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1. Introduction and Main Results

The motion of incompressible viscous fluids is well–described by the system1

ρ ∂tu− div S+ ρ [∇u]u+∇π = ρ f ,

div u = 0 ,
(1.1)

where u is the velocity, S the extra stress tensor, π is the pressure, f the external body
force, and ρ the density. If the fluid under consideration can be viewed as a generalized
Newtonian fluid, then the extra stress tensor is given by

S = µ
(
1 + |D|2

)p−2
2 D , (1.2)

where D ≡ 1
2

(
∇u+∇u"

)
is the symmetric part of the velocity gradient. This model

belongs to the class of power–law models, which are frequently used in the engineering
literature (cf. Bird, Armstrong, Hassager [7] for a detailed discussion of power–law
models including early models due to Ostwald, de Waele and Kincaid, Stern, Powell
and Eyring). We also refer to Málek, Rajagopal, Růžička [33] for a discussion of such
models. Let us only mention that most real fluids that can be modeled by a constitutive
law of type (1.2) have a small exponent p, i.e. p ∈ (1, 2].

First mathematical investigations of the system (1.1), (1.2) have been carried out by
Ladyzhenskaya [19], [20], [21] (see also Lions [27] for a comparable proof of the same
results). The papers of Málek, Nečas, Růžička [30] and Bellout, Bloom, Nečas [6] have
been a starting point for many investigations and improvements of the previous results.
We refer to Málek, Nečas, Rokyta, Růžička [29], Frehse, Málek, Steinhauer [10], [11],
Málek, Nečas, Růžička [31], Málek, Rajagopal, Růžička [33], Růžička [36], Pokorný
[34], Diening, Růžička [9] and Diening [8] for results concerning the existence of weak
and strong solutions for the steady and the unsteady system; to Málek, Nečas [28],
Ladyzhenskaya, Seregin [22], [23], [24], Málek, Pražák [32] and Amann [1], [2], [3] for
results concerning the long time behaviour; to Kaplický, Málek, Stará [16], [17], [18],
Seregin [38], [39], Ladyzhenskaya, Seregin [25], Fuchs, Seregin [13], [14], Diening [8],
Friedländer, Pavlovič [12] and Guo, Zhu [15] for regularity properties of solutions. On
the other hand there are only very few numerical investigations of flows of generalized
Newtonian fluids (cf. Baranger, Najib, Sandri [5], Bao, Barrett [4], Layton [26], Prohl,
Růžička [35] and Diening [8]).

In this paper we want to improve and extend the results of [35]. Due to the results
and techniques developed in [9] it is possible to improve for the time-discretization of
(1.1), (1.2) both the convergence rates for the error and the range of p’s for which these
results hold. Moreover, for a subsequent analysis of the space-discretization it is shown
in [35] that the existence of strong solutions to the time-discretized system is essential.
Thus we will also discuss different stabilization strategies for the time-discretization
and show how the range of p’s enlarges, for which strong solutions of the stabilized
system exist.

Before formulating the main results, we will collect some notations and state the
assumptions under which we will treat our problem. We assume that Ω = (0, L)3,

1Here and in the following we use the notation [∇u]w =
(
wj

∂ui

∂xj

)
i=1,2,3

, where the summation

convention over repeated indices is used.
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L ∈ (0,∞) is a cube in R3 and denote Γj = ∂Ω∩
{
xj = 0

}
and Γj+3 = ∂Ω∩

{
xj = L

}
,

for j = 1, 2, 3. For T ∈ (0,∞), we denote by QT the time-space cylinder I × Ω, where
I = (0, T ) is a time interval. Let (X(Ω), ‖ ·‖X(Ω)) be a Banach space of scalar functions
that are defined on Ω. Then X(Ω) ≡ X3(Ω) (resp. X3×3(Ω)) represents the space of
vector-valued (resp. tensor-valued) functions whose components belong to X(Ω). By
D(Ω) we denote the space of smooth periodic functions with mean value zero. Let
further p, q > 1 and k > 0. Then (Lp(Ω), ‖ · ‖p), resp. (W k,p(Ω), ‖ · ‖k,p), is used for
the usual Lebesgue, resp. Sobolev, spaces of periodic functions with mean value zero.
We shall further make frequent use of spaces of divergence free functions defined by

V ≡
{
ψ ∈ D(Ω) : divψ = 0

}
,

H ≡ the closure of V with respect to the ‖ · ‖2-norm ,

Vp ≡ the closure of V with respect to the ‖∇ · ‖p-norm .

Moreover, we denote by Lq
(
I;X

)
Bochner spaces which are equipped with the norm

(∫
I ‖ · ‖qX ds

)1/q
. We make frequent use of the discrete counterparts of these spaces.

Let Ik =
{
tm

}M

m=0
be a given net in an interval I = [0, tM ] with a constant time-step

size k := tm − tm−1. We denote by dtum := k−1
(
um − um−1

)
the divided difference

in time. By lp(Ik;X) we denote the space of functions
{
φm+1

}M

m=0
with finite norm

(
k
∑M

m=0 ‖φ
m‖pX

)1/p
. In the case p = ∞, functions

{
φm

}M

m=0
need to satisfy the bound

max0≤m≤M ‖φm‖X < ∞.

Let f and u0 be a given external body force and a given initial velocity, respectively.
Further assume that the extra stress tensor S is given by a potential, i.e. we assume
the existence of a convex function Φ : R+

0 → R
+
0 which belongs to C2(R+

0 ) and satisfies
Φ(0) = Φ′(0) = 0, and the existence of constants C1, C2 > 0 such that for some p > 1
and for all r, s,m, n = 1, 2, 3, B, D ∈ R3×3

sym ≡ {D ∈ R3×3;Dij = Dji, i, j = 1, 2, 3}

Srs(D) = ∂rsΦ(|D|) ≡
∂Φ(|D|)

∂Drs
, (1.3)

∂ij∂klΦ(|D|)BijBkl ≥ C1(1 + |D|2)
p−2
2 |B|2 , (1.4)

∣∣∂rs∂mnΦ(|D|)
∣∣ ≤ C2(1 + |D|2)

p−2
2 . (1.5)

We are seeking solutions u of the system 2

∂tu− div S(D(u)) + [∇u]u+∇π = f ,

div u = 0 ,

u(0) = u0 ,

(1.6)

endowed with space-periodic boundary conditions

u
∣∣
Γj
= u

∣∣
Γj+3

, (1.7)

for j = 1, 2, 3. We refer to (1.6), (1.7) under the assumption (1.3)–(1.5) on S as
problem (NS)p. The state of the art for the problem (NS)p can be found in the above

2Note that the system (1.1) should be appropriately non-dimensionalized. Since we are not inter-
ested in the dependence of our results on the resulting non-dimensional numbers, we set ρ = 1 in
(1.1).
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mentioned literature. We only want to mention that in [8], [9] it is proven that there
exists a time interval I ≡ [0, T ∗], with T ∗ depending on the data f , u0, on which the
problem (NS)p possesses a strong solution u, i.e. for all 1 < r < 6(p− 1) there holds

u ∈ L
5p−6
2−p

(
I;W

2,
3p
p+1 (Ω)

)
∩ C(I;Vr ) ,

∂tu ∈ L
p(5p−6)

(3p−2)(p−1)
(
I;W

1,
3p
p+1 (Ω)

)
∩ L∞(

I;L2(Ω)
)
,

∂2
t u ∈ L2

(
I; (V2)

∗) .

(1.8)

The problem (NS)p is approximated by a time-discretization by means of the implicit
Euler scheme:

Algorithm. Given a time-step size k > 0 and a corresponding net Ik = {tm}Mm=0. For
m ≥ 1 and um−1 given from the previous step, compute an iterate um that solves

dtu
m − div S(D(um)) + [∇um]um +∇πm = f(tm) ,

div um = 0 ,

u0 = u0 ,

(1.9)

endowed with space-periodic boundary conditions (1.7). We refer to (1.9) with boundary
conditions (1.7) under the assumption (1.3)–(1.5) on S as problem (NSk)p.

