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1 Introduction

The mathematical understanding of solutions to elliptic equations with rapidly oscillating coef-
ficients is increasingly becoming important as witnessed by today’s search for methods that can
accurately simulate the behavior of modern materials such as composites. Typically, it is not
only the averaged, “homogenized” solution that is of interest but also effects on the fine scale
are relevant: for example, maximal stresses, which are responsible for material failure, arise
at points where the interface between different materials is not smooth. For a class of elliptic
problems with periodic coefficients and piecewise smooth fine-scale geometry, the present paper
provides a two-scale regularity theory that captures both the effects on the large, global scale
as well as on the fine scale.
The starting point of our analysis are representation formulas (see (2.5)) for a class of problems
on unbounded domains. Key to an understanding of this integral representation is the integral
kernel, which is the solution of a parameter-dependent unit-cell problem. In the present paper a
detailed analysis of the regularity properties of this parameter-dependent problem is presented
for the case when the unit-cell has piecewise smooth geometry (Theorems 3.7, 4.5). The repre-
sentation formula allows us then to develop a new two-scale regularity theory, where the scale
separation is realized by interpreting the solution as a mapping defined on the physical domain
and having values in weighted Sobolev spaces of periodic functions. The choice of the weighted
Sobolev norm is given by our analysis of the unit-cell problem (Sections 4.1, 4.2). The present
paper generalizes results of [8] where only the case of smooth fine-scale geometries was analyzed.
The regularity theory of the present paper has been formulated with a view to support the design
and the understanding of new numerical methods for elliptic problems with periodic coefficients,
e.g., those of [7, 6, 8]. Such non-standard methods are required as simulation tools for problems
with highly oscillatory coefficients: on the one hand, standard numerical methods, which have
to be based on full resolution for reliable results, cannot be employed due to computational
costs; on the other hand, classical homogenization methods, which are based on averaging, fail
to catch critical behaviors on the fine scale even if higher order correctors are included in the
model. Our results have immediate bearing on new methods such as the generalized FEM
proposed in [7, 6] and the two-scale FEM of [8]. The first method, the generalized FEM, relies
on numerically solving a unit-cell problem in a preprocessing step by the hp-version of the finite
element method. The appropriate mesh design for efficiently solving this problem can be inferred
from our regularity results in Theorems 3.7, 4.5. The second method, the two-scale FEM of [8],
is an energy projection on the tensor product of a standard finite-element space and a space of
periodic functions. Robust convergence proofs for this method depends on a two-scale regularity
theory that was developed for smooth fine scale geometries in [8]. The present paper extends
this regularity theory to piecewise smooth fine scale geometries in Section 4.1 and develops in
Section 5 the corresponding two-scale FEM approximation theory.
The paper is organized as follows: In Section 2, we introduce the class of elliptic problems
with periodic fine scale geometry. For the most part, we will consider homogeneous Neumann
boundary conditions; however, the corresponding results for Dirichlet or mixed boundary con-
ditions are listed in Section 4.2. Section 3 is devoted to an analysis of the unit-cell problem.
Section 4.1 presents our two-scale regularity results, and in Section 5 we illustrate how functions
with two-scale regularity properties can be approximated from spaces that are tensor products
of standard FEM spaces and space of periodic functions that are adapted to a non-smooth fine
scale geometry.
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Γ̂N

Γ̂per ε

Ω∞
ε

Figure 1: Unit-cell Q̂ (left) and tiling of R2 by unit-cells Q̂ scaled to size ε (right).

2 Two-Scale Representation

2.1 Problem formulation and notation

Let Q̂ ⊂ [0, 1]2 be a Lipschitz domain with boundary ∂Q̂ = Γ̂per∪ Γ̂N , where Γ̂per = ∂Q̂∩∂[0, 1]2

and Γ̂N = ∂Q̂ \ Γ̂per. (See Fig. 1, left.) We assume dist(Γ̂per, Γ̂N ) > 0. Let further Ω∞
ε (cf.

Fig. 1, right) denote the infinite periodic lattice with periodically repeating pattern εQ̂ of size
ε ∈ (0, 1], and let Γ∞

N,ε denote the interior cavities’ boundaries:

Ω∞
ε :=

⋃

k∈Z2

ε(k + Q̂), Γ∞
N,ε :=

⋃

k∈Z2

ε(k + Γ̂N ). (2.1)

We consider the regularity properties of the solution uε of the following problem:

Lε
(x
ε
, ∂x

)
uε := −∇ ·

(
a
(x
ε

)
∇uε

)
+ a0

(x
ε

)
uε = f(x) in Ω∞

ε , (2.2)

∂nau
ε := n ·

(
a
(x
ε

)
∇uε

)
= 0 on Γ∞

N,ε; (2.3)

here, ε > 0 is a small parameter. We assume that the matrix a is uniformly symmetric positive
definite and that a0 is uniformly positive, i.e., for some γ > 0

ξ#a(y)ξ ≥ γ|ξ|2, a0(y) ≥ γ ∀ ξ ∈ R
2 ∀ y ∈ Q̂. (2.4)

Additionally a and a0 are required to be analytic on Q̂ and 1-periodic in each direction (thus
analytic across the periodic boundary). The geometry ∂Q̂ is assumed to be piecewise analytic
(i.e., ∂Q̂ consists of finitely many analytic arcs).

On bounded domains Ω ⊂ R2, we employ standard Sobolev spaces, [1]. For non-negative integers
k and the full space R2 the semi-norm |f |Hk(R2) is defined by

|f |2Hk(R2) :=

∫

R2

|t|2k |f̂(t)|2 dt,

where f̂ denotes the Fourier transform of f . As is customary, we define the full norm by
‖f‖2Hk(R2) :=

∑k
j=0 |f |2Hj(R2). Banach space-valued Sobolev spaces will be denoted Hk(R2, V ).

Finally, for p ∈ N0 we employ the notation of [11] and define the expression |∇pu| by |∇pu|2 =∑
α∈N2

0:|α|=p
|α|!
α! |∂

α1
x1
∂α2
x2
u|2.
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2.2 Scale separation for uε

For any f ∈ L2(R2), (2.2)–(2.3) admits a unique solution uε ∈ H1(Ω∞
ε ). We will exploit that uε

admits the representation [6, 10]

uε(x) =
1

2π

∫

t∈R2

f̂(t)ψ (x, ε, t) dt x ∈ Ω∞
ε , (2.5)

where the kernel ψ(x, ε, t) is the distributional solution of

Lεψ = eit·x on Ω∞
ε , n · (a(x/ε)∇ψ) = 0 on Γ∞

N,ε. (2.6)

To characterize precisely the solution of (2.6) in Ω∞
ε , we introduce weighted Sobolev spaces

Hj
ν(Ω∞

ε ) of complex-valued functions with exponential weights depending on a real parameter
ν. Furthermore, for j = 0, 1 and for any ν ∈ R the weighted Sobolev spaces Hj

ν(Ω∞
ε ) equipped

with the norm ‖ · ‖j,ν are defined to be

Hj
ν(Ω

∞
ε ) =

{
v ∈ L2(Ω∞

ε ) | veν|x|,∇veν|x| ∈ L2(Ω∞
ε )

}
. (2.7)

We note that for ν > 0 there holds H1
ν ⊂ H1

0 = H1 ⊂ H1
−ν . Let us introduce the following

sesquilinear form Ψ(ε)[·, ·] : H1
−ν(Ω

∞
ε )×H1

ν (Ω
∞
ε ) → C :

Ψ(ε)[u, v] =

∫

Ω∞
ε

{(
a
(x
ε

)
∇xu(x)

)
·∇xv(x) + a0

(x
ε

)
u(x)v(x)

}
dx. (2.8)

For all ε > 0 and for ν > 0 sufficiently small, Ψ(ε) is bounded and ‘coercive’ with respect to
H1

−ν(Ω
∞
ε )×H1

ν (Ω
∞
ε ), in the sense that the inf-sup stability condition holds, [6, 10]:

Proposition 2.1 There exists a ν0 > 0 such that for all ν ∈ (0, ν0) and all ε > 0 the variational
problem

given f ∈
(
H1

ν (Ω
∞
ε )

)∗
, find

uε ∈ H1
−ν(Ω

∞
ε ) : Ψ(ε)[uε, v] = 〈f, v〉(H1

ν(Ω
∞
ε ))∗×H1

ν(Ω
∞
ε ) ∀ v ∈ H1

ν (Ω
∞
ε ),

(2.9)

admits a unique weak solution uε ∈ H1
−ν(Ω

∞
ε ) and satisfies the a-priori estimate

‖uε‖H1
−ν(Ω

∞
ε ) ≤ (1/γ)‖f‖(H1

ν (Ω∞
ε ))∗

holds. Moreover, uε admits the representation (2.5) where the integral is understood as Bochner
integral of H1

−ν-valued functions.

