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Abstract

We formulate elliptic boundary value problems with stochastic loading in a domain

D. We show well-posedness of the problem in stochastic Sobolev spaces and we

derive then a deterministic elliptic PDE in D×D for the spatial correlation of the

solution. We show well-posedness and regularity results for this PDE in a scale of

weighted Sobolev spaces with mixed highest order derivatives. Discretization with

sparse tensor products of any hierarchic FE space in D yields optimal asymptotic

rates of convergence for the second moments even in the presence of singularities

or for spatially completely uncorrelated data. Multilevel preconditioning in D ×

D allows iterative solution of the discrete equations for the correlation kernel in

essentially the same complexity as the solution of the mean field equation.



1 Problem formulation

Due to the rapid development of scientific computing in recent years, accurate numerical solution of
boundary value problems for partial differential equations is now possible in many applications. For
given problem data, such as domains, coefficients and boundary data, the solution can be computed to
high accuracy. Often, however, the problem data is either incompletely known or uncertain which implies
that highly accurate numerical solutions are of limited use. One way to deal with such uncertainty is
to describe the problem data as random fields which turns the problem into a stochastic differential
equation. The formulation and numerical solution of stochastic differential equations has received
increasing interest in recent years. We mention here only [17], [18], [15] and the references there on
stochastic ordinary differential equations and [12], [13], [7] on stochastic partial differential equations.
In engineering simulations, uncertainty in coefficients and loadings has been dealt with by means of the
stochastic finite element method in structural mechanics (see [14] and the references there) and by the
related first order, second moment perturbation technique in subsurface flow models, introduced in [6].

The solution of a stochastic differential equation is, in general, a random field which takes values
in a suitable function space. Complete description of this random field requires knowledge of its joint
probability densities. In applications, however, one is often only interested in the first moments of the
random solution. These moments can be computed e.g. by the Monte-Carlo (MC) Method, where
numerous ‘samples’ of the random input data are generated according to prescribed, often empirical,
distributions and each MC sample entails the solution of a deterministic boundary value problem.
From the computed solutions, the mean and covariance then give estimates for the first moments of
the random solution. This approach is costly – due to the generally slow convergence of MC methods,
numerous samples must be taken until a satisfactory accuracy of the computed solution has been
reached. Nevertheless, in the context of stochastic ordinary differential equations, this technique is
frequently employed (e.g. [15]) with good success. For partial differential equations, one could discretize
in the spatial variables first, e.g. by the Finite Element Method (FEM). This will then lead to large
linear systems with random stiffness and mass matrices, the so-called stochastic FEM [14]. The cost of
this approach is often prohibitive, particularly in 3-d.

Alternatively one can directly compute the moments of interest for the random solution and this is
the approach which we follow here. This approach consists in deriving deterministic partial differential
equations for the moments of the random solution, thereby eliminating the need for MC simulations.
This advantage is bought, however, at the expense of a high dimensionality in the deterministic problem
for the moments: if the differential equation is posed in the physical domain D ⊂ Rd, the 2nd moment
of the solution, called correlation, is a function of two variables in D × D ⊂ R2d. We show in the
present paper for elliptic partial differential equations with stochastic input data that the deterministic
equation for the correlation has a very special structure. We exploit this structure for anisotropic
regularity estimates which in turn show that finite element approximations of the correlation can be
computed in essentially the same complexity as FE-solutions of the deterministic problem in D.

We now specify the problems to be considered. Let (Ω,Σ, P ) be a σ − finite probability space and
D ⊂ Rd a bounded open set with Lipschitz boundary ∂D. Let A ∈ L∞(D ,Rd×d

sym ) satisfy

∃α,β > 0 s.t. α‖ξ‖2 ≤ ξ#A(x )ξ ≤ β‖ξ‖2 ∀ξ ∈ R
d and λ− a.e. x ∈ D . (1.1)

We define a random field on a submanifold M of Rd (it will be always D or some part of its boundary)
as a jointly measurable function from M ×Ω to C. Suppose ∂D = Γ0 ∪ Γ1 is a disjoint union of closed
subsets, where Γ0 has positive surface measure and let f , g and h be random fields on D, Γ0 and Γ1

respectively. We consider the following model problem, with stochastic r.h.s.,

Pu(x,ω) :=







L(∂x)u
γ0(u)
γn(u)







=







−div(A(x)∇u(x,ω))
u(x,ω) |Γ0

n#A(x)∇u(x,ω) |Γ1







=







f(x,ω) in D
g(x,ω) on Γ0

h(x,ω) on Γ1







, (1.2)

where the operators involved in the boundary conditions should be thought of as stochastic counterparts
of the classical trace on Γ0 or Γ1 and distributional conormal derivative operators, γ0, γ1 and γn
respectively.

We mention that in practice, one is often interested in solving a problem with also stochastic
coefficient A(x,ω), where usually A(x,ω) is an ε−small perturbation of its mean field w.r.t. ω. The
Keller method represents the stochastic solution as an exponentially convergent series, in which each
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term solves a stochastic problem with the same deterministic coefficient but different stochastic loadings.
Clearly then, a rigorous study of (1.2), which is the purpose of this work, is a key step towards efficient
numerical methods for the more general case of a stochastic coefficient.

The present paper is organized as follows. In Section 2, we first introduce appropriate function
spaces of data (f, g, h) and solutions u in such a way that (1.2) becomes a well-posed problem. In
Section 3 we define the ‘statistics of u’, and we derive deterministic partial differential equations which
describe them. The ‘statistics of u’ that we are interested in here are the moments of first and second
order of the random solution u(x,ω) to (1.2), sometimes referred to as the mean field and correlation
of u(x,ω), and defined by

Eu(x) :=

∫

Ω
u(x,ω)dP (ω) and Cu(x, y) :=

∫

Ω
u(x,ω)u(y,ω)dP (ω),

respectively, whenever these quantities exist. Section 4 addresses the regularity of the correlation
equation, in particular also in polygonal domains. Section 5 discusses the finite element approximation
of the correlation equation. We describe a particular FE-space which allows to achieve, in terms of the
number of degrees of freedom, essentially the same convergence rates as for the problem in domain D.
Section 6 addresses the preconditioning and the iterative solution of the linear system of equations for
the correlation problem. Also, a detailed complexity analysis is given and logarithmic linear complexity
of the algorithm is established. Finally, Section 7 presents numerical experiments which confirm the
theoretical estimates.

2 Preliminaries

2.1 Stochastic Sobolev spaces

The most appropriate tools for the study of (1.2) are the stochastic Sobolev spaces, which we shall define
as tensor products of usual function spaces. Within the setting of the previous section, we consider
L2(Ω, dP ), the Hilbert space of all real random variables on Ω with finite second-order moments,
equipped with the usual inner product

〈u, v〉 :=
∫

Ω
u(ω)v(ω)dP (ω). (2.1)

Our convention will be that whenever H is a Sobolev space, H will denote its stochastic counterpart,
that is, the tensor product of H and L2(Ω, dP ). For instance, we shall use

Hk(D) := Hk(D)⊗ L2(Ω, dP ), L2(D)d := L2(D)d ⊗ L2(Ω, dP )
H1/2(Γ0) := H1/2(Γ0)⊗ L2(Ω, dP ), H−1/2(Γ1) := H−1/2(Γ1)⊗ L2(Ω, dP ) etc.