Note that in [35] the existence of a weak solution um ∈ l∞(Ik;H) ∩ lp(Ik;Vp) is
proven for p > 3/2.

The first main result in this paper is the following:

Theorem 1.10. Let u0 ∈ W2,2(Ω) ∩ Vp, f ∈ C(I;W1,2(Ω)), ∂tf ∈ C(I;L2(Ω)) be

given. Let u be a strong solution of the problem (NS)p for p ∈ (11+
√
21

10 , 2] ≈ (1.5583, 2]
satisfying (1.8). Suppose that um is a weak solution of problem (NSk)p satisfying (3.5)
and tM ≤ T ∗. Then for all

α < α0(p) :=
5p− 6

4(p− 1)
(1.11)

there exists a constant c that only depends on u0, f ,Ω, T ∗, and α but not on the time-
step size k, such that the following error estimate is valid, provided that the time-step
size is chosen sufficiently small, i.e. k ≤ k0(p, T ∗),

max
0≤m≤M

‖u(tm)− um‖22 + k
M∑

m=0

∥∥D
(
u(tm)− um

)∥∥2

p
≤ c k2α . (1.12)

Remark 1.13. Theorem 1.10 improves Theorem 1.1 in [35] considerably both with
respect to the convergence rate α(p) and with respect to the range of admissible

p’s. In [35] it is proven that for p ∈ (3+
√
29

5 , 2] ≈ (1.6769, 2] estimate (1.12) holds
with α(p) = 5p−6

2p . This improvement is possible due to the new regularity (1.8) of

the solution u of the problem (NS)p , in particular the C(I;W1,r(Ω))–information,
1 < r < 6(p− 1), is crucial.

In [35] it is shown that one needs strong solutions um of the problem (NSk)p in
order to show appropriate error estimates for the spatial discretization of (1.9). The
existence of strong solutions um of the problem (NSk)p is proven in [35] for p ∈ (9/5, 2].
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Now, even with Theorem 1.10 at hand it is not possible to enlarge the range for which
strong solutions um of the problem (NSk)p exist. However, the regularity of um can
be improved to the discrete analogue of (1.8) (cf. (1.18)). One possibility to enlarge
the range for p for which strong solutions um of a time-discretization of problem (NS)p
exist, is to stabilize (1.9) with −kα0(p)∆um. This way the order of convergence is not
reduced and it is possible to extract better regularity properties for um (in negative
powers of k) from the apriori estimates. However, our problem under consideration is
already in the main part nonlinear and thus there is no need to restrict ourselves to a
linear stabilization. As long as computational costs are not increased significantly one
can also stabilize (1.9) by a term similar to our main term − div S(D(um)), namely

−kα0(p) div
(
(1 + |D(um)|2)

q−2
2 D(um)

)
, with 2 ≤ q chosen appropriately. Since for

q = 2 both possibilities coincide we will immediately use the second possibility for the
stabilization.

Our stabilized time-discretization of the problem (NS)p, which we denote by (NSSk)p ,
reads as follows:

Algorithm. Given a time-step size k > 0, and a corresponding net Ik = {tm}Mm=0. For
m ≥ 1 and um−1 given from the previous step compute an iterate um that solves for
some q ≥ 2 and β > 0

dtu
m − div S(D(um))− kβ div Tq(D(um)) + [∇um]um +∇πm = f(tm) ,

div um = 0 ,

u0 = u0 ,

(1.14)

endowed with space-periodic boundary conditions (1.7). We used the notation3

Tq(D(um)) ≡
(
1 + |D(um)|2

) q−2
2 D(um) , q ≥ 2 . (1.15)

Now, the second main result in this paper is the following:

Theorem 1.16. Let q ≥ 2, u0 ∈ W2, 6(q−1)
2q−1 (Ω) ∩ Vq and f ∈ C(I;W1,2(Ω)),

∂tf ∈ C(I;L2(Ω)) be given. Let u be a strong solution of the problem (NS)p for

p ∈ (11+
√
21

10 , 2] ≈ (1.5583, 2]. Then the problem (NSSk)p with β := α0(p), where
α0(p) is given by (1.11), and q satisfying

−9p3 + 44p2 − 55p+ 18

2p(3p− 4)
< q <

7p− 6

2
(1.17)

possesses a strong solution um as long as tM ≤ T ∗. This solution satisfies for all
1 < r < 6(p− 1)

um ∈ l
5p−6
2−p

(
Ik;W

2,
3p
p+1 (Ω)

)
∩ l∞

(
Ik;Vr(Ω)

)
,

dtu
m ∈ l

p(5p−6)
(3p−2)(p−1)

(
Ik;W

1,
3p
p+1 (Ω)

)
∩ l∞

(
Ik;L

2(Ω)
)
.

(1.18)

Moreover, for all α < α0(p) there exists a constant c that only depends on u0, f ,Ω, T ∗,
and α but not on the time-step size k, such that the following error estimate holds,

3Note, that Tq satisfies the assumptions (1.3)–(1.5) with p = q.
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provided that the time-step size is chosen sufficiently small, i.e. k ≤ k0(p, T ∗),

max
0≤m≤M

‖u(tm)− um‖22 + k
M∑

m=0

∥∥D
(
u(tm)− um

)∥∥2

p
(1.19)

+ kα0(p) k
M∑

m=0

∥∥D
(
u(tm)− um

)∥∥q

q
≤ c k2α .

Remark 1.20. According to Theorem 1.16 it is possible, for the range of p’s con-
sidered, to find a q such that the stabilization with −kα0(p) div Tq(D(um)) does not
effect the convergence rate if compared with the convergence rate of the non-stabilized
system (NSk)p. Note that the choice q = 2 is possible as long as the lower bound in
(1.17) is smaller than 2, i.e. 1.6955 ! p ≤ 2.

The remainder of the paper is organized as follows. In Section 2 we collect some
useful results for the extra stress tensor S satisfying (1.3)–(1.5) and related quantities.
Section 3 is devoted to the proof of Theorem 1.10, while Theorem 1.16 is proven in
Section 4. We would like to mention that following the arguments becomes much easier
if on replaces the strict inequalities r < 6(p − 1) and α < 5p−6

4(p−1) by r = 6(p− 1) and

α = 5p−6
4(p−1) .

2. Preliminaries

We start with a lemma that collects some consequences of the assumption (1.3)–
(1.5). The proof can be found for example in [29, Lemma 5.1.19, Lemma 5.1.35] and
[35, Lemma 2.8].