ψ(x, ε, t) is the weak solution of (2.9) with respect to the functional f = eit·x ∈
(
H1

ν (Ω
∞
ε )

)∗
. By

Proposition 2.1 we know that
∥∥∥∥ψ(x, ε, t)

∥∥∥∥
H1

−ν(Ω
∞
ε )

≤ 1/γ‖eit·x‖(H1
ν (Ω

∞
ε ))∗ ≤ 1/γ · 1/ν.

Problem (2.2) has separated scales, a slow variable x and a fast variable y = x/ε, in the following
sense: the kernel ψ in (2.6) (which represents fine scale response to the coarse scale excitation
eit·x) can be written in separated form ψ(x, ε, t) = eit·xφ(x/ε, ε, t) where φ(y, ε, t) is the solution
of the so-called unit-cell problem [6, 10]: φ(·, ε, t) ∈ H1

per(Q̂)

L(ε, t, y; ∂y)φ := e−iεt·yLε(y, ε−1∂y)e
iεt·yφ = 1 in Q̂ (2.10)

B(ε, t, y; ∂y)φ := e−iεt·yn ·
(
a(y)∇y(e

iεt·yφ)

)
= 0 on Γ̂N . (2.11)

Unlike ψ, the kernel φ is computable by solving the unit-cell problem (2.10)–(2.11) numerically,
for example (but not necessary) with finite elements.
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3 Regularity of the Integral Kernel φ

This section provides analytic regularity assertions for the solution φ of the unit-cell problem
(2.10). The coefficients in (2.10) are analytic and the (internal) boundary of Q̂ consists by
assumption of analytic arcs. The solution φ is therefore analytic on Q̂ and in fact analytic up to
boundary of Q̂ with the exception of the (internal) corners of Q̂. As is well-known, analyticity
of a function can be characterized in terms of the growth of the derivatives as the differentiation
order tends to infinity. Our technical tool to capture this growth in dependence on the critical
parameters, namely, ε, t, and the distance to the nearest singularity, are the countably normed
spaces B2

β,E that we define in Definition 3.1.

3.1 Analytic regularity of parameter-dependent problems

3.1.1 Notation

Let Ai, i = 1, . . . , J , be the internal vertices of Q̂. We define functions ri as

ri(x) := dist(x,Ai), i = 1, . . . , J.

With each vertex Ai, we associate an “exponent” βi ∈ [0, 1) and write β = (β1, . . . ,βJ ) ∈ [0, 1)J .
For each p ∈ N0 and E > 0 we define the weight function

wp,β,E(x) :=
J∏

i=1

(
min

{
1,

ri(x)

min {1, (p + 1)E}

})p+βi

. (3.1)

Using this weight functions wp,β,E , we can define the weighted Sobolev spaces and spaces of
analytic functions as follows:

Definition 3.1 For l ∈ N, p ∈ N0 the spaces Hp+l,l
β,E (Q̂) are the completion of C∞(Q̂) under the

norm ‖ · ‖
Hp+l,l

β,E (Q̂)
given by

‖u‖2
Hp+l,l

β,E (Q̂)
:=

l−1∑

k=0

E2k‖∇ku‖2
L2(Q̂)

+
p∑

k=0

E2(k+2)‖wk,β,E∇k+lu‖2
L2(Q̂)

. (3.2)

For Cu, γu > 0 the countably normed space B2
β,E(Cu, γu) of analytic functions is defined as:

u ∈ B2
β,E(Cu, γu) ⇐⇒

{
‖u‖L2(Q̂) + E‖∇u‖L2(Q̂) ≤ Cu and

‖wp,β,E∇p+2u‖L2(Q̂) ≤ Cuγ
p
u max {p+ 1, E−1}p+2 ∀p ∈ N0.

(3.3)

The following lemma shows that the countably normed spaces B2
β,E do not change significantly

if E is replaced with E ′ ∼ E :

Lemma 3.2 Let c ∈ (0, 1], β ∈ [0, 1)J , Cu, γu > 0. Then there exist C ′
u, γ

′
u > 0 such that for

every E, E ′ with 0 < cE ′ ≤ E ≤ E ′ ≤ 1 we have

u ∈ B2
β,E(Cu, γu) =⇒ u ∈ B2

β,E ′(C ′
u, γ

′
u), (3.4)

u ∈ B2
β,E ′(Cu, γu) =⇒ u ∈ B2

β,E(C
′
u, γ

′
u). (3.5)

Proof: We note that the weight functions wp,β,E are monotonically decreasing in E for fixed p,
β, x:

wp,β,E(x) ≥ w0,β,E ′(x) ∀E ≤ E ′. (3.6)

4



The implication (3.4) then follows with the aid of (3.6) and the additional observation

max {p+ 1, 1/E} = max
{
p+ 1, (1/E ′)(E ′/E)

}
≤ max

{
p+ 1, 1/E ′

}
max {1, E ′/E}

≤ max
{
p+ 1, 1/E ′

}
1/c.

To show (3.5), we note that the assumption cE ′ ≤ E implies with the definition of the weight
function wp,β,E

wp,β,E(x) ≤ wp,β,E ′(x)
J∏

j=1

c−(p+βj) ∀x ∈ Q̂ ∀p ∈ N0.

This estimate together with the trivial bound max{p + 1, 1/E ′} ≤ max {p + 1, 1/E} then gives
(3.5).

3.1.2 A parameter-dependent elliptic problem: regularity assumptions

We consider the regularity of solutions of the following parameter-dependent elliptic equation:

−ζ2∇ · (a∇u) + b ·∇u+ cu = f on Q̂, (3.7a)

ζ∂nau = G+Hu on Γ̂N , (3.7b)

where a is the matrix appearing in the unit-cell problem; the C2-valued function b and the
C-valued function c are assumed analytic on the closure of Q̂, i.e., they satisfy for suitable Ca,
Cf , Cb, Cc > 0, and γ > 0

‖∇pa‖L∞(Q̂) ≤ Caγ
pp!, ‖∇pb‖L∞(Q̂) ≤ Cbγ

pp! ∀p ∈ N0, (3.8a)

‖∇pc‖L∞(Q̂) ≤ Ccγ
pp!, ‖∇pf‖L∞(Q̂) ≤ Cfγ

pp! ∀p ∈ N0, (3.8b)

‖∇pG‖L∞(Q̂) ≤ CGγ
pp! ∀p ∈ N0. (3.8c)

Concerning the coefficient H appearing in the boundary conditions, we assume that H is piece-
wise analytic on Γ̂N , i.e., on each analytic arc Γi of the boundary Γ̂N we have

‖Dp
tH‖L∞(Γi) ≤ CHγpp! ∀p ∈ N0. (3.8d)

Here, the operatorDt stands for tangential differentiation obtained by viewingH|Γi as a function
of arc length s of the boundary part Γi and differentiating with respect to s.
Finally, we assume that the parameter ζ > 0.
Bounds on higher derivatives of the solution u of (3.7) depend critically on a parameter E ,
which measures the size of ζ relative to the size of the coefficients b and c (under the implicit
assumption that the eigenvalues of a are uniformly O(1)):

E−1 := 1 +
Cb

ζ2
+

√
Cc

ζ
. (3.9)

3.1.3 Weighted H2-estimates

We have the following regularity assertion for the solution u of (3.7).

Proposition 3.3 There exist C > 0 and β ∈ [0, 1)J depending only on the coefficient a and the
the geometry Q̂ such that with E given by (3.9) any solution u of (3.7) satisfies

‖w0,β,E∇2u‖L2(Q̂) ≤ CE−2
(
(E/ζ)2 ‖w0,β,Ef‖L2(Q̂) + (E/ζ)

[
E‖w0,β,E∇G‖L2(Q̂) + ‖G‖L2(Q̂)

]

+ [1 +CH(E/ζ)] E‖∇u‖L2(Q̂) +
[
Cc(E/ζ)2 + CH(E/ζ)

]
‖u‖L2(Q̂)

)
.

