

Due to the nonlocal operator AR the matrix A is fully populated, increasing the complexity
of the algorithm.

By using a wavelet basis we will obtain a matrixA where most elements are very small and
can be replaced with zero, yielding a sparse matrix Ã with only O(N logN) nonzero elements
where N = dimVh. The wavelet basis will also allow optimal preconditioning.

5.3.1 Wavelet basis

We assume that the number n of subintervals is of the form n = 2Ln0, n0 ∈ lN. For l = 0, . . . , L
let V l denote the space of continuous piecewise polynomials of degree p on the uniform mesh
with nl := 2ln0 intervals which vanish at x = −R,R. Then we have

V 0 ⊂ V 1 ⊂ · · · ⊂ V L = Vh.

Let N l := dimV l, N−1 = 0, and M l := N l −N l−1 for l = 0, . . . , L.
It is then possible (see [14]) to construct so-called biorthogonal wavelets ψl

j for l = 0, 1, . . . ,

and j = 1, . . . ,M l with the following properties:
(P1) The wavelets ψl

j form a hierarchical basis for the spaces V 0, V 1, . . .:

V l = span{ψk
j | 1 ≤ j ≤ Mk, 0 ≤ k ≤ l }
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Figure 1: Biorthogonal wavelets ψl
j for l = 3 (multiplied by 2−l/2)

(P2) Wavelets ψl
j with support contained in (−R,R) and l ≥ l0 have vanishing moments up

to order p, i.e.,
∫
ψl
j(x)x

kdx = 0 for k = 0, . . . , p.

(P3) Wavelets ψl
j(x) for l ≥ l0 are obtained as translates of the functions 2(l−l0)/2ψl0

j (2
l−l0x).

Therefore the support Sl
j := supp(ψl

j) has diameter less than C2−l.

(P4) For all vh =
∑L

l=0

∑M l

j=1 v
l
jψ

l
j ∈ Vh there holds the norm equivalence for s ∈ [0, 1]

|||vh|||2s :=
L∑

l=0

M l∑

j=1

22ls
∣∣∣vlj

∣∣∣
2
∼ ‖vh‖2H̃s(ΩR) . (5.10)

Example for p = 1: Let n0 = 2. Then N l = 2l+1 − 1, M l = 2l. A piecewise linear function
in V l can be specified by giving the values at the nodes xlj := −R+ jh, j = 1, . . . , nl − 1.

Define ψ0
1 by ψ0

1(x1) = 1. Let now l ≥ l0 := 1. Define ψl
1 by the values 2 · 2l/2,−2l/2 at

x1, x2 and 0 at all other nodes. Define ψl
M l by the values −2l/2, 2 · 2l/2 at xnl−2, xnl−1 and 0

at all other nodes. Define ψl
j for 1 < j < M l by the values −2l/2, 2 · 2l/2,−2l/2 at the nodes

x2j−2, x2j−1, x2j and 0 at all other nodes. The functions ψ3
1 , . . . ,ψ

3
8 for the interval [−1, 1] are

shown in Figure 1.

5.3.2 Matrix compression for Y ≥ 0

The bilinear form aR on Vh × Vh corresponds to a matrix A with elements A(l,j),(l′,j′) =

aR(ψl
j ,ψ

l′
j′). Note that |k(z)| decays like |z|−Y−1 for small z by (3.6), (5.6).

If we used a standard finite element basis the size of the matrix elements would decay like
d−Y−1 where d denotes the distance of the supports of the two basis functions.

For our wavelet basis ψl
j the vanishing moment property (P4) and (5.6) (with α+β ≤ 2p+2)

imply that the entries of the matrix A actually decay like d−Y−3−2p where d = dist(Sl
j, S

l′
j′).

This faster decay allows us to replace most matrix entries with zero without losing accuracy.
We define the compressed matrix Ã and the corresponding bilinear form ãR by replacing

certain small matrix elements in A with zero:

Ã(j,l),(j′,l′) :=

{
A(j,l),(j′,l′) if dist(Sl

j, S
l′
j′) ≤ δl,l′ or Sl

j ∩ ∂ΩR 1= ∅
0 otherwise.

