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1 Introduction

Discontinuous Galerkin (DG) methods for incompressible flow problems allow
one to use discrete velocity spaces consisting of piecewise polynomial functions
with no interelement continuity. Well-posedness of the discrete formulations is
then achieved by numerical fluxes, i.e., by introducing suitable bilinear forms
defined on the interfaces between the elements of the mesh. This choice presents
considerable advantages for certain types of problems, especially those modeling
phenomena where transport is dominant; see the state-of-the-art surveys in
[18], the monograph [15], the recent review [20], and the references therein. In
addition, DG approximations allow for non-conforming meshes.

Even if transport may be the dominant effect of a problem, diffusive terms
still need to be accounted for and correctly discretized in a DG framework. For
the Oseen or the incompressible Navier-Stokes equations, for instance, if advec-
tive terms are properly treated by, e.g., suitable upwinding techniques, stability
and convergence only depend on the diffusive part of the operator and can then
be studied for the simpler Stokes problem; see, e.g., [39, 25, 10, 33, 9]. In partic-
ular, suitable velocity-pressure space pairs are required to ensure stability and
convergence. This separation of advective and diffusive effects was employed
in [5] for the first definition of DG methods for convection-diffusion problems,
in [19, 16, 7] for the so-called local discontinuous Galerkin and Baumann-Oden
methods, respectively, and also in [27] for the hp-DG approximation of scalar
advection-diffusion problems.

The recent works in [32] and [2] have unified the formulation and analysis
of DG approximations for purely diffusive problems, where virtually all the
available DG methods can be analyzed in a unified framework. In particular,
several assumptions on the discrete spaces and bilinear forms have been given
and analyzed that can be used to ensure a priori error estimates for the methods.

While extensive work has been done for diffusion or advection-diffusion prob-
lems, there are considerably fewer works for DG discretizations of saddle-point
problems describing, e.g., nearly incompressible solids or incompressible fluid
flows. We mention [4, 28], where an interior penalty approximation with dis-
continuous, piecewise divergence-free velocities and continuous pressures is em-
ployed for the Stokes and incompressible Navier-Stokes equations, respectively.
In [17], a local discontinuous Galerkin approximation for the Stokes problem
is proposed. There, the introduction of certain pressure stabilization terms al-
lows one to choose velocity and pressure spaces of the same polynomial order
k. Optimal error estimates for h-approximations are proved. In [26], an h-
approximation for incompressible and nearly incompressible elasticity based on
an interior penalty DG method is introduced and studied. Triangular and tetra-
hedral meshes are employed, together with polynomial spaces of total degree k
and k − 1 for the velocity and pressure, respectively. Optimal error estimates
in h are derived, which remain valid in the incompressible limit. A similar
approach was considered in [40] for hp-approximations of the Stokes problem
on tensor product meshes in two and three dimensions. Stability estimates for
the discrete divergence bilinear form that are explicit in h and k are obtained.
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Numerical results point out that these estimates are not sharp in the order k,
at least for conforming two-dimensional meshes. In the present work we indeed
prove sharper estimates for the same DG approximation.

The present work has two purposes. In the first part, we develop an abstract
framework for mixed DG approximations of the Stokes problem. In particular,
we give a set of assumptions on the approximation spaces and on the velocity
and divergence bilinear forms which allows us to obtain a priori error estimates.
All available mixed DG methods for the Stokes problem can be analyzed in
the presented framework by introducing lifting operators similar to the ones
used in [2] for the Laplace equation. However, unlike in the analysis of [2], our
error estimates are derived by using a variant of Strang’s lemma, combined with
the techniques developed in [40] that give abstract estimates for the errors in
the velocity and the pressure. With respect to the use of Strang’s lemma, our
approach is closely related to the setting proposed in [30, 31] for the analysis of
local discontinuous Galerkin methods for purely elliptic problems.

Our second result is a new proof of the inf-sup condition of the discrete DG
divergence bilinear form for tensor product meshes and Qk − Qk−1 elements.
In particular, we prove a sharper bound than that given in [40]. Our analysis
is valid for shape-regular two- and three-dimensional tensor product meshes,
possibly with hanging nodes. Even though our estimate does not appear to be
sharp, at least in two dimensions (see the numerical results in [40]), we are able
to ensure the same convergence rate for the velocity and the pressure as that
of conforming Qk − Qk−2 elements in three dimensions, but with a gap in the
polynomial degree of the velocity-pressure pair of just one.

Our framework and analysis can be adapted to the case of nearly incompress-
ible elasticity in a straightforward way. We note that equal-order conforming
discretizations are possible both in nearly incompressible elasticity and incom-
pressible flows, but that the bilinear forms need to be suitably modified. These
stabilization techniques typically rely on local terms that are added to the bi-
linear forms and are constructed with the residual of the differential equations
on each element; see [22, 21, 24]. The calculation of these terms is not often a
simple matter for higher-order hp-approximations. On the other hand, DG ap-
proximations allow to narrow or eliminate the polynomial degree gap between
the velocity and pressure spaces by employing a discontinuous velocity space
and suitable bilinear forms on the interfaces. This brings in an increase of the
velocity degrees of freedom, that, in the case of p- and hp-approximations, is
not however of the same order of magnitude as the number of degrees of free-
dom of the corresponding conforming discretization, as is the case of lower-order
approximations.

The rest of this paper is organized as follows: We start by reviewing the
Stokes problem in section 2, and then present our abstract framework in sec-
tion 3. Suitable assumptions on the bilinear forms allow us to derive a priori
error estimates in section 4. In section 5 we discuss some particular choices for
the bilinear forms and the approximation spaces. Section 6 contains the proofs
of the inf-sup condition of the discrete divergence bilinear form. In sections 7
and 8 we establish the remaining assumptions for our DG approximations. Fi-
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nally, we derive hp-error estimates in section 9.

2 The Stokes problem

Let Ω be a bounded polygonal or polyhedral domain in Rd, d = 2, 3, respec-
tively, with n denoting the outward normal unit vector to its boundary ∂Ω.
Given a source term f ∈ L2(Ω)d and a Dirichlet datum g ∈ H1/2(∂Ω)d satis-
fying the usual compatibility condition

∫
∂Ω g · n ds = 0, the Stokes problem in

incompressible fluid flow is to find a velocity field u and a pressure p such that

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω, (1)

u = g on ∂Ω.

If we define

V := H1(Ω)d, Q := L2
0(Ω) = { q ∈ L2(Ω) :

∫

Ω
q dx = 0 },

and

A(u,v) =

∫

Ω
ν∇u : ∇v dx, B(u, p) = −

∫

Ω
p∇ · u dx,

then the corresponding variational problem consists in finding (u, p) ∈ V ×Q,
with u = g on ∂Ω, such that

{
A(u,v) + B(v, p) =

∫
Ω f · v dx

B(u, q) = 0
(2)

for all v ∈ H1
0 (Ω)

d and q ∈ Q.
The well-posedness of (2) is ensured by the continuity of A(·, ·) and B(·, ·),

the coercivity of A(·, ·), and the following inf-sup condition

inf
0"=q∈L2

0(Ω)
sup

0 "=v∈H1
0(Ω)d

−
∫
Ω q∇ · v dx

|v|1‖q‖0
≥ γ > 0, (3)

with an inf-sup constant γ only depending on Ω; see, e.g., [10, 25]. Here, we
denote by ‖ · ‖s,D and | · |s,D the norm and seminorm of Hs(D) and Hs(D)d,
s ≥ 0. In case D = Ω, we drop the subscript.

3 Mixed discretizations with nonconforming ve-

locity spaces

Let Vh be a nonconforming finite element space approximating the velocities.
We introduce the space

V(h) := V +Vh,
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and endow it with a suitable norm ‖ · ‖h. Furthermore, let Qh ⊂ Q be a
conforming finite element space for the pressure, equipped with the L2-norm
‖ · ‖0.