5



Proof: We will only sketch the proof as details can be found in [9, Chap. 5.4]. For simplicity, we
assume that Q̂ is polygonal since the case of piecewise smooth boundaries can be inferred with
mappings that locally flatten the boundary.
We consider a neighborhood of a fixed vertex Ai. We recall ri(x) = dist(x,Ai) and introduce
polar coordinates (r,ϕ) such that for ρ sufficiently small the sectors

Sρ := {(r cosϕ, r sinϕ) | 0 < r < ρ, 0 < ϕ < ω}

coincide with {x ∈ Q̂ | dist(x,Ai) < ρ}. We fix R, R′ > 0 and assume without loss of generality
2E < R′ < R (since the case of small E is of interest to us). Additionally, we assume that
R is chosen so small that ∂SR can be decomposed into three parts Γ0, Γω, Γ′, where Γ0 =
{(r, 0) | 0 < r < R}, Γω = {(r cosω, r sinω) | 0 < r < R} make up the lateral part of ∂SR, and
Γ′ = ∂SR \ (Γ0 ∪ Γω) is the curved part of ∂SR.
Next, we can find a cut-off function χ with the following properties:

χ ≡ 1 on Q̂ ∩BE(Ai), χ ≡ 0 on Q̂ \B2E (Ai),

∂naχ = 0 on Γ0,Γω, ‖∇jχ‖L∞(SR) ≤ CE−j, j ∈ {0, 1, 2},

where the constant C > 0 does not depend on E ∈ (0, 1].
The datum H is only defined on Γ̂N . We extend H to a function (again denotedH) on SR using
polar coordinates as

H(r cosϕ, r sinϕ) =
ϕ

ω
Hω(r) +

(
1−

ϕ

ω

)
H0(r),

where H0(r) = H(r, 0), Hω(r) = H(r cosω, r sinω) are the restrictions of H to the edges Γ0, Γω,
respectively. A calculation shows that the extension H is in a weighted W 1,∞-space:

‖H‖L∞(SR) + ‖ ri∇H‖L∞(SR) ≤ CCH , (3.10)

where C > 0 depends only on ω, R.
1. step: We show that there exist C > 0, βi ∈ [0, 1) depending only on a, ω, and R such that a
function u ∈ H1(SR) solving

−ζ2∇ · (a∇u) + b ·∇u+ cu = f on SR, ζ∂nau = G+Hu on Γ0, Γω (3.11)

verifies

‖wi∇2u‖L2(SE ) ≤ CE−2
{
(E/ζ)2‖wif‖L2(S2E ) + (E/ζ)E‖wi∇G‖L2(S2E ) (3.12)

+ (E/ζ)‖G‖L2(S2E ) + (1 + (E/ζ)CH)
[
E‖∇u‖L2(S2E ) + ‖u‖L2(S2E )

]}
,

where the weight function wi is given by

wi(x) := min
{
1, (ri(x)/E)βi

}
.

In order to show (3.12), we calculate that ũ := uχ satisfies

−∇ · (a∇ũ) = f̃ , ∂na ũ = G̃ on Γ0, Γω, ũ = 0 on Γ′,

where f̃ , G̃ are given by

f̃ = χζ−2 [f − b ·∇u− cu]− 2∇χ · a∇u− u∇ · (a∇χ),

G̃ = ζ−1(χG+Hχu).

6



¿From [2] we obtain the existence of C > 0, βi ∈ [0, 1) (depending only on a, R) such that

‖rβi
i ∇2ũ‖L2(S2E ) ≤ C

[
‖rβi

i f̃‖L2(SR) + ‖rβi
i ∇G̃‖L2(SR) + ‖G̃‖L2(SR)

]
.

Since G̃ is supported by B2E(Ai), we may choose the compact set S′ of Lemma A.2 such that

S′ ⊂ SR \B2E(Ai) to conclude ‖G̃‖L2(SR) ≤ C‖rβi
i ∇G̃‖L2(SR). We therefore obtain

‖rβi
i ∇2ũ‖L2(S2E ) ≤ C

[
‖rβi

i f̃‖L2(SR) + ‖rβi
i ∇G̃‖L2(SR)

]
. (3.13)

In order to bound the term ‖rβi
i ∇G̃‖L2(SR), we write∇(Hχu) = (∇H)χu+H∇(χu) and estimate

using (3.10) and Lemma A.2 (again taking the compact set S′ such that χ ≡ 0 on S′)

‖rβi
i ∇(Hχu)‖L2(SR) ≤ CCH

[
‖rβi−1

i (χu)‖L2(SR) + ‖rβi
i ∇(χu)‖L2(SR)

]

≤ CCH‖rβi
i ∇(χu)‖L2(SR).

Inserting this bound into (3.13), we arrive at

‖rβi
i ∇2ũ‖L2(S2E ) ≤ C‖rβi

i f̃‖L2(SR) + Cζ−1
[
‖rβi

i ∇(χG)‖L2(SR) + CCH‖rβi
i ∇(χu)‖L2(SR)

]
.

Dividing by Eβi , observing supp f̃ , supp(χG), supp(χu) ⊂ B2E(Ai) in view of suppχ ⊂ B2E(Ai),
we obtain with the definition of wi

‖wi∇2ũ‖L2(S2E ) ≤ C‖wif̃‖L2(SR) + Cζ−1
[
‖wi∇(χG)‖L2(SR) +CH‖∇(χu)‖L2(SR)

]
. (3.14)

With the simple estimates
Cb

ζ2
≤ E−1,

Cc

ζ2
≤ E−2, (3.15)

and the properties of χ, we get by expanding f̃

‖wi∇2u‖L2(SE ) ≤ C
(
ζ−2‖wif‖L2(S2E ) + E−1‖∇u‖L2(S2E ) + E−2‖u‖L2(S2E )

+ ζ−1
[
E−1‖G‖L2(S2E ) + ‖wi∇G‖L2(S2E ) + CHE−1‖u‖L2(S2E ) + CH‖∇u‖L2(S2E )

])
,

from which the bound (3.12) can be obtained.
2. step: In order to sharpen the bound (3.12), we define the average

u2E :=
1

|S2E |

∫

S2E

u dx.

We note the Poincaré inequalities

‖u− u2E‖L2(S2E ) ≤ CE‖∇u‖L2(S2E ), ‖u2E‖L2(S2E ) ≤ ‖u‖L2(S2E ). (3.16)

Next, we observe that the function û := u− u2E satisfies

−ζ2∇ · (a∇û) + b ·∇û+ cû = f̂ on SR, ∂na û = Ĝ+Hû on Γ0, Γω

where the functions f̂ , Ĝ are given by

f̂ = f − cu2E , Ĝ = (G+Hu2E).
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Hence the estimate (3.12) applied to û gives

‖wi∇2u‖L2(SE ) ≤ CE−2
{
(E/ζ)2‖f − cu2E‖L2(S2E )

+ (E/ζ)E‖wi∇(G+Hu2E)‖L2(S2E ) + (E/ζ)‖G +Hu2E‖L2(S2E )

+ (1 + (E/ζ)CH)
[
E‖∇u‖L2(S2E ) + ‖u− u2E‖L2(S2E )

]}
.

Inserting the inequalities (3.16) gives the desired bound, if we observe additionally

E‖wi∇Hu2E‖L2(S2E ) ≤ CCHE1−βi‖rβi−1
i ‖L2(S2E )|u2E | ≤ CCHE1−βiEβi |u2E |

≤ CCH‖u2E‖L2(S2E ) ≤ CCH‖u‖L2(S2E ).

3. step: We turn to estimating ∇2u on SR \ SE , which follows from standard elliptic regularity
estimates on balls of size r ∼ E as we now show. Elementary geometric considerations allow us
to construct a covering of SR′ \ SE by balls BcE(xj), j ∈ N, with the following properties:

1. dist(BcE(xj), Ai) > E/2 for all j ∈ N;

2. Either BcE(xi) ⊂ SR or BcE(xi)∩SR is a half-ball; in the latter case, the center xj ∈ Γ0∪Γω.

3. The balls B2cE(xi) have a finite overlap property: there exists N > 0 such that card{j ∈
N |x ∈ BcE(xj)} ≤ N for all x ∈ SR;

Under these assumptions, the standard regularity estimates of Lemma A.1 assert for each ball
BcE(xj) we have using the shorthand Bj := BcE(xj) ∩ SR, B̂j := B2cE(xj) ∩ SR

‖∇2u‖L2(Bj ) ≤ C
{
ζ−2‖f − b ·∇u− cu‖L2(B̂j)

+ ζ−1‖∇(G+Hu)‖L2(B̂j )
+ ζ−1E−1‖G+Hu‖L2(B̂j)

+ E−1‖∇u‖L2(B̂j)

}
.

Squaring, summing over all balls, and using the overlap properties of the covering allows us to
conclude

‖∇2u‖L2(SR′\SE ) ≤ C
{
ζ−2‖f − b ·∇u− cu‖L2(SR\SE/2) + ζ−1‖∇(G +Hu)‖L2(SR\SE/2)

+ ζ−1E−1‖G+Hu‖L2(SR\SE/2) + E−1‖∇u‖L2(SR\SE/2)

}
.