The stochastic Sobolev spaces introduced above are equipped with natural Hilbert structures induced
from the tensor product factors. Embedding and trace theorems similar to the usual ones hold also
true on account of the fact that bounded linear operators between Hilbert spaces can be tensorised. We
shall use also the following spaces and operators,

∇ ∈ B(H1(D), L2(D)d), ∇⊗ Id ∈ B(H1(D),L2(D)d )
−div ∈ B(L2(D)d, H−1(D)) , −div⊗ Id ∈ B(L2(D)d ,H−1(D))

γj ∈ B(H1(D), H1/2(Γj)) , γj ⊗ Id ∈ B(H1(D),H1/2(Γj)), j = 0, 1
H1

(0)(D) := Ker γ0 = {u ∈ H1(D) | γ0 u = 0} , H1
(0)(D) := Ker (γ0 ⊗ Id)

H−1(D) := (H1
(0)(D)⊗ L2(Ω, dP )) ∗ . H−1(D)⊗ L2(Ω, dP ),

where B denotes the space of bounded linear operators between two Hilbert spaces, and we have used
the usual notation K! for the dual space of a Hilbert space K. Note that we shall always identify L2(D)
with its dual, via the Riesz isomorphism.
As for the coefficient A(x), (1.1) ensures that

α‖u‖2L2(D)d ≤ 〈(A⊗ Id)u, u〉L2(D)d ≤ β‖u‖2L2(D)d ∀u ∈ L2(D)d . (2.2)

Regarding the stochastic Sobolev spaces, we remark that the norm on H1
(0)(D) is given by

‖ · ‖1 := ‖(∇⊗ Id) · ‖L2(D)d , (2.3)

2



since the scalar product in H1
(0)(D) is obtained by tensorizing the scalar products 〈∇·,∇·〉L2(D)d in

H1
(0)(D) and (2.1) in L2(Ω, dP ).

The following result justifies the terminology ’random fields’ for the elements of the tensor-product
spaces introduced above.

Proposition 2.1 We have the canonical isomorphisms

Hk(D;L2(Ω, dP )) . Hk(D) := Hk(D)⊗ L2(Ω, dP ) . L2(Ω, dP ;Hk(D)). (2.4)

Since this result is standard, we simply recall here the definitions of the spaces and isomorphisms in
(2.4) (see also [22]). If H is a separable Hilbert space (for instance L2(Ω, dP ) or Hk(D)) and (S,Υ,m)
a measure space, then

L2(S, dm;H) := {f : S → H | f is strongly measurable and

∫

S
‖f(x)‖2H < ∞}.

If S = D, Υ is the family of Borel sets in D andm is the Lebesgue measure , then

Hk(D;H) := {f ∈ L2(S, dm;H) | ∀ |α| ≤ k ∃ fα ∈ L2(S, dm;H) s.t.

∀φ ∈ C∞
0 (D;H) ,

∫

D
〈f(x), ∂αφ(x)〉H dx = (−1)|α|

∫

D
〈fα(x),φ(x)〉H dx}. (2.5)

The functions fα are called the generalized derivatives of f , they are uniquely defined by (2.5) and
Hk(D;H) has a natural Hilbert structure given by

〈f, g〉Hk(D;H) :=
∑

|α|≤k

∫

D
〈fα(x), gα(x)〉L2(Ω,dP ) dx.

2.2 Random solutions

Now we can give a mathematical formulation of our problem (1.2).

Proposition 2.2 Assume f ∈ H−1(D), g ∈ H1/2(Γ0) and h ∈ H−1/2(Γ1). Then there exists a unique
random solution u ∈ H1(D) such that (γ0 ⊗ Id)u = g and

〈(A⊗ Id)(∇⊗ Id)u, (∇⊗ Id)v〉L2(D)d = 〈f, v〉H−1(D),H1
(0)

(D) + 〈h, (γ1 ⊗ Id)v〉H−1/2(Γ1),H1/2(Γ1) (2.6)

for all v ∈ H1
(0)(D).

Proof. Since H1(D)/H1
(0)(D) . H1/2(Γ0) as topological spaces, there exists u1 ∈ H1(D) such that

(γ0 ⊗ Id)(u1) = g. The result follows then from the Lax-Milgram Lemma applied in H1
(0)(D), since on

account of (2.1) and (2.2), the sesquilinear form A defined by the l.h.s. of (2.6) is bounded and coercive
on H1

(0)(D), while the r.h.s. of the problem for u− u1 defines a bounded linear functional on the same
space. 1

Remark 2.3 If we choose (e)i≥1 to be an ONB in L2(Ω; dP ) and if we expand f =
∑

i fi ⊗ ei with
∑

i ‖fi‖2L2(D) ≤ ∞, as well as g and h accordingly, then the solution of (1.2) can be written as a

series u =
∑

i ui ⊗ ei which converges absolutely in H1(D) and whose coefficient functions ui solve the
deterministic mixed boundary value problem

Pui =







L(∂x)ui

γ0(ui)
γn(ui)







=







fi in D,
gi on Γ0,
hi on Γ1.







. (2.7)

This can be seen by choosing the test function in (2.6) of the form v = w⊗ ei, with w ∈ H1
(0)(D). Note

that the deterministic character of A is essential in this decomposition.
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3 Statistics of u

In this section our interest will be focused on finding deterministic equations for the expectation and the
correlation of the random solution u respectively. While the expectation Eu(x) of the random solution
u(x,ω) at x ∈ D is obviously of interest, its spatial correlation Cu(x, x′) allows, for instance, to obtain
the variance of the random solution u(x,ω) at x ∈ D via

Var(u(x, ·)) = Cu(x, x) − (Eu(x))
2, x ∈ D.

3.1 Second order moments

We shall first give the definition of the correlation of a pair (u, v) when u, v ∈ H1(D) and we shall
then introduce the expectation of u as the correlation of the pair (u, 1) where 1 ∈ H1(D) is the tensor
product of constant functions equal to 1 on D and Ω respectively. It is easy to prove that

Proposition 3.1 Let u and v be elements of H1(D) and let (ei)i≥1 be an ONB in L2(Ω; dP ), so that
u =

∑

i ui ⊗ ei, where ui ∈ H1(D) ∀i ≥ 1 and
∑

i ‖ui‖2H1(D) < ∞. We define vi similarly. Then
∑

i ui⊗vi converges in H1(D)⊗H1(D) and the limit does not depend on the choice of the basis (ei)i≥1.

The previous result motivates the following

Definition 3.2 If u and v are elements of H1(D), then the series Cu,v defined in Proposition 3.1 is
called the correlation of the pair (u, v). If u = v we write Cu instead of Cu,u and speak about the
correlation of u.

Later we shall also need an extension of this definition, as follows.

Remark 3.3 ¿From the proof it follows also that if H,H1, H2 are separable Hilbert spaces, and u ∈
H1⊗H, v ∈ H2⊗H, then we can define in a similar way the correlation Cu,v as an element of H1⊗H2.
We shall use this for H1 = H−1(D) and H2 = L2(S; dm) where (S,Υ,m) is a σ− finite measure space,
or for H1 = H2 = H−1(D). In this way one can construct the correlations of the pairs (f, h) and (f, f)
with f and h as in Proposition 2.2.

3.2 Equation for Cu

We define the expectation of u by Eu := Cu,1 =

∫

Ω
u(x,ω)dP (ω). The expectation Eu of the random

solution u(x,ω) satisfies a deterministic boundary value problem which is easily derived. We choose an
ONB (ei)i≥1 in L2(Ω; dP ) with e1 = 1 (the constant function equal to 1 on Ω), so that Eu = u1 is the
unique solution of a mixed boundary value problem with data f1 = Cf,1 =: Ef , g1 = Cg,1 =: Eg, h1 =
Ch,1 =: Eh, as follows from Remark 2.3

P (Eu) =







L(∂x)Eu

γ0(Eu)
γn(Eu)







=







Ef in D,
Eg on Γ0,
Eh on Γ1.







. (3.1)

For future reference, we recall here also the variational formulation.

Find Eu ∈ {Eg}+H1
(0)(D) such that

q(Eu, v) = l(v) ∀v ∈ H1
(0)(D), (3.2)

where

q(u, v) := 〈A∇u,∇v〉L2(D)d ,

l(v) := 〈Ef , v〉H−1(D),H1
(0)

(D) + 〈Eh, v〉L2(Γ1).

To give a weak deterministic equation for the correlation function, let us introduce, following [1], the
anisotropic Sobolev spaces on D ×D by

Hk,l(D ×D) := Hk(D)⊗H l(D) , Hk,l
(0)(D ×D) := Hk

(0)(D)⊗H l
(0)(D), (3.3)
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for all integers k, l ≥ 1. We define also

L2(D ×D)d×d := L2(D)d ⊗ L2(D)d.

