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Abstract

In this paper we study numerical solutions of the Dirichlet problem in high dimensions
using the Feynman-Kac representation. What is involved are Monte-Carlo simulations
of stochastic differential equations and algorithms to accurately determine exit times and
process values at the boundary. It is assumed that the radius of curvature of the boundary
is much larger than the square root of the step-size. We find that the canonical O(N —oo/ )
behavior of statistical errors as a function of the sample size N holds regardless of the
dimension n of the space. In fact, the coefficient of N~1/2 seems to actually decrease
with n. Additionally, acceptance ratios for finding the boundary become less sensitive to
the time step size in higher dimensions. The walk on cubes method, wherein the model
increments of Brownian motion are three-point random variables, is of particular interest.
Comparisons are made between this walk-on-cubes method, Milstein’s walk on spheres,
and a simpler 2-point method. Our examples have hyperspherical domains up to n = 64
dimensions.
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1 Introduction.

In many applications, the dimension of the underlying space can be much
larger than three. Solutions of partial differential equations in three space can
be an industrial project, while in higher dimensions this is even more formidable.
In financial applications or many body simulations, the underlying space may
be 50 or more. Monte-Carlo simulation thus becomes most attractive when the
dimension n of the configuration space is high. In this paper, we explore the
Dirichlet problem in high dimensions using variants of the Feynman-Kac repre-
sentation (e.g. [5]). What is involved is to simulate some stochastic differential
equations, functionals of which form the Feynman-Kac formula. In simulation,
most of the functionals turn out to be simple averages of multiple realizations of
functions of independent sample paths. For the Dirichlet problem, the boundary
values make the solution unique. Finding the boundary and determining the exit
time of the diffusion process when it crosses the boundary are the main tasks.

In a basic form, the Feynman-Kac representation for the Dirichlet problem is
follows. Let L be a linear second order differential operator

(1.1) Lu= %Au—i—Zbi(x)@iu—i—c(x)u = —g(x).

In this study, we consider only the case that the potential ¢(z) < 0 and that
b,c, g are smooth and satisfy some Lipshitz growth conditions. The Dirichlet
problem is to find u(x) satisfying the above PDE (1.1), while at the bound-
ary of a bounded domain D, u(z) = ¢(z), when x € dD. The probabilistic
representation for the solution v is the Feynman-Kac formula,

(1.2) u(z) = E’L/](X(T))ef(; c(X(s)ds L | / g(X(t))efOt C(X(S))dsdt,
0

where 7 is the exit time from domain D of a process X (¢) whose initial value is
X (0) = = and which satisfies a stochastic differential equation (SDE)

dX (t) = b(X)dt + dW.

In this equation, W is an n—dimensional Brownian motion, and b is the vector
which appears in the PDE (1.1). The exit time is 7 = inf{¢t : X(¢) € 0D},
i.e. the first time the process X crosses the boundary. Two difficulties present
themselves: (i) finding the process value X () accurately at the boundary, and
(ii) making sure that this value does not follow an excursion, that is, X (¢) cannot
leave the domain and come back. In practice, one writes Y (t) = exp fot c(X(s))ds
and computes Y from the differential equation dY = ¢(X)Ydt.

If the numerical representation of the increments of W is Gaussian, controlling
both problems ((i) and (ii)) is very hard because these increments are unbounded.
Three bounded approximations to these increments are known and used:

e A simple two point:

AW? = £vVh each with probability 1/2
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e A walk on spheres, where AW is uniformly (isotropically) distributed
on an n—sphere. In this case, the calculus for the SDE is modified for the
conditions that the process value is always on a hyperspherical surface.

e A walk on cubes (3-point, (3.5)), wherein

AW'" = £V3h each with probability 1/6
AW® =0 with probability 2/3

The moment conditions

EAW' =0,
EAW'AW? = hé;j,
EAW! AWIAW* =0,
EAW AWIAWFRAW! = h2{8,;6r1 + 6ixdj1 + 0udjn }

are satisfied to O(h?), but the next even order relations, O(h?), are not cor-
rect. This walk on cubes gives a better representation than two point or uni-
form distributions on spheres for the 1-D distribution function p(AX;) =

\/1/2mh - exp(—AX?/2h),
p(AX)) ~ %5(&@- +V3h) + %5(AXZ- —V3h) + gé(AXZ-).