The bound (3.10) implies ‖∇H‖L∞(SR\SE/2) ≤ CCHE−1. Hence, we get together with (3.15)

‖∇2u‖L2(SR′\SE ) ≤ CE−2
{
(E/ζ)2‖f‖L2(SR\SE/2) + E‖∇u‖L2(SR\SE/2)

+ Cc(E/ζ)2‖u‖L2(SR\SE/2) + (E/ζ)E‖∇G‖L2(SR\SE/2) + (E/ζ)‖G‖L2(SR\SE/2)

+ CH(E/ζ)
[
‖u‖L2(SR\SE/2) + E‖∇u‖L2(SR\SE/2)

]}
.

In view of the fact thatwi ∼ 1 on SR\SE , we may replace ‖∇2u‖L2(SR′\SE ) with ‖wi∇2u‖L2(SR′\SE )

as well as ‖f‖L2(SR\SE/2) with ‖wif‖L2(SR\SE/2) and ‖∇G‖L2(SR\SE/2) with ‖wi∇G‖L2(SR\SE/2).
4. step: The estimates of step 3 can also be carried out for balls and half-balls away from all
vertices. Combining the above estimates then proves the proposition.

3.1.4 Regularity in countably normed spaces

Due to the analyticity of coefficients and the right-hand side f , the solution u of (3.7) is analytic
on Q̂. Generalizing Proposition 3.3 we have the following bounds for all derivatives:
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Proposition 3.4 There exist C, K > 0, and β ∈ [0, 1)J depending only on Q̂ and a, γ of (3.8)
such that with E given by (3.9) a solution u of (3.7) satisfies for all p ∈ N0

‖wp,β,E∇p+2u‖L2(Q̂) ≤ Cmax {p + 1, E−1}p+2
(
(E/ζ)2 Cf + (E/ζ)CG

+ [1 + CH(E/ζ)] E‖∇u‖L2(Q̂) +
[
Cc(E/ζ)2 + CH(E/ζ)

]
‖u‖L2(Q̂)

)
.

Proof: The proof is based on induction on the differentiation order; we refer to [9, Chap. 5.4],
where the details are carried out.

Remark 3.5 The assumptions (3.8) stipulate control of the data f , G in L∞-based norms. As
is shown in [9, Chap. 5.4], the weaker estimates

‖wp,β,E∇pf‖L2(Q̂) ≤ Cfγ
pmax {p, E−1}p ∀p ∈ N0,

‖G‖L2(Q̂) ≤ CG, ‖wp,β,E∇p+1G‖L2(Q̂) ≤ CGγ
pmax {p, E−1}p+1 ∀p ∈ N0

suffice for Proposition 3.4 to hold.
Proposition 3.4 affords L2-based control of the derivatives. These estimates allow us to infer
pointwise bounds with the aid of [9, Thm. 4.2.23].

3.2 Low order estimates for the unit-cell problem

The main result of this section is Theorem 3.7, where the regularity of the unit cell solution φ of
(2.10), (2.11) is characterized in terms of the countably normed spaces B2

β,E of Definition 3.1: We

assert φ ∈ B2
β,E(C, γ) for some β ∈ [0, 1)J , C, γ > 0 independent of ε, t and characteristic length

E ∼ min {1, 1/(ε|t|)}. This assertion will follow from Proposition 3.4. Since this proposition
involve bounds on the L2-norm and the H1-norm of the solution on the right-hand side, we
start with estimates for ‖φ‖L2(Q̂), ‖∇φ‖L2(Q̂) in the following lemma.

Lemma 3.6 There exists a positive constant C > 0 independent of ε and t such that:

‖φ‖0, Q̂ ≤ C(1 + |t|)−1 and ‖ε−1∇yφ‖0, Q̂ ≤ C. (3.17)

Proof: Let χ(x, ε, t) := itψ(x, ε, t). Then χ(x, ε, t) ∈
(
H1

−ν(Ω
∞
ε )

)2
solves (2.2) with right hand

side f(x) = iteit·x. For ν > 0, the ‖ ·‖(H1
ν (Ω

∞
ε ))∗ norm of the right hand side is uniformly bounded

with respect to t and ε
‖iteit·x‖(H1

ν (Ω
∞
ε ))∗ ≤ C(ν).

Therefore, for all ν ∈ (0, ν0) with ν0 as in Proposition 2.1, ‖χ(x, ε, t)‖1,−ν ≤ C‖iteit·x‖(H1
ν (Ω

∞
ε ))∗ ≤

C(ν) and
‖ψ(x, ε, t)‖1,−ν ≤ C(1 + |t|)−1,

with C > 0 depending only on γ and ν. Without loss of generality we may assume that ε = 1/M ,
M ∈ N. Then, by the periodicity of φ it holds

∫

Q̂

|φ(y, ε, t)|2dy = ε−2
∫

εQ̂

∣∣∣φ
(x
ε
, ε, t

)∣∣∣
2
dx

=
∑

k∈{0,1,...,M−1}2

∫

ε(Q̂+k)

∣∣∣φ
(x
ε
, ε, t

)∣∣∣
2
e−2ν|x|e2ν|x|dx (3.18)

≤ C‖ψ(x, ε, t)‖20,−ν ≤ C(1 + |t|)−2.
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We obtain estimates for ‖ε−1∇yφ‖0, Q̂ by a similar argument:

∫

Q̂

∣∣ε−1∇yφ(y, ε, t)
∣∣2 dy =

∫

εQ̂

∣∣∣ε−1∇yφ
(x
ε
, ε, t

)∣∣∣
2
ε−2dx

=
∑

k∈{0,1,...,M−1}2

∫

ε(Q̂+k)

∣∣∣∇xφ
(x
ε
, ε, t

)∣∣∣
2
e−2ν|x| · e2ν|x|dx

≤ C
(
1 + |t|2

)
‖ψ(·, ε, t)‖21,−ν ≤ C.

3.3 Analytic regularity for the unit-cell problem

The results of Sections 3.1, 3.2 can be applied to the unit-cell problem (2.10), (2.11). This leads
to the following result:

Theorem 3.7 Let φ be the solution to (2.10), (2.11). Then there exist C, K > 0, β ∈ [0, 1)J

depending only on the coefficients a, b, c, and the geometry Q̂ such that φ satisfies

‖φ‖L2(Q̂) ≤ C
1

1 + |t|
,

‖∇φ‖L2(Q̂) ≤ Cε,

‖wp,β,θ∇p+2φ‖L2(Q̂) ≤ CKpmax {p, θ−1}p+2 εθ,

where

θ := min

{
1,

1

ε|t|

}
.

Proof: The theorem is obtained from the following Lemmas 3.8, 3.9, where the cases ε|t| ≤ 1
and ε|t| > 1 are treated separately.

Theorem 3.7 separates the cases ε|t| ≤ 1 and ε|t| > 1. This splitting is motived by the way the
parameter ε|t| enters in the differential equation satisfied by φ: Expanding equation (2.10) and
the boundary conditions (2.11), we obtain

−∇ · (a∇φ)− 2iεa∇φ · t+ (ε2t#at+ ε2a0 − iε(∇ · a) · t)φ = ε2 on Q̂, (3.19a)

n · (a∇y)φ = −n · (aiεt)φ on Γ̂N . (3.19b)

We observe that the critical parameter in this equation is ε|t|: For moderate value of ε|t|, the
problem is regularly perturbed and standard elliptic regularity can be expected to hold. For large
ε|t|, however, the problem is singularly perturbed and the dependence on εt can be characterized
with the techniques of Section 3.1. We will therefore treat the cases ε|t| large and ε|t| small

separately in the following two subsections.

3.3.1 The regular perturbation case ε|t| ≤ 1

Lemma 3.8 Let ε, t satisfy ε|t| ≤ 1. Then there exist β ∈ [0, 1)J , C, K > 0 depending only on
the analyticity constants of a, a0, ∂Q̂ such that

‖φ‖L2(Q̂) ≤ C
1

1 + |t|
,

‖∇φ‖L2(Q̂) ≤ Cε,

‖wp,β,1∇p+2φ‖L2(Q̂) ≤ CKpp!ε ∀p ∈ N0.
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Proof: The first two estimates follow from Lemma 3.6. For the estimate for high order derivatives,
we apply Proposition 3.4 to (3.19) with ζ = 1; in this case the constants Cb, Cc appearing in
(3.8) are O(1) the result then follows from Lemma 3.2, since

1 ≤ E−1 = 1 + Cb +
√

Cc ≤ C.