Given forms Ah : V(h)×V(h) → R, Bh : V(h)×Q → R and functionals Fh :
Vh → R, Gh : Qh → R, chosen to discretize the Laplacian and the divergence
constraint, we consider mixed methods of the form: find (uh, ph) ∈ Vh × Qh

such that {
Ah(uh,v) + Bh(v, ph) = Fh(v)

Bh(uh, q) = Gh(q)
(4)

for all (v, q) ∈ Vh ×Qh.
Let us make precise our assumptions on the forms Ah and Bh. First, they

are assumed to satisfy the following continuity properties

|Ah(v,w)| ≤ α1‖v‖h‖w‖h, v,w ∈ V(h), (5)

|Bh(v, q)| ≤ α2‖v‖h‖q‖0, (v, q) ∈ V(h)×Q, (6)

with constants α1 > 0 and α2 > 0. Further, let us define Z(Gh) ⊂ Vh by

Z(Gh) = {v ∈ Vh : Bh(v, q) = Gh(q) ∀q ∈ Qh }. (7)

We require the form Ah to be coercive on the kernel of Bh, i.e.,

Ah(v,v) ≥ β‖v‖2h, v ∈ Z(0), (8)

for a coercivity constant β > 0. The form Bh is assumed to satisfy the discrete
inf-sup condition

inf
0"=q∈Qh

sup
0 "=v∈Vh

Bh(v, q)

‖v‖h‖q‖0
≥ γh, (9)

with a stability constant γh > 0. Finally, we assume the exact solution u ∈ V
to fulfill the consistency condition

Bh(u, q) = Gh(q), ∀q ∈ Qh. (10)

We do not impose any consistency requirements on the form Ah; instead we will
work with the residual

Rh(u, p;v) := Ah(u,v) +Bh(v, p)− Fh(v), v ∈ Vh, (11)

where (u, p) ∈ V ×Q is again the exact solution. Our abstract error estimates
will then be expressed in terms of Rh(u, p) given by

Rh(u, p) := sup
0 "=v∈Vh

|Rh(u, p;v)|

‖v‖h
. (12)

For all the DG methods we introduce in section 5 the quantity Rh(u, p) is
optimally convergent.

We note that if Fh and Gh are continuous functionals on Vh and Qh, re-
spectively, the mixed problem (4) has a unique solution (uh, ph) ∈ Vh ×Qh.
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Remark 3.1. If Vh ⊂ V is chosen to be a conforming finite element space, the
setting of this section coincides with the standard mixed finite element setting;
see [10].

Remark 3.2. For the DG forms in section 5 the constants α1 and β depend
on the viscosity ν whereas α2 and γh are independent of ν. More precisely, we
have that α1 = νᾱ1 and β = νβ̄ with ᾱ1 and β̄ independent of ν.

4 Abstract error estimates

Abstract error bounds for the mixed method in (4) can be obtained by pro-
ceeding as in [40, Sect. 8]. We give the details of the proofs for the sake of
completeness.

4.1 Error in the velocity

First, we prove an error estimate for the velocities following [40, Lemma 8.1].

Proposition 4.1. Let (u, p) ∈ V×Q be the exact solution of the Stokes problem
and (uh, ph) ∈ Vh × Qh the mixed finite element approximation. Under the
assumptions of section 3, we have

‖u−uh‖h ≤ (1+
α1

β
)(1+

α2

γh
) inf
v∈Vh

‖u−v‖h+
α2

β
inf

q∈Qh

‖p− q‖0+β−1Rh(u, p).

Proof. First, we fix w ∈ Z(Gh) and q ∈ Qh. Since w − uh ∈ Z(0), (8) and the
definition of the residual yield

β‖w− uh‖
2
h ≤ Ah(w − uh,w − uh)

= Ah(w − u,w − uh)−Bh(w − uh, p− ph) +Rh(u, p;w − uh).

Sincew−uh ∈ Z(0), we can replace ph by q in the formBh. Using the continuity
properties in (5), (6), and the triangle inequality, we obtain

‖u− uh‖h ≤ (1 +
α1

β
)‖u−w‖h +

α2

β
‖p− q‖0 + β−1Rh(u, p), (13)

for any w ∈ Z(Gh) and q ∈ Qh.
Second, we fix v ∈ Vh and consider the problem of finding z(v) ∈ Vh such

that
Bh(z(v), q) = Bh(u− v, q), ∀q ∈ Qh.

Thanks to the discrete inf-sup condition in (9), the continuity of Bh in (6) and
[10, Proposition 1.2, p. 39], the solution z(v) is well defined. Furthermore,

γh‖z(v)‖h ≤ sup
0"=q∈Qh

Bh(z(v), q)

‖q‖0
= sup

0"=q∈Qh

Bh(u− v, q)

‖q‖0
≤ α2‖u− v‖h, (14)
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where we have used the continuity of Bh. By construction and assumption (10),
we have z(v) + v ∈ Z(Gh). Inserting z(v) + v in (13) yields

‖u−uh‖h ≤ (1+
α1

β
)‖u−v‖h + (1+

α1

β
)‖z(v)‖h +

α2

β
‖p− q‖0 + β−1Rh(u, p).

This, together with (14), proves the assertion.

Remark 4.1. Assuming that α1, α2 and β are independent of the discretization
parameter h, the bound in Proposition 4.1 can be expressed in a simpler fashion
as

‖u− uh‖h ≤ C
[
γ−1
h inf

v∈Vh

‖u− v‖h + inf
q∈Qh

‖p− q‖0 +Rh(u, p)
]
.

4.2 Error in the pressure

Next, we prove an error estimate for the pressure following the arguments in
[40, Lemma 8.2].

Proposition 4.2. Let (u, p) ∈ V×Q be the exact solution of the Stokes problem
and (uh, ph) ∈ Vh × Qh the mixed finite element approximation. Under the
assumptions of section 3, we have

‖p− ph‖0 ≤ (1 +
α2

γh
) inf
q∈Qh

‖p− q‖0 +
α1

γh
‖u− uh‖h + γ−1

h Rh(u, p).

Proof. Fix q ∈ Qh. From the inf-sup condition in (9) we have

γh‖q − ph‖0 ≤ sup
0 "=v∈Vh

Bh(v, q − ph)

‖v‖h
.

Since Bh(v, q−ph) = Bh(v, q−p)−Ah(u−uh,v)+Rh(u, p;v) for any v ∈ Vh,
we obtain from the continuity properties in (5) and (6) and the definition of Rh

in (12)
γh‖q − ph‖0 ≤ α2‖p− q‖0 + α1‖u− uh‖h +Rh(u, p).

The assertion follows then from the triangle inequality.

Remark 4.2. Taking into account the estimate for ‖u−uh‖h in Proposition 4.1
and assuming again that α1, α2 and β are independent of the discretization
parameter h, the bound in Proposition 4.2 reduces to

‖p− ph‖0 ≤ C
[
γ−1
h inf

q∈Qh

‖p− q‖0 + γ−2
h inf

v∈Vh

‖u− v‖h + γ−1
h Rh(u, p)

]
.

5 Discontinuous Galerkin discretizations

In this section, we give several examples of mixed discontinuous Galerkin meth-
ods that can be cast into the setting of section 3 by using lifting operators
similar to the ones introduced in [2] for the Laplacian.
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5.1 Triangulations and finite element spaces

Let Th be a shape-regular affine quadrilateral or hexahedral mesh on Ω. We
denote by hK the diameter of the element K ∈ Th. Further, we assign to each
elementK ∈ Th an approximation order kK ≥ 1. The local quantities hK are kK
are stored in the vectors h = {hK}K∈Th

and k = {kK}K∈Th
, respectively. We

set h = maxK∈Th
hK and |k| = maxK∈Th

kK . Finally, nK denotes the outward
normal unit vector to the boundary ∂K.

An interior face of Th is the (non-empty) interior of ∂K+ ∩ ∂K−, where K+

and K− are two adjacent elements of Th. Similarly, a boundary face of Th is the
(non-empty) interior of ∂K∩∂Ω which consists of entire faces of ∂K. We denote
by EI the union of all interior faces of Th, by ED the union of all boundary faces,
and set E = EI ∪ ED. Here and in the following, we refer generically to a “face”
even in the two-dimensional case.