In the 2-point and walk on cubes cases, the joint distribution for all the n
AX'’s isn’t isotropic. For an arbitrarily oriented boundary, this lack of isotropy
introduces errors. It is possible to remove this lack of isotropy by choosing a
vector increment AX = {AX;,AX,,...,AX,} and rotating it by a random
orthogonal matrix, say ). That is, for any unit vector e, the set Qe will be
uniformly distributed on surface of a unit n—sphere. In 2 or 3 dimensions,
generating such @ is straightforward, but in higher dimensions this might be
more tedious. In this study, we do not attempt to correct for this lack of isotropy,
but note that the problem exists.

In this paper, we study test problems in high dimensions in a hyperspherical
domain. This domain will be called D. Additionally, two border areas of D
are: I'r is a boundary finding region, which we’ll call the tangent layer; and
a stopping region I's where the discrete Markov chain of our approximation
terminates. These are subsets of D, I's C I'r C D. Our basic test problem is

(1.3) %Au(x) +g(z) =0

where ¢g and the boundary values 1 (z),z € 9D are chosen such that we know
the solution (see section 4). This will enable us to examine the boundary finding
strategy and study the models for bounded approximations to Brownian incre-
ments. Our particular goal is to see how the solutions behave as the dimension
n of the problem increases.
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Our notation is conventional, but the reader should note a perhaps inconsistent
meaning of the stepsize h. When finding the boundary, the global stepsize
h is shrunk according to the distance to that boundary. When discussing the
expected number of steps, and the order of accuracy, h means the initial stepsize:
h when X € D\ I'r. Within I'r, h shrinks - we do not allow excursions.
In the simulations, the expectation [E ¢ for some ¢ is computed by the mean
E¢ — N1 va ) over some sample of N ¢’s.

2 Exit time from the domain.

We first examine a simple exit-time problem, in part to illustrate that even
in a simple case, the analysis is non-trivial. The solution to the n—dimensional
constant potential problem on an n—sphere with radius r

1
(2.1) §Au—)\u:0

where u(x) = 1 when |z| = r can be written using the Feynman-Kac formula.
In this case it reads (equation 1.2)

where 7 (the exit time) is the first ¢ for an n—dimensional Brownian motion
x+ W (t) which begins at x and |x+ W (7)| = . The solution u(x) is the Laplace
transform of the distribution function for the exit time 7. In hyperspherical
coordinates (see [4]) (' = d/d|z|) (2.1) is

-1
i u —du=0.

1, 1
2" T2

The solution is relatively easily found by the transformation v(|z|) = |x|"u(|z]),
where v = n/2 — 1, from which one gets the equation for a modified Bessel
function. The solution to (2.1) is [7]

u(z) = LAVl
2l I, (VA7)

To invert the Laplace transform, we used the infinite product form of the mod-
ified Bessel function ([1]),

I,(t) = ﬁ (%)V ﬁ (1 N <Jf)2> '

s=1

All the terms in the product for u(x) are even and hence only contain A, not its
square root. We may apply the inversion formula by closing the contour in the

. 2
left-half plane, with the poles A = —% appearing only on the negative real
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axis. Here, j, s, is the s—th real positive zero of the Bessel function J,, where
again v = n/2 — 1. Our result for the distribution function is

L)V = jv,sju(jv,s%)e_%-,—
|| 1 Jo41(jv,s)

(22) ) = o (

which for x = 0 (the origin) reduces to

j' )3 Gne)?