3.3.2 The singular perturbation case ε|t| > 1

In order to treat the singularly perturbed case ε|t| > 1, we rewrite the unit-cell problem (3.19)
in the following form:

−
1

ε2|t|2
∇ · (a∇φ)− 2

1

ε2|t|2
iεa∇φ · t (3.20a)

+

(
t#at

|t|2
+

1

|t|2
a0 −

1

ε2|t|2
iε(∇ · a) · t

)
φ =

1

|t|2
on Q̂,

1

ε|t|
n · (a∇y)φ = −

n · (aiεt)
ε|t|

φ on Γ̂N . (3.20b)

We then apply Proposition 3.4 to (3.20) with ζ = (ε|t|)−1. In view of the assumption ε|t| > 1
and the general assumption ε ∈ (0, 1], the constants Cb, Cc appearing in (3.8) can then be chosen
as

Cb = Cζ, Cc = C,

for a constant C > 0 independent of ε, |t|. Thus, the relative diffusivity E appearing in Propo-
sition 3.4 satisfies

c1 ε|t| ≤ E−1 ≤ c2 ε|t| (3.21)

for two constants c1, c2 > 0 independent of ε and t. Then we can formulate

Lemma 3.9 Under the assumption ε|t| ≥ 1 the solution φ of (3.19) satisfies for some C, K > 0,
β ∈ [0, 1) depending only on a, a0, ∂Q̂ the following bounds:

‖φ‖L2(Q̂) ≤ C
1

1 + |t|
,

‖∇φ‖L2(Q̂) ≤ Cε,

‖wp,β,|εt|−1∇p+2φ‖L2(Q̂) ≤ CKpmax {p, ε|t|}p+2 1

1 + |t|
.

Proof: The L2 and H1-bounds follow from Lemma 3.6. For the bounds on higher derivatives, we
note that the constant Cf of (3.8) satisfies Cf = O(|t|−2) = O((1 + |t|)−1) and that CH = O(1).
Applying now Proposition 3.4 to (3.20) the stated bounds follow, since the relative diffusivity
E appearing in the statement of Proposition 3.4 can be replaced with 1/(ε|t|) in view of (3.21)
and Lemma 3.2.

4 Two-Scale Regularity of uε

We use the regularity for the kernel function φ of the preceding section to develop now a two-
scale regularity theory for the solutions of (2.2), (2.3). These solutions can be written in the
form

uε(x) = U ε(x, y)|y=x/ε
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where the two-scale function U ε is given by

U ε(x, y) :=
1

2π

∫

R2

f̂(t)eit·xφ(y, ε, t) dt; (4.1)

this representation follows from (2.5) with ψ(x, ε, t) = eit·xφ(y, ε, t)|y=x/ε. Our main result in
this section is the regularity assertion Theorem 4.3 for this two-scale function U ε. We show that
U ε depends smoothly on ε and, viewing U ε as a mapping

R
2 → H1

per(Q̂)

x 4→ U ε(x, ·)

we even have U ε ∈ Hk(R2,H1
per(Q̂) ∩Hp+2,2

β,1 (Q̂)), where k ∈ N depends on the right-hand side
f only.

4.1 Two-scale shift theorem

In order to characterize the function U ε of (4.1), we write it as the sum U ε
1 , U

ε
2 given by

U ε
1 (x, y) :=

1

2π

∫

|t|<1/ε
f̂(t)eit·xφ(y, ε, t) dt, (4.2)

U ε
2 (x, y) :=

1

2π

∫

|t|>1/ε
f̂(t)eit·xφ(y, ε, t) dt. (4.3)

Theorems 4.1, 4.2 provide regularity results for these two functions. For U ε
1 we have the following

regularity assertion:

Theorem 4.1 Let k ∈ N0 and let β ∈ [0, 1)J be given by Theorem 3.7. Then there exist C > 0
(depending only on the constants C, K > 0 appearing in Theorem 3.7 and k) and K > 0 such
that the function U ε

1 of (4.2) satisfies for f ∈ Hk(R2)

‖U ε
1‖Hk(R2,L2

per(Q̂)) ≤ Cε1−l‖f‖Hk−l(R2), l = 0, . . . , k,

‖U ε
1‖Hk(R2,H1

per(Q̂)) ≤ Cε1−l‖f‖Hk−l(R2), l = 0, . . . , k,

‖U ε
1‖Hk(R2,Hp+2,2

β,1 (Q̂)) ≤ CKpp!ε1−l‖f‖Hk−l(R2), l = 0, . . . , k, p ∈ N0.

Proof: We show only the third bound as the first two estimates are proved similarly. Using
Parseval’s identity and Lemma 3.8, we estimate for 0≤ s ≤ p

‖∇k
xws,β,1(y)∇s+2

y U ε
1‖2L2(R2,L2

per(Q̂))
=

∫

|t|<1/ε
|t|2k|f̂(t)|2‖ws,β,1∇s+2

y φ‖2
L2
per(Q̂)

dt

≤ C(Kss!)2
∫

|t|<1/ε
|t|2k|f̂(t)|2ε2 dt

≤ C(Kss!)2ε2(1−l)|f |2Hk−l(R2), l = 0, . . . , k,

where we used ε ≤ |t|−1. Summing over s ∈ {0, . . . , p} then gives the desired bound.

The next theorem provides bounds on U ε
2 :

Theorem 4.2 Let k ∈ N, m ∈ N0. Let β ∈ [0, 1)J be given by Theorem 3.7. Then there exists
C > 0 (depending only on the constants C, K > 0 appearing in Theorem 3.7, k, and m) such
that the function U ε

2 of (4.3) satisfies

‖U ε
2‖Hk(R2,L2

per(Q̂)) ≤ Co(1)‖f‖Hk−1(R2),

‖U ε
2‖Hk(R2,H1

per(Q̂)) ≤ Cεo(1)‖f‖Hk(R2),

‖U ε
2‖Hk(R2,Hp+2,2

β,1 (Q̂)) ≤ CKpo(1)
[
p!‖f‖Hk−1(R2) + εp+2|f |Hk+p+1(R2)

]
∀p ∈ N0.
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Here the constant C depends on k, and K depends on δ, a, a0. The Landau symbol o(1) denotes
a function of ε such that

o(1) ≤ 1,

lim
ε→0

o(1) = 0.

Proof: We will again only show the last estimate as the first two are proved similarly. With
Parseval’s identity, monotonicity properties of the weight function E 4→ wp,β,E (cf. (3.6)) and
Lemma 3.9

‖∇k
xws,β,1∇s+2

y U ε
2‖2L2(R2,L2

per(Q̂))
=

∫

|t|>1/ε
|t|2k|f̂(t)|2‖ws,β,1∇s+2

y φ‖2
L2
per(Q̂)

dt

≤
∫

|t|>1/ε
|t|2k|f̂(t)|2‖ws,β,E∇s+2

y φ‖2
L2
per(Q̂)

dt

≤ CK2s
∫

|t|>1/ε
|t|2k|f̂(t)|2

(
max {s!, (ε|t|)s+2

)2 1

|t|2
dt.

Since we can bound (
max {s!, (ε|t|)s+2}

)2 ≤ (s!)2 + (ε|t|)2(s+2),

we get

‖∇k
xws,β,1∇s+2

y U ε
2‖2L2(R2,L2

per(Q̂))
≤

CK2s

[

(s!)2
∫

|t|>1/ε
|t|2k−2|f̂(t)|2 dt+ ε2s+4

∫

|t|>1/ε
|t|2k+2s+2|f̂(t)|2 dt

]

.

The first integral is bounded by
∫

|t|>1/ε
|t|2k−2|f̂(t)|2 dt =

∫

|t|>1/ε
|t|2(k−1+m)|t|−2m |f̂(t)|2 dt ≤ ε2mo(1)|f |2Hk−1+m(R2).

For the second integral, we use |t| ≥ 1/ε ≥ 1 and bound for 0 ≤ s ≤ p

ε2s+4
∫

|t|>1/ε
|t|2k+2s+2|f̂(t)|2 dt = ε2s+4

∫

|t|>1/ε
|t|2k+2p+2|f̂(t)|2 |t|2(s−p) dt

≤ ε2s+4+2(p−s)
∫

|t|>1/ε
|t|2k+2p+2|f̂(t)|2 dt

≤ Cε2(p+2)o(1)|f |2Hk+p+1(R2),

where the factor o(1) expresses the fact that

lim
ε→0

1

‖f‖2
Hk+p+1(R2)

∫

|t|≥1/ε
|t|2(k+p+1)|f̂(t)|2 dt = 0.