(5.11)

Here the truncation parameters δl,l′ are given by

δl,l′ := cmax{2−L+α̂(2L−l−l′), 2−l, 2−l′} (5.12)
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 = 261121

Figure 2: Sparsity pattern of the compressed matrix in wavelet basis; CGMY parameters:
C = 1.0, Y = 1.5, G = 0.6, M = 2.8; N = 127 (left) and N = 511 (right).

with some parameters c > 0 and 0 < α̂ ≤ 1.
Because of (4.9) we can assume that aR is coercive. Therefore it induces a norm which is
equivalent to the norm of V = H̃ρ/2(ΩR):

‖u‖a := (aR(u, u))
1/2 ∼ ‖u‖V .

Proposition 5.1 Let Y ≥ 0. If c in (5.12) is chosen sufficiently large then there exists
0 < δ < 1 independent of L such that for all L > 0 condition

|aR(uh, vh)− ãR(uh, vh)| ≤ δ ‖uh‖a ‖vh‖a ∀uh, vh ∈ Vh (5.13)

holds. If additionally

α̂ ≥ 2p + 2

2p + 2 + Y
, (5.14)

then for all uh, vh ∈ Vh

|aR(uh, vh)− ãR(uh, vh)| ≤ Chp+1−Y/2| log h|ν |||uh|||p+1 ‖vh‖V (5.15)

holds with ν = 1 if equality holds in (5.14), and ν = 0 otherwise.

The matrix compression (5.11) reduces the number of nonzero elements from N2 in A to N
times a logarithmic term in Ã, see Figure 2 and [35].

Proposition 5.2 We can choose α̂ such that ν = 0 in (5.15) and the number of nonzero
elements in Ã is O(N logN).

5.3.3 Matrix compression for σ > 0 and Y ≤ 4− 2(p + 1)

We now consider the case Y ≤ 4 − 2(p + 1). Since Y ≤ 0 we assume σ > 0 and have ρ = 2.
Note that we can write aR(φ,ψ) using (4.28) as

aR(φ,ψ) =

∫

lR

[
σ2

2
φ′(x)ψ′(y) + (

σ2

2
+ c1)φ

′(x)ψ(x)

]
+ 〈C[φ],ψ〉 =: adiff(φ,ψ) + c(φ,ψ) (5.16)

where adiff(φ,ψ) contains differential operators, and c(φ,ψ) satisfies (4.29). Therefore we can
split the matrixA corresponding to the bilinear form aR as A = Adiff+C. For a standard finite
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element basis the matrix corresponding to the bilinear form adiff has O(N) nonzero elements.
We can transform a coefficient vector from the standard finite element basis to the wavelet
basis and vice versa in O(N) operations. Therefore we can implement the operation v .→ Adiffv
in O(N) operations.

For the matrix C we use wavelet compression: for finite intensity jump processes we have
Y < 0, σ > 0. Smoothness of k(z) for z 1= 0 causes rapid decay of the matrix elements
C(l,j),(l′,j′) = c(ψl

j ,ψ
l′
j′) as the levels l, l′ increase. We can exploit this behavior and replace

matrix elements for certain large values of (l, l′) with zero: For β ∈ (0, 1) we define the matrix
C̃ and the corresponding bilinear form c̃ by

C̃(j,l),(j′,l′) :=

{
C(j,l),(j′,l′) if l + l′ ≤ βL

0 otherwise.
(5.17)

Proposition 5.3 Assume Y ≤ 2ρ− 2(p + 1) and β in (5.17) given by

β =
2p+ 2− ρ

ρ+min{−Y, 2p+ 2}
. (5.18)

Then the consistency condition

|c(uh, vh)− c̃(uh, vh)| ≤ Chp+1−ρ/2| log h|ν |||uh|||p+1 ‖vh‖H̃ρ/2 (5.19)

holds, and the number of nonzero matrix entries in C̃ is bounded by O(Nβ logN) with β ≤ 1.