Lemma 2.1. Suppose that Φ and S satisfy (1.3)–(1.5) for some p > 1. Then there
are constants c = c(p) such that for all A,B ∈ R3×3

sym

S(A) ·A ≥ c






(
1 + |A|2

)p−2
2
∣∣A

∣∣2 ,
(
|A|p−1 − 1

)∣∣A
∣∣ ,

(2.2)

|S(A)| ≤ c
(
1 + |A|2

)p−1
2 , (2.3)

Φ(|A|) ≥ c
(
|A|p − 1

)
. (2.4)

In the case p ∈ (1, 2] we additionally have
(
S(A)− S(B)

)
·
(
A−B

)
≥ c

∣∣A−B
∣∣2(1 +

∣∣B
∣∣+

∣∣A−B|
)p−2

, (2.5)
∣∣S(A)− S(B)

∣∣ ≤ c
∣∣A−B

∣∣(1 +
∣∣B

∣∣+
∣∣A−B|

)p−2
, (2.6)

while in the case p ≥ 2 we have
(
S(A)− S(B)

)
·
(
A−B

)
≥ c

∣∣A−B
∣∣2(1 +

∣∣A−B|
)p−2

. (2.7)

We would like to stress once more that the stabilizing term Tq(D) defined in (1.15)
satisfies the assumptions of the lemma with p = q.
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Remark 2.8. From (2.5) one easily deduces that for r ∈ [1,∞) and p ∈ (1, 2] it holds
∫

Ω

(
S(D(u))− S(D(v))

)
·D(u− v) dx

≥ c ‖D(u− v)‖2 2r
2−p+r

(
1 + ‖D(u)‖r + ‖D(u− v)‖r

)p−2
,

(2.9)

while for q ≥ 2 it holds (cf. (2.7))
∫

Ω

(
Tq(D(u))−Tq(D(v))

)
·D(u− v) dx ≥ c

(
‖D(u− v)‖qq + ‖D(u− v)‖22

)
. (2.10)

Let us introduce some notation for terms which arise from S and Tq when we test
equation (1.6) with −∆u or with ∂2

t u. Namely, we set for p > 1

Ip(u) =

∫

Ω

(
1 + |D(u)|2

) p−2
2
∣∣D(∇u)

∣∣2 dx ,

Jp(u) =

∫

Ω

(
1 + |D(u)|2

) p−2
2
∣∣D(∂tu)

∣∣2 dx .

The discrete analogue for Jp(u) for a function defined on a net Ik reads as follows

Kp(u
m) =

∫

Ω

(
1 + |D(um)|2 + |D(um−1)|2

)p−2
2
∣∣D(dtu

m)
∣∣2 dx .

Lemma 2.11. Let u ∈ C1(I;C2(Ω)) be a space periodic function with mean value zero
and p ∈ (1, 2]. Then there exists a constant c depending only on Ω, p, such that for
s ∈ [1,∞)

‖∇u‖2 6s
6−3p+s

+ ‖∇2u‖2 2s
2−p+s

≤ c Ip(u)
(
1 + ‖∇u‖s

)2−p
, (2.12)

‖∇u‖p3p + ‖∇2u‖p3p
p+1

≤ c
(
1 + Ip(u)

)
, (2.13)

‖∂tu‖
2

6s
6−3p+s

+ ‖∇∂tu‖
2

2s
2−p+s

≤ cJp(u)(1 + ‖∇u‖s)
2−p , (2.14)

‖∂tu‖
p
3p + ‖∇∂tu‖

p
3p
p+1

≤ c
(
1 + Ip(u)

)2−p
2 Jp(u)

p
2 (2.15)

≤ c
(
1 + Ip(u) + Jp(u)

)
. (2.16)

Moreover, for 1 ≤ r < 6(p− 1) it holds

sup
t∈I

‖∇u‖pr ≤ c
(
1 +

∫

I

Ip(u)
5p−6
2−p + Jp(u) dt

)
. (2.17)

Proof : The assertions (2.12)–(2.16) can be immediately deduced from the proofs of
[29, Lemma 5.3.24], [37, Lemma 2.1], [35, Lemma 2.7]. Note that in these papers mostly
the additive inequalities are stated only. However, in the proofs also the multiplicative
inequalities are contained. In order to prove (2.17) we raise the first inequality in (2.15)
to the power γ > 0, integrate over I, and obtain with the help of Young’s inequality

∫

I

‖∂t∇u‖pγ3p
p+1

dt ≤ c

∫

I

(
1 + Ip(u)

)γ 2−p
2 Jp(u)

γ
p
2 dt

≤ c

∫

I

(
1 + Ip(u)

)5p−6
2−p + Jp(u) dt

(2.18)
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if γ = 5p−6
(3p−2)(p−1) . Furthermore, (2.13) raised to the power 5p−6

2−p and integrated over I
implies that

∫

I

‖∇2u‖
p
5p−6
2−p

3p
p+1

dt ≤ c

∫

I

(
1 + Ip(u)

)5p−6
2−p dt . (2.19)

Now the statement follows from a general parabolic embedding result (cf. [8], [9]). A
special case of these results can be found in [35, Lemma 2.3].

Since Kp(u) is the discrete version of Jp(u) we immediately obtain in the same way:

Lemma 2.20. Let u ∈ l∞(Ik;C2(Ω)) be a space periodic function with mean value
zero and p ∈ (1, 2]. Then there exists a constant c depending only on Ω, p, such that
for s ∈ [1,∞)

‖dtu
m‖2 6s

6−3p+s

+ ‖dt∇um‖2 2s
2−p+s

≤ cKp(u
m)(1 + ‖∇um‖s + ‖∇um−1‖s)

2−p , (2.21)

‖dtu
m‖p3p + ‖dt∇um‖p3p

p+1

≤ c
(
1 + Ip(u

m) + Ip(u
m−1)

)2−p
2 Kp(u

m)
p
2 (2.22)

≤ c
(
1 + Ip(u

m) + Ip(u
m−1) +Kp(u

m)
)
. (2.23)

Moreover, for 1 ≤ r < 6(p− 1) it holds

max
0≤m≤M

‖∇um‖pr ≤ c
(
1 + k

M∑

m=0

(
Ip(u

m)
5p−6
2−p + Ip(u

m−1)
5p−6
2−p +Kp(u

m)
))

. (2.24)

For the stabilization we also need the analogue of some of the above assertions for
q ≥ 2.

Lemma 2.25. Let u ∈ C2(Ω) and um ∈ l∞(Ik;C2(Ω)) be space periodic functions with
mean value zero and q ≥ 2. Then there exists a constant c depending only on Ω, q,
such that

‖∇u‖q3q + ‖∇2u‖22 ≤ c Iq(u) , (2.26)

‖∇dtu
m‖22 ≤ cKq(u

m) . (2.27)

Proof : The first assertion can be found in [29, Lemma 5.3.24]. The second estimate
follows directly from the definition of Kq(um), q ≥ 2 and Korn’s inequality.

3. Proof of Theorem 1.10

The existence of local in time strong solutions for large data of the problem (NS)p
is ensured by the following proposition.

Proposition 3.1. Let u0 ∈ W2,2(Ω) ∩Vp, f ∈ C(I;W1,2(Ω)), and ∂tf ∈ C(I;L2(Ω))
be given. Then there exists a T ∗ > 0, such that a strong solution u of the problem
(NS)p exists on I = [0, T ∗] whenever p > 7

5 . This solution satisfies

esssup
s∈I

‖∂tu(s)‖
2
2 +

∫ T ∗

0

Ip(u)
5p−6
2−p + Jp(u) dt ≤ c(f ,u0) . (3.2)
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In particular we have that for 1 < r < 6(p− 1)

u ∈ L
5p−6
2−p

(
I;W

2,
3p
p+1 (Ω)

)
∩ C(I;Vr) ,

∂tu ∈ L
p(5p−6)

(3p−2)(p−1)
(
I;W

1,
3p
p+1 (Ω)

)
∩ L∞(

I;L2(Ω)
)
,

∂2
t u ∈ L2

(
I; (V2)

∗) .

(3.3)

Proof : The proof for p ∈ (7/5, 2] can be found in [8], [9]. The case p > 5/3 is
covered in [29]. To get the full regularity stated in (3.2) one additionally needs to test
(1.6) with ∂2

t u and follow the procedure from [8], [9]. This however is straightforward
and we will use similar ideas later on. Thus we skip the details here. The regularity
stated in (3.3) can be easily deduced from (3.2) and Lemma 2.11.

Note that the strategy employed in the proof of Proposition 3.1 to ensure the exis-
tence of strong solutions is not applicable in the discrete case. However, the existence
of weak solutions to the problem (NSk)p is ensured in [35, Lemma 4.1], which we recall.