Thus,

‖U ε
2‖2Hk(R2,Hp+2,2

β,1 (Q̂))
= ‖U ε

2‖2Hk(R2,H1
per(Q̂))

+
p∑

s=0

‖∇k
xws,β,1∇s+2

y U ε
2‖2L2(R2,L2

per(Q̂))

≤ CK2po(1)

[

‖f‖2Hk−1(R2) +
p∑

s=0

(s!)2‖f‖2Hk−1(R2) + (p+ 1)ε2(p+2)|f |2Hk+p+1(R2)

]

≤ CK2po(1)
[
(p!)2‖f‖2Hk−1(R2) + ε2(p+2)|f |2Hk+p+1(R2)

]
.

The above results concerning the terms U ε
1 , U

ε
2 can be combined into the following statement

for U ε:
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Theorem 4.3 Let k ∈ N and β ∈ [0, 1)J be given by Theorem 3.7. Then there exists C > 0
(depending only on the constants C, K > 0 appearing in Theorem 3.7 and k) such that for
f ∈ Hk(R2) the function U ε of (4.1) satisfies

‖U ε‖Hk(R2,Hp+2,2
β,1 (Q̂)) ≤ CKp

[
p!‖f‖Hk−1(R2) + εp+2|f |Hk+p+1(R2)

]
,

‖ε−1∇yU
ε‖Hk(R2,Hp+1,1

β,1 (Q̂)) ≤ CKp
[
p!‖f‖Hk(R2) + εp+1|f |Hk+p+1(R2)

]
.

Proof: Follows from Lemmas 3.8, 3.9 and the preceding two theorems.

4.2 Remarks on Dirichlet and mixed boundary conditions

So far we have considered the case of Neumann boundary conditions (2.3). An analogous theory
can be developed for other kinds of boundary conditions. We discuss in the present section
the case where Dirichlet boundary conditions are imposed on parts of the internal boundary.
We show that in this case, the estimates on φ and likewise the two-scale regularity results of
Section 4.1 can be improved.
The internal boundary of Q̂ is split into two parts Γ̂′

N and Γ̂D, and we consider the function φ
that solves

e−iεt·yLε(y, ε−1∂y)e
iεt·yφ = 1 on Q̂, (4.4a)

e−iεt·yn · (a(y)∇(eiεt·yφ)) = 0 on Γ̂′
N , (4.4b)

φ = 0 on Γ̂D. (4.4c)

4.2.1 Estimates for the unit-cell Dirichlet problem

Lemma 4.4 Let |ΓD| > 0. Then there exists δ > 0 (depending only on a, a0 and the Poincaré
constant of Q̂) such that the solution φ of (4.4) satisfies

‖φ‖H1(Q̂) ≤ Cε2,

provided that
ε|t| < δ (4.5)

Proof: We multiply the weak form of (4.4a) by φ and integrate by parts:
∫

Q̂
(a(y)∇φ) ·∇φ dy =

∫

Q̂
iε(a(y)t) ·∇φφ+ iε(a(y)∇φ) · tφ

−
∫

Q̂
(ε2t#a(y)t+ ε2a0(y)− iε(∇ · a) · t)φφ dy +

∫

Q̂
ε2φ dy.

Thus, for some c1, c2 > 0 we obtain

c1|φ|2H1(Q̂)
≤ 2c2ε|t||φ|H1(Q̂)‖φ‖L2(Q̂)

+ (c2ε
2|t|2 + c2ε

2 + ε|t|‖a‖W 1,∞(Q̂))‖φ‖
2
L2(Q̂)

+ ε2‖φ‖L2(Q̂).

If CP denotes the Poincaré constant of the domain Q̂ (with Dirichlet boundary conditions pre-
scribed on Γ̂D), there exists δ = δ(c1, c2, ‖a‖W 1,∞(Q̂)) > 0 such that for all ε|t| < δ

|φ|2
H1(Q̂)

≤ Cε2‖φ‖L2(Q̂) ≤ CCPε
2|φ|H1(Q̂).

This concludes the proof of the lemma.

Analytic regularity results analogous to those of Theorem 3.7 are formulated in the following
Theorem 4.5 for the solution of (4.4). The main difference is that the use of Lemma 4.4 can
replace appeals to Lemma 3.6 thus allowing for improvements in the case ε|t| small:
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Theorem 4.5 Let |Γ̂D| > 0 and let δ > 0 be given by Lemma 4.4. Then there exist C, K > 0
and β ∈ [0, 1)J such that the the solution φ to (4.4) satisfies the following:

1. If ε, t satisfy ε|t| ≤ δ, then

‖φ‖H1(Q̂) ≤ Cε2,

‖wp,β,1∇p+2φ‖L2(Q̂) ≤ CKpp!ε2 ∀p ∈ N0.

2. If ε, t satisfy ε|t| > δ, then

‖φ‖L2(Q̂) ≤ C
1

1 + |t|
,

‖∇φ‖L2(Q̂) ≤ Cε,

‖wp,β,|εt|−1∇p+2φ‖L2(Q̂) ≤ CKpmax {p, ε|t|}p+2 1

1 + |t|
.

Proof: The H1-estimates follow from Lemmas 3.6, 4.4. The high order estimates follow from
Proposition 3.4.

4.2.2 Two-scale regularity for Dirichlet problems

The improved estimates of Theorem 4.5 for the unit-cell problem with Dirichlet or mixed bound-
ary conditions allow for better estimates for the two-scale regularity developed in Section 4.1.
As in the case of pure Neumann boundary conditions, the two-scale function U ε can be split
into U ε

1 , U
ε
2 given by

U ε
1 (x, y) :=

1

2π

∫

|t|<δ/ε
f̂(t)eit·xφ(y, ε, t) dt,

U ε
2 (x, y) :=

1

2π

∫

|t|>δ/ε
f̂(t)eit·xφ(y, ε, t) dt.

where δ > 0 is given by Lemma 4.4 and φ is the solution to (4.4).
The function U ε

2 satisfies the same estimates as its counterpart for the case of Neumann boundary
conditions, that is, U ε

2 satisfies the bounds given in Theorem 4.2. Reasoning as in the proof of
Theorem 4.1, one can show that U ε

1 satisfies

‖U ε
1‖Hk(R2,L2

per(Q̂)) ≤ Cε2−l‖f‖Hk−l(R2), l = 0, . . . , k,

‖U ε
1‖Hk(R2,H1

per(Q̂)) ≤ Cε2−l‖f‖Hk−l(R2), l = 0, . . . , k,

‖U ε
1‖Hk(R2,Hp+2,2

β,1 (Q̂)) ≤ CKpp!ε2−l‖f‖Hk−l(R2), l = 0, . . . , k.

In particular, we obtain

Theorem 4.6 Let k ∈ N, k ≥ 2 and β ∈ [0, 1)J be given by Theorem 4.5. Let U ε be given
by (4.1). Then there exist C > 0 and K > 0 (depending on k and the constants C, K of
Theorem 4.5) such that

‖U ε‖Hk(R2,Hp+2,2
β,1 (Q̂)) ≤ CKp

[
p!‖f‖Hk−2(R2) + o(1)p!‖f‖Hk−1(R2) + εp+2|f |Hk+p+1(R2)

]
.

‖ε−1∇yU
ε‖Hk(R2,Hp+1,1

β,1 (Q̂)) ≤ CKp
[
p!‖f‖Hk−1(R2) + o(1)p!‖f‖Hk(R2) + εp+1|f |Hk+p+1(R2)

]
.
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5 Approximation of Functions with Two-Scale Regularity

In the previous section we saw that uniform regularity of uε in dependence on ε could be
properly expressed in terms of the two-scale Sobolev spaces Hk(R2,Hs,2

β,1(Q̂)). The purpose
of the present section is to show that regularity assertions of this type can be used to guide
the construction of finite dimensional spaces from which rapidly oscillating functions can be
approximated robustly, i.e., the rate of convergence is independent of ε. We present such a space
VN in (5.4) below and provide in Theorem 5.2 an interpolation operator for the approximation
of functions with two-scale regularity. Such approximation results in combination with quasi-
optimality of finite element methods, or, more generally, projection methods, lead to robust
finite element convergence based on the two-scale finite element space (5.4).
We assume that the domain Ω ⊂ R2 is axiparallel and, for simplicity of exposition, that the
unit-cell Q̂ is polygonal.

5.1 Two-scale finite element spaces

The two-scale finite element spaces that we employ are based on tensor products of finite element
spaces that are defined on Ω (the “coarse” scale) and the of ε-periodic finite element space
designed to capture the effects on the fine scale.