2 T
(2.3) p(0,7) @) Sz:: oz

V+1 .]1/ s

Both series converges for all 7 > 0 because the denominators never vanish for
finite s by Lomelin’s interleaving theorem (see Watson [15]). The series for
moments E o7 of (2.3) converges only if n/2—m—1 < 0 because the amplitude
of the Bessel functions in the denominators decrease for large s as O(s~/2) and
the signs alternate. Hence, there are "n.a.” (not available) entries in Table 2.2.
To check our result (2.2), we computed the moments E g7 for m = 1...4 and
compared these moments to Dynkin’s [3] recursive procedure. Following Milstein
[10], who computed the moments E ,7™ for m = 1,2, 3, we use Dynkin’s idea [3]
where

hp(2) =E 77

Then h,, for m > 1 satisfies the equation
1
iAhm + mhm_1 =0

with h,,(2) = 0 when |z| = r, although hg = 1. h,, is an m—th order ho-
mogeneous polynomial in (|z|?,72). The first 4 solutions for h,,(z) are given in
Table 2.1. Table 2.2 shows our comparisons. One obvious feature of these results
is that as n increases, the distributions sharpen around the expected value E .
That is,

var(T) 2

Eor)2 nt2

2.1 The number of steps to find boundary.

Our basic scheme is to set up a discrete stochastic process, { Xy : Xo = 2,k =
0...v;}, which weakly approximates a Brownian motion. If the initial point
x € D\ I'r, our increments AX will depend on the initial stepsize h. If X
(including the case x € I'r) is in the tangent layer I'r, the stepsize is shrunk
so that the largest bounded increment X — X + AX could at most take X to
the boundary 0D. We now show that for bounded approximations to Gaussian
increments, the number of steps is O(h~1). After [10], we define

Av(X) =Ev(X + AX) —v(X).
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Table 2.1: Solutions to Dynkin’s equations for moments

o, polynomial
hl 7|$|2 +7,2
n

b ||t B 2lx?r2  (n+4)r?

2 n(n+2) n? n?(n + 2)
e | — ||® 3|x|tr? 3 3(n+4)|z)?rt  (n?+12n + 48)r

3 nn+2)(n+4) n%(n+2) n3(n+ 2) n3(n+2)(n+4)
b |z|® 4|z[r? 6(n + 4)|z|*r4

* nn+2)(n+4)(n+6) n2(n+2)(n+4) n3(n + 2)2

B 4(n% +12n + 48)|z|?r®  (n? + 2613 + 288n? + 1536n + 2304)r8
nt(n+2)(n+4) nt(n+2)%2(n+4)(n+6)
Table 2.2:  Comparison of integrating series (2.2) (100 terms) for

Eor™ = [ pr™dr vs. the recursive procedure of Dynkin: E (7™ = hy,(0). En-
tries marked n.a. are "not available” because of lack of numerical convergence:
see the explanation following (2.2).

Moment n=2 n=3 n=4 n=>»5
E1l 1.0000 | 1.0000 | 1.0000 | 1.000

E 1 Series 0.9900 | n.a. n.a. n.a.
E7 Dynkin | 0.5000 | 0.3333 | 0.2500 | 0.2000

E 7 Series 0.4999 | 0.3333 | 0.2498 | 0.1979
E 72 Dynkin | 0.3750 | 0.1556 | 0.0833 | 0.0514
E 72 Series | 0.3750 | 0.1556 | 0.0833 | 0.0514
E 73 Dynkin | 0.3958 | 0.0984 | 0.0366 | 0.0169
E 73 Series | 0.3958 | 0.0984 | 0.0366 | 0.0169
E 7* Dynkin | 0.5495 | 0.0806 | 0.0203 | 0.0069
E7* Series | 0.5495 | 0.0806 | 0.0203 | 0.0069
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And from Wentzell [16], we are looking for a potential function v(X) which
satisfies the criteria

v(X)>0 when X e D\Tg
v(X)=0 for X eTlg,
and such that when f(X) > 1 in the equation

Av =Ev(X + AX) —v(X)=—-f(X) when X e D\Tg,
then
# steps = v, < v(x).
For any Markov chain, {X}}, beginning at X = z,
Ew(Xy) —v(z) = —f(z)
Eov(Xy) —v(Xy) = —f(X1)
Esv(Xs) —v(X2) = —f(X2)

EVEV(XVI) _V(Xum_l) = _f(XVT_l)
———
=0,X,, €Ts

Here, E ; means expectation with respect to the independent increment AX; =
X — Xi—1: Epv(Xy) = E[v(Xk)|Xk-1]. Working backwards, the unique solu-
tion to the boundary value problem

Av(X)=—-f(X) when X e D\Tg,
v(X)=0 for X els,

is ([10], [16])

ve—1

v(z) =E > f(X).
k=0
Soif f > 1, then v, < v(x).