We allow for irregular meshes, i.e., meshes with hanging nodes (see [37,
Sect. 4.4.1]), in general, but suppose that the intersection between neighboring
elements is either a common vertex, or a common edge, or a common face, or an
entire face of one of the two elements. We also assume the local mesh-sizes and
approximation degrees to be of bounded variation, that is, there is a constant
κ > 0 such that

κhK ≤ hK′ ≤ κ−1hK , κkK ≤ kK′ ≤ κ−1kK , (15)

whenever K and K ′ share a common face.
We wish to approximate the velocities and pressures in the discontinuous

finite element spaces Vh and Qh given by

Vh = {v ∈ L2(Ω)d : v|K ∈ QkK
(K)d, K ∈ Th },

Qh = { q ∈ L2
0(Ω) : q|K ∈ QkK−1(K), K ∈ Th },

(16)

respectively, where Qk(K) is the space of polynomials of maximum degree k in
each variable on K.

For the derivation and analysis of the methods we will make use of the
auxiliary space Σh defined by

Σh := { τ ∈ L2(Ω)d×d : τ ∈ QkK
(K)d×d, K ∈ Th }.

Note that ∇hVh ⊂ Σh, where ∇h is the discrete gradient, taken elementwise,
and given by [∇v]ij = ∂jvi =

∂vi
∂xj

on K ∈ Th.

5.2 Trace operators

In this section, we define the trace operators needed in our discontinuous Galerkin
discretizations. To this end, let e ⊂ EI be an interior face shared by K+ and
K−. Let (v, q, τ) be a function smooth inside each element K± and let us de-
note by (v±, q±, τ±) the traces of (v, q, τ ) on e from the interior of K±. Then,
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we define the mean values {{·}} and normal jumps [[·]] at x ∈ e as

{{v}} := (v+ + v−)/2, [[v]] := v+ · nK+ + v− · nK− ,

{{q}} := (q+ + q−)/2, [[[[[[q]]]]]] := q+ nK+ + q− nK− ,

{{τ}} := (τ+ + τ−)/2, [[[[[[τ]]]]]] := τ+ nK+ + τ− nK− .

Note that the jumps [[[[[[q]]]]]] and [[[[[[τ]]]]]] are both vectors whereas the jump [[v]] is a
scalar. We also need to define a jump of the velocity v which is a matrix,
namely,

[[v]] := v+ ⊗ nK+ + v− ⊗ nK− ,

where, for two vectors a and b, we set [a⊗ b]ij = aibj.
On a boundary face e ⊂ ED given by e = ∂K ∩ ∂Ω, we set accordingly

{{v}} := v, {{q}} := q, {{τ}} := τ ,

as well as

[[v]] := v · n, [[v]] := v ⊗ n, [[[[[[q]]]]]] := qn, [[[[[[τ]]]]]] := τ n.

We remark that, for the exact solution (u, p) ∈ V×Q, there holds [[u]] = 0 and
[[[[[[ν∇u − pI]]]]]] = 0 on EI . The last property follows from the fact that ν∇u − pI
belongs to H(div;Ω); see [40].

5.3 Lifting operators

We introduce the following lifting operators. First, for a face e ⊂ E we define
Le : V(h) → Σh by

∫

Ω
Le(v) : τ dx =

∫

e
[[v]] : {{τ}} ds, ∀τ ∈ Σh.

Note that the support of Le(v) is contained in the elements that share the face
e. For a boundary face e ⊂ ED, we introduce the lifting Ge ∈ Σh of the Dirichlet
datum g given by

∫

Ω
Ge : τ dx =

∫

e
(g ⊗ n) : τ ds, ∀τ ∈ Σh.

For the exact solution u ∈ V, we have

Le(u) = 0, ∀e ⊂ EI , Le(u) = Ge, ∀e ⊂ ED. (17)

Globally, we define L : V(h) → Σh and G ∈ Σh by

L :=
∑

e⊂E

Le, G :=
∑

e⊂ED

Ge.
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These operators can be characterized by
∫

Ω
L(v) : τ dx =

∫

E
[[v]] : {{τ}} ds, ∀τ ∈ Σh,

∫

Ω
G : τ dx =

∫

ED

(g ⊗ n) : τ ds, ∀τ ∈ Σh.

Finally, we need the lifting operator M : V(h) → Qh defined by
∫

Ω
M(v)ϕ dx =

∫

E
[[v]] {{ϕ}} ds, ∀ϕ ∈ Qh.

For the exact solution u ∈ V, there holds
∫

Ω
M(u)ϕ dx =

∫

ED

ϕg · n ds, ∀ϕ ∈ Qh. (18)

5.4 Mixed discontinuous Galerkin problems

We introduce mixed discontinuous Galerkin methods of the form (4) for the
mixed-order spaces in (16):
Find (uh, ph) ∈ Vh ×Qh such that

{
Ah(uh,v) + Bh(v, ph) = Fh(v)

Bh(uh, q) = Gh(q)
(19)

for all (v, q) ∈ Vh ×Qh.
The form Bh : V(h) ×Q → R and the functional Gh : Qh → R will always

be chosen as:

Bh(v, q) = −

∫

Ω
q [∇h · v −M(v)] dx, v ∈ V(h), q ∈ Q,

Gh(q) =

∫

ED

q g · n ds, q ∈ Qh,

Restricted to discrete functions (v, q) ∈ Vh ×Qh, we have

Bh(v, q) = −

∫

Ω
q∇h · v dx+

∫

E
{{q}}[[v]] ds. (20)

Thus, we obtain exactly the form Bh and the functional Gh considered in the
mixed DG approaches in [17, 26, 40]. We remark that (10) is satisfied thanks
to (18).

For discrete functions, we have equivalently,

Bh(v, q) =

∫

Ω
∇hq · v dx−

∫

EI

[[[[[[q]]]]]] · {{v}} ds, (v, q) ∈ Vh ×Qh. (21)

This follows by integration by parts and elementary manipulations, see equation
(4.7) in [40].
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The space V(h) = V +Vh is endowed with the broken norm

‖v‖2h =
∑

K∈Th

|v|21,K +

∫

E
σ|[[v]]|2 ds, v ∈ V(h), (22)

where σ ∈ L∞(E) is the so-called discontinuity stabilization function that we
choose in terms of the local mesh-sizes and the polynomial degrees as follows.
Define the functions h ∈ L∞(E) and k ∈ L∞(E) by

h(x) :=

{
min{hK , hK′}, x in the interior of ∂K ∩ ∂K ′,
hK , x in the interior of ∂K ∩ ∂Ω,

k(x) :=

{
max{kK , kK′}, x in the interior of ∂K ∩ ∂K ′,
kK , x in the interior of ∂K ∩ ∂Ω.

Then we set
σ = σ0h

−1
k
2, (23)

with a parameter σ0 > 0 that is independent of h and k.
For the form Ah related to the Laplacian several choices are possible. Let

us discuss the stable and consistent forms in the sense of [2].

The interior penalty forms Ah

The symmetric interior penalty (IP) form has been used in the mixed DG
method introduced in [26]. It is obtained by first defining the stabilization
form Iσh as

Iσh (u,v) := ν

∫

E
σ[[u]] : [[v]] ds, u,v ∈ V(h), (24)

where σ is the discontinuity stabilization function in (23), and then by taking,
for u,v ∈ V(h),

Ah(u,v) =

∫

Ω
ν
[
∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx+ Iσh (u,v),

Fh(v) =

∫

Ω
f · v dx− ν

∫

Ω
G : ∇hv dx+ ν

∫

ED

σg · v ds.
(25)

Restricted to discrete functions u,v ∈ Vh, we have

Ah(u,v) =

∫

Ω
ν∇hu : ∇hv dx−

∫

E

(
{{ν∇hv}} : [[u]] + {{ν∇hu}} : [[v]]

)
ds+ Iσh (u,v).

The non-symmetric variant of the IP form has been studied in the mixed DG
approach in [40] (see also [35, 27] for scalar convection-diffusion problems). It
is obtained by choosing, for u,v ∈ V(h),

Ah(u,v) =

∫

Ω
ν
[
∇hu : ∇hv + L(u) : ∇hv − L(v) : ∇hu

]
dx+ Iσh (u,v),

Fh(v) =

∫

Ω
f · v dx+ ν

∫

Ω
G : ∇hv dx+ ν

∫

ED

σg · v ds.
(26)

10



Remark 5.1. For σ ≡ 0 the form Ah in (26) coincides with the form given by
the so-called Baumann-Oden method [7, 29]. Further, realizations of the meth-
ods of Baker, Jureidini and Karakashian [4, 28] are obtained with the IP form Ah

in (25), if we choose the spaces Ṽh = {v ∈ Vh : v|K is divergence free on each K ∈ Th }
and Q̃h = Qh ∩ C0(Ω), respectively.