Lemma 3.4. Let u0 and f satisfy the same assumptions as in Proposition 3.1. Then
there exists a weak solution um of the problem (NSk)p satisfying

max
0≤m≤M

‖um‖22 + k
M∑

m=0

‖D(um)‖pp ≤ c(f ,u0) , (3.5)

whenever p > 3/2.

In order to verify Theorem 1.10 we have to deal with two problems. Namely that
the discrete solution um of the problem (NSk)p is only weak and secondly that the
information about ∂2

t u is also weak. Thus we introduce an auxiliary problem to split
these problems subsequently. We follow the procedure introduced in [35] and consider
the following auxiliary problem:

Algorithm. Suppose that u is a strong solution to the problem (NS)p with the prop-
erties stated in Proposition 3.1. Then determine Um, m = 0, . . . ,M , that solves

dtU
m − div S(D(Um)) + [∇Um]u(tm) +∇Πm = f(tm) ,

div Um = 0 ,

U0 = u0 ,

(3.6)

endowed with space-periodic boundary conditions (1.7).

We have linearized the convective term around the continuous solution u(tm), for
which we have good regularity properties. The hope is that Um inherits the regularity
from u. In fact this is the case at the expense of restricting ourselves to a smaller range
of p’s.

Proposition 3.7. Let u0 and f satisfy the same assumptions as in Proposition 3.1.
Let u defined on I = [0, T ∗] be the strong solution ensured by Proposition 3.1, and
let tM < T ∗. Then there exists a strong solution Um of the problem (3.6) whenever

p ∈ (11+
√
21

10 , 2]. This solution satisfies

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

(
Ip(U

m)
5p−6
2−p +Kp(U

m)
)
≤ c(f ,u0) . (3.8)
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In particular we have that for all 1 < r < 6(p− 1) it holds

Um ∈ l
5p−6
2−p

(
Ik;W

2,
3p
p+1 (Ω)

)
∩ l∞(Ik;Vr) ,

dtU
m ∈ l

p(5p−6)
(3p−2)(p−1)

(
Ik;W

1,
3p
p+1 (Ω)

)
∩ l∞

(
Ik;L

2(Ω)
)
.

(3.9)

Proof : The existence of a strong solution Um of (3.6) follows from the regularity in
(3.9) using the Galerkin approach. The regularity (3.9) is an immediate consequence
of (3.8), (2.13), (2.22) and (2.24). Thus we shall only derive these estimates. For all
the missing details in the following computations we refer to [29, Section 5.3].

First of all we test the weak formulation of (3.6), which reads for all ϕ ∈ Vp
(
dtU

m,ϕ) +
(
S(D(Um)),D(ϕ)

)
+
(
[∇Um]u(tm),ϕ

)
=

(
f(tm),ϕ

)
, (3.10)

with Um and sum up over all iteration steps to obtain

max
0≤m≤M

‖Um‖22 + k
M∑

m=0

‖D(Um)‖pp ≤ c(f ,u0) , (3.11)

where we used the skew symmetry of the linearized convective term. This estimate
implies

Um ∈ l∞
(
Ik;L

2(Ω)
)
∩ lp(Ik;Vp) . (3.12)

The next step is to use in (3.11) −∆Um as a test function. Again we use the skew
symmetry of the linearized convective term, the properties of S (cf. (1.3)–(1.5)), the
definition of Ip(Um) and obtain, after summation up to level N ∈ {1, . . . ,M},

‖∇UN‖22 + k
N∑

m=0

Ip(U
m) ≤ c(f ,u0)

(
1 + k

N∑

m=0

∫

Ω

|∇u(tm)| |∇Um|2 dx
)
. (3.13)

The last term can, for 1 < r < 6(p− 1), α ∈ (0, 1), be estimated by

‖∇u(tm)‖r‖∇Um‖22r′ ≤ c(f ,u0)‖∇Um‖22r′ = c(f ,u0)‖∇Um‖2(α+1−α)
2r′ , (3.14)

where r′ is the dual exponent to r and where we used u ∈ C(I;Vr). Now, we interpolate
L2r′(Ω) between L2(Ω) and L3p(Ω) resp. Lp(Ω) and L3p(Ω), which gives

‖∇Um‖2r′ ≤ ‖∇Um‖
r(3p−2)−3p
r(3p−2)

2 ‖∇Um‖
3p

r(3p−2)
3p ,

‖∇Um‖2r′ ≤ ‖∇Um‖
1
4
r(3p−2)−3p

r
p ‖∇Um‖

3
4
r(2−p)+p

r
3p .

(3.15)

Using also (2.13) the right-hand side of (3.14) can be estimated by

c
(
1 + ‖∇Um‖22

)Q1 ‖∇Um‖pQ2
p Ip(U

m)Q3 , (3.16)

where

Q1 = (1− α)
r(3p− 2)− 3p

r(3p− 2)
, Q2 = α

1

2p

r(3p− 2)− 3p

r
,

Q3 = (1− α)
2

p

3p

r(3p− 2)
+ α

3

2p

r(2− p) + p

r
.
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Young’s inequality together with the requirements

Q2 · δ =
1

1 + ε
, Q3 · δ

′ = 1 ,
1

δ
+

1

δ′
= 1

for any prescribed ε > 0 yields

1 + ‖∇UN‖22 + k
N∑

m=0

Ip(U
m) ≤ c(f ,u0)

(
1 + k

N∑

m=0

‖∇Um‖
p

1+ε
p

(
1 + ‖∇Um‖22

)λε(r)
)
,

where

λε(r) ↘ λ =
2(p− 1)(2− p)

3p2 − 5p+ 1
for ε ↘ 0, r ↗ 6(p− 1) .

In view of (3.12) we have to check whether λ < 1, which is the case for p ∈ (11+
√
21

10 , 2].
Therefore we can employ discrete Gronwall’s lemma and obtain

max
0≤m≤M

‖∇Um‖22 + k
M∑

m=0

Ip(U
m) ≤ c(f ,u0) . (3.17)

Now we use dtUm as a test function in (3.10), sum up through m = 0, . . . , N , and
obtain

k
N∑

m=0

‖dtU
m‖22 +

N∑

m=0

∫

Ω

S
(
D(Um)

)
·D(Um −Um−1) dx

≤ c(f ,u0)
(
1 + k

N∑

m=0

‖[∇Um]u(tm)‖
2
2

)
.

(3.18)

Property (1.3) and the convexity of Φ(·) yield
∫

Ω

S
(
D(Um)

)
·D(Um −Um−1) dx ≥ c

(
Φ(|D(Um)|)− Φ(|D(Um−1)|)

)
. (3.19)

To bound the convective term we employ u ∈ C(I;W1,r(Ω)), 1 < r < 6(p − 1), the
embedding W1,r(Ω) ↪→ L∞(Ω), which is possible for p > 3/2, and (3.17) to obtain

k
N∑

m=0

‖[∇Um]u(tm)‖
2
2 ≤ c k

N∑

m=0

‖u(tm)‖
2
∞‖∇Um‖22 ≤ c(f ,u0) . (3.20)

Using also (2.4) and Korn’s inequality we thus derived

k
N∑

m=0

‖dtU
m‖22 + max

0≤m≤M
‖∇Um‖pp ≤ c(f ,u0) . (3.21)

Now one would like to use d2tU
m as a test function in (3.10). However this works

only for p > 5/3, which would be a further restriction for the range of p’s, which
is not desirable. Thus we shall use −d2tU

m and −∆Um “almost pointwise in time”
simultaneously as test functions. Here “almost pointwise in time” means that we also
estimate the term coming from the discrete time derivative, which has the advantage
that one can take powers of the resulting equation. Let us now be more precise. Firstly,
we have to introduce U−1. For that we set for all ϕ ∈ Vp