Proof. Let u, v ∈ Vh. For u =
∑L

l=0

∑M l

j=1 u
l
jψ

l
j we define ul :=

∑M l

j=1 u
l
jψ

l
j , and analogously

for v. The approximation property of V l implies that
∥∥ul

∥∥
s
≤ C

∣∣∣∣∣∣ul
∣∣∣∣∣∣
s
for −(p + 1) ≤ s ≤ 0

[14]. We then have with α := max{Y/2,−(p + 1)}, s := p+ 1− ρ/2, δ := ρ/2− α

∣∣∣c(ul, vl
′

)
∣∣∣ ≤ C

∥∥∥ul
∥∥∥
H̃ρ/2(ΩR)

∥∥∥vl
′

∥∥∥
H̃ρ/2(ΩR)

≤ C ′
∣∣∣
∣∣∣
∣∣∣ul

∣∣∣
∣∣∣
∣∣∣
α

∣∣∣
∣∣∣
∣∣∣vl

′

∣∣∣
∣∣∣
∣∣∣
α
= C ′2−sl−δ(l+l′)

∣∣∣
∣∣∣
∣∣∣ul

∣∣∣
∣∣∣
∣∣∣
p+1

∣∣∣
∣∣∣
∣∣∣vl

′

∣∣∣
∣∣∣
∣∣∣
ρ/2

.

Therefore

|c(u, v) − c̃(u, v)| ≤
∑

l,l′=0,...,L
l+l′>βL

∣∣∣c(ul, vl
′

)
∣∣∣ ≤ C

∑

l,l′=0,...,L
l+l′>βL

2−sl−δ(l+l′)
∣∣∣
∣∣∣
∣∣∣ul

∣∣∣
∣∣∣
∣∣∣
p+1

∣∣∣
∣∣∣
∣∣∣vl

′

∣∣∣
∣∣∣
∣∣∣
ρ/2

=
∑

l,l′=0,...,L

Ql,l′

∣∣∣
∣∣∣
∣∣∣ul

∣∣∣
∣∣∣
∣∣∣
p+1

∣∣∣
∣∣∣
∣∣∣vl

′

∣∣∣
∣∣∣
∣∣∣
ρ/2

≤ ‖Q‖2 |||u|||p+1 |||v|||ρ/2 . (5.20)

Here Q is the matrix with Ql,l′ = 2−sl−δ(l+l′) for l+ l′ > βL and Ql,l′ = 0 otherwise. Note that
we have β = s/δ ≤ 1 by our assumption on Y . For l+ l′ ≥ βL we have sl+ δ(l+ l′) ≥ sl+ sL.

Hence we have Ql,l′ ≤ 2−sL, and using geometric series we get ‖Q‖2 ≤ ‖Q‖1/21 ‖Q‖1/2∞ ≤
C2−sL = Chs. This proves the consistency condition (5.19). The number of nonzero matrix
elements is

∑

l,l′=0,...,L
l+l′≤βL

2l+l′ =
βL∑

k=0

k2k ≤ CL2βL.

!
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For the compressed matrix C̃ the operation v .→ C̃v can therefore be performed in O(Nβ′

)
operations with β′ < 1, and for large N the work for matrix C̃ becomes negligible compared
to the work for the bandmatrix Adiff.

We now consider the case of p = 1 with piecewise linear functions. For Y ≥ 0 we use the
compression (5.11) with (5.14). For σ > 0 and Y < 0 we use the compression (5.17) with (5.18).
In the case of a smooth kernel such as the Merton model from Section 3.3.1 we can use any
negative Y in (5.18) and obtain a compressed matrix C̃ with O(N1/3 logN) nonzero elements
and, by (5.16), a corresponding perturbed bilinear form ãR. In the case of Kou’s model from
Section 3.3.1 we obtain with Y = −2 a matrix C̃ with O(N1/2 logN) nonzero elements.