2.2 One dimensional case.

Although it is a bit special, the one dimensional situation is edifying. Consider
the domain —L < x < L with a tangent layer

Fr={-L<X<-L+V3h}U{L-V3h< X <L}
and stopping layer I'g,
I's={-L<X<—-L+ds}U{L—0s <X <L}

For a two point approximation (AX = ++v/h), v3h — v/h in the first definition.
The width of the stopping layer is given by dg = h?, or g = h for a two point
approximation. We want to find a potential v(x) which bounds the number of
steps of the chain {Xo =z, X1,...,X,, € I's}, with the properties
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e v(z) increases as x moves away from the boundaries —L, L, and

o V(| X +L| <ds) =0, or v(|X — L| < dg) = 0 for left or right boundary,
respectively.

Let € be a bounded step. In the 2-point, or simple random walk (AX = e =

+Vh),

Av(X) = % (WX + ) + (X — ) — v(X).
For the 3-point (walk-on-cubes) case (AX = e = ++/3h, or 0),
AWX):%0¢X+Q+V@¥fn+§WX)fWX)
= % (%V(X +e)+ %V(X —€) — V(X)>

It is important to notice that the scaling of ¥ must be increased if Av < —1 in the
3-point (walk-on-cubes) case. Indeed, for a better representation of the radial
distribution, the acceptance decreases by 1/3 in this case. A walk on spheres
is the same as the 2-point case in one dimension. For this, the conditions that
Av < 0 are thus the same for all three models for the increment AX =€ v >0
must decrease to zero toward the stopping layer and turn down in the interior.
There are two cases to examine

(a) XeD\I's andboth X+egTyg
(b) XeD\Ts butoneof X+4+eelg or X —ecTs.

In the interior case (a), for Av(X) = Ev(X + AX) — v(X) to be negative, we
see from the remainder form of Taylor’s series (with numbers 0 < n,v < 1),

EWX+AXyﬂ¢ﬂ:%ﬁ¢X+Q+WX—Q}fWX)

1
= (X o) +01(X =y},
that it suffices for v”/(Y) < 0 for Y € D\T's. Case (b) is that one of the possible
steps ends up in I's. We look only at the right boundary (v(X + €) = 0) since
the left one is similar, (again, 0 <n <1)
1 1, 1, 9 1
Av(X) = 51/(X —e)—v(X) = —3¥ (X)e+ i (X +ne)e” — 51/(X).
For the bounded step, sufficient conditions for v to be a bounding potential when
X € D\Tg are

e v(X) vanishes when X hits I'g

e v(X) increases as X moves away from I'g. That is, when |[ X +AX —0D| >
|X — 0D| we have AX - Vv(X) < 0. This is a condition on AX: it takes
X — X + AX into the interior, not towards the boundary.
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e v(X) turns down: Av(X) <0 for all X € D\ Tg.

The above conditions remain valid for the n-dimensional case, hence the nota-
tion. In n-D, the condition (Av < 0) follows from the It formula:

h h
V(X + AX) = v(X) + /0 Vu(X(t))~dX(t)+% /O Av(X(t)dt, so

(2.4) Av = % /O hIEAz/(X(t))dt.

Hence, if Av(X(t)) < 0 all along the path from X — X + AX, Av < 0. In our
one dimensional symmetric example, such a potential [10] begins with

V3h
s

va(X) = ¢ <1ogM +1
S

v2(X)=0 when |X|>|L|—0ds.

(X)) =co <1og + 1) when |X| < |L| — V3h,

> when |L| — v3h < |X| < |L| —dg,

Then
1
v(@) = 55 (L° = 05 — ) + »a(X) when X € D\Ts,
v(z) =0 when X €Ty,
where ¢g = ¢o(h) is a non-zero constant which may be chosen large enough that
Avy < —1 (see [10]).

2.8 Potential v for bounded approrimations to Gaussian increments.

For a bounded approximation to Gaussian increments, we define the following
function:

v(X)=L?>—-|X|> when X € D\Tg,
v(X)=0 for Xels.