5.1.1 Macro finite element spaces

We assume that the domain Ω is axiparallel, and we take TH as the uniform triangulation of Ω
of squares of side length H. We take as macro FE space in Ω the standard FE space Sp,1(Ω,TH)
of continuous, piecewise polynomials of degree p on the mesh TH . Let Ip,TH be a projector
Ip,TH : Hk+1(Ω) → Sp,1(Ω,TH) with the properties

∑

αj∈{0,1}

H |α|‖Dα(v − Ip,THv)‖L2(K) ≤ C(p, k)Hk+1|v|Hk+1(K) ∀K ∈ TH . (5.1)

Such operators can be constructed as elementwise tensor product interpolants, see e.g. [8].

5.1.2 Fine scale finite element spaces

For the approximation of function ofHk(Ω,Hs,2
β,1(Q̂)), spaces Sµ,1

per(Q̂, T̂ rad
h ) and projectors Iµ,T̂ rad

h

are required that are suitable for the approximation of functions of Hs,2
β,1(Q̂) ∩H1

per(Q̂). Here,

µ ∈ N stands for the ‘micro’ polynomial degree, and Sµ,1
per(Q̂, T̂ rad

h ) is the space of periodic

continuous, piecewise polynomials of degree µ on the (periodic) radical mesh T̂ rad
h (Q̂).

Radical meshes T rad
h (Q̂) are designed for the approximation of functions that are smooth up to

the boundary with the exception of a few points, where they have singularities; such functions
are described with the aid of the weighted Sobolev spaces Hp+l,l

β,1 .

A radical mesh T̂ rad
h (Q̂) consists of shape regular triangles T , whose diameters hT satisfy the

following conditions for a fixed vector α ∈ [0, 1)J and h > 0:

1. if Aj ∈ T for some j ∈ {1, . . . , J}, then hT ∼ h1/(1−αj );

2. if Aj 5∈ T for all j ∈ {1, . . . , J}, then

c1h inf
x∈T

w0,α,1(x) ≤ hT ≤ c2h sup
x∈T

w0,α,1(x),

for some fixed constants c1, c2.
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The exponents αi, i = 1, . . . , J , are chosen in dependence on the singularity exponents βi,
i = 1, . . . , J , as well as the polynomial degree µ. For the case µ = 1, one can take α = β, and it
is shown in [3] that

‖v − I1,T̂ rad
h

v‖L2(Q̂) + h|v − I1,T̂ rad
h

v|H1(Q̂) ≤ Ch2‖v‖H2,2
β (Q̂), (5.2)

where I1,T̂ rad
h

denotes the piecewise linear interpolant with respect to the ‘micro’ FE space

S1(Q̂, T̂ rad
h ). For µ ≥ 2, one can construct analogously operators Iµ,T̂ rad

h
with

‖v − Iµ,T̂ rad
h

v‖L2(Q̂) + h|v − Iµ,T̂ rad
h

v|H1(Q̂) ≤ Chmin(µ,s)+1‖v‖Hs+1,2
β (Q̂). (5.3)

For complexity considerations involving graded meshes and the operator Iµ,T̂ rad
h

, it is important

to note that
h−2 ∼ |T̂ rad

h |.

5.1.3 Two-scale finite element spaces

We take as the two-scale finite element space the space

VN := Rε
(
Sp(Ω,TH)⊗ Sµ

per(Q̂,T rad
h )

)
, (5.4)

where the restriction operator Rε is given by (RεU)(x) = U(x, y)|y=x/ε. The elements of VN

have the form
uεFE(x) =

∑

i,j

uijNi(x)Mj(x/ε),

for some uij ∈ R, where the functions Ni, Mj are basis functions of the spaces Sp(Ω,TH),

Sµ
per(Q̂,T rad

h ), respectively.

5.2 Approximation from two-scale finite element spaces

We have seen that the solution uε may be interpreted as uε(x) = U ε(x, x/ε), where U ε is defined
on Ω × Q̂. This suggests to use hp-interpolants on Ω and Q̂ to approximate U ε in Ω × Q̂ and
take traces.

The interpolation error eεI has the form

eεI(x) := Eε
I (x, x/ε), Eε

I (x, y) = U ε(x, y)− U ε
I (x, y), x ∈ Ω, y ∈ Ω∞

ε (5.5)

in which the two-scale interpolant U ε
I is given by

U ε
I (x, y) = Ixp,TH ⊗ Iy

µ,T̂ rad
h

U ε(x, y).

Here, Ixp,TH denotes the piecewise polynomial of degree p interpolant in Ω as in (5.1) and Iy
µ,T̂ rad

h

the Sµ
per(Q̂, T̂ rad

h ) interpolant in H1
per(Q̂).

For the convergence analysis of the two-scale FEM we will need the following result [8] on
traces in Sobolev spaces of mixed order. Let D ⊂ R2 be a bounded domain. For a function
f(·, ·) : D×D → R, we denote by (Rf)(x) = f(x, y)|y=x : D → R its restriction to the diagonal
{(x, y) ∈ D ×D | x = y}. Furthermore, for α, β ∈ Nn

0 multiindices, we denote by Hα,β(D ×D)
the following Sobolev spaces of mixed order

Hα,β(D ×D) := {f ∈ L2(D ×D) : Dγ
xD

δ
yf ∈ L2(D ×D) ∀ γ ≤ α, δ ≤ β},

where the inequalities γ ≤ α, δ ≤ β have to be understood componentwise.
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Lemma 5.1 Let us denote by 1 := (1, 1). Then for any fixed pair of multiindices α,β ∈ N2
0 with

α+ β = 1 the restriction operator R : Hα,β(D ×D) → L2(D) is continuous, i.e., there exists a
constant C > 0 such that

‖Rf‖L2(D) ≤ C‖f‖Hα,β(D×D), ∀ f ∈ Hα,β(D ×D).

Theorem 5.2 We assume that uε has the two-scale regularity in Ωε := Ω ∩ Ω∞
ε : uε(x) =

U ε(x, x/ε), with U ε being 1-periodic in y ∈ Q̂ and U ε ∈ Hk+1(Ω,Hs+1,2
β,1 (Q̂)). For p, µ, k, s ≥ 1

and H/ε ∈ N we have for the interpolation error eεI of (5.5)

‖eεI‖H1(Ωε) ≤ C(p, k)Hmin(p,k)(‖ε−1∇yU
ε‖Hk(Ω; L2

per(Q̂)) + ‖U ε‖Hk+1(Ω; L2
per(Q̂)))

+ C(µ, s)hmin(µ,s)(‖ε−1∇yU
ε‖H2(Ω;Hs,2

β,1(Q̂)) + ‖U ε‖H2(Ω;Hs+1,2
β,1 (Q̂)). (5.6)

Proof: We split the interpolation error as

Eε
I ((x), y) := U ε(x, y)− Ixp,THU

ε(x, y) + (Ixp,THU
ε(x, y)− Ixp,TH ⊗ Iy

µ,T̂ rad
h

)U ε(x, y).

We estimate first the L2 norm of the error on K and apply the trace result in Lemma 5.1 in [8]
to move on full two scale interpolation error estimates

∫

K∩Ωε

|eεI(x)|
2 dx = ε2

∑

m∈Z2:ε(Q̂+m)⊂K

∫

Q̂

∣∣∣∣∣E
ε
I (ε(z +m), y)

∣∣∣∣
z=y

∣∣∣∣∣

2

dz

≤ Cε2
∑

m∈Z2:ε(Q̂+m)⊂K

∑

0≤αj≤1

ε2|α|
∫

Q̂×Q̂

|(Dα
xE

ε
I )(ε(z +m), y)|2 dzdy

= C
∑

0≤αj≤1

ε2|α|
∫

(K∩Ωε)×Q̂

|Dα
xE

ε
I (x, y)|

2 dxdy

≤ C (IK + IIK) ,

where

IK =
∑

0≤αj≤1

ε2|α|
∫

K×Q̂

∣∣Dα
x

(
U ε(x, y)− Ixp,THU

ε(x, y)
)∣∣2 dxdy

IIK =
∑

0≤αj≤1

ε2|α|
∫

K×Q̂

∣∣∣∣D
α
x

(
Ixp,THU

ε(x, y)− (Ixp,TH ⊗ Iy
µ,T̂ rad

h

)U ε(x, y)

)∣∣∣∣
2

dxdy.