The LDG form Ah

The local discontinuous Galerkin (LDG) form is closely related to the IP forms
since it is also expressed in terms of the stabilization form Iσh in (24). In the
context of the Stokes problem, it has been studied in [17] (see also [19, 13, 31]).
In the primal variables, the LDG form is given by taking, for u,v ∈ V(h),

Ah(u,v) =

∫

Ω
ν
[
∇hu− L(u)

]
:
[
∇hv − L(v)

]
dx+ Iσh (u,v),

Fh(v) =

∫

Ω
f · v dx− ν

∫

Ω
G :

(
∇hv − L(v)

)
dx+ ν

∫

ED

σg · v ds.
(27)

The Bassi-Rebay forms Ah

These forms were inspired by the original Bassi-Rebay (BR) method in [5],
which, in fact, is unstable. They are defined by introducing a different stabi-
lization form Iηh given by

Iηh(u,v) = ν
∑

e⊂E

∫

Ω
ηLe(u) : Le(v) dx, u,v ∈ V(h), (28)

for a parameter η > 0. The first form we present here was introduced in [6] and
is obtained by choosing, for u,v ∈ V(h),

Ah(u,v) =

∫

Ω
ν
[
∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx+ Iηh(u,v),

Fh(v) =

∫

Ω
f · v dx− ν

∫

Ω
G : ∇hv dx+ ν

∑

e⊂ED

∫

Ω
η Ge : Le(v) dx.

(29)

In [11], the following variant of the BR form has been proposed:

Ah(u,v) =

∫

Ω
ν
[
∇hu− L(u)

]
:
[
∇hv − L(v)

]
dx+ Iηh(u,v),

Fh(v) =

∫

Ω
f · v dx− ν

∫

Ω
G : ∇hv dx+ ν

∑

e⊂ED

∫

Ω
η Ge : Le(v) dx.

(30)

6 Divergence stability

In this section, we establish an inf-sup condition for the formBh(·, ·) with respect
to the norm ‖·‖h in (22)-(23) and for theQk−Qk−1 spaces in (16). We recall that
the divergence bilinear form is the same for all the methods that we consider.
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6.1 The discrete inf-sup condition

Let us begin by stating our main stability result.

Proposition 6.1. Let kK ≥ 2 for all K ∈ Th. Then there are constants c1 > 0
and c2 > 0, independent of h and k, such that for each q ∈ Qh there exists a
discrete velocity field v ∈ Vh such that

Bh(v, q) ≥ c1‖q‖
2
0, ‖v‖h ≤ c2|k| ‖q‖0.

From the above result, we immediately find the following stability result.

Theorem 6.1. There exists a constant c > 0, independent of h and k, such
that, for kK ≥ 2,

inf
0"=q∈Qh

sup
0 "=v∈Vh

Bh(v, q)

‖v‖h‖q‖0
≥ γh ≥ c |k|−1. (31)

Remark 6.1. Theorem 6.1 establishes an hp-version divergence stability result
for the Qk − Qk−1 element family where the difference in the approximation
orders for the velocity and the pressure is exactly one. It is well known that
these elements are unstable in a conforming setting, although they are optimal
in terms of the approximation properties of the finite element spaces. The use
of discontinuous velocities overcomes these usual stability problems in a natural
way. In addition, the bound (31) holds in two and three dimensions, and it is
identical to the bound established in [38] for conforming mixed hp-FEM in three
dimensions, although there Qk −Qk−2 spaces have been used.

Remark 6.2. The technique we use to prove this result is a combination of
the h-version approach in [26] that makes use of H(div)-conforming projectors
and of the work [40] that allows us to deal with hanging nodes. Indeed, we
also decompose the pressure into piecewise constants and polynomials whose
mean values vanish elementwise as in [40] (see also the analysis for conforming
hp-methods in [38]) and use the low-order stability results in two and three
dimensions of [36, 41] for Q2 − Q0 elements on irregular meshes. That is the
reason why we assume kK ≥ 2 in Proposition 6.1. We remark that for Q1 −
Q0 elements and conforming meshes, divergence stability can be obtained by
establishing directly a Fortin property. We report on this case in more detail in
section 6.5.

Remark 6.3. The numerical tests in [40] show that in two dimensions a stabil-
ity constant independent of h and k is expected, indicating that the dependence
on k in (31) is not likely to be sharp.

Remark 6.4. As can be inferred from its proof, the result of Theorem 6.1 holds
in fact for the strictly smaller velocity space Ṽh ⊂ Vh given by

Ṽh = {v ∈ Vh ∩H0(div;Ω) : v|K ∈ RTkK−1(K), K ∈ Th},
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for the Raviart-Thomas space RTkK−1(K) of degree kK−1 introduced in the next
section. Here, H0(div;Ω) = {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω), v · n = 0 on ∂Ω}.
Whether or not the dependence of the inf-sup constant γh on the polynomial
degree in (31) is sharp for this space is an open issue.

The remaining part of this section is devoted to the proof of Proposition 6.1.
We will carry out the proof for the three-dimensional case and note that the
result in two dimensions is obtained completely analogously. We start in sec-
tion 6.2 by defining Raviart-Thomas interpolation operators that we shall use as
Fortin operators. In section 6.3, we establish new stability results for these op-
erators. The proof of Proposition 6.1 is then given in section 6.4. In section 6.5,
we report on some extensions of our stability result to uniform approximation
orders and conforming meshes, also including Q1 −Q0 elements.

6.2 Raviart-Thomas spaces and interpolants

Given the reference cube K̂ = (−1, 1)3 and an integer k ≥ 0, we consider the
space

RTk(K̂) = Qk+1,k,k(K̂)×Qk,k+1,k(K̂)×Qk,k,k+1(K̂),

where Qk1,k2,k3
(K̂) is the space of polynomials of degree at most ki in the ith

variable. For an affinely mapped element K ∈ Th the space RTk(K) is defined
by suitably mapping functions in RTk(K̂) using a Piola transformation; see [10,
Sect. 3.3] or [1, Sect. 3.3] for further details.

We denote the faces of K̂ by γm, m = 1, . . . , 6. In particular, we set

γ1 = {x = −1}, γ2 = {x = 1},
γ3 = {y = −1}, γ4 = {y = 1},
γ5 = {z = −1}, γ6 = {z = 1}.

We use the same notation for an affinely mapped element K, where the faces
are obtained by mapping the corresponding ones of K̂. Moreover, we denote by
Qk,k(γm) the space of polynomials of degree at most k in each variable on the
face γm.

On the reference cube, there is a unique interpolation operatorΠK̂ : H1(K̂)3 →

RTk(K̂), such that
∫

K̂

(
ΠK̂w−w

)
· r dx = 0, r ∈ Qk−1,k,k(K̂)×Qk,k−1,k(K̂)×Qk,k,k−1(K̂),

∫

γm

(
ΠK̂w −w

)
· nϕ ds = 0, ϕ ∈ Qk,k(γm), m = 1, . . . , 6;

(32)

see [10] or [1]. For k = 0, the first condition in (32) is void. For an element
K ∈ Th, the interpolant ΠK : H1(K)3 → RTk(K) can be defined by using a
Piola transform in such a way that the orthogonality conditions in (32) also
hold for ΠK ; see, e.g., [1, Sect. 3.5].

13



6.3 Stability of the Raviart-Thomas interpolant

In order to prove our stability results for the operator ΠK , we need to introduce
a representation formula, originally proposed in [1] for the two-dimensional case.
We start by defining some additional operators for the reference cube K̂. Given
integers k1, k2 and k3, we define

Q̂k1,k2,k3
= πz

k3
⊗ πy

k2
⊗ πx

k1
: L2(K̂) → Qk1,k2,k3

(K̂)

as the L2-orthogonal projection onto Qk1,k2,k3
(K̂). We note that Q̂k1,k2,k3

is the
tensor product of one-dimensional L2-projections πki

on the reference interval
I = (−1, 1).