1

k

(
U0 −U−1,ϕ) +

(
S(D(U0)),D(ϕ)

)
+ ([∇U0]U0,ϕ) = (f(0),ϕ) .
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Using U0 = u0, p ≤ 2 and the assumption on u0 we obtain

‖dtU
0‖22 ≤ c ‖f(0)‖22 + ‖[∇u0]u0‖

2
2 + ‖ divS(D(u0))‖

2
2 ≤ c(f ,u0) . (3.22)

Now we can take the discrete time derivative of the weak formulation (3.10), use dtUm

as a test function, and sum up to obtain

‖dtU
N‖22 + k−1

N∑

m=0

∫

Ω

(
S(D(Um))− S(D(Um−1))

)
·D(Um −Um−1) dx

≤ c(f ,u0)
(
1 + k

N∑

m=0

∣∣
∫

Ω

[∇Um]dtu(tm−1) · dtU
m dx

∣∣
)
,

(3.23)

where we used (3.22). From the formula dtu(tm) = k−1
∫ tm
tm−1

∂tu(s) ds and (3.3)2 we
deduce

‖dtu(tm)‖2 ≤ ess sup
I

‖∂tu‖2 ≤ c(f ,u0) , (3.24)

and thus we can bound the last term in (3.23) by

‖dtu(tm−1)‖2
∥∥|∇Um| |dtU

m|
∥∥
2
≤ c(f ,u0) ‖∇Um‖3p ‖dtU

m‖ 6p
3p−2

≤ c(f ,u0)
(
1 + Ip(U

m)
)1
p ‖dtU

m‖ 6p
3p−2

,
(3.25)

where we also used (2.13). From (2.5) and the definition of Kp(Um) we obtain that

k−1

∫

Ω

(
S(D(Um))− S(D(Um−1))

)
·D(Um −Um−1) dx ≥ c kKp(U

m) . (3.26)

Alltogether we therefore derived

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) ≤ c

(
1 + k

M∑

m=0

(
1 + Ip(U

m)
)1
p ‖dtU

m‖ 6p
3p−2

)
. (3.27)

Using −∆Um as a test function in (3.10), where also the term with the discrete time
derivative is estimated, yields for 1 < r < 6(p− 1) (cf. (3.13), (3.14))

1 + Ip(U
m) ≤ c

(
1 + ‖∇Um‖22r′ + ‖dtU

m‖ 4
p
‖∇2Um‖ 4

4−p

)

≤ c
(
1 + cε‖∇Um‖22 + ε Ip(U

m) + ‖dtU
m‖ 4

p

(
1 + Ip(U

m)
)1
2
)

≤ c
(
cε + ε Ip(U

m) + ‖dtU
m‖ 4

p

(
1 + Ip(U

m)
)1
2
)
,

(3.28)

where we used the interpolation of L2r′(Ω) between L2(Ω) and L
12

8−3p (Ω), which is
possible for p > 3/2, Um ∈ l∞(Ik;W1,2(Ω)) and (2.12) with s = 2. For ε sufficiently
small we can absorb the term c ε Ip(Um) into the left-hand side of (3.28). Thus we get

(
1 + Ip(U

m)
)1
2 ≤ c

(
1 + ‖dtU

m‖ 4
p

)
. (3.29)
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Interpolating L
4
p (Ω) between L2(Ω) and L

12
8−3p (Ω) and using (2.21) with s = 2 and

(3.17) we obtain

‖dtU
m‖ 4

p
≤ c ‖dtU

m‖1−λ
2 Kp(U

m)
λ
2 , (3.30)

with λ = 3 2−p
3p−2 . Inserting (3.30) into (3.29) and raising the result to the power 2γ we

arrive at
(
1 + Ip(U

m)
)γ

≤ c
(
1 + ‖dtU

m‖2γ(1−λ)
2 Kp(U

m)γ λ
)

(3.31)

≤ c
(
1 + ‖dtU

m‖
2

(γ−1)(3p−2)
3p−2−3γ(2−p)

2 ‖dtU
m‖22 +Kp(U

m)
)
,

where we used Young’s inequality. In view of (3.21) and in preparation for discrete
Gronwall’s inequality we require that (γ−1)(3p−2)

3p−2−3γ(2−p) < 1, which gives γ < 3p−2
2 . For such

γ we have proved

k
M∑

m=0

Ip(U
m)γ ≤ c

(
1+k

M∑

m=0

Kp(U
m)+k

M∑

m=0

‖dtU
m‖

2
(γ−1)(3p−2)

3p−2−3γ(2−p)
2 ‖dtU

m‖22

)
. (3.32)

Adding now (3.32) and (3.27) we get for γ < 3p−2
2

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)γ (3.33)

≤ c
(
1 + k

M∑

m=0

(
1 + Ip(U

m)
)1
p ‖dtU

m‖ 6p
3p−2

+ k
M∑

m=0

‖dtU
m‖

2
(γ−1)(3p−2)

3p−2−3γ(2−p)
2 ‖dtU

m‖22

)
.

Now we proceed similar as in (3.30) and interpolate L
6p

3p−2 (Ω) between L2(Ω) and

L
12

8−3p (Ω), use (2.21) with s = 2, Um ∈ l∞(Ik;W1,2(Ω)) and apply Young’s inequality
to bound the second term on the right-hand side of (3.33) by

c
(
cε + cεk

M∑

m=0

‖dtU
m‖22 + ε k

M∑

m=0

Ip(U
m)

2
p + ε k

M∑

m=0

Kp(U
m)

)
.

For ε sufficiently small we can absorb the last two terms into the left-hand side if
2
p < γ < 3p−2

2 , which holds for p > 1+
√
13

3 . Note that this requirement is less restrictive

than p > 11+
√
21

10 . Thus we can apply discrete Gronwall’s inequality and obtain for
γ < 3p−2

2

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)γ ≤ c(f ,u0) . (3.34)

With this new information we can improve the exponent of Ip(Um) in the previous
estimate. For that we go again into (3.28) and estimate the term coming from the
discrete time derivative by

‖dtU
m‖ 3p

2p−1
‖∇2Um‖ 3p

p+1
≤ c ‖dtU

m‖ 3p
2p−1

(
1 + Ip(U

m)
)1
p , (3.35)
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where we used (2.13). Thus we get instead of (3.29)

(
1 + Ip(U

m)
)p−1

p ≤ c
(
1 + ‖dtU

m‖ 3p
2p−1

)
. (3.36)

Now we interpolate L
3p

2p−1 (Ω) between L2(Ω) and L3p(Ω), use dtUm ∈ l∞(Ik;L2(Ω))
and (2.22) to arrive at

(
1 + Ip(U

m)
)p−1

p ≤ c
(
1 +Kp(U

m)
λ
2
(
1 + Ip(U

m) + Ip(U
m−1)

)λ 2−p
2p

)
, (3.37)

with λ = 2−p
3p−2 . We raise this inequality to the power γ and apply Young’s and get

(
1 + Ip(U

m)
)γ p−1

p ≤ c
(
1 +Kp(U

m)γ
λ
2
(
1 + Ip(U

m) + Ip(U
m−1)

)γ λ
2−p
2p

)
(3.38)

≤ c
(
1 + cεKp(U

m) + ε
(
1 + Ip(U

m) + Ip(U
m−1)

) 2γ
2−γλ λ

2−p
2p

)
.

We now require γ p−1
p = 2γ

2−γλ λ
2−p
2p , which gives γ = p

p−1
5p−6
2−p . With this γ and ε

sufficiently small we can absorb the last term in (3.38) into the left-hand side after
summation over all time steps. Thus we derived instead of (3.32)

k
M∑

m=0

Ip(U
m)

5p−6
2−p ≤ c

(
1 + k

M∑

m=0

Kp(U
m)

)
, (3.39)

and consequently

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)

5p−6
2−p

≤ c(f ,u0)
(
1 + k

M∑

m=0

Ip(U
m)

1
p ‖dtU

m‖ 6p
3p−2

)
.