5.3.4 Perturbed θ-Scheme

Using ãR(·, ·) in place of aR(·, ·) in (5.9) gives perturbed θ-schemes

Ũ0
h = 0 , (5.21a)

( Ũm+1
h − Ũm

h

k
, vh

)
+ ãR

(
Ũm+θ
h , vh

)
= 〈f, vh〉V ∗×V (5.21b)

for m = 0, 1, 2, . . . ,M − 1 and every vh ∈ Vh, where again Ũm+θ
h := θŨm+1

h + (1 − θ) Ũm
h . In

matrix form, (5.21b) reads

(k−1M+ θÃ)Ũ
m+1

= k−1MŨ
m − (1− θ)ÃŨ

m
+ f, m = 0, 1, ...,M − 1

where Ũ
m

is the coefficient vector of Ũm
h with respect to a basis of Vh.

5.4 Convergence

Consider now the sequence {Ũm
h }Mm=0 of solutions to the perturbed θ-scheme (5.21a), (5.21b).

These solutions are stable and converge with optimal order as h → 0, regardless of the wavelet
compression.
We define for vh ∈ Vh and f ∈ V ∗

h

‖vh‖ã := (ãR(vh, vh))
1/2, ‖f‖∗̃ := sup

vh∈Vh

(f, vh)

‖vh‖ã
, λÃ := sup

vh∈Vh

‖vh‖2

‖vh‖2∗̃
. (5.22)

Theorem 5.4 Assume that the conditions (5.13), (5.15) hold. In the case of 0 ≤ θ < 1
2 assume

the time-step restriction

k <
2

(1− 2θ)λÃ

(5.23)

Assume that the exact solution UR(τ, x) of (4.1)–(4.3) is sufficiently smooth. Then there holds
the error estimate

∥∥∥UR(T, ·) − ŨM
h

∥∥∥
2
+ k

M−1∑

m=0

∥∥∥UR
(
(m+ θ)k, ·

)
− Ũm+θ

h

∥∥∥
2

a
≤ C

(
h2(p+1−ρ/2)|log h|2ν+1 + k2µ

)
,

(5.24)
where C > 0 depends on R, ν is as in (5.15), µ = 1 if θ 1= 1

2 and µ = 2 otherwise.

The convergence result (5.24) is proved in [36], Theorem 5.4.
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Remark 5.5 We can estimate λÃ in (5.22) as follows: For vh ∈ Vh we have from the inverse
inequality ‖wh‖ã ≤ C ‖wh‖V ≤ h−ρ/2 ‖wh‖ that

‖vh‖∗̃ = sup
wh∈Vh

(vh, wh)

‖wh‖ã
≥ Chρ/2 sup

wh∈Vh

(vh, wh)

‖wh‖
= Chρ/2 ‖vh‖

and therefore

λ1/2

Ã
= sup

vh∈Vh

‖vh‖
‖vh‖∗̃

≤ Ch−ρ/2.

Hence there exists a positive constant C∗ independent of h and θ such that the time-step
restriction

k ≤ C∗
hρ

1− 2θ
(5.25)

is sufficient for stability. For σ > 0 and θ = 0 this gives to the well-known time-step restriction
k ≤ Cθh2 for explicit schemes. Note that this restriction for θ = 0 is less severe for σ = 0 and
small values of Y .

5.5 Approximate Solution of Linear Equations and Complexity

In order to compute the approximate solution Ũm
h in (5.21) for m = 1, . . . ,M we proceed as

follows:
We first compute the mass matrix M in the wavelet basis with elements M(l,j),(l′,j′) where
O(N logN) elements are nonzero.
Then we compute the compressed stiffness matrix Ã where O(N(logN)) elements are nonzero,
see Proposition 5.2. If explicit antiderivatives of the kernel function are available (as is often
the case), the total cost for computing the stiffness matrix Ã is O(N(logN)) operations. In
other cases quadratures can be used. This preserves the consistency conditions (5.13),(5.15)
and the total cost of computing Ã is O(N(logN)2).
For each time step we have to solve (5.21b): We have to find w̃m

h := Ũm+1
h −Ũm

h ∈ Vh satisfying

k−1(w̃m
h , vh) + θãR(w̃

m
h , vh) = (fm+θ, vh)− ãR(Ũ

m
h , vh) ∀vh ∈ Vh (5.26)

and then update Ũm+1
h := Ũm

h + w̃m
h . Let w̃m ∈ lRN denote the coefficient vectors of w̃m

h with

respect to the wavelet basis, and M, Ã ∈ lRN×N the mass and stiffness matrices corresponding
to (·, ·) and ãR(·, ·) in this basis. Then we obtain for w̃m a linear system Bw̃m = b̃

m
with the

matrix B = k−1M+ θÃ and a known right-hand side vector b̃
m
.