We next introduce extension operators from the faces γm. To that end, we
denote by Lk, k ≥ 0, the Legendre polynomial of degree k in I; see [9, Sect. 3].
For the face γ1, we define Eγ1

k : Qk,k(γ1) → Qk+1,k,k(K̂) as

(Eγ1

k ϕ)(x, y, z) := Mγ1

k (x)ϕ(y, z), Mγ1

k (x) :=
(−1)k+1

2
(Lk+1(x) − Lk(x)).

We note that
(Eγ1

k ϕ)|γ1
= ϕ, (Eγ1

k ϕ)|γ2
= 0,

and that (Eγ1

k ϕ)|γm
, m = 3, . . . , 6, does not vanish in general. Analogous defi-

nitions hold for the other faces γm, m = 2, . . . , 6.
Similar to [1, Lemma 3], for w = (wx, wy, wz) ∈ H1(K̂)3, the interpolant

v = ΠK̂w can be written as v = (vx, vy, vz) with

vx = Q̂k−1,k,kwx +
2∑

m=1

Eγm

k (πy
k ◦ πz

k)
(
wx − Q̂k−1,k,kwx

)
,

vy = Q̂k,k−1,kwy +
4∑

m=3

Eγm

k (πx
k ◦ πz

k)
(
wy − Q̂k,k−1,kwy

)
,

vz = Q̂k,k,k−1wz +
6∑

m=5

Eγm

k (πx
k ◦ πy

k)
(
wz − Q̂k,k,k−1wz

)
,

(33)

where, e.g., (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx) is understood as πy
k ◦ πz

k applied to the

restriction of (wx − Q̂k−1,k,kwx) to γm, m = 1, 2.
Before proving our stability results, we need some technical lemmas. The

results in the following lemma can be found using similar techniques as in The-
orem 2.2 in [12], Lemma 3.9 in [27], and Theorems 3.91 and 3.92 in [37].

Lemma 6.1. We have the following estimates.

1. Let w ∈ H1(K̂). Then there exists a constant C > 0 independent of k
such that,

|Q̂k−1,k,kw|
2
1,K̂

≤ C k |w|2
1,K̂

, (34)

‖w − Q̂k−1,k,kw‖
2
0,γm

≤ C k−1 |w|2
1,K̂

, m = 1, . . . , 6. (35)
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2. Let I = (−1, 1) and w ∈ Qk(I). Then there exists a constant C > 0 such
that

|w|1,I ≤ Ck2‖w‖0,I , (36)

‖w‖∞,I ≤ Ck‖w‖0,I . (37)

The following lemma can be proved by using the properties of the Legendre
polynomials given, e.g., in Theorem 3.2 and Remark 3.2 in [9], and Theorem
3.96 in [37].

Lemma 6.2. Let

Mγ1

k (x) =
(−1)k+1

2
(Lk+1(x) − Lk(x)).

Then
‖Mγ1

k ‖20,I ≤ Ck−1, |Mγ1

k |21,I ≤ Ck3.

Similar estimates hold for the other faces γm.

We have the following stability result.

Lemma 6.3. There exists a constant C > 0, independent of hK and k, such
that, for w ∈ H1(K)3,

|ΠKw|21,K ≤ Ck2|w|21,K .

Proof. Let w = (wx, wy, wz). We set v = ΠKw and v = (vx, vy, vz). We only
find a bound for the first component vx. Bounds for vy and vz can be obtained
similarly. In addition, we only consider the reference cube K̂ = (−1, 1)3 since a
bound for an affinely mapped K can be easily deduced using a scaling argument.
We consider the two terms of vx in (33). Thanks to (34), we have

|Q̂k−1,k,kwx|1,K̂ ≤ Ck
1
2 |wx|1,K̂ . (38)

We now consider the face γ1. Using Lemma 6.2 and the stability of the L2-
projection, we can write

‖∂x(E
γ1

k (πy
k ◦ πz

k)(wx − Q̂k−1,kwx))‖
2
0,K̂

= |Mγ1

k |21,I ‖(π
y
k ◦ πz

k)(wx − Q̂k−1,k,kwx)‖
2
0,γ1

≤ Ck3‖wx − Q̂k−1,k,kwx‖
2
0,γ1

,

and thanks to the estimate (35),

‖∂x(E
γ1

k (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx))‖
2
0,K̂

≤ Ck2|wx|
2
1,K̂

. (39)

Using Lemma 6.2 and the inverse estimate (36) we find

‖∂y(E
γ1

k (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx))‖
2
0,K̂

= ‖Mγ1

k ‖20,I ‖∂y((π
y
k ◦ πz

k)(wx − Q̂k−1,kwx))‖
2
0,γ1

≤ Ck−1k4‖wx − Q̂k−1,k,kwx‖
2
0,γ1

,
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and due to the estimate (35),

‖∂y(E
γ1

k (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx))‖
2
0,K̂

≤ Ck2|wx|
2
1,K̂

. (40)

Analogously,

‖∂z(E
γ1

k (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx))‖
2
0,K̂

≤ Ck2|wx|
2
1,K̂

. (41)

Similar estimates can be found for the face γ2. The proof is completed by
combining (33), (38), (39), (40), and (41) with a scaling argument.

On the boundary ∂K of an element K, we have the following bound.

Lemma 6.4. There exists a constant C > 0, independent of hK and k, such
that, for w ∈ H1(K)3,

‖w−ΠKw‖20,∂K ≤ ChK |w|21,K .

Proof. Let v = ΠKw. First, we find a bound for the first component vx of v on
the reference cube K̂ = (−1, 1)3.

On the face γ1, we have

wx − vx = wx − Q̂k−1,k,kwx − (πy
k ◦ πz

k)(wx − Q̂k−1,k,kwx).

Hence, by the triangle inequality, (35) and by the stability of the L2-projection,
we obtain

‖wx − vx‖
2
0,γ1

≤ Ck−1|wx|
2
1,K̂

.

An analogous estimate holds on γ2.
Consider now the face γ3. We have

‖wx − vx‖
2
0,γ3

≤C‖wx − Q̂k−1,k,kwx‖
2
0,γ3

+ C
2∑

m=1

‖Eγm

k (πy
k ◦ πz

k)
(
wx − Q̂k−1,k,kwx

)
‖20,γ3

.

The first term above can be bounded again by using (35). Further, using Lemma
6.2, the inverse estimate (37), and the estimate (35), we find for m = 1, 2,

∫

γ3

(
Eγm

k (πy
k ◦ πz

k)
(
wx − Q̂k−1,k,kwx

))2
dx dz

= ‖Mγm

k ‖20,I

∫ 1

−1

(
(πy

k ◦ πz
k)

(
wx − Q̂k−1,k,kwx

))2

|y=−1

dz

≤ C k−1 k2
∫

γm

(
(πy

k ◦ πz
k)

(
wx − Q̂k−1,k,kwx

))2
dy dz

≤ C |wx|
2
1,K̂

.
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Hence, we obtain
‖wx − vx‖

2
0,γ3

≤ C |wx|
2
1,K̂

.

The analogous bounds are obtained on γ4, γ5 and γ6. This gives the desired
result for the first component of w −ΠKw.

The proof is completed by observing that the same techniques give analogous
bounds for the other components of w−ΠKw, and by a scaling argument.