We may choose L large enough that 19 > 0 for a bounded domain D. Addition-
ally,

vp(X) = Ky

. / k(. y)vo(y)dS, .
(oT's)\(0D)

with dS, is the outward oriented area increment of the inner surface of the
exit layer I'g, that is X € (0T'g) \ (0D), and k(x,y) is the Green function for
the Laplace operator. For a sphere, k(x,y) is the Poisson kernel: see Doob [2]
chapter II, section 1. The function v (X) is harmonic in D \ I's and is equal to
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—1p(X) when X € (9T's) \ (0D). We now begin construction of v which will
consist of three terms: the first two vy, v, are interior terms, and the last will
be for the tangent layer.

LEMMA 2.1. For X € D\Tg,

vo +vp = 0.

Proor. With L chosen to be large enough, vy > 0, and vy is subharmonic.
By construction, v, (X) is harmonic and

—vp(X) = 1p(X) when X € (0T'g) \ (0D).

Thus, from Doob ([2]), chapter II, section 7, vp + v > 0 as desired. [
We note that vy + v, reaches its maximum in the interior because vy +vp > 0

when X € D\ T'g, is not identically zero, but vy + v, = 0 on the exit layer
surface X € (0's) \ (OD).

LEMMA 2.2. The function

vi(X) = (vo +vn)

1
2nh
satisfies

El/l(X + AX) — I/1(X> = —1.

PROOF. In our case, X is a Brownian motion: X = z + W(¢). We use the
rule, for even m,

E{AX;,AX,,...AX; } =h™? . pairwise permutations of {&;, i, ... i, i, }»

whereas odd numbers of AX vanish, to get

h 3h?
(25) El/l(X‘FAX)*I/l(X):5AV1(X)+TA2V1(X>+
Formally,
Eun (X + AX) — 1y (X) = €320 (X) — 14 (X).

Now,
(2.6) L Avo(X) = <1

) 2nh vo B ’
and because v}, is harmonic

Al/h(X) = 0,

we get all the higher order terms

ARy = AF(=1) =0, and
ARy = AR (0) =0,
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for the desired result. Namely, all the O(h?) and higher terms of (2.5) vanish

leaving only (2.6). O

We now need a contribution to v(z) [10] appropriate for the boundary finding
tangent layer I'r. When X € T'r \ I'g, the time step is computed from the
distance to the boundary. Where p = inf |X — dD| and ds = h?, let

vy = o (log‘é—?’_Sthl) when X € D\Tr
vy = o (log 3‘% + 1) when X eTp\Tg
v =0 for X els.

The constant ¢y depends only on n and h and is large enough that Avy, < —1
[10]. This potential has the following properties [10]:

stopping layer

Boundary

Figure 2.1: Nested n—polyhedra (left), stopping geometry (right)

LEMMA 2.3. For p > dg,

va(p) 2 0,
AX Vs <0 i.e. vy is increasing if AX moves X away from I'g,

Avy < constant < 0.

PrOOF. That vy is positive is obvious. When AX moves X away from the
boundary 0D, AX - Vg < 0 because logp/ds increases. To show Avy < 0
is more difficult. Milstein [10] showed that for a ball of fixed size p = |AX],
Avy < constant < 0. We simplify the argument for the walk on cubes, namely we
inscribe the polyhedra in spheres. Figure 2.1 illustrates the situation for n = 3.
In the general n case, the possible points form a set of nested n—polyhedra
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whose radii are ry, = vV 3kh for £k = 0...n. The number of points at the vertices
of these polyhedra at radius ry is given by by

# points;, = ( Z ) ok,

We weight these points on the surface of an n—ball of radius 7, by the probability
that these vertices have radius ry, that is

1
P, = P{r, = V3kh} = o ( Z ) ok

where h = %. Also,

anpk = (1/6+1/6+2/3)" = 1.
k=0

Now let M > 0 be the number of these radii rx < p —ds, K = 0...M. The
k = 0 contribution is a point, so contributes nothing to Av,. Thus, averaging
over the weighted points as though they are equally distributed on the surfaces
of the spheres at ry, (for an arbitrarily oriented boundary at distance p),