For a standard finite element basis the matrix B has a condition number of order h−ρ for small
h and fixed k. For the matrix B in the wavelet basis we can achieve a uniformly bounded
condition number if we scale the rows and columns of B as follows: let µl := (k−1 + θ2ρl)1/2

and let B̂(l,j),(l′,j′) := µ−1
l µ−1

l′ B(l,j),(l′,j′). Let in what follows ‖·‖ denote the 2-norm of a vector,
or the 2-norm of a matrix.
Let D denote the diagonal matrix with entries D(l,j),(l,j) = 2lρ/2. Scaling with the diagonal

matrix S := (k−1I+ θD2)1/2 yields with B̂ = S−1BS−1

λmin
(
(B̂+ B̂,)/2

)
≥ C1,

∥∥∥B̂
∥∥∥ ≤ C2

for some C1, C2 > 0 independent of h and k. This implies that a step of the GMRES method
for the solution of a linear system with matrix B̂ has a convergence factor ≤ q < 1 independent
of L (see [36]).
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Remark 5.6 If one considers operators A with values of σ tending to zero, the convergence
factor will not stay uniformly bounded by q < 1. One can obtain a uniformly bounded
convergence factor if one modifies the scaling by using µl := (k−1 + θ[σ22l + C2Y l])1/2. This
follows from Proposition 4.2: Because of (4.9) we can assume c2 = 0 and have that aR(u, u) ∼
C ‖u‖2H̃Y/2(ΩR) + σ2 |u|21. Then by (5.10) the weight 22l gives a norm equivalent to ‖·‖1, and
the weight 2Y l gives a norm equivalent to ‖·‖H̃Y/2(ΩR).

For a function vh ∈ Vh with coefficient vector v and scaled coefficient vector v̂ = Sv we have
that with b(u, v) := k−1(u, v) + θãR(u, v) and ‖v‖2b := b(v, v)

‖v̂‖2 ∼ v̂,B̂v̂ = ‖vh‖2b .

A functional gh ∈ V ∗
h corresponds to a coefficient vector g so that (gh, vh) = g,v, and a scaled

vector ĝ = S−1g so that (gh, vh) = ĝ,v̂.

We now define the perturbed θ-scheme with GMRES approximation as follows: Pick a
value m0 ≥ 1 for the restart number, e.g., m0 = 1, and a value nG for the number of iterations.
At each time step we want to find an approximation of wm

h,∗ satisfying

b(wm
h,∗, vh) = (fm+θ, vh)− ãR(Ǔ

m
h , vh) for all vh ∈ Vh, Ǔ0

h = 0,

which corresponds to a scaled linear system B̂ŵm
∗ = b̂

m
. We solve this system approximately

with nG steps of GMRES(m0), using zero as initial guess, yielding an approximation ŵm of
the exact solution ŵm

∗ . We then let Ǔm+1
h := Ǔm

h + wm
h , where wm

h ∈ Vh is the function
corresponding to the scaled vector ŵm. Then we have, see Theorem 6.3 in [36]

Theorem 5.7 Assume that the consistency conditions (5.13), (5.15) hold. For θ ∈ [0, 12 )
assume σ := k(1−2θ)λA < 2. Then the solution Ǔm

h of the θ-scheme with wavelet compression
and approximate GMRES solution satisfies the same error bound as Ũm

h in (5.24) if nG ≥
C |log h|. Given the compressed stiffness matrix Ã, the work for computing Ǔ1

h , . . . , Ǔ
M
h is

bounded by CMN(logN)2 floating point operations.