We consider also the following operators acting on the anisotropic spaces,

∇x,y := ∇x ⊗∇y ∈ B(H1,1(D ×D), L2(D ×D)d×d)
γj,x,y := γj.x ⊗ γj,y ∈ B(H1,1(D ×D), L2(Γj × Γj)) for j = 0, 1.

Ax,y := Ax ⊗Ay ∈ B(L2(D ×D)d×d).

Next we prove that the correlation of u given by (2.6) satisfies a fourth-order elliptic equation in D×D
and that the bilinear form involved is coercive (see also [5]). As it can be easily seen, if u solves (2.6),
then Cu satifies also the following boundary conditions

(γ0 ⊗ Id)Cu = Cg,u and (Id⊗ γ0)Cu = Cu,g . (3.4)

on Γ0×D and D×Γ0 respectively. We shall assume homogeneous Dirichlet boundary condition on Γ0,
g = 0. In view of the fact that the trace operator of D×D on (Γ0×D̄)∪(D̄×Γ0) is (γ0⊗ Id)⊕(Id⊗γ0),
(3.4) means, in the case g = 0, that Cu ∈ H1,1

(0) (D ×D). Moreover, it holds

Proposition 3.4 Assume that u is the solution of (2.6) with h ∈ L2(Γ1), f ∈ L2(D) and g = 0. Then
the correlation Cu of the random solution u(x,ω) is the unique solution in H1,1

(0) (D ×D) of

Cu ∈ H1,1
(0) (D ×D) : Q(Cu, C) = L(C) ∀C ∈ H1,1

(0) (D ×D), (3.5)

where

Q(Cu, C) := 〈Ax,y∇x,yCu,∇x,yC〉L2(D×D)d×d (3.6a)

=
d

∑

i,j,k,l=1

∫

D

∫

D
∂xj∂ylC(x, y)Aij(x)Akl(y)∂xi∂ykCu(x, y) dx dy (3.6b)

and

L(C) := 〈Cf , C〉L2(D×D) + 〈Ch,f , (γ1 ⊗ Id)C〉L2(Γ1×D)

+ 〈Cf,h, (Id⊗ γ1)C〉L2(D×Γ1) + 〈Ch, (γ1 ⊗ γ1)C〉L2(Γ1×Γ1) (3.7a)

=

∫

D

∫

D
Cf (x, y)C(x, y) dx dy +

∫

Γ1

∫

D
Ch,f (x, y)C(x, y) dsx dy

+

∫

D

∫

Γ1

Cf,h(x, y)C(x, y) dx dsy +

∫

Γ1

∫

Γ1

Ch,h(x, y)C(x, y) dsx dsy (3.7b)

Proof. Expand C =
∑

i wi ⊗ vi where (vi)i≥1 is an ONB in H1
(0)(D) and (wi)i≥1 ⊂ H1

(0)(D) with
∑

i ‖wi‖2H1
(0)(D) < ∞. Then Q(Cu, C) equals

〈
∑

i,j

Ax∇xui ⊗Ay∇yui,∇xwj ⊗∇yvj〉 =
∑

i,j

〈Ax∇xui,∇xwj〉L2(D)〈Ay∇yui,∇yvj〉L2(D)

= 〈
∑

i

fi ⊗ fi,
∑

j

wj ⊗ vj〉L2(D×D) + 〈
∑

i

hi ⊗ fi,
∑

j

γ1wj ⊗ vj〉L2(Γ1×D)

+〈
∑

i

fi ⊗ hi,
∑

j

wj ⊗ γ1vj〉L2(D×Γ1) + 〈
∑

i

hi ⊗ hi,
∑

j

γ1wj ⊗ γ1vj〉L2(Γ1×Γ1),

where all the series are absolutely convergent in appropriate spaces. As (3.7b ) defines a continuous
linear functional on H1,1

(0) (D ×D), we have to check, in order to ensure the uniqueness of a solution for

(3.5), only the boundedness and coercivity in the same space of the sesquilinear form (3.6a ). But this
follows at once from the boundedness and the strict positivity of the operator Ax,y in L2(D × D)d×d

(with lower and upper bounds α2 and β2), and from the fact that ‖ · ‖1 := ‖∇x,y · ‖L2(D×D)d×d is the

norm on H1,1
(0) (D ×D) associated to the natural tensor product Hilbert structure. 1
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Remark 3.5 The proof of Proposition 3.4 can be easily modified in order to cover also the more general
situation f ∈ H−1(D). Note that in this case one should replace in the definition (3.7b ) of the functional
L the L2(D) scalar product by the duality pairing H1

(0)(D)×H−1(D).

Remark 3.6 As it is readily seen, the superposition principle does not hold for (3.5) due to the non-
linearity of the correlations Cf , Cf,h, Ch,f . If Cf,h does not vanish identically, f and h are said to be
correlated.

Remark 3.7 One can prove that the closure of the space spanned by all correlations does not depend on
the stochastic data space L2(Ω; dP ) and consists of all symmetric (in x and y) elements of H1,1

(0) (D×D).

4 Regularity

4.1 Shift theorem

Here, we derive a regularity result for the weak solution of the correlation equation (3.5). As we shall
see, this follows from elliptic regularity, applied in a suitable fashion. We therefore collect first standard
results for the mean field problem (3.2).

Definition 4.1 The problem (3.2) admits a shift theorem at order s ≥ 0 if Ef ∈ Hs−1(D), Eg ∈
Hs+1/2(Γ0) and Eh ∈ Hs−1/2(Γ1) imply Eu ∈ Hs+1(D) and the dependence of the solution on data is
continuous in these spaces.

Sufficient conditions for a shift theorem at order s ≥ 0 are given e.g. in [8].

Proposition 4.2 Assume that ∂D ∈ C∞, and that the entries of A are of class Cs,1(D̄) with s > 0.
Then the problem (3.2) admits a shift theorem at order s.

A shift theorem for the mean field equation (3.2) carries over to the correlation problem (3.5), as follows.
We assume, again for convenience, g = 0.

Proposition 4.3 Suppose that (3.2) satisfies the shift theorem at order s. Then the correlation problem
(3.5) admits a shift theorem at order s in spaces of mixed highest derivatives. More precisely,

Cf ∈ Hs−1,s−1(D ×D), Ch ∈ Hs−1/2,s−1/2(Γ1 × Γ1)
Cf,h ∈ Hs−1,s−1/2(D × Γ1), Ch,f ∈ Hs−1/2,s−1(Γ1 ×D),

}

=⇒ Cu ∈ Hs+1,s+1(D). (4.1)

Proof. In the case g = 0 the operator P−1 which associates to each element of Hs−1(D)⊕Hs−1/2(Γ1)
the corresponding solution of the problem (3.2) is a homeomorphism on Hs+1(D)∩H1

(0)(D). We deduce

that P−1 ⊗ P−1 is a homeomorphism from H := (Hs−1(D)⊗Hs−1(D))⊕ (Hs−1(D)⊗Hs−1/2(Γ1))⊕
(Hs−1/2(Γ1)⊗Hs−1(D))⊕ (Hs−1/2(Γ1)⊗Hs−1/2(Γ1)) onto its range in Hs+1,s+1(D) ∩H1,1

(0) (D ×D).