(3.40)

Now we handle the right-hand side in the same way as before and obtain

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)

5p−6
2−p ≤ c(f ,u0) , (3.41)

which is nothing else than (3.8). The proof is complete.

Proposition 3.7 shows that the solution Um of (3.6) has the same regularity proper-
ties as the solution u of the problem (NS)p. Thus we can split the error into two parts,
namely

u(tm)− um =
(
u(tm)−Um

)
+
(
Um − um

)
=: Em + em . (3.42)

Let us first discuss the error Em, where we can take advantage of the regularity prop-
erties proved before. The error Em is governed by the following system, which holds
for all ϕ ∈ Vp,

(
dtE

m,ϕ
)
+
(
S
(
D(u(tm))

)
− S

(
D(Um)

)
,D(ϕ)

)

+
(
[∇Em]u(tm),ϕ

)
= (Rm,ϕ) ,

(3.43)
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supplemented with

Rm ≡ dtu(tm)− ∂tu(tm) =
1

k

∫ tm

tm−1

(s− tm−1)∂
2
t u(s) ds . (3.44)

From (3.44) and (3.3) we compute that

‖Rm‖22 ≤ c sup
s∈[tm−1,tm]

‖∂tu(s)‖
2
2 , (3.45)

‖Rm‖2(V2)∗ ≤ c k

∫ tm

tm−1

‖∂2
t u(s)‖

2
(V2)∗ ds . (3.46)

If we use Em as a test function in (3.43) and sum over the number of iteration steps,
we obtain, for 1 < r < 6(p− 1),

max
0≤m≤M

‖Em‖22+k
M∑

m=0

(
‖D(Em)‖2 2r

2−p+r

+‖D(Em)‖2p
)
≤ c(f ,u0, r) k

M∑

m=0

(Rm,Em) , (3.47)

where we have used (2.9) and u(tm),Um ∈ l∞(Ik;Vr). We can bound the term on the

right-hand side with the help of the embedding W1, 2r
2−p+r (Ω) ↪→ W

2r−6+3p
2r ,2(Ω) and the

interpolation of W
2r−6+3p

2r
,2(Ω) between W1,2(Ω) and L2(Ω) as follows

(Rm,Em) ≤ ‖Rm‖
1−

2r−6+3p
2r

H
‖Rm‖

2r−6+3p
2r

(V2)∗
‖Em‖V 2r

2−p+r

≤ c(f ,u0) ‖R
m‖

2r−6+3p
r

(V2)∗
+ 1

2 ‖D(Em)‖2 2r
2−p+r

,

(3.48)

where we also used Korn’s and Young’s inequalities and (3.45). Now, we move the last
term in (3.48) to the left-hand side of (3.47) and it remains to bound the first term in
(3.48). Note, that

2r − 6 + 3p

2r
=: α̃(p, r) ↗ α0(p) :=

5p− 6

4(p− 1)
, for r ↗ 6(p− 1) . (3.49)

From (3.46) and (3.3)3 we derive

k
M∑

m=0

‖Rm‖2α̃(p,r)(V2)∗
≤ c k2α̃(p,r)

( M∑

m=0

∫ tm

tm−1

‖∂2
t u(s)‖

2
(V2)∗ ds

)2α̃(p,r)
≤ c(f ,u0) k

2α̃(p,r) ,

which together with (3.47) yields

max
0≤m≤M

‖Em‖22 + k
M∑

m=0

‖D(Em)‖2p ≤ c(f ,u0, r) k
2α̃(p,r) , (3.50)

with α̃(p, r) defined in (3.49).

We still have to deal with the error em, which is governed by the following system

(dte
m,ϕ) +

(
S(D(Um))− S(D(um)),D(ϕ)

)
= (rm,ϕ) , (3.51)

which holds for all ϕ ∈ Vp, and where

−rm = [∇Um]u(tm)− [∇um]um

= [∇Um]Em + [∇Um]em + [∇em]um .
(3.52)
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If we use in (3.51) the test function em and sum over all iteration steps, we get

max
0≤m≤M

‖em‖22 + k
M∑

m=0

‖D(em)‖2p
c+ ‖D(em)‖2−p

p

≤ c k
M∑

m=0

∫

Ω

|Em| |em| |∇Um| dx+ c k
M∑

m=0

∫

Ω

|em|2 |∇Um| dx

=: c k
M∑

m=0

(
Im1 + Im2

)
.

(3.53)

For the lower bound of the elliptic term we used (2.9) with r = p and the uniform
bound for ∇Um ∈ l∞(Ik;Lp(Ω)). Using Hölder’s inequality and the interpolation
inequality ‖v‖2r′ ≤ ‖v‖1−λ

2 ‖∇v‖λp with λ = 3p
r(5p−6) and that ∇Um ∈ l∞(Ik;Lr(Ω)) ,

1 < r < 6(p− 1), we find that

Im1 ≤ ‖∇Um‖r‖e
m‖2r′‖E

m‖2r′ (3.54)

≤ c(f ,u0)‖E
m‖1−λ

2 ‖∇Em‖λp‖e
m‖1−λ

2

‖D(em)‖λp
(
c+ ‖D(em)‖2−p

p

)λ
2

(
c+ ‖D(em)‖2−p

p

)λ
2

≤ c ‖em‖2‖E
m‖2

(
c+ ‖D(em)‖2−p

p

) λ
2(1−λ) +

1

2

‖D(em)‖p
(
c+ ‖D(em)‖2−p

p

) 1
2

‖D(Em)‖p

≤ c ‖Em‖22 + c
(
c+ ‖D(em)‖pp

) 2−p
p

λ
1−λ‖em‖22 + c ‖D(Em)‖2p +

1

2

‖D(em)‖2p
c+ ‖D(em)‖2−p

p

.

The last term on the right-hand side is absorbed into the left-hand side of (3.53). For
the first term and the third term in the last line of (3.54) we use estimate (3.50). The
term Im2 is treated analogously, replacing Em by em and stopping the computations
before the last line in (3.54). Thus we arrive at

max
0≤m≤M

‖em‖22 + k
M∑

m=0

‖D(em)‖2p
c+ ‖D(em)‖2−p

p

≤ c k2α̃(p,r) + k
M∑

m=0

(
c+ ‖D(em)‖pp

) 2−p
p

λ
1−λ‖em‖22

(3.55)

and we can use the discrete Gronwall’s lemma whenever 2−p
p

λ
1−λ < 1, where λ = 3p

r(5p−6) ,

1 < r < 6(p−1). One easily computes that this requirement is equivalent to p > 11+
√
21

10 .
After the application of Gronwall’s lemma we obtain that the left-hand side of (3.55)
is bounded by c k2α̃(p,r), with α̃(p, r) given by (3.49). We can always choose r such that
2α̃(p, r) > 1 and we readily obtain that

max
0≤m≤M

‖D(em)‖2p ≤ c
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and in turn we derive

max
0≤m≤M

‖em‖22 + k
M∑

m=0

‖D(em)‖2p ≤ c(f ,u0, r) k
α̃(p,r) . (3.56)

Since the same estimates hold for Em we have furnished the proof of Theorem 1.10.

4. Proof of Theorem 1.16

For the proof of the second part of Theorem 1.16, namely the error estimate (1.19),
we follow the same strategy as in the proof of Theorem 1.10. In fact, the additional term
−kβ div

(
Tq(D(um))

)
is a coercive, strongly monotone operator and thus produces

only positive terms. Thus we will be brief in this section and only point out the
differences to Section 3.