5.6 Numerical results

We restrict the numerical experiments to vanishing interest rate, i.e., r = 0. In Figure 3 we
present the option prices versus the stock price S for the case of an European call contract on
Lévy driven assets. We use different maturities (top) and different strike prices K (bottom) for
an extended CGMY process [11] with σ = 0.1, C = 1, G = 1.8, M = 2.5 and Y = 0.2. We plot
for each case (top right and top bottom, respectively) the difference between the option prices
in the jump-diffusion case and the prices obtained by the standard Black-Scholes formula (only
diffusion) with σ = 0.1.
In Figure 4 we plot the option prices versus the stock price S for the case of an European
call contract on pure jump Lévy driven assets (σ = 0) at different maturities (left and right
(zoom)); CGMY parameters are: Y = 0.1430, C = 9.61, G = 9.97 and M = 16.51 (see [11]).
Note that in our theoretical analysis we assume that one removes for Y < 1 the drift term with
the transformation in section 4.4. In our numerical experiments we used the original equations
without this transformation, but the results still appear to be stable.
In the next set of numerical experiments we consider the variance gamma process. It is a
particular case of the CGMY process with Y = 0. Here explicit formulas for the prices of
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Figure 3: Option prices versus the stock price S for the case of an European call contract
on Lévy driven assets as compared to the Black-Scholes prices; different maturities (top) and
different strike prices K (bottom) for the case of an extended CGMY process with σ = 0.1,
Y = 0.2, G = 1.8 and M = 2.5.
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Figure 4: Option prices versus the stock price S for the case of an European call contract on
pure jump Lévy driven assets (σ = 0) at different maturities (left and right (zoom)); CGMY
parameters are: Y = 0.1430, C = 9.61, G = 9.97 and M = 16.51.
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Figure 5: Option prices versus the stock price S for the case of an European call contract on
VG (pure jump) driven assets for different strike pricesK at maturity T = 0.5; VG parameters:
σV G = 0.5, νV G = 1.0, θV G = −0.01 ⇒ CGMY parameters: Y = 0, G = 2.78 and M = 2.86.

European options are available [28]. The parameters are here Y = 0, G = 2.78, M = 2.86 and
C = 1.0. In Figure 5 we compare our numerical results obtained with the exact VG prices
obtained by the explicit formulae in [28] for different strike prices K and maturity T = 0.5.
The computed values are on top of the exact prices obtained by the explicit formula in [28].
Note that our theoretical results only apply to the case Y > 0, however even in the limiting
case Y = 0 the numerical method appears to be accurate.
Figure 6 shows pricing of options with the forward Euler scheme, i.e. with θ = 0. We clearly
see the impact of the CFL-condition (5.25) – if it is violated, instability results. In the jump-
diffusion case, the time-step restriction (5.25) renders the explicit scheme inefficient. In the
pure jump case, however, CFL-condition (5.25) yields a competitive scheme for Y ≤ 1; again
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Figure 6: Explicit Euler scheme (θ = 0.0), h = 0.0312 (L = 8, R = 8), T = 1.0; CGMY
parameters: C = 10.0, G = 6.0, M = 14.0, Y = 0.1, σ = 0.5; stable k = h2 (left), unstable:
k = 2h2
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Figure 7: Explicit Euler scheme, pure jump VG process: θ = 0.0, L = 8; α is the coefficient
in the convection term α∂u

∂x . |α|kh ≤ 1 stable; |α|kh > 1 unstable VG parameters: σV G = 0.5,
νV G = 1.0, θV G = −0.01 ⇒ CGMY parameters: Y = 0, G = 2.78 and M = 2.86.

the condition (5.25) is sharp, as is evidenced by Figure 7 right and Figure 8.
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Figure 8: Explicit Euler scheme, pure jump VG process: θ = 0.0, L = 9; |α|kh ≤ 1 (left) stable,

|α|kh > 1 (right) unstable; VG parameters: σV G = 0.5, νV G = 1.0, θV G = −0.01 ⇒ CGMY
parameters: Y = 0, G = 2.78 and M = 2.86.