We still have to check that P−1 ⊗ P−1 sends the quadruple (Cf , Cf,h, Ch,f , Ch) into the solution Cu of
the corresponding problem (3.5). It is enough to prove this for (f1, h1)⊗ (f2, h2), in view of the density
of the span of such elements in H . To this end, we note that (P−1⊗P−1)((f1, h1)⊗ (f2, h2)) = u1⊗u2,
where u1 and u2 solve the classical boundary value problem (2.7) with data (f1, 0, h1) and (f2, 0, h2)
respectively. Upon multiplying the variational formulations of these two problems we obtain the desired
conclusion. 1

Remark 4.4 If ∂D is not smooth, the problem (3.2) admits a shift theorem at order s only for 0 ≤
s < s∗ with a small s∗ > 0 (depending on the smoothness of ∂D and A). In such situations we also have
a shift theorem at order s ≥ s∗ in weighted Sobolev spaces. We exemplify this in dimension d = 2. Let
D ⊂ R2 be a bounded polygon with M vertices Ai, i = 1, . . . ,M and straight sides Γi, i = 1, . . . ,M
connecting Ai and Ai+1 (we set AM+1 = A1). Denote by ωi the size of the interior angle at vertex Ai.
For x ∈ D, ri(x) is the distance from x to Ai and we associate with each Ai an exponent βi ∈ (0, 1).
We write β = (β1,β2, . . . ,βM ) and, for k ∈ Z, β + k := (β1 + k,β2 + k, . . . ,βM + k). We define further
the weight functions by

ωβ+k(x) :=
M
∏

i=1

(ri(x))
βi+k. (4.2)
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The weighted Sobolev spaces Hk,l
β (D) are defined as closures of C∞(D) under the norms

‖u‖2
Hk,l

β (D)
:= ‖u‖2Hl−1(D) +

k
∑

|α|=l

‖ωβ+|α|−lD
αu‖2L2(D), (4.3)

if k ≥ l ≥ 0. Then it holds (see e.g. [2])

Proposition 4.5 Assume that D ⊂ R2 is a polygon with M straight sides and that Aij(x) ∈ C∞(D).
Assume further that the boundary data Eg, Eh in (3.2) admit liftings EG ∈ Hs+1,2

β (D), EH ∈ Hs,1
β (D)

for some s ≥ 0. Then there exist numbers βi ∈ [0, 1), i = 1, . . . ,M such that for any k ∈ N0 and
Ef ∈ Hk,0

β (D) the solution Eu of (3.2) belongs to Hk+2,2
β (D). Moreover, denoting s := k + 1, there

holds a shift theorem at order s in weighted spaces,

‖Eu‖Hs+1,2
β (D) ! {‖Ef‖Hs−1,0

β (D) + ‖EG‖Hs+1,2
β (D) + ‖EH‖Hs,1

β (D)}. (4.4)

Since solution singularities can only appear on a measure zero subset of ∂D (i.e. at vertices), a trace
operator Tr on Γ1 can be defined as an L0(Γ1)-valued linear operator on Hs,1

β (D), where by L0(Γ1) we
denote the space of measurable functions on Γ1. It is trivial to see that the kernel of this trace operator
is closed in Hs,1

β (D). This enables us to define further

Hs−1/2,1/2
β (Γ1) := Hs,1

β (D) /Ker(Tr), (4.5)

as a Banach-space, with the usual inf-norm. Passing in (4.4) to the infimum over all H ∈ Hs,1
β (D)

with the same trace h, we obtain that the operator which associates to each pair (f, h) the solution u

of (3.2) with g = 0 is a homeomorphism from Hs−1,0
β (D) ⊗ Hs−1/2,1/2

β (Γ1) to Hs+1,2
β (D) ∩ H1

(0)(D).
In view of the fact that a tensor product of linear homeomorphisms between Hilbert spaces is again
a homeomorphism, we obtain, using the same argument as in Proposition 4.3, the following regularity
result.

Proposition 4.6 Assume that D ⊂ R2 is a polygon with straight sides and that the problem (3.2)
admits a shift estimate (4.4) at order s ≥ 0 in weighted spaces. Assume further that the data are
sufficently regular, namely that for some positive s ∈ R holds

Cf,f ∈ Hs−1,0
β (D) ⊗Hs−1,0

β (D), Cf,h ∈ Hs−1,0
β (D)⊗Hs−1/2,1/2

β (Γ1),

Ch,f ∈ Hs−1/2,1/2
β (Γ1)⊗Hs−1,0

β (D), Ch,h ∈ Hs−1/2,1/2
β (Γ1)⊗Hs−1/2,1/2

β (Γ1).

Then the correlation function Cu of the random solution u(x,ω) satisfies

Cu ∈ Hs+1,2
β (D)⊗Hs+1,2

β (D).

We apply the basic regularity result Proposition 4.3 to two frequently used examples of spatial correla-
tion functions.

4.2 Exponential correlation

We consider a second order process f with correlation function

Cf (x, y) = e−c|x−y|, (x, y) ∈ D ×D, (4.6)

where c > 0 is a parameter and the domain D ⊂ Rd is smooth. Note that this correlation kernel can be
used to characterize the well-known Markovian processes. For various examples of such processes we
refer the reader to [21].
To deduce the regularity of Cf given by (4.6), we use the following two auxiliary results (see also [19]).

Lemma 4.7 Let u : Rd → R be defined by u(x) = exp(−|x|). Then u ∈ Hs(Rd), for s < d/2 + 1.
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Lemma 4.8 If s = p+ q with p, q ≥ 0 and f ∈ Hs(Rd), then the function u : Rd × Rd → R defined by

u(x, y) := f(x− y) a.e. (x, y) ∈ R
d × R

d (4.7)

belongs to Hp,q
loc (R

d × Rd).

Proof. We have to show that if φ,ψ ∈ C∞
0 (Rd), the function v : Rd × Rd → R defined a.e. by

v(x, y) := φ(x)ψ(y)f(x − y) belongs to Hp,q(Rd × Rd). We remark that it suffices to show that the
function w : Rd × Rd → R defined a.e. by w(x, y) := ψ(y)f(x − y) belongs to Hp,q(Rd × Rd), since
the multiplication operator by φ is bounded in Hp(Rd) and tensorizing it by the identity of Hq(Rd)
produces again a bounded operator, this time in Hp,q(Rd × Rd). In view of the fact that the Fourier
transform and tensor product commute, all we have to check is (〈ξ〉 := (1 + |ξ|2)1/2)

〈ξ〉p〈η〉qŵ(ξ, η) ∈ L2
ξ,η(R

d × R
d). (4.8)

Explicit computation of the Fourier transform of w in terms of those of f and ψ shows that

ŵ(ξ, η) = ψ̂(ξ + η)f̂(ξ). (4.9)

Using (4.9), (4.8) can be then written

〈ξ〉p〈η〉q

〈ξ + η〉q〈ξ〉s
· 〈ξ + η〉qψ̂(ξ + η) · 〈ξ〉sf̂(ξ) ∈ L2

ξ,η(R
d × R

d). (4.10)

But this follows if we note that, by assumption on f , the last of the three terms in (4.10) belongs
to L2

ξ(R
d), the second one belongs to L2

η(R
d), uniformly in ξ (ψ̂ ∈ S(Rd)), while the first is bounded

uniformly in ξ and η, since s = p+ q and the inequality
√
2〈x〉〈y〉 > 〈x+ y〉 holds for all x, y ∈ Rd. 1

As a direct consequence of the previous two lemmas and the boundedness of the restriction operator
from Hs

loc(R
d) to Hs(D) for all s ≥ 0, d ∈ N∗, the correlation kernel (4.6) satisfies

Cf (x, y) = e−c|x−y| ∈ H(d+2)/4−ε,(d+2)/4−ε(D ×D) for arbitrary ε > 0.

We can therefore apply Proposition 4.3 with Γ1 = ∅, and deduce

Proposition 4.9 If (3.2) admits a shift theorem at level s ≥ 0 in Hs+1(D) and if the correlation of
the data f is Cf (x, y) = e−c|x−y| for some c > 0, then the solution Cu of (3.5) with g = 0 and Γ1 = ∅
belongs, for any ε > 0, to Ht,t(D ×D), where

t = min((d+ 10)/4− ε, s+ 1),

and
‖Cu‖Ht,t(D×D) ! ‖Cf‖Ht−2,t−2(D×D), (4.11)

with a constant depending only on t and d.

This result shows that the regularity of Cu in a polygon D ⊂ R2, measured in Hs(D), with Cf =
e−c|x−y|, is determined by corner singularities, since s < 2 for a reentrant corner.