6.4 Proof of Proposition 6.1

Fix q ∈ Qh. We first proceed as in [40, Lemma 6.3] (see also [38] for conforming
mixed hp-FEM), and decompose q into

q = q0 + q̄ (42)

where q0 is the L2-projection of q into the subspace of L2
0(Ω) consisting of

piecewise constant pressures.
Owing to the results in [25, 38] for conforming meshes and the results in

[36, 41] (valid for two- and three-dimensional domains) for meshes with hanging
nodes (see also [40]), there exists a piecewise quadratic velocity field v0 ∈ Vh ∩
H1

0 (Ω)
3, such that

Bh(v0, q0) = −

∫

Ω
q0∇ · v0 dx ≥ ‖q0‖

2
0, ‖v0‖h = |v0|1 ≤ C0‖q0‖0. (43)

Further, for K ∈ Th, we set q̄K = q̄|K and have, by construction,
∫
K q̄K dx =

0. Due to the continuous inf-sup condition [10, 25], there is a velocity field
w̄K ∈ H1

0 (K)3 such that

−

∫

K
q̄K∇ · w̄K dx ≥ ‖q̄K‖20,K , |w̄K |1,K ≤ C‖q̄K‖0,K , (44)

with a constant C > 0 solely depending on the shape-regularity of the mesh.
Define w̄ ∈ H1

0 (Ω)
3 by w̄|K = w̄K for all K ∈ Th, and let v̄ ∈ Vh be given by

v̄|K = v̄K := ΠKw̄K ∈ RTkK−1(K), K ∈ Th,

for the Raviart-Raviart projector ΠK of degree kK − 1 on K. Since w̄K ∈
H1

0 (K)3, we have
v̄K · nK = 0 on ∂K, (45)

due to the second conditions in (32) (valid for an affinely mapped element), and
hence [[v̄]] = 0 on E . From the definition of Bh in (20), we thus have

Bh(v̄, q̄) = −

∫

Ω
q̄∇h · v̄ dx =

∑

K∈Th

∫

K
∇q̄K · v̄K dx.

Mapping q̄K to ˆ̄qK̂ via the usual pullback operator and v̄K to ˆ̄vK̂ via the Piola
transformation, we obtain from [10, Sect. 3.1]

∫

K
∇q̄K · v̄K dx =

∫

K̂
∇̂ˆ̄qK̂ · ˆ̄vK̂ dx̂
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We then note that, since ˆ̄qK̂ ∈ QkK−1(K̂), we have

∇̂ˆ̄qK̂ ∈ QkK−2,kK−1,kK−1(K̂)×QkK−1,kK−2,kK−1(K̂)×QkK−1,kK−1,kK−2(K̂).

Using the orthogonality conditions in (32), we obtain
∫

K̂
∇̂ˆ̄qK̂ · ˆ̄vK̂ dx̂ =

∫

K̂
∇̂ˆ̄qK̂ · ˆ̄uK̂ dx̂ =

∫

K
∇q̄K · w̄K dx

and, therefore, from (44),

Bh(v̄, q̄) =
∑

K∈Th

∫

K
∇q̄K · w̄K dx = −

∑

K∈Th

∫

K
q̄K∇ · w̄K dx ≥ ‖q̄‖20. (46)

Further, from the stability result in Lemma 6.3 and (44), we obtain
∑

K∈Th

|v̄K |21,K ≤ C
∑

K∈Th

k2K |w̄K |21,K ≤ C|k|2‖q̄‖20. (47)

Then, since [[w̄]] = 0 on E , we have with Lemma 6.4 and (15)

∫

E
σ[[v̄]]2ds =

∫

E
σ[[w̄ − v̄]]2ds

≤ C
∑

K∈Th

k2K
hK

‖w̄K − v̄K‖20,∂K ≤ C|k|2
∑

K∈Th

|w̄K |21,K ≤ C|k|2‖q̄‖20.

Combining this estimate with (46) and (47) yields

Bh(v̄, q̄) ≥ ‖q̄‖0, ‖v̄‖2h ≤ C̄|k|2‖q̄‖0. (48)

Next, we define
v = v0 + δv̄

for a parameter δ > 0 still at our disposal. First, we note that from (20) and
(45),

Bh(v̄, q0) = −
∑

K∈Th

q0|K

∫

K
∇ · v̄K dx = −

∑

K∈Th

q0|K

∫

∂K
v̄K · nK ds = 0

since q0 is piecewise constant. Further, v0 ∈ Vh ∩ H1
0 (Ω)

3 and, therefore, we
obtain from (43) and the arithmetic-geometric mean inequality

|Bh(v0, q̄)| = |

∫

Ω
q̄∇ · v0 dx| ≤ C‖q0‖0‖q̄‖0 ≤

C1

ε
‖q0‖

2
0 + εC2‖q̄‖

2
0,

with another parameter ε > 0 to be properly chosen. Combining the above
results with (43) and (48), gives

Bh(v, q) = Bh(v0, q0) +Bh(v0, q̄) + δBh(v̄, q̄)

≥ (1 −
C1

ε
)‖q0‖

2
0 + (δ − εC2)‖q̄‖

2
0.
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It is then clear that we can choose δ and ε in such a way that

Bh(v, q) ≥ c1‖q‖
2
0, (49)

with a constant c1 independent of h and k. Furthermore, from (43) and (48),

‖v‖h ≤ |v0|1 + δ‖v̄‖h ≤ c2|k|‖q‖0, (50)

with c2 independent of h and k. The assertion of Proposition 6.1 follows from
(49) and (50).

6.5 Uniform approximation degrees and conforming meshes

For uniform approximation degrees kK = k, K ∈ Th, and conforming meshes,
the decomposition (42) is not necessary and we can establish the inf-sup con-
dition directly via a Fortin property. In particular, this allows us to cover the
case of Q1 −Q0 elements as well.

To do this, define the global interpolation operator Π by

Πw|K = ΠKw, K ∈ Th,

where ΠK is the Raviart-Thomas projector of degree k − 1 on K. We note
that Πw belongs to Vh and, in case w ∈ H1

0 (Ω)
3, the normal component of

Πw is continuous across the interelement boundaries and vanishes on ∂Ω, i.e.,
[[Πw]] = 0 on E . This last property is no longer true if the mesh has hanging
nodes.

We have the following Fortin property.

Lemma 6.5. Assume that Th is conforming and kK = k, K ∈ Th. We have,
for w ∈ H1

0 (Ω)
3 and k ≥ 1,

Bh(Πw, q) = −

∫

Ω
q∇ ·w dx, q ∈ Qh, (51)

‖Πw‖h ≤ Ck|w|1, (52)

where C > 0 is independent of h and k.

Proof. We first note that, from (21), we have

Bh(Πw, q) =
∑

K∈Th

∫

K
Πw ·∇qdx −

∫

EI

(q+ − q−)
(Πw)+ · nK+ + (Πw)− · nK−

2
ds

=
∑

K∈Th

∫

K
Πw ·∇qdx −

∫

EI

(q+ − q−)Πw · nK+ ds,

where we have used obvious notation to express the jumps and mean values.
Again using the orthogonality conditions in (32), valid for an affinely mapped
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element K, we find

Bh(Πw, q) =
∑

K∈Th

∫

K
w ·∇qdx−

∫

EI

(q+ − q−)w · nK+ ds

= −

∫

Ω
q∇ ·w dx.

The stability estimate in (52) follows from Lemma 6.3 and Lemma 6.4 as in the
proof of Proposition 6.1.

We note that the previous lemma is not true for irregular meshes. Combining
Lemma 6.5 and the inf-sup condition (3) of the continuous problem, we find the
following stability result.

Theorem 6.2. Assume that Th is conforming and kK = k, K ∈ Th. There
exists a constant c > 0, independent of h and k, such that for k ≥ 1

inf
0"=q∈Qh

sup
0 "=v∈Vh

Bh(v, q)

‖v‖h‖q‖0
≥ γh ≥ ck−1. (53)

We emphasize that, in particular, this result holds true for k = 1, thus
covering Q1 − Q0 elements. We also remark that a similar non-conforming
Stokes element, the so-called Q̃1 − Q0 element, has been proposed and studied
in [34, 8]. However, this element can be viewed as a natural quadrilateral analog
of the well known Crouzeix-Raviart element whereas the Q1 −Q0 element here
is based on completely discontinuous finite element spaces.

7 Continuity and coercivity

In this section, we establish the continuity and coercivity of the forms Ah(·, ·)
and Bh(·, ·) with respect to the norm ‖ · ‖h in (22)-(23).

7.1 Stability of the lifting operators

We start by investigating the stability properties of the lifting operators. To
this end, we need the following lemma concerning traces of polynomials, where
we denote by Qk(γm) the polynomials of degree at most k in each variable on
the face γm.