The ‘macro’ error IK is estimated in view of (5.1) as follows

IK =
∑

0≤αj≤1

ε2|α|
∫

K×Q̂

∣∣Dα
x

(
U ε(x, y)− Ixp,THU

ε(x, y)
)∣∣2 dxdy

≤ CH2(k+1)
∫

K×Q̂

∣∣∣
(
Dk+1

x U ε
)
(x, y)

∣∣∣
2
dxdy.

Applying now the error estimates in (5.3) for the interpolation error in the ‘micro’ FE space
Sµ
per(Q̂, T̂ rad

h ), the error IIK in y can be estimated as follows

IIK =
∑

0≤αj≤1

ε2|α|
∫

K×Q̂

∣∣∣∣D
α
x

(
Ixp,THU

ε(x, y)− (Ixp,TH ⊗ Iy
µ,T̂ rad

h

)U ε(x, y)

)∣∣∣∣
2

dxdy

≤ C
∑

0≤αj≤1

∫

K×Q̂

∣∣∣∣D
|α|
x

(
U ε(x, y)− Iy

µ,T̂ rad
h

U ε(x, y)

)∣∣∣∣
2

dxdy

≤ Ch2min(µ,s)+2‖U ε‖2
H2(K;Hs+1,2

β,1 (Q̂))
.
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Summing up over all elements K ∈ TH we obtain that

‖eεI‖L2(Ωε) ≤ C

(
Hmin(p,k)+1)‖U ε‖Hk+1(Ω; L2

per(Q̂)) + hmin(µ,s)+1‖U ε‖H2(Ω;Hs+1,2
β,1 (Q̂))

)
.

For the estimate of the interpolation error in theH1-seminorm we proceed analogously:

‖∇xe
ε
I(x)‖2L2(K∩Ωε)

=

∫

K∩Ωε

∣∣∣∣∣
(
(∇x + ε−1∇y)E

ε
I

)
(x, y)

∣∣∣∣
y=x

ε

∣∣∣∣∣

2

dx

≤ JK + JJK ,

where

JK =

∫

K∩Ωε

∣∣∣∣∣(∇xE
ε
I ) (x, y)

∣∣∣∣
y=x

ε

∣∣∣∣∣

2

dx, JJK =

∫

K∩Ωε

∣∣∣∣∣
(
ε−1∇yE

ε
I

)
(x, y)

∣∣∣∣
y=x

ε

∣∣∣∣∣

2

dx.

By the trace result in Lemma 5.1 we obtain that

JK = ε2
2∑

r=1

∑

m:ε(m+Q̂)⊂K

∫

Q̂

∣∣∣∣∣(∂xrE
ε
I )(ε(z +m), y)

∣∣∣∣
y=z

∣∣∣∣∣

2

dz

≤ Cε2
2∑

r=1

∑

m:ε(m+Q̂)⊂K

∑

0≤αj≤1

αr=1

ε2|α|−2
∫

Q̂

∫

Q̂

[
|(Dα

x∂yrE
ε
I )(ε(z +m), y)|2

+ |(Dα
xE

ε
I )(ε(z +m), y)|2

]
dzdy

≤ C
2∑

r=1

∑

0≤αj≤1

αr=1

ε2|α|−2
∫

K

∫

Q̂

[
|(Dα

x∂yrE
ε
I )(x, y)|

2 + |(Dα
xE

ε
I )(x, y)|

2
]
dxdy

Using arguments as in the bounds for the L2-norm we find that

2∑

r=1

∑

0≤αj≤1

αr=1

ε2|α|−2
∫

K

∫

Q̂

|(Dα
x∂yrE

ε
I )(x, y)|

2 ≤ C1H
2min(p,k)

∫

K×Q̂

∣∣∣Dk
x(ε

−1∇yU
ε)(x, y)

∣∣∣
2
dxdy

+ C2h
2min(µ,s)‖ε−1∇yU

ε‖2
H2(K;Hs,2

β,1(Q̂))

and

2∑

r=1

∑

0≤αj≤1

αr=1

ε2|α|−2 |(Dα
xE

ε
I )(x, y)|

2 dxdy ≤ C1H
2min(p,k)

∫

K×Q̂

∣∣∣Dk+1
x U ε(x, y)

∣∣∣
2
dxdy

+ C2h
2min(µ,s)‖U ε‖2

H2(K;Hs+1,2
β,1 (Q̂))

.

Summing up, we obtain that

JK ≤ C1H
2min(p,k)

( ∫

K×Q̂

∣∣∣Dk
x(ε

−1∇yU
ε)(x, y)

∣∣∣
2
dxdy +

∫

K×Q̂

∣∣∣Dk+1
x U ε(x, y)

∣∣∣
2
dxdy

)

+ C2h
2min(µ,s)

(
‖ε−1∇yU

ε‖2
H2(K;Hs,2

β,1(Q̂))
+ ‖U ε‖2

H2(K;Hs+1,2
β,1 (Q̂))

)
.

19



Similar considerations for JJK lead to the following estimate

JJK = ε2
∑

m∈Z2:ε(Q̂+m)⊂K

∫

Q̂

∣∣∣∣(ε
−1∇yE

ε
I )(ε(z +m), y)

∣∣∣∣
z=y

∣∣∣∣
2

dz

≤ Cε2
∑

m∈Z2:ε(Q̂+m)⊂K

∑

0≤αj≤1

ε2|α|
∫

Q̂×Q̂

∣∣(Dα
xε

−1∇yE
ε
I )(ε(z +m), y)

∣∣2 dzdy

≤ C
∑

0≤αj≤1

ε2|α|
∫

K×Q̂

∣∣Dα
x (ε

−1∇yE
ε
I )(x, y)

∣∣2 dxdy

≤ C1H
2min(p,k)

∫

K×Q̂

∣∣∣
(
Dk

x(ε
−1∇yU

ε)
)
(x, y)

∣∣∣
2
dxdy

+ C2h2min(µ,s)‖ε−1∇yU ε‖2
H2(K;Hs,2

β,1(Q̂))
.

Summing up over all elements K of the ‘macro’ triangulation we obtain (5.6).

A Appendix

We require the following local regularity assertion:

Lemma A.1 For R ∈ (0, 1] set BR := BR(0), B+
R := {(x, y) | (x, y) ∈ BR, y > 0}, ΓR :=

BR ∩ {(x, 0) |x ∈ R}. Let a ∈ C1(BR) be uniformly symmetric positive definite. Then there
exists C > 0 depending only on ‖a‖W 1,∞(BR) with the following properties:

1. If f ∈ L2(BR), then any solution u ∈ H1(BR) of −∇ · (a∇u) = f satisfies

‖∇2u‖L2(BR/2) ≤ C
[
‖f‖L2(BR) +R−1‖∇u‖L2(BR)

]
.

2. If f ∈ L2(B+
R ) and G ∈ H1(B+

R ), then any solution u ∈ H1(B+
R ) of

−∇ · (a∇u) = f on B+
R , ∂nau = G on ΓR

satisfies

‖∇2u‖L2(B+
R/2)

≤ C
[
‖f‖L2(B+

R ) + ‖∇G‖L2(B+
R ) +R−1‖G‖L2(B+

R) +R−1‖∇u‖L2(B+
R )

]
.

Proof: The case R = 1 is standard; the general case R ∈ (0, 1] follows by scaling arguments.

We also have the following Hardy-type estimate:

Lemma A.2 Let SR(ω) = {(r cosϕ, r sinϕ) | 0 < r < R, 0 < ϕ < ω} be a sector, β ∈ (0, 1),
S′ ⊂ SR(ω) a compact subset. Then there exists a constant C > 0 independent of u such that

‖ |x|β−1u‖L2(SR(ω)) ≤ C
[
‖ |x|β∇u‖L2(SR(ω)) + ‖u‖L2(S′)

]

provided that the right-hand side is finite.

Proof: Polar coordinates are employed to reduce the proof to a one-dimensional argument:
¿From [5, Thm. 330] (using suitable cut-off functions), we obtain for every r0 ∈ (0, R), β ∈ (0, 1)
the existence of C > 0 independent of u such that

∫ R

0
r2(β−1)+1u2(r) dr ≤ C

∫ R

0
r2β+1|u′(r)|2 dr +

∫ R

r0

u2(r)r dr, (A.1)

provided that u is such that the right-hand side is finite. Using polar coordinates, the desired
result now follows.

Acknowledgement. The authors are indebted to Christoph Schwab for many stimulating
discussions.
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[5] G. Hardy, J.E. Littlewood, G. Pólya, Inequalities. Cambridge University Press, 1991.

[6] A.-M. Matache, Spectral and p-Finite Elements for Problems with Microstructure, Ph.D.
Thesis, Dept. of Mathematics, ETH Zürich, 2000.
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