4.3 Vanishing spatial correlation

Here we consider that D is a bounded Lipschitz domain in Rd, with d ≤ 3 and Γ1 = ∅ which ensures
H1,1

(0) (D ×D) = H1,1
0 (D ×D). We denote further by ∆D the diagonal set of D ×D, and we consider

also an arbitrary function k ∈ L2(∆D). We let then k · δ(x − y) be the distribution defined by

〈k · δ(x− y),φ〉 =
∫

∆D

k(x)φ(x, x)dx ∀ φ ∈ C∞
0 (D ×D). (4.12)

Note that one can view the correlation kernel δ(x−y) as a limiting case of exponential-type correlations
described in the previous section, due to

cd
(
∫

Rd

e−|z| dz

)−1

e−c|x−y|−→ δ(x− y) as c → ∞, in D′(Rd × R
d). (4.13)
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Vanishing spatial correlations lead formally to the problem

Find Cu ∈ H1,1
(0) (D ×D) s.t. Q(Cu, Cv) = 〈k · δ(x − y), Cv〉 ∀Cv ∈ H1,1

(0) (D ×D). (4.14)

Here the correlation kernel (4.12) means that the data is spatially uncorrelated. The solvability of (4.14)
depends on the admissibility of the data (4.12), and this follows for d ≤ 3 from (see [20])

Lemma 4.10 If D is a bounded Lipschitz domain in Rd, the trace operator

R : C∞(D̄ × D̄) −→ L2(∆D), R(φ)(x) = φ(x, x) ∀x ∈ D (4.15)

has a unique linear continuous extension from Hs,s(D ×D) to L2(∆D), provided that s > d/4.

Lemma 4.10 and Proposition 4.3 imply

Proposition 4.11 If a shift theorem at level s ≥ 0 holds for problem (1.2) in D ⊂ Rd, d ≤ 3, then
there exists a unique weak solution Cu solution of (4.14) and it belongs, for any ε > 0, to Ht,t(D×D),
where

t = min(2− d/4− ε, s+ 1).

Moreover, the following a-priori estimate holds, with a constant depending only on t and d,

‖Cu‖Ht,t(D×D) ! ‖k‖L2(∆) · ‖R‖B(H2−t,2−t(D×D),L2(∆)). (4.16)

5 Discretization

5.1 FE spaces and approximation properties

We shall now investigate the Finite Element approximation of the statistics of u.
We start by defining general FE spaces. Let {V L}L≥0 be a dense, hierarchical sequence of finite
dimensional (therefore closed) subspaces of H1

(0)(D), that is,

V 0 ⊂ V 1 ⊂ . . . ⊂ V L ⊂ . . . ⊂ H1
(0)(D), (5.1)

where NL = dim(V L) < ∞ for all L (here L stands for the level). We assume also that the following
approximation property holds,

min
v∈V L

‖u− v‖H1
(0)

(D) ≤ Φ(NL, s)‖u‖Hs+1(D), ∀u ∈ Hs+1(D) ∩H1
(0)(D), (5.2)

with Φ(N, s) → 0 for s > 0 as N → ∞. For regular solutions the usual FE spaces based on quasiuniform,
shape regular meshes are suitable.

Example 5.1 Let {T L}L∈N be a nested sequence of regular, simplicial triangulations of the domain D
of meshwidth hL = hL−1/2, ∀L ≥ 1 and let p ≥ 1 be a polynomial degree. Then

V L := Sp(D, T L) := {u ∈ C0(D̄) : u|K ∈ Pp(K) ∀K ∈ T L} (5.3)

satisfies (5.1), as well as (5.2), with Φ(N, s) = O(N−δ), for fixed p and L → ∞, where δ := min{p, s}/d.

In view of Proposition 4.6, we discuss next the FE approximation in the case of a nonsmooth domain.

Remark 5.2 If D ⊂ R2 is a polygon, problem (3.2) admits a shift theorem at order s in the spaces
Hs+1(D) only for small values of s (often 1/2 < s < 1). In this case, however, for smooth data in (3.2),
we still have a shift theorem at order s ≥ 0 in the weighted spaces H1+s,2

β (D) with some β ∈ (0, 1)M ,

i.e. the weight function ωβ+k(x) introduced in Section 4.1 compensates for the corner singularities of

the solution u. To the weighted spaces Hk,l
β (D) correspond FE approximations on sequences of graded

meshes {T n
γ }n with shape-regular elements which satisfy in dimension 2

|T n
γ | := # of triangles in T n

γ = O(n2), (5.4)
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∀ T ∈ T n
γ : hT := diam (T ) ≤ Cω(x)1−1/γn−1, (5.5)

for γ ≥ 1. Clearly, γ = 1 corresponds to quasiuniform triangulations of meshwidth h = O(n−1), whereas
γ 8 1 corresponds to strong refinement near the vertices. Then, for any u ∈ H1+s,2

β (D) we have, as
n → ∞

inf
v∈Sp(D,T n

γ )
‖u− v‖H1(D) ! N−δ‖u‖H1+s,2

β (D), (5.6)

with δ := min{p, s}/d, provided that γ > min{p, s}/Reλ, where Reλ > 0 denotes the real part of the
smallest singularity exponent of the solution u in the polygon D.

5.2 Rate of convergence for Cu

The standard FE approximation result for the mean field problem (3.2) with the FE spaces Example
5.1 reads,

Proposition 5.3 Assume that the mixed boundary value problem (3.2) for Eu satisfies the shift theorem
at order s ≥ 0. Then the FE approximation EL

u ∈ V L of Eu, the solution of (3.2) with data Ef ∈
Hs−1(D), Eg ∈ Hs+1/2(Γ0), Eh ∈ Hs−1/2(Γ1), reads

EL
u ∈ Sp(D, T L), q(EL

u , Ev) = l(Ev) ∀Ev ∈ Sp(D, T L). (5.7)

Then, with δ = min{p, s}/d, we have the following error estimate, asymptotically as NL → ∞,

‖Eu − EL
u ‖H1(D) ! (NL)

−δ ‖Eu‖Hs+1(D). (5.8)

We investigate next the FE approximation of the correlation kernel Cu in the deterministic elliptic
equation (3.5). Since Cu solves an elliptic problem on D ×D, we construct FE spaces in this product
domain, starting from {V L}L≥0 in (5.1). Full tensor product spaces {V L ⊗ V L}L≥0 present themselves
as natural candidates. We shall prove that, for the regularity (4.1) of Cu, the substantially smaller
sparse tensor product FE spaces, defined by (see [23])

V̂ L := Span
{

V i ⊗ V j | 0 ≤ i+ j ≤ L
}

⊂ H1,1
(0) (D ×D) (5.9)

allow to approximate Cu at essentially the same rate. Sparse tensor product spaces can be described
in terms of a hierarchic excess of the scale (5.1), that is, of an algebraic summand WL of V L−1 in V L,

WL := V L 9 V L−1 L ≥ 0, (5.10)

where we set V −1 := {0}. It follows that V L decomposes as a direct sum

V L =
⊕

0≤i≤L

W i, (5.11)

while the similar decomposition of the full tensor product FE spaces in D ×D reads

V̄ L := V L ⊗ V L =
⊕

0≤i,j≤L

W i ⊗W j ⊂ H1,1
(0) (D ×D), (5.12)

for all L ∈ N. The sparse tensor product spaces (5.9) are then given by

V̂ L =
⊕

0≤i+j≤L

W i ⊗W j . (5.13)

For an arbitrary Cu ∈ H1,1
(0) (D ×D) we further define CL

u , the sparse interpolant of Cu in V̂ L, as the

H1,1
(0) (D × D) projection of Cu on V̂ L. With these notations, the following result (see also [11], [16])

shows that the approximation property of the scale {V L}L≥0 carries over to the sparse scale {V̂ L}L≥0

(Φ(N−1, s) is defined as the embedding constant of H1(D) in Hs+1(D)).
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Proposition 5.4 Assume that the sequence (5.1) of FE-spaces {VL}L≥0 has the approximation prop-
erty (5.2). Then for Cu ∈ H1,1

(0) (D × D) ∩ Hs+1,t+1(D × D) with s, t > 0 the sparse interpolant CL
u

approximates Cu with the error

‖Cu − CL
u ‖H1,1

(0) (D×D) ≤





[

L+1
∑

i=0

Φ2(N i−1, s)Φ2(NL−i, t)