M n
P
(2.7) An(X)=> + A—’; /dSkVQ(X + AX}) — Pen(X).
k=1 k>M
Here, Ay = 21?(2/2 )rZ_l is the surface area of the n—ball of radius r;. For

k =1...M, there is no overlap of the ball with the stopping layer (see Figure
2.1), so since Avy < 0, the k = 1... M contributions to (2.7) are negative. The
remaining k > M are also negative and bounded away from zero by Milstein’s
theorem ([10]: his Lemmas 4.1, 4.2, and Theorem 4.1). Indeed, by our choice
of stepsize, at least one, r, = p, overlaps the stopping layer I's. Thus Avs <
const. < 0. That is, the scaling ¢y is bounded. 0O

It is important that when M > 0, the acceptance ratio for stopping decreases.
Finally, these three pieces give us the following.

THEOREM 2.4. The potential v(X) = ﬁ (vo(X)+vp(X))+12(X) = (X)+
vo(X) has the desired properties:

v(X)>0 when X € D\Tg
V(X)) =0 if X €T
Ev(X+AX)—v(X)<-1 for XeD\TIg

ProOF. This follows directly from LEMMAS 2.1, 2.2, and 2.3. O

THEOREM 2.5. Where h is the initial stepsize, the expected number of steps
using these bounded approzimations for Gaussian increments is O(h™1).
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PROOF. Since ¢y > 0, and v, is bounded on a finite domain,

vy <v(z) < sup ni(x)+ sup ()
z€D\I's z€D\T's
then

L sup {v0(@) + (@)} + va(V3R)

Vg S PYSA
2nh ZED\FS

which is O(h™1). O

Experimentally, we find that once X € I'r \ T's, the expected number of steps
until that path exits is O(h~*(™)) where a(n) ~ 0.44-n~2/5. This means that as
the dimension of the problem increases, the number of steps required to find the
boundary once a path has entered the tangent layer I'r becomes less sensitive to

the stepsize h. We next describe our simulations in the context of the problem
(1.3).

3 Algorithms.

The probabilistic representation of the solution to the Dirichlet problem
1
(3.1) iAu(x) +g(@)=0 for zeD, ul,,=1v@)

takes the form u(x) = E[¢(X (7)) + Z(7)] where (X (¢), Z(t)) solve the system
of stochastic differential equations (0 < ¢ < 7)

(3.2) dX'(t) =dW'(t), i=1,...,n, dZ(t) = g(X (t))dt

together with the initial conditions X (0) = z and Z(0) = 0. In (3.2), (W1,..., W™)T
is an n-dimensional Brownian motion and 7 is the first exit time of process X ()
from the bounded domain D [5, 10].

Repeatedly applying Ito’s formula to the system (3.2) and neglecting higher
order terms yields the following one step approximation [6, 8]:

Xi(t+h) :Xz(t)Jr/ dWi(s) i=1,....n
t

——
= I

(3.3)  Z(t+h)=Z(t)+ g(X(t
)

D
t+h s1 2
o) [ [ awisas +gageeen’y

= I(iO)

The neglected error in the expansion (3.3) is of weak order 3 [8]. Replacing
the integrals I(;), I(;oy in (3.3) by the following set of random variables does not
change the weak order of accuracy:

Njw

h

(3.4) Iy — \/EEZ, Ii0) — TEZ 1=1,...,n
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where ¢ is a three point random variable distributed according to
) ++/3  each with probability 1
(3.5) £i= { ’

0 with probability %

Let p = p(x,0D) be the distance from a point « € D to the boundary 9D and
introduce the boundary layers I'r(h) = {zx € D | p < V3nh} and T'g(h) = {z €
D | p < h?}. Consider the following Markov chain starting in D and stopping
in 0D:

ALGORITHM 3.1 (WALK ON CUBES). Choose h >0 and Xo =2 € D\Tg(h),
set hg = h and get the subsequent elements for k =0,1,... as

if (X € Tg(h)) set X, to a point on OD closest to Xy, and STOP
else

h, if X, € D\Tr(h)
Py {

p(Xgifm if X €Tr(h)

Xir1 = Xp+ vV hes18e1

Note that hiy1 < h for k = 0,...,v, — 1. The chain is stopped as soon
as Xy € I'g, i.e. k =wv,;. We obtain a chain X, X;,...,X,, with X € D for
0 < k < v,. In particular, we can approximate the exit point X (7) by X,, € 9D
and the exit time 7 by hy + ha + -+ + h,_, where the chain starts at Xy = «.