A Proof of Theorem 3.4

We consider ϕ, ψ ∈ C∞
0 (R). Integration by parts and r = 0 in a−η in (3.22) gives

a−η(ϕ,ψ) = −σ2

2

∫

R

(
d2ϕ

dx2
(x)− dϕ

dx
(x)

)
ψ(x)e−2η(x)dx

−
∫

R

∫

R

{
ϕ(x+ y)− ϕ(x) − y

dϕ

dx
(x)χ{|y|≤1}(y)

}
k(y)ψ(x)e−2η(x)dydx

+ cexp

∫

R

dϕ

dx
(x)ψ(x)e−2η(x)dx

=
σ2

2

∫

R

dϕ

dx

dψ

dx
(x)e−2η(x)dx+

σ2

2

∫

R

dϕ

dx
(x)ψ(x)(−2η′(x) + 1)e−2η(x)dx

−
∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)yχ{|y|≥1}(y)k(y)ψ(x)e

−2η(x)dxdy

−
∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

d2ϕ

dx2
(x+ θ′y)y2χ{|y|≤1}(y)k(y)ψ(x)e

−2η(x)dxdy

+ cexp

∫

R

dϕ

dx
(x)ψ(x)e−2η(x)dx.

We write therefore a−η(ϕ,ψ) = a−η
1 (ϕ,ψ) + a−η

2 (ϕ,ψ) + a−η
3 (ϕ,ψ), where

a−η
1 (ϕ,ψ) =

σ2

2

∫

R

dϕ

dx

dψ

dx
(x)e−2η(x)dx+

σ2

2

∫

R

dϕ

dx
(x)ψ(x)(−2η′(x) + 1)e−2η(x)dx,

a−η
2 (ϕ,ψ) = −

∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)yχ{|y|≥1}(y)k(y)ψ(x)e

−2η(x)dxdy,

a−η
3 (ϕ,ψ) = −

∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

d2ϕ

dx2
(x+ θ′y)y2χ{|y|≤1}(y)k(y)ψ(x)e

−2η(x)dxdy

+ cexp

∫

R

dϕ

dx
(x)ψ(x)e−2η(x)dx.
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We analyse each aηj (·, ·) (j = 1, 2, 3) separately. For the bilinear form a−η
1 we obtain

|a−η
1 (ϕ,ψ)| ≤ C1(‖η′‖L∞(R))‖ϕ‖H1

−η(R)
‖ψ‖H1

−η(R)

and

a−η
1 (ϕ,ϕ) ≥ σ2

2
‖ϕ′‖2L2

−η(R)
− σ2

2
(2‖η′‖L∞(R) + 1)‖ϕ′‖L2

−η(R)
‖ϕ‖L2

−η(R)
(A.1)

≥ σ2

4
‖ϕ′‖2L2

−η(R)
− c1(‖η′‖L∞(R))‖ϕ‖2L2

−η(R)
. (A.2)

In order to estimate a−η
2 (·, ·) we write it first in the following form

a−η
2 (ϕ,ψ) = −

∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)e−η(x+θy)eη(x+θy)−η(x)yχ{|y|≥1}(y)k(y)ψ(x)e

−η(x) dxdy.

By (3.24) we obtain

|a−η
2 (ϕ,ψ)| ≤

∫

R

eη(y)|y|χ{|y|≥1}(y)k(y) dy · ‖φ′‖L2
−η(R)

‖ψ‖L2
−η(R)

.

Hence, since C(η) :=
∫
R
eη(y)|y|χ{|y|≥1}(y)k(y) dy < ∞ by assumption (3.25), a−η

2 (·, ·) is a
bounded bilinear form on H1

−η(R)×H1
−η(R).