Lemma 7.1. Let K ∈ Th and γm a face of ∂K. Then we have

‖ϕ‖0,γm
≤ Ch

− 1
2

K k‖ϕ‖0,K , ∀ϕ ∈ Qk(K), (54)

with a constant C > 0 just depending on the shape-regularity of the mesh.
Conversely, for ϕ ∈ Qk(γm) there is a polynomial extension E(ϕ) ∈ Qk(K) with
E(ϕ)|γm

= ϕ and

‖E(ϕ)‖0,K ≤ Ch
1
2

Kk−1‖ϕ‖0,γm
, (55)

with a constant C > 0 just depending on the shape-regularity of the mesh.

20



Proof. The first assertion follows from standard inverse inequalities, see, e.g.,
[37, Theorem 4.76].

We prove the second assertion only in three dimensions (the two-dimensional
case is completely analogous). To this end, we consider first the reference cube
K̂ = (−1, 1)3 and may assume that the face γm is given by x = 1. Fix ϕ ∈
Qk(γm). Moreover, we consider the case where k is even and set

E(ϕ)(x, y, z) =

(
2

k

k∑

j= k
2
+1

Lj(x)

)
ϕ(y, z),

where Lj denotes the Legendre polynomial of degree j on (−1, 1). Since Lj(1) =
1, we have

E(ϕ)|γm
= E(ϕ)(1, y, z) =

2

k

k

2
ϕ(y, z) = ϕ(y, z).

Further,

‖E(ϕ)‖2
0,K̂

= ‖ϕ‖20,γm

4

k2

k∑

j= k
2
+1

2

2j + 1
.

We have

k∑

j= k
2
+1

2

2j + 1
=

k∑

j= k
2
+1

1

(j + 1)− 1
2

≤

∫ k+1

k
2
+1

1

t− 1
2

dt

= log(k +
1

2
)− log(

k

2
+

1

2
) = log(

2k + 1

k + 1
).

The bound log(2k+1
k+1 ) ≤ C, independent of k, proves the assertion for k even.

If k is odd, the extension E(·) can be constructed similarly. This proves the
assertion on the reference cube, the general case follows from a standard scaling
argument.

We are now ready to prove the following stability result for the lifting Le.

Lemma 7.2. For a face e ⊂ E, we have

‖Le(v)‖
2
0 ≥ C1

∫

e
k
2
h
−1|[[v]]|2 ds, ∀v ∈ Vh,

‖Le(v)‖
2
0 ≤ C2

∫

e
k
2
h
−1|[[v]]|2 ds, ∀v ∈ V(h),

with constants C1 > 0 and C2 > 0 depending on the shape-regularity of the
mesh. If e contains a hanging node, C1 also depends on κ in (15).

Proof. To prove the first estimate, fix v ∈ Vh and let K be the element such
that e is an entire face of ∂K. By Lemma 7.1, we can find a polynomial τ ∈
QkK

(K)d×d such that τ |e = [[v]] and such that

‖τ‖0,K ≤ Ch
1
2

Kk−1
K ‖[[v]]‖0,e.
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Extending τ by zero, we obtain a function also denoted by τ in the finite element
space Σh. By definition of Le and construction of τ , we have

1

2
‖[[v]]‖20,e =

∫

e
[[v]] : {{τ}} ds ≤

∫

K
|Le(v) : τ | dx ≤ Ch

1
2

Kk−1
K ‖Le(v)‖0‖[[v]]‖0,e.

If e is also an entire face of a possible neighboring element K ′, we combine the
above bound with the one for K ′ and obtain the desired result. If e is not an
entire face of a neighboring element, we invoke (15) and obtain the bound.
Conversely, for v ∈ V(h), we have

‖Le(v)‖0 = sup
τ∈Σh

∫
Ω Le(v) : τ dx

‖τ‖0
= sup

τ∈Σh

∫
e [[v]] : {{τ}} ds

‖τ‖0

≤ sup
τ∈Σh

( ∫
e k

2
h
−1|[[v]]|2 ds

) 1
2
(
C
∑

K∈Th
k−2
K hK‖τ‖20,∂K

) 1
2

‖τ‖0

≤ sup
τ∈Σh

( ∫
e k

2
h
−1|[[v]]|2 ds

) 1
2
(
C
∑

K∈Th
‖τ‖20,K

) 1
2

‖τ‖0

≤ C
( ∫

e
k
2
h
−1|[[v]]|2 ds

) 1
2 ,

where we used the definition of Le, the Cauchy-Schwarz inequality and the trace
estimate (54) from Lemma 7.1.

Remark 7.1. Due to (17), we also have

‖Ge‖
2
0 ≤ C

∫

e
k
2
h
−1|g|2 ds

for any boundary face e ⊂ ED.

In the same manner, we obtain the following stability estimates for L, M
and G.

Lemma 7.3. We have the stability estimates

‖M(v)‖20 ≤ C

∫

E
k
2
h
−1|[[v]]|2 ds, v ∈ V(h),

‖L(v)‖20 ≤ C

∫

E
k
2
h
−1|[[v]]|2 ds, v ∈ V(h),

as well as

‖G‖20 ≤ C

∫

ED

k
2
h
−1|g|2 ds,

with constants C > 0 solely depending on the shape-regularity of the mesh.
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7.2 Continuity

The continuity conditions of Ah(·, ·) and Bh(·, ·) with respect to the the discrete
norm ‖ · ‖h in (22) are established in the following lemma.

Lemma 7.4. Let σ be given as in (23) with σ0 > 0. Then:

1. All the forms Ah considered in section 5.4 are continuous,

|Ah(v,w)| ≤ νᾱ1‖v‖h‖w‖h, v,w ∈ V(h),

with a constant ᾱ1 > 0 independent of h and k. Hence, condition (5) is
satisfied with α1 = νᾱ1.

2. The form Bh is continuous,

|Bh(v, q)| ≤ α2‖v‖h‖q‖0, (v, q) ∈ V(h) ×Q,

with a constant α2 > 0 independent of h and k.

Proof. This follows immediately from Lemma 7.2, Lemma 7.3 and Cauchy-
Schwarz inequalities.

7.3 Coercivity of Ah

The coercivity condition in (8) of the different forms Ah is established in the
following lemma.

Lemma 7.5. Let σ be given as in (23) with σ0 > 0. Then:

1. There is a constant σmin > 0 (independent of h and k) such that for
σ0 ≥ σmin the symmetric interior penalty form Ah in (25) is coercive,

Ah(v,v) ≥ νβ̄‖v‖2h, v ∈ Vh,

with a constant β̄ > 0 independent of h and k. Hence, condition (8) is
satisfied with β = νβ̄.

2. The non-symmetric interior penalty form Ah in (26) is coercive on V(h)
for any σ0 > 0, with coercivity constant β = ν.

3. The LDG form Ah in (27) is coercive on Vh for any σ0 > 0, with a
coercivity constant β = νβ̄ where β̄ > 0 is independent of h and k.

4. There is a constant ηmin > 0 (independent of h and k) such that for
η ≥ ηmin the Bassi-Rebay form Ah in (29) is coercive on Vh, with a
coercivity constant β = νβ̄ where β̄ > 0 is independent of h and k.

5. The Bassi-Rebay form Ah in (30) is coercive on Vh for any η > 0, with a
coercivity constant β = νβ̄ where β̄ > 0 is independent of h and k.
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Proof. These coercivity properties are obtained from Lemma 7.2, Lemma 7.3
and the arithmetic-geometric mean inequality 2ab ≤ εa2 + ε−1b2, for all ε > 0,
see [2].

Remark 7.2. We chose to express the continuity and coercivity properties of
the Bassi-Rebay methods in terms of the discrete norm ‖ · ‖h in (22)-(23) since
this norm is explicit in the mesh-sizes and the approximation degrees. Instead,
it is also possible to work with

‖v‖2h =
∑

K∈Th

|v|21,K +
∑

e⊂E

∫

Ω
η|Le(v)|

2 dx.

8 The residual

In this section, we study the residual Rh(u, p;v) in (11) for our DG methods
and show that it is optimally convergent.