]1/2

‖Cu‖Hs+1,t+1(D×D)

+

[

∞
∑

i=L+1

Φ2(N i, s)

]1/2

‖Cu‖Hs+1,1(D×D)



 . (5.14)

Proof. Let us denote by PL the H1
(0)(D) orthogonal projection onto V L. We choose WL to be the

orthogonal complement of V L−1 in V L (∀L ≥ 0) and use (5.13) to orthogonally decompose Cu and CL
u

as
Cu =

∑

0≤i,j

(Qi ⊗Qj)Cu, CL
u =

∑

0≤i+j≤L

(Qi ⊗Qj)Cu, (5.15)

where Qi denotes the orthogonal projection P i − P i−1 on W i. (5.15) implies then, all norms being
evaluated in H1,1

(0) (D ×D),

‖Cu − CL
u ‖2 = ‖

∑

i+j≥L+1

(Qi ⊗Qj)Cu‖2

= ‖
∞
∑

i=0

∑

j≥max{L+1−i,0}

(Qi ⊗Qj)Cu‖2

= ‖
L+1
∑

i=0

Qi ⊗ (Id− PL−i)Cu‖2 + ‖
∞
∑

i=L+2

Qi ⊗ IdCu‖2. (5.16)

On account of the obvious inequality ‖Qiu‖H1
(0)

(D) ≤ ‖(Id−P i−1)u‖H1
(0)

(D), ∀u ∈ H1
(0)(D) and of (5.2),

which can be reformulated as

‖(Id− PL)u‖H1
(0)(D) ≤ Φ(NL, s)‖u‖Hs+1(D) ∀u ∈ H1

(0)(D) ∩Hs+1(D), (5.17)

the estimate (5.14) follows by using (5.17) in (5.16). 1

Specializing the FE spaces V L as in Example 5.1, we obtain that the FE approximation ĈL
u ∈ V̂ L of Cu

requires, for a prescribed accuracy, essentially the same number of degrees of freedom as FE solution
EL

u ∈ V L of the discrete mean field problem (5.7).

Proposition 5.5 Assume that the mixed boundary value problem (3.1) satisfies the shift theorem at
order s ≥ 0 and that the correlation functions of the data satisfy Cf ∈ Hs−1,s−1(D × D), Cf,h ∈
Hs−1,s−1/2(D × Γ1), Ch,f ∈ Hs−1/2,s−1(Γ1 ×D) and Ch ∈ Hs−1/2,s−1/2(Γ1 × Γ1).

Then the sparse FE approximation ĈL
u of the correlation function Cu which is defined by

ĈL
u ∈ V̂ L, Q(ĈL

u , C) = L(C) ∀C ∈ V̂ L, (5.18)

converges, as L → ∞, with the rate

‖Cu − ĈL
u ‖H1,1

(0) (D×D) ! (logNL)1/2(NL)−δ ‖Cu‖Hs+1,s+1(D×D), (5.19)

where δ = min{p, s}/d.

Proof. The coercivity of the sesquilinear form Q defined in (3.6a ) has been proved in Proposition 3.4.
A direct consequence of this fact is the quasi-optimality of the FE solution ĈL

u ( ‖ · ‖ is here the norm
in H1,1

(0) (D ×D)),

‖Cu − ĈL
u ‖ ! min

C∈V̂ L
‖Cu − C‖ = ‖Cu − CL

u ‖. (5.20)
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with a constant depending only on the bounds α and β. The quadruple (Cf , Cf,h, Ch,f , Ch) satisfies the
regularity assumptions that enable us to apply Proposition 4.3 and to deduce that Cu ∈ Hs+1,s+1(D×
D). Since N j = O(2dj), (5.14), with s = t shows that

‖Cu − CL
u ‖H1,1

(0)
(D×D) ! (logNL)1/2(NL)−δ ‖Cu‖Hs+1,s+1(D×D). (5.21)

¿From (5.20) and (5.21) follows then the claimed estimate. Note also, for later use, that, due to (5.13),
it holds, asymptotically as L → ∞, (recall NL = dim(V L) = O(2dL))

N̂L := dim(V̂ L) = O(L 2dL) = O((logNL)NL), (5.22)

which allows us to express the convergence rate (5.19) in terms of the number of degrees of freedom
N̂L in D ×D,

‖Cu − ĈL
u ‖H1,1

(0)
(D×D) ! (logN̂L)1/2+δ(N̂L)−δ‖Cu‖Hs+1,s+1(D×D). (5.23)

1

Remark 5.6 The FE approximation C̄L
u of Cu,

C̄L
u ∈ V̄ L, Q(C̄L

u , C) = L(C) ∀C ∈ V̄ L, (5.24)

based on the full tensor product space V̄ L in (5.12) satisfies, under the regularity assumptions in
Proposition 5.5,

‖Cu − C̄L
u ‖H1,1

(0) (D×D) ! (NL)−δ/2 ‖Cu‖Hs+1,s+1(D×D). (5.25)

We see that for a given regularity of the data, the rate (5.25) in terms of the number of degrees of
freedom is essentially half of (5.19).

Remark 5.7 If D is nonsmooth, it follows from Proposition 4.6 and Remark 5.2 that the influence of
corner singularities in D ×D can be compensated by forming sparse tensor-products of FE spaces in
D with judicious mesh refinement towards the vertices of D. Once good meshes for the solution Eu of
(3.1) have been determined, the sparse FE-space for Cu based on these meshes will also give optimal
rates of convergence for ĈL

u , provided Cf , Cf,h, Ch,f , Ch in Proposition 4.6 are sufficiently regular.

6 Implementation and complexity aspects

The discretized correlation equation consists in solving a linear system

ÂLCL
u = CL

f , (6.1)

where ÂL denotes the stiffness matrix of (5.18) with respect to some basis of the sparse tensor product

space V̂ L ⊂ H(1,1)
(0) (D × D). Since the solution of (6.1) by Cholesky decomposition requires a too

large computational effort, we solve (6.1) by the standard conjugate gradient (CG) method (see for
example [9]). As it is well-known, the conjugate gradient method generates an approximating sequence
{CL

u,n}n≥0 satisfying

‖CL
u − CL

u,n‖2 ≤ 2 ·
(√

κ− 1√
κ+ 1

)n

‖CL
u − CL

u,0‖2, n = 0, 1, 2 . . . , (6.2)

where κ = cond2(ÂL) and ‖ · ‖2 denotes the Euclidian norm. The efficiency of this method relies on
the well-conditioning (or boundedness of κ as L → ∞) and the sparsity of the matrix involved, ÂL. We
shall see that a wavelet preconditioning procedure can be used to ensure the well-conditioning, while
the sparsity, which fails to hold, can be replaced by a systematic use of the tensor product structure of
the correlation equation. We shall derive an algorithm which employs this special structure to perform
the multiplication of a vector by ÂL (as required by one step of CG) in a logarithmic-linear complexity
without building the entire matrix ÂL.
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6.1 Multilevel FE space in D and preconditioning

The first question to be addressed is therefore the choice of a basis in the sparse tensor space such that
cond2(ÂL) remains bounded as L → ∞.

Assumption 6.1 There exists a family {ψl
i}l∈N0,i∈Il ⊂ H1

0 (D) such that each u ∈ H1
0 (D) can be

expanded as a convergent series in H1
0 (D)

u =
∑

l∈N0

∑

i∈Il

cliψ
l
i, (6.3)

and the following ‘stability condition’ is fulfilled

∑

l∈N0

∑

i∈Il

(cli)
2 ∼ ‖

∑

l∈N0

∑

i∈Il

cliψ
l
i‖2H1

0(D). (6.4)

We present some examples of families satisfying Assumption 6.1.

Example 6.2 For D =]0, 1[, let us consider φ the hat function on R, piecewise linear, taking values
0, 1, 0 at 0, 1/2, 0 and vanishing outside D. We set Il := {1, 2, . . . , 2l} and ψl

i(x) := 2−l/2φ(2lx − i +
1), x ∈ D. The family thus obtained satisfies then Assumption 6.1.