Estimating the expectations by finite means over N paths, we propose the
following algorithm based on Algorithm 3.1 to find ) (z) approximating the
solution u(x) to problem (3.1) with initial stepsize h > 0.

ALGORITHM 3.2 (MONTE CARLO FOR DIRICHLET PROBLEMS). Choose z €
D\Tg(h), set u=0 and hg = h.

p(X,8D)>

if (x € 'r) set ho = 557

for p=1,....N

e X =u0,7Z=0,h=hy
e for k=0,1,...
— generate random n-vector & with components distributed ac-
cording to (3.5)
— update Z = Z + g(X)h + 3¢9(X)§§i + %Ag(X)%2
—if X €T'g: set X, to a point on OD closest to X, STOP

else

if X €Tp: seth—=2X0
else set h to initial stepsize
— update X = X + h%«f

o u=ut (B(X,) +2)

: N _ 1
Compute expectation u;’ = NU-
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4 Numerical experiments.

In this section we present results from extensive numerical experiments on the
Algorithm 3.2. We first study in detail the case g(x) = 1 and ¢(x) = 0 (exit
time problem) and present results of an experimental error analysis. We later
show results from simulations with a varying inhomogeneity gx(z) consisting of
a product of cosines with different frequencies k¢ (i = 1,...,n).

A comparison of Algorithm 3.2 based on Algorithm 3.1 is made with other
algorithms that have appeared in the literature.

The n-sphere with radius 1 and center in the origin is denoted ST = {x €
R™ | |z] < 1}, and its boundary is 057

4.1 FExperimental setup.

Algorithm 3.2 has two parameters influencing its accuracy: the initial stepsize
h and the number of simulated paths N. The approximate solution uflv and
the error |u — uj’| are random variables themselves, varying both for different
values of h and N. In order to get consistent experimental results, we chose
the following strategy to improve the estimate for a certain outcome o. We
computed the mean [ [o] for Ng simulations having outcomes o("), ..., 0o(Ns) by
oNg = NS_1 Zizisl o). To check the consistency we used this procedure: an
f € (0,1) was chosen to compare to a 95 % confidence interval computed from
the standard deviation Sy [o] = \/var|o] (see 4.1).

ALGORITHM 4.1.
o Make at least Ng > 1 independent simulations.
e while (2S5y,[0] > fon,) make another simulation, Ng¢ = Ng + 1.
e take Oong as an estimate for E[o].

In Algorithm 4.1, the mean is considered reliable if its (numerical) 95%-
confidence interval is smaller than its value by the factor f. A smaller f implies
a more reliable estimate for E[o]. The standard deviation of o, Sng[o], is the
numerical estimate

(4.1) S}, lo] = <Jl\7[;vis_[0l>5 Dyglo] = Ng'* Z(Ou))z B <Nslzo(i)> ,

4.2 Experimental error analysis for the exit time problem.

We first studied a simplest case of problem (3.1), namely g = 1 and ¢ = 0.
The solution is u(z) = (1 — |z[?). Furthermore, u(0) = E 7 where 7 is the first
exit time of an n—dimensional Brownian motion X from S7.

We calculated an approximation for «(0) and looked at the absolute error
eq = [u(0)—ul (0)]. For the relative error e, = e,/u(0) we have e, = ne,. When
applying Algorithm 3.2 to this problem, two errors arise: the systematic one eg,
by replacing the first n equations of system (3.2) by the discrete Algorithm 3.1,
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and a statistical error, eg;, due to a finite sample of N paths which replaces
the expectation E by a mean of the N sample. Both contribute to the absolute
error e, = esy + es¢. This section hopefully illuminates the behavior of these
errors. In all cases, we made at least 30 simulations and used a confidence factor
of f =0.10or f =0.05 (see Algorithm 4.1).

Figure 4.1 shows the absolute error e, from a simulation with N = 10* paths.
A simulation with N = 5 x 103 paths looks very similar but with slightly bigger
statistical errors.