Proposition 8.1. Let the exact solution (u, p) of the Stokes system (1) be in
HsK+1(K)d × HsK (K) for all K ∈ Th and sK ≥ 1. Let Q and Q be the L2-
projections onto Σh and Qh, respectively. Then the residual in Rh(u, p;v) in
(11) is given by

Rh(u, p;v) = ν

∫

E
{{∇u−Q(∇u)}} : [[v]] ds−

∫

E
{{p−Qp}}[[v]] ds, ∀v ∈ Vh,

for all forms discussed in section 5.4.
Furthermore, we have that Rh(u, p) in (12) can be estimated by

Rh(u, p)
2 ≤ C

∑

K∈Th

h2min(sK ,kK)

k2sK+1
K

[
ν‖u‖2sK+1,K + ν−1‖p‖2sK,K

]
,

with a constant C > 0 independent of h, k and ν.

Proof. By (17), we have L(u) = G and obtain for all forms

Rh(u, p;v) = ν

∫

Ω
[∇u : ∇hv−∇u : L(v)] dx−

∫

Ω
p[∇·v−M(v)] dx−

∫

Ω
f ·v dx.

Note that
∫

Ω
∇u : L(v) dx =

∫

Ω
Q(∇u) : L(v) dx =

∫

E
{{Q(∇u)}} : [[v]] ds

and ∫

Ω
pM(v) dx =

∫

Ω
QpM(v) dx =

∫

Ω
{{Qp}}[[v]] ds.
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If now the exact solution belongs to H2(K)d×H1(K), for all K ∈ Th, we obtain
by integration by parts and elementary manipulations

Rh(u, p;v) =

∫

Ω
[−ν∆u+∇p− f ] · v dx

+ν

∫

E
{{∇u−Q(∇u)}} : [[v]] ds−

∫

E
{{p−Qp}}[[v]] ds.

Here, we also used that [[[[[[ν∇u − pI]]]]]] = 0 on EI . From the Stokes equations in
(1) we obtain the first assertion.
From (15) and since |[[v]]|2 ≤ C|[[v]]|2, the Cauchy-Schwarz equation yields

Rh(u, p;v) ≤ C‖v‖h
(
ν

∑

K∈Th

hK

k2K
‖∇u−Q(∇u)‖20,∂K+ν−1

∑

K∈Th

hK

k2K
‖p−Q(p)‖20,∂K

) 1
2 ,

from where the error estimate follows with the hp-approximation properties of
the L2-projection in [27].

9 Error estimates

In this section, we make the abstract error estimates in section 4 explicit for our
DG methods.

9.1 The main result

First, we consider general meshes with hanging nodes. We have the following
result.

Theorem 9.1. Let the exact solution (u, p) of the Stokes system (1) be in
HsK+1(K)d ×HsK (K) for all K ∈ Th and sK ≥ 1. Then we have

‖u− uh‖
2
h ≤ C

∑

K∈Th

[
γ−2
h

h2min(sK ,kK)
K

k2sK−1
K

‖u‖2sK+1,K +
h2min(sK ,kK)
K

k2sKK

‖p‖2sK,K

]
,

‖p− ph‖
2
0 ≤ C

∑

K∈Th

[
γ−4
h

h2min(sK ,kK)
K

k2sK−1
K

‖u‖2sK+1,K + γ−2
h

h2min(sK ,kK)
K

k2sKK

‖p‖2sK ,K

]
,

with C > 0 independent of h and k.

Proof. This follows from the choice of the stabilization parameter σ in (23),
Proposition 4.1, Proposition 4.2, Proposition 8.1 and standard approximation
properties of the finite element spaces, see, e.g., [3, Lemma 4.5] or [37]. In
particular, we choose v in Proposition 4.1 and q in Proposition 4.2 as the locally-
constructed interpolants of u and p, respectively, given in [3, Lemma 4.5].
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Remark 9.1. The above hp-version estimates are optimal in the mesh-size h,
and slightly suboptimal in k (half a power is lost), up to the inf-sup constant
γh (which depends on the polynomial degree k). In the mesh-size h, the same
optimal bounds have been obtained in [26] for the IP method on simplicial and
conforming meshes, and for Pk −Pk−1 elements, with Pk denoting polynomials
of total degree at most k. We further note that, in the hp-version context, the
same result was recently obtained in [40] for the NIP method, with different
techniques.

Remark 9.2. The loss of half a power of k is typical of DG methods for second
order problems. Indeed, in the case of elliptic diffusion problems in two– or
three–dimensional domains, no better p–bounds can be found in the DG liter-
ature on general unstructured grids (see, e.g., the hp-version analyzes in [27,
32, 35, 31]). Improved p–bounds have been obtained in [14] for one–dimensional
convection–diffusion problems, and recently in [23] for two–dimensional reaction–
diffusion problems on affine quadrilateral grids containing hanging nodes and for
solutions that belong to augmented Sobolev spaces. The latter results can be car-
ried over immediately to the Stokes setting considered here.

Remark 9.3. Combining the above bound with the inf-sup constant γh in The-
orem 6.1, results in a loss of k3/2 in the approximation of the velocity, and in a
loss of k5/2 for the approximation of the pressure.

9.2 Uniform approximation degrees and conforming meshes

In this section, we specialize the result of Theorem 9.1 to the case of uniform
approximation orders, kK = k, and conforming meshes with no hanging nodes.
We also assume that the Dirichlet boundary datum g is piecewise polynomial,
more precisely, we assume that there is a finite element function Gh ∈ Vh such
that Gh|∂Ω = g.

In this particular situation, as in the analysis of [31] for the LDG method
for pure diffusion problems, we can choose v in Proposition 4.1 as an optimal
hp-approximant for the velocity which is continuous in the whole domain Ω
according to [3, Theorem 4.6]. The discrete pressure q in Proposition 4.2 can be
chosen as before. Since the residual Rh(u, p) is optimally convergent, we obtain
the following result.

Theorem 9.2. Let the exact solution (u, p) of the Stokes system (1) be in
Hs+1(Ω)d ×Hs(Ω) for s ≥ 1. Then we have

‖u− uh‖h ≤ C
hmin(s,k)

ks

[
γ−1
h ‖u‖s+1 + ‖p‖s

]
,

‖p− ph‖0 ≤ C
hmin(s,k)

ks

[
γ−2
h ‖u‖s+1 + γ−1

h ‖p‖s
]
,

with C > 0 independent of h and p.
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This estimate is optimal in h and k, up to the inf-sup constant (which is
independent of h). With Theorem 6.1, we obtain exactly the same result as
Stenberg and Suri in [38] for conforming mixed hp-FEM in three dimensions,
but with an optimal gap of one order in the finite element spaces for the velocity
and the pressure.

Remark 9.4. The estimate in Theorem 9.2 also holds on meshes with certain
kinds of hanging nodes provided that a conforming and optimal hp-approximant
can be constructed. In two dimensions, results in this direction can be found in,
e.g., [37].
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analysis of the local discontinuous Galerkin method for elliptic problems,
SIAM J. Numer. Anal. 38 (2000), 1676–1706.
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[29] J.T. Oden, I. Babuška, and C.E. Baumann, A discontinuous hp-finite ele-
ment method for diffusion problems, J. Comput. Phys. 146 (1998), 491–519.

[30] I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method
for low-frequency time-harmonic Maxwell’s equations, Tech. Report 1774,
IMA, University of Minnesota, 2001, in press in Math. Comp.
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[36] D. Schötzau, C. Schwab, and R. Stenberg, Mixed hp-FEM on anisotropic
meshes, II. Hanging nodes and tensor products of boundary layer meshes,
Numer. Math. 83 (1999), 667–697.

29



[37] C. Schwab, p- and hp-FEM – Theory and application to solid and fluid
mechanics, Oxford University Press, Oxford, 1998.

[38] R. Stenberg and M. Suri, Mixed hp-finite element methods for problems in
elasticity and Stokes flow, Numer. Math. 72 (1996), 367–389.

[39] R. Témam, Navier-Stokes equations. Theory and numerical analysis,
North-Holland, Amsterdam, 1979.

[40] A. Toselli, hp-discontinuous Galerkin approximations for the Stokes prob-
lem, Tech. Report 02-02, Seminar for Applied Mathematics, ETH Zürich,
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