Example 6.3 With D, Il and φ as above, we define on R the function ψ, piecewise linear, taking
values (0, 1,−6, 10,−6, 1, 0) at (0, 1/2, 1, 3/2, 2, , 5/2, 3) and vanishing outside ]0, 3[. Similarly, ψ! take
(0, 9,−6, 1, 0) at (0, 1/2, 1, 3/2, 2) and ψ! assumes values (0, 1,−6, 9, 0) at (0, 1/2, 1, 3/2, 2). Further,
we define ψ0

1 := φ (scaling function) and ψl
1(x) := 2−l/2ψ!(2lx), ψl

2l := 2−l/2ψ!(2lx − 2l + 1), x ∈ D,

for l ≥ 1 (boundary wavelets). Analogously, ψl
i(x) := 2−l/2ψ(2lx− i+ 2), x ∈ D for 2 ≤ i ≤ 2l − 1 and

l ≥ 2 (interior wavelets). The family thus obtained satisfies Assumption 6.1.

Remark 6.4 Higher order functions satisfying Assumption 6.1 exist as well (see, e.g. [3]). In the case
D is an arbitrary polygon, bases satisfying Assumption 6.1 can also be constructed. See [4] for examples.

Example 6.5 If D =]0, 1[d, we choose Il := {(j, k) ∈ Nd
0×Nd

0 | max1≤q≤d jq = l, 1 ≤ kq ≤ 2jq} Then,

starting from the family in Example 6.3, we put ψl
i(x) =

∏d
q=1 ψ

jq
kq
(xq) ∀x = (xq)1≤q≤d ∈ D, with

i = (j, k), to obtain (after rescaling) a family which satisfies Assumption 6.1. (see [10])

Returning to the family {ψl
i}l∈N0,i∈Il provided by Assumption 6.1, an increasing sequence of FE spaces

in D can be defined in terms of these functions by

V L := Span{ψl
i | 0 ≤ l ≤ L, i ∈ Il}. (6.5)

An algebraic complement WL of V L−1 in V L is explicitly given by

WL := Span{ψL
i | i ∈ IL}. (6.6)

We define the index set
ÎL :=

⋃

l1+l2=L

Il1 × Il2 (6.7)

as a direct union, and for i := (i1, i2) ∈ Il1 × Il2 ⊂ Îl1+l2 we consider the functions

ψl
i := ψl1

i1
⊗ ψl2

i2
, with l := l1 + l2. (6.8)

Since they are linearly independent, we obtain, via (5.13), the following explicit description of the sparse
tensor space V̂ L through a basis,

V̂ L = Span{ψl
i | 0 ≤ l ≤ L, i ∈ Îl}. (6.9)

Obviously, an algebraic excess ŴL of the sparse tensor scale {V̂ L}L≥0 can be defined by

ŴL := Span{ψL
i | i ∈ ÎL}, (6.10)
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and this space can be further decomposed as

ŴL =
⊕

|l|=L

W l with W l := Span{ψ|l|
i

| i ∈ Il1 × Il2}, (6.11)

where |l| := l1 + l2 for l = (l1, l2) ∈ N2
0.

For further reference, let us collect, for L ≥ 0, in a column vector denoted ΨL, the basis functions in the
definition (6.6) of WL. Similarly, for l ∈ N2

0 let Ψl be the column vector containing the basis functions
of W l, as defined in (6.11).

Proposition 6.6 i) The matrix ÂL has uniformly bounded condition number, as L → ∞.
ii)For examples above as well as for similar wavelet constructions, the matrix ÂL is not sparse, in the
sense that nnz(ÂL) ≥ O((NL)2) (compare (5.22))

Proof. i) (6.4) means that

u =
∑

l≥0

∑

i∈Il

cliψ
l
i −→ |u|2w :=

∑

l≥0

∑

i∈Il

(cli)
2 (6.12)

defines an equivalent norm on H1
0 (D). The same holds then for the basis {ψl

i
}l∈N0,i∈Îl introduced in

(6.8) w.r.t. the space H1,1
(0) (D×D). It follows that for C := (Cl

i
)l,i ∈ RN̂L

(recall that N̂L := dim V̂ L),

C :=
∑L

l=0

∑

i∈Îl Cl
i
ψl
i
is an element of V̂ L and

〈ÂLC,C〉
RN̂L = Q(C,C) ∼ ‖C‖2

H1,1
(0) (D×D)

∼
L
∑

l=0

∑

i∈Îl

(Cl
i )

2 = ‖C‖2
RN̂L

As for ii), one can easily see that for all the examples we considered before, the entries of ÂL corre-
sponding to the basis functions ψl1

i1
⊗ ψ0

i2 and ψ0
i3 ⊗ ψl2

i4
for all admissible indices j1, j2, i1, i2, i3, i4 are

in general nonzero, implying the desired lower bound. 1

6.2 Matrix-Vector Multiplication

The nonsparsity makes the storage and use of ÂL rather costly. We show that taking into account the
structure of ÂL, one should store only the matrix AL corresponding to the discrete mean field problem
(5.7) and relate ÂL to AL to perform one step of the CG algorithm.

Elementary considerations show that for every Cu = (C l

u)
# ·Ψl ∈ V̂ L, C = (C l)# ·Ψl ∈ V̂ L,

Q(Cu, C) =
L
∑

l,l′=0

∑

|l|=l
|l′|=l′

(Cl

u)
# · (AL

l1,l′1
⊗ AL

l2,l′2
)C l

′

, (6.13)

where AL
l,l′ := q(Ψl,Ψl′), ∀ 0 ≤ l, l′ ≤ L are the blocks of the stiffness matrix AL of the mean field

problem (5.7) in D describing the interactions between levels l und l′. This shows that the stiffness
matrix ÂL of the correlation problem computed w.r.t. the hierarchical basis (6.9) of V̂ L has a block
structure and each block is a tensor product of certain blocks of the stiffness matrix AL of (5.7).
The matrix AL is sparse if the following condition holds true.

Assumption 6.7 The number of nonzero entries of the block AL
l,l′ admits the upper bound

nnz(AL
l,l′ ) ! (min(l, l′) + 1)d−1 2dmax{l,l′}, ∀ 0 ≤ l, l′ ≤ L. (6.14)

for some d ∈ N and with a constant depending only on d.

We remark that for each of the previously mentioned examples, as well as for similar wavelet construc-
tions, Assumption 6.7 holds.
Under Assumption 6.7, and using (6.13), the following algorithm realizes the multiplication C → ÂLC
in log-linear complexity. Here Idl,l stands for the identity matrix of size dim(W l).
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Algorithm 6.8

store AL = (AL
l,l′ )0≤l,l′≤L (block structure, sparse) and x = (xl)|l|≤L, O(Ld 2dL) numbers

for l = (l1, l2) satisfying l1 + l2 ≤ L

initialize (ÂLx)l := 0;

for l′ = (l′1, l
′
2) satisfying l′1 + l′2 ≤ L

if l1 + l′2 ≤ l′1 + l2
yl := (Idl1,l1 ⊗ AL

l2,l′2
)((AL

l1,l′1
⊗ Idl′2,l′2)xl′ );

else

yl := (AL
l1,l′1

⊗ Idl2,l2)((Idl′1,l′1 ⊗AL
l2,l′2

)xl′ );

end % if

update (ÂLx)l := (ÂLx)l + yl;

end % for

end % for

We emphasize that the order in the block multiplication of Algorithm 6.8 is essential for the following
bound on its complexity.

6.3 Complexity

Theorem 6.9 Under Assumption 6.7, Algorithm 6.8 performs the matrix-vector multiplication x →
ÂLx in O((logNL)2d+2 NL) floating point operations. Besides, it requires only storage of x and of the
stiffness matrix AL of the mean field problem (5.7) in a hierarchical basis, that is O(Ld 2dL) memory.