The existence of a weak solution to problem (NSSk)p is ensured by the following

Lemma 4.1. Let β > 0 and q ≥ 2 be given, and let u0 and f satisfy the same
assumptions as in Theorem 1.16. Then there exists a weak solution um of the problem
(NSSk)p satisfying

max
0≤m≤M

‖um‖22 + k
M∑

m=0

‖D(um)‖pp + kβ k
M∑

m=0

‖D(um)‖qq ≤ c(f ,u0) . (4.2)

Proof : Since q ≥ 2, it follows from the energy estimate (4.2) that

− div S(D(·))− kβ div Tq(D(·)) : Vq →
(
Vq

)∗

is a coercive, monotone operator. Moreover, dtum belongs to l∞(Ik;L2(Ω)), where
the norms can depend on k, and thus we can view (1.14) as a steady system. The
existence of weak solutions of the problem (NSSk)p now follows from the standard
theory of monotone operators.

As in Section 3 we introduce an auxiliary problem:

Algorithm. Suppose that u is a strong solution to the problem (NS)p with the prop-
erties stated in Proposition 3.1. For β > 0 and q ≥ 2 given, determine Um, m =
0, . . . ,M , that solves

dtU
m − div S(D(Um))− kβ div Tq(D(Um)) + [∇Um]u(tm) +∇Πm = f(tm) ,

div Um = 0 ,

U0 = u0 ,

(4.3)

endowed with space-periodic boundary conditions (1.7).

We have the analogue of Proposition 3.7, namely

Proposition 4.4. Let β > 0 and q ≥ 2 be given and let u0 and f satisfy the same
assumptions as in Theorem 1.16. Let u defined on I = [0, T ∗] be the strong solution
ensured by Proposition 3.1 and let tM < T ∗. Then there exists a strong solution Um
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of the problem (4.3) whenever p ∈ (11+
√
21

10 , 2]. This solution satisfies

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

(
Ip(U

m)
5p−6
2−p +Kp(U

m)
)

+ kβ k
M∑

m=0

Kq(U
m) + k

5p−6
2−p

β k
M∑

m=0

Iq(U
m)

5p−6
2−p ≤ c(f ,u0) .

(4.5)

In particular for all 1 < r < 6(p− 1) it holds

Um ∈ l
5p−6
2−p

(
Ik;W

2,
3p
p+1 (Ω)

)
∩ l∞(Ik;Vr) ,

dtU
m ∈ l

p(5p−6)
(3p−2)(p−1)

(
Ik;W

1,
3p
p+1 (Ω)

)
∩ l∞

(
Ik;L

2(Ω)
)
.

(4.6)

Proof : The proof follows exactly the lines of that one of Proposition 3.7. Note that
the stabilization −kβ div Tq(D(Um)) produces only positive terms when we use Um,
−∆Um, dtUm, and d2tU

m as test functions. Moreover, we will not use these additional
positive terms coming from −kβ div Tq(D(Um)) to handle the terms which appear on
the right-hand sides, when using the above test functions, but we will only use the
terms which are already present without the stabilization term. Thus we will be brief
and only indicate the differences to the proof of Proposition 3.7. The weak formulation
of (4.3) reads for all ϕ ∈ Vq

(
dtU

m,ϕ) +
(
S(D(Um)),D(ϕ)

)

+ kβ
(
Tq(D(Um)),D(ϕ)

)
+
(
[∇Um]u(tm),ϕ

)
=

(
f(tm),ϕ

)
.

(4.7)

We use Um as a test function in (4.7) and obtain after summation over all iteration
steps (cf. (3.11))

max
0≤m≤M

‖Um‖22 + k
M∑

m=0

‖D(Um)‖pp + kβ k
M∑

m=0

‖D(Um)‖qq ≤ c(f ,u0) . (4.8)

Next, we use −∆Um as a test function in (4.7) and obtain (cf. (3.13)–(3.17))

max
0≤m≤M

‖∇Um‖22 + k
M∑

m=0

Ip(U
m) + kβ k

M∑

m=0

Iq(U
m) ≤ c(f ,u0) . (4.9)

After that we use dtUm as a test function in (4.7) and arrive as in (3.18)–(3.21) at

k
N∑

m=0

‖dtU
m‖22 + max

0≤m≤M
‖∇Um‖pp + kβ max

0≤m≤M
‖∇Um‖qq ≤ c(f ,u0) . (4.10)

Now we use −d2tU
m and −∆Um “almost pointwise in time” simultaneously as test

functions. Firstly, we have to introduce U−1 and to verify that dtU0 ∈ L2(Ω). For
that we set for all ϕ ∈ Vq

1

k

(
U0 −U−1,ϕ) +

(
S(D(U0)),D(ϕ)

)

+ kβ
(
Tq(D(U0)),D(ϕ)

)
+ ([∇U0]U0,ϕ) = (f(0),ϕ) .
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Using U0 = u0, p ≤ 2, u0 ∈ W2, 6(q−1)
2q−1 (Ω) and Hölder’s inequality we obtain

‖dtU
0‖22 ≤ c ‖f(0)‖22 + ‖[∇u0]u0‖

2
2 + ‖ divS(D(u0))‖

2
2 + k2β‖ divTq(D(u0))‖

2
2

≤ c(f ,u0) .

Now we can take the discrete time derivative of the weak formulation (3.10), use dtUm

as a test function, and proceed as in (3.23)–(3.34) to derive, for γ < 3p−2
2 ,

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)γ

+ kβ k
M∑

m=0

Kq(U
m) + kγ β k

M∑

m=0

Iq(U
m)γ ≤ c(f ,u0) .

(4.11)

Note that in (3.28), (3.29), (3.2), (3.32) one has to replace Ip(Um) by Ip(Um) +
kβIq(Um). Again one can improve the exponent of Ip(Um) and kβIq(Um) in the same
way as in (3.34)–(3.41). The previous remark applies accordingly. Thus we derive

max
0≤m≤M

‖dtU
m‖22 + k

M∑

m=0

Kp(U
m) + k

M∑

m=0

Ip(U
m)

5p−6
2−p

+ kβ k
M∑

m=0

Kq(U
m) + k

5p−6
2−p

β k
M∑

m=0

Iq(U
m)

5p−6
2−p ≤ c(f ,u0) .

(4.12)

This finishes the proof.

Regarding the regularity of solutions we are now in the same situation as in Section
3 and thus we can split again the error into two parts, namely

u(tm)− um =
(
u(tm)−Um

)
+
(
Um − um

)
=: Em + em , (4.13)

where u is a solution of the problem (NS)p, Um is a solution of (4.3) and um is a
solution of the problem (NSSk)p. Note that until now no restrictions other than q ≥ 2
and β > 0 have been used. From now on we fix

β := α0(p) =
5p− 6

4(p− 1)
.