Finally, we analyse a−η
3 (·, ·) and we show that for all ε > 0 there exists Cε > 0 such that

|a−η
3 (ϕ,ψ)| ≤ ‖ϕ‖H1

−η(R)
(ε‖ψ‖H1

−η(R)
+ Cε‖ψ‖L2

−η(R)
). (A.3)

To prove (A.3), let δ ∈ (0, 1) be arbitrary, but fixed. We start by writing a−η
3 (·, ·) in the

following form:

a−η
3 (ϕ,ψ) = −

∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

d2ϕ

dx2
(x+ θ′y)y2χ{|y|≤δ}(y)k(y)ψ(x)e

−2η(x)dxdy

−
∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)yχ{δ≤|y|≤1}(y)k(y)ψ(x)e

−2η(x)dx

+

∫

R

∫

R

dϕ

dx
(x)ψ(x)yχ{δ≤|y|≤1}(y)k(y)ψ(x)e

−2η(x)dx

+ cexp

∫

R

dϕ

dx
(x)ψ(x)e−2η(x)dx

=

∫

R

∫

R

∫ 1

0
dθ

∫ θ

0
dθ′

dϕ

dx
(x+ θ′y)e−η(x+θ′y)y2χ{|y|≤δ}(y)k(y)·

· {dψ
dx

(x)− 2η′(x)ψ(x)}eη(x+θ′y)−η(x)e−η(x) dxdy

−
∫

R

∫

R

∫ 1

0
dθ

dϕ

dx
(x+ θy)e−η(x+θy)yχ{δ≤|y|≤1}(y)k(y)e

η(x+θy)−η(x)ψ(x)e−η(x)dxdy

+

∫

R

∫

R

dϕ

dx
(x)ψ(x)yχ{δ≤|y|≤1}(y)k(y)ψ(x)e

−2η(x)dx

+ cexp

∫

R

dϕ

dx
(x)ψ(x)e−2η(x)dx.
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By(3.24), eη(x+θy)−η(x) ≤ eη(y) ≤ C for all |y| ≤ 1. We obtain therefore the following estimate

|a−η
3 (ϕ,ψ)| ≤ C3(‖η′‖L∞(R))

∫

R

y2χ{|y|≤δ}(y)k(y)dy · ‖ϕ‖H1
−η(R)

‖ψ‖H1
−η(R)

+

(
C

∫

R

|y|χ{δ≤|y|≤1}(y)k(y)dy + |cexp|
)
· ‖ϕ′‖L2

−η(R)
‖ψ‖L2

−η(R)
.

Since by (3.3)
∫
R
y2χ{|y|≤δ}(y)k(y)dy → 0 as δ → 0, for ε > 0 fixed we can choose δ = δ(ε) ∈

(0, 1) sufficiently small such that (A.3) holds.
The above calculations with η replaced by −η lead to identical conclusions, if instead of (3.24)
(3.26) holds and if condition (3.25) is replaced by (3.27).

Remark A.1 (3.24)–(3.25) hold for all η of the form

η(x) =

{
ν1|x| if x < 0
ν2|x| if x > 0.

(A.4)

with 0 ≤ ν1 < G and 0 ≤ ν2 < M . We distinguish 4 cases
Case 1. (x+ θy > 0, x > 0). Then, ν2(x+ θy)− ν2x = ν2θy ≤ a) −ν1y, if y < 0 b) ν2y, if

y > 0.
Case 2. (x + θy > 0, x < 0). Here, ν2(x + θy) + ν1x = (ν1 + ν2)x + ν2θy ≤ ν2θy ≤ ν2y

(= η(y), since y > 0 in this case).
Case 3. (x + θy < 0, x > 0). Then, −ν1(x + θy) − ν2x = −(ν1 + ν2)x − ν1θy ≤ −ν1y

(= η(y), since y < 0 here).
Case 4. (x+ θy < 0, x < 0). Here, −ν1(x + θy) + ν1x = −ν1θy ≤ a) −ν1y if y < 0 or b)

ν2y if y > 0.
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[43] W. Schoutens, Lévy Processes in Finance, Wiley Series in Probability and Statistics, Wiley
Publ. 2003.

[44] L. Schwartz, Theorie des distributions, Hermann & Cie., Paris 1957.

[45] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Verlag
1997.

[46] X. Zhang, Analyse Numerique des Options Américaines dans un Modèle de Diffusion avec
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