Proof. Due to (6.13), we can write

(ÂLx)l =
∑

|l′|≤L

(AL
l1,l′1

⊗AL
l2,l′2

) · xl′ . (6.15)

To perform the multiplication under the summation above, we note that

AL
l1,l′1

⊗AL
l2,l′2

= (AL
l1,l′1

⊗ Idl2,l2) · (Idl′1,l
′
1
⊗AL

l2,l′2
) (6.16)

= (Idl1,l1 ⊗AL
l2,l′2

) · (AL
l1,l′1

⊗ Idl′2,l′2). (6.17)

To multiply the l.h.s. of (6.16) by xl′ , we have two possibilities: we can use either the r.h.s. of (6.16),
or the r.h.s. of (6.17) (explicit building of the tensor block has been already ruled out, cf. Proposition
6.6 ii.). We choose the cheapest of the two, in terms of floating point operations, and that is what
Algorithm 6.8 actually does through its selection statement.
Suppose therefore that l1+l′2 ≤ l′1+l2, so that we choose (6.17) over (6.16), as indicated in the algorithm.
On account of (6.14), we deduce that the number #1 of floating point operations required by the first
multiplication in the computation of yl can be estimated by

#1 ≤ nnz(AL
l1,l′1

⊗ Idl′2,l′2) ! (min(l1, l
′
1) + 1)d−1 (l′2 + 1)d 2d(max{l1,l

′
1}+l′2). (6.18)

Using the same argument, the subsequent multiplication requires an additional amount of floating point
operations, #2, for which it holds

#2 ≤ nnz(Idl1,l1 ⊗AL
l2,l′2

) ! (min(l2, l
′
2) + 1)d−1 (l1 + 1)d 2d(max{l2,l

′
2}+l1). (6.19)

We note that l1 + l′2 ≤ l′1 + l2 implies

max{l1, l′1}+ l′2 ≤ max {l1 + l2, l′1 + l′2} and max{l2, l′2}+ l1 ≤ max {l1 + l2, l′1 + l′2} . (6.20)

It is easily seen then, using (6.20), that the multiplication under the summation in (6.15) can be
performed using (for L ≥ 1)

#1 +#2 ! (max {l1 + l2, l′1 + l′2})
2d−1

2dmax{l1+l2, l
′
1+l′2} (6.21)
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flops, with a constant which depends only on d.
Note that in the case l1 + l′2 > l′1 + l2, one should use (6.16) to perform the multiplication in (6.15).
Symetrically, the computational cost admits also in this case the upper bound (6.21). From (6.15) and
(6.21) follows that the number of operations needed to perform x → ÂLx (collect all blocks (ÂLx)l for
l = (l1, l2) ∈ N2

0 subject to |l| = l1 + l2 ≤ L) is bounded from above by
∑

l1+l2≤L

∑

l′1+l′2≤L

(max {l1 + l2, l′1 + l′2})
2d−1

2dmax{l1+l2, l
′
1+l′2}.

Since for a given l ≥ 0 the equation l1 + l2 = l has exactly l + 1 solutions (l1, l2) ∈ N2
0, we conclude

#flops(x → ÂLx) !
L
∑

l=0

l3 l2d−1 2dl = O(L2d+2 2dL) = O((logNL)2d+2NL).

1
Since the number of steps required by the CG algorithm to compute the discrete solution up to a
prescribed accuracy is bounded provided that the stiffness matrix is well-conditioned (ensured here via
Proposition 6.6) and that we use the FE solution at level L−1 as initial guess for the level L, we obtain

Theorem 6.10 The deterministic problem (3.5) for the correlation function
Cu ∈ Hs+1,s+1(D × D) ∩ H1,1

(0) (D ×D) of the random solution u to (2.6) is numerically solvable at a
cost of

O((logNL)2d+2NL) (6.22)

floating point operations, with
O((logNL)d NL) (6.23)

memory, for a relative accuracy of
O((logNL)1/2 (NL)−δ), (6.24)

where δ = min{p, s}/d and NL denotes the number of degrees of freedom for the mean field problem.

Up to logarithmic terms, the estimates (6.22), (6.23), (6.24) are similar to those of the mean field
problem (3.2).

Remark 6.11 If the domain D ⊂ Rd has itself a product structure, for instance D = D1 × D2 or
D =] − a, a[d, sparse grids w.r.t. this product structure can be used to further reduce the complexity
of the correlation problem (3.5) (see e.g. [11]). Note, however, that this requires regularity of the
correlation kernel Cu on the corresponding anisotropic Sobolev scale in D, which can in turn be ensured
only by a much higher, even unrealistic regularity of Cu (or of u(·,ω)) on the scale naturally associated
to the Laplace operator acting in D, the isotropic Sobolev scale.

7 Numerical experiments

We present here elementary numerical results that are to be compared with the theoretical ones we
have obtained in Sections 5 and 6. We include the two examples introduced in Section 4, involving ex-
ponential and Dirac correlation (for simplicity we assume that D = (−1, 1) and A = 1). We investigate
then a third situation in which the coefficient A is non-constant. We mention that each figure presents
two curves: the one corresponding to the theoretical result (dashed) and the one obtained numerically
(solid). We also mention that in all these cases, the hat-function basis from Example 6.2 has been used
to perform numerical algorithms.

The first example to be considered is therefore the Dirichlet problem
{

L(∂x)L(∂y)Cu

γ0(Cu)
= e−|x−y|

= 0
in L2((−1, 1)2)
on ∂(−1, 1)2,

(7.1)

with A(x) = IdR, ∀x ∈ D = (−1, 1), that is, L(∂x) = −∆x.
Figure 1 shows the convergence of the FE-solution in this simple case, with non-singular (but also non-
smooth) data and constant coefficient A. ¿From Theorem 6.10 follows that for this particular choice
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of data the rate of convergence equals (logN)3/2 N−1, where throughout this section N stands for the
number of degrees of freedom.
Our next example is the one-dimensional white noise (see (4.14)), with the singular r.h.s. Cf = δ(x−y).
Thus the problem reads

{

L(∂x)L(∂y)Cu

γ0(Cu)
= δ(x− y)
= 0

in the dual space of H1,1
0 ((−1, 1)2)

on ∂(−1, 1)2,
(7.2)

where L(∂x) = −∆x. Figure 2 shows the convergence of the FE-solution. The theoretical rate of
convergence is, in this case, (logN)5/4 N−3/4, again as a consequence of Theorem 6.10.
We conclude this section with a new example, in which all data are again smooth but the coefficient A
is no longer constant. More precisely, we choose the coefficent A and the solution Cu as follows:

A(x) = 2 + sin(πx), ∀x ∈ D = (−1, 1) and Cu(x, y) = (1− x2)(1− y2)exy. (7.3)

The numerical results are shown in Figure 3. As in the first example, the error decays as (logN)3/2 N−1

when N → ∞. This curve, as well as those we have plotted before, does not have the appearance of a
straight line and this is due to the logarithmic terms arising in the error estimates by sparse grids. Of
course, asymptotically as N → ∞, these terms do not play an essential role, but it turns out that their
influence is rather strong, within the computational range.
Finally, Figure 4 shows the performance of our algorithm 6.8 matching the theoretical estimate con-
cerning the computational effort given by (6.22), namely #flops ∼ (logN)5 N . We mention that this
analysis has been done for the same example (7.3), and that the solution at each level L has been
computed directly, without using the solution at level L− 1 as initial guess.
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Figure 1: Convergence in the case of exponential r.h.s. and constant coefficient A = 1 (solid)
and the bound (6.24), with δ = 1 (dashed).
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Figure 2: Convergence in the case of singular r.h.s. and constant coefficient A = 1 (solid) and
the bound (6.24), with δ = 3/4 (dashed).
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Figure 3: Convergence in the case of non-constant coefficient A (solid) and the bound (6.24),
again with δ = 1 (dashed) .
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Figure 4: Comparison between the effort required by the standard CG method based on
Algorithm 6.8 (solid) and its theoretical estimate given in Theorem 6.10 by (6.22) (dashed).
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00-17 M.H. Gutknecht, S. Röllin Variations of Zhang’s Lanczos-Type Product
Method
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