The error Em is governed by the following system, which holds for all ϕ ∈ Vq,
(
dtE

m,ϕ
)
+
(
S(D(u(tm)))− S(D(Um)),D(ϕ)

)
+
(
[∇Em]u(tm),ϕ

)
(4.14)

+kα0(p)
(
Tq(D(u(tm)))−Tq(D(Um)),D(ϕ)

)
=(Rm,ϕ)+kα0(p)

(
Tq(D(u(tm))),D(ϕ)

)
,

where Rm is defined in (3.44). We use Em as a test function in (4.14), sum over the
number of iteration steps, and obtain, for 1 < r < 6(p− 1),

max
0≤m≤M

‖Em‖22 + k
M∑

m=0

(
‖D(Em)‖2 2r

2−p+r

+ ‖D(Em)‖2p
)
+ kα0(p) k

M∑

m=0

‖D(Em)‖qq

≤ c(f ,u0, r) k
M∑

m=0

((
Rm,Em

)
+ kα0(p)

(
Tq

(
D(u(tm))

)
,D(Em)

))
, (4.15)
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where we have used (2.9), (2.10) and u(tm),Um ∈ l∞(Ik;Vr). The first term on the
right-hand side can be bounded as in Section 3 by

c(f ,u0, r) k
2α̃(p,r) , (4.16)

where α̃(p, r) is defined in (3.49). For the second term on the right-hand side of (4.15)
we use Hölder’s and Young’s inequalities and u ∈ C(I;Vr), 1 < r < 6(p−1), to obtain

kα0(p) k
M∑

m=0

∣∣(Tq

(
D(u(tm))

)
,D(Em)

)∣∣

≤ cε k
2α0(p) k

M∑

m=0

(
1 + ‖∇u(tm)‖

2(q−1)

(q−1)
2r

r+p−2

)
+ ε k

M∑

m=0

‖D(Em)‖2 2r
2−p+r

≤ cε k
2α0(p) + ε k

M∑

m=0

‖D(Em)‖2 2r
2−p+r

,

(4.17)

provided that (q − 1) 2r
r+p−2 < 6(p − 1), which is possible for q < 7p−6

2 , which is the
upper bound for q appearing in Theorem 1.16. The second term is absorbed into the
left-hand side of (4.15). Since α̃(p, r) < α0(p) (cf. (3.49)) we have proven

max
0≤m≤M

‖Em‖22 + k
M∑

m=0

‖D(Em)‖2p + kα0(p) k
M∑

m=0

‖D(Em)‖qq ≤ c(f ,u0, r) k
2α̃(p,r) , (4.18)

with α̃(p, r) defined in (3.49).

We still have to deal with the error em, which is governed by the following system

(dte
m,ϕ) +

(
S(D(Um))− S(D(um)),D(ϕ)

)

+ kα0(p)
(
Tq(D(Um))−Tq(D(um)),D(ϕ)

)
= (rm,ϕ) ,

(4.19)

which holds for all ϕ ∈ Vq, and where rm is defined in (3.52). The new term in this
equation compared to equation (3.51), when tested with em, is positive and thus we
can proceed exactly as in Section 3 (cf. (3.53)–(3.56)). We arrive at

max
0≤m≤M

‖em‖22 + k
M∑

m=0

‖D(em)‖2p + kα0(p) k
M∑

m=0

‖D(em)‖qq ≤ c(f ,u0, r) k
α̃(p,r) . (4.20)

From (4.18), (4.20) and the definition of α0(p) and α̃(p, r) we immediately get for all
0 < α < α0(p) and 2 ≤ q < 7p−6

2

max
0≤m≤M

‖u(tm)− um‖22 + k
M∑

m=0

∥∥D
(
u(tm)− um

)∥∥2

p
(4.21)

+ kα0(p) k
M∑

m=0

∥∥D
(
u(tm)− um

)∥∥q

q
≤ c(f ,u0,α) k

2α ,

which is the second statement in Theorem 1.16. We still have to prove that um is a
strong solution of the problem (NSSk)p. Since u ∈ l∞(Ik;Vr), 1 < r < 6(p − 1), we
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immediately derive that

max
0≤m≤M

‖∇um‖p ≤ c k
2α−1

2 ,

max
0≤m≤M

‖∇um‖q ≤ c k
2α−α0(p)

q .

(4.22)

Using the interpolation of Ls(Ω), p < s < q, between Lp(Ω) and Lq(Ω) we obtain, with
λ = p(q−s)

s(q−p) ,

max
0≤m≤M

‖∇um‖s ≤ max
0≤m≤M

‖∇um‖1−λ
q max

0≤m≤M
‖∇um‖λp

≤ c k
(1−λ)

2α−α0(p)
q k λ

2α−1
2 ,

≤ c ,

(4.23)

whenever (1− λ) 2α−α0(p)
q + λ 2α−1

2 ≥ 0, which is the case for

s < s0(p, q) :=
p(2− p+ q(3p− 4))

(3p− 2)(p− 1)
. (4.24)

With this new information, namely um ∈ l∞(Ik;Vs) with 1 ≤ s < s0(p, q), we can now
show that um is a strong solution. For that we use −∆um as a test function in the
weak formulation of (1.14) with β = α0(p), which reads for all ϕ ∈ Vq

(
dtu

m,ϕ) +
(
S(D(um)),D(ϕ)

)

+ kα0(p)
(
Tq(D(um)),D(ϕ)

)
+
(
[∇um]um,ϕ

)
=

(
f(tm),ϕ

)
.

(4.25)

We obtain (cf. (3.13))

‖∇uM‖22 + k
M∑

m=0

Ip(u
m) ≤ c(f ,u0)

(
1 + k

M∑

m=0

∫

Ω

|∇um| |∇um|2 dx
)
. (4.26)

For 1 < s < s0(p, q), the last term can be estimated by

‖∇um‖s‖∇um‖22s′ ≤ c ‖∇um‖22s′

≤ cε ‖∇um‖22 + ε Ip(u
m) ,

(4.27)

where s′ is the dual exponent to s, and where we used (4.23), the interpolation of

L2s′(Ω) between L2(Ω) and L
6s

6−3p+s (Ω), and (2.12). This is of course only possible as
long as 2s′ < 6s

6−3p+s , which is equivalent to the requirement

s >
9− 3p

2
. (4.28)

This condition together with (4.24) gives a lower bound for q, namely

q >
−9p3 + 44p2 − 55p+ 18

2p(3p− 4)
, (4.29)

which together with q ≥ 2 has to be compatible4 with the upper bound q < 7p−6
2 .

However for p ∈ (11+
√
21

10 , 2] there is no problem with these requirements. After the ap-
plication of the discrete Gronwall’s inequality we thus have proved for all q’s satisfying

4Note that for 1.6955 ! p ≤ 2 the requirement q ≥ 2 is stronger than (4.29)
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the requirements of Theorem 1.16 that

max
0≤m≤M

‖∇um‖22 + k
M∑

m=0

Ip(u
m) ≤ c(f ,u0) . (4.30)

Next, we take the discrete time derivative of (4.25) and use dtum as a test function
and obtain (cf. (3.23), (3.26))

max
0≤m≤M

‖dtu
m‖22 + k

M∑

m=0

Kp(u
m) ≤ c

(
1 + k

M∑

m=0

∫

Ω

|∇um| |dtu
m|2 dx

)
. (4.31)

Since we have the same lower bounds for dtum in terms of Kp(um) as for ∇um in terms
of Ip(um) we can proceed exactly as in (4.27) to obtain that the right-hand side of
(4.31) can be estimated by

‖∇um‖s‖dtu
m‖22s′ ≤ c ‖dtu

m‖22s′ ≤ cε ‖dtu
m‖22 + εKp(u

m) . (4.32)

Discrete Gronwall’s inequality now gives

max
0≤m≤M

‖dtu
m‖22 + k

M∑

m=0

Kp(u
m) ≤ c(f ,u0) . (4.33)

It remains to show that the exponent of Ip(um) in (4.30) can be improved. For that
we use again −∆um as a test function in (4.25) and obtain (cf. (3.28), (3.35))

1 + Ip(u
m) ≤ c

(
1 + cε‖∇um‖22 + ε Ip(u

m) + ‖dtu
m‖ 3p

2p−1

(
1 + Ip(u

m)
)1
p
)
. (4.34)

Using (4.27) we arrive at (3.36) with Um replaced by um and then we can proceed
exactly as in Section 3 (cf. (3.37), (3.38)) to obtain (3.38), which in view of (4.33)
delivers

max
0≤m≤M

‖dtu
m‖22 + k

M∑

m=0

Kp(u
m) + k

M∑

m=0

Ip(u
m)

5p−6
2−p ≤ c(f ,u0) .

This immediately implies (1.18) and the proof of Theorem 1.16 is complete.
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