Exit time problem.

107k @ |
"
107 o g
(O ]
5 0% oo o 90 0 k¥
= .
o * .
) Fokem kR g B
i Qi
2 NN o L
2 107°L¢ O & o |
o
X x x % é
X
A A AT Y
107 v E
F
L A4
LV
Il Il Il Il
107 107° 107 107

initial stepsize h

Figure 4.1: Absolute error |u(0) — uf (0)| versus initial stepsize h when ap-
plying Algorithm 3.2 to the problem (3.1) with ¢ = 1,4 = 0 in D = S}.
Parameters are f = 0.1 and N = 10* Following dimensions are shown:
n= 1(0)7 2(*)’ 4(<>)ﬂ 8(x)ﬂ 16(A)7 32(+)7 64(V)

We now examine the behavior of the numerical standard deviation Sy [ul] of

solution u,]y (see 4.1 with o; = T,(f) and Ng = N, where T,El) is the estimate of
the exit time of path ).

Table 4.1 shows that the standard deviation Sy depends very weakly on the
initial stepsize h for a fixed dimension n and number of paths N.

Comparing the absolute error e, with Sy for sufficiently small initial stepsize
h in Table 4.2, we see that the statistical error is proportional to Sy and is thus
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Table 4.1: Numerical standard deviation Sy [ul] versus stepsize h for different
dimensions n and N = 10* paths.

Sn[up)]
n | h=0.025 h=0.0125 h=0.00625 h =0.003125
1 8.153e-3 8.184e-3 8.183e-3 8.178e-3
2 3.538e-3 3.539¢e-3 3.533e-3 3.531e-3
4 1.444e-3 1.446e-3 1.448e-3 1.446¢e-3
8 5.593e-4 5.597e-4 5.623e-4 5.598e-4

proportional to 1/v/N as expected. This is important: the statistical error has
the same dependence on NV, regardless of the dimension n.

Table 4.2: Comparison of Sy [ul'] and absolute error e, for different dimensions
n and different stepsizes h (again N = 10* paths).

h=0.1-2711 h=0.1-2712

€q SN ea/SN €q SN ea/SN

6.885e-3 8.152e-3 0.845 | 6.457e-3 8.172e-3  0.790
2.726e-3 3.531le-3  0.772 | 2.711le-3 3.540e-3  0.766
1.158e-3 1.443e-3  0.803 | 1.141e-3 1.443e-3 0.791
4.731e-4 5.584e-4 0.847 | 4.378e-4 5.587e-4 0.784

o = N = B

Table 4.3 shows the numerical standard deviation Sy[ul'] for various dimen-
sions n and two sample sizes, N = 10* and N = 5 x 102, at fixed initial stepsize
h. Additionally, we added the numerical slope of a graph of Sy[uf](n) in a
double logarithmic plot, given by
lo Sil
log -

Nit+1

slope =

To summarize, we find the following behavior for the absolute error when
applying Algorithm 3.2 to the exit time problem:

n—S

VN

In Equation (4.2), Cs, is independent of h (Figure 4.1) and N (similar Figure
to Figure 4.1 for N = 5 x 103 paths), Cy; is independent of h (Table 4.1) and
N (Table 4.2) and further s = s(n) > 1 (Table 4.3). This is an encouraging

(42) €q = Csyh +Cy
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Table 4.3: Sy[u}] versus dimension n for two sample sizes at fixed initial step-
sizes h = 1/320 and h = 1/5120.

h =1/320 h=1/5120
N = 10000 N = 5000 N = 10000 N = 5000
SN slope SN slope SN slope SN slope

n
1] 3.27le-2 -1.21 | 4.620e-2 -1.21 || 3.264e-2 -1.21 | 4.619e-2 -1.21
2| 1.412e-2 -1.29 | 1.999e-2 -1.29 || 1.413e-2 -1.29 | 2.001le-2 -1.29
4] 5.782e-3 -1.37 | 8.168e-3 -1.36 || 5.772e-3 -1.37 | 8.164e-3 -1.37
8 | 2.23%9e-3 -1.43 | 3.178e-3 -1.44 || 2.240e-3 -1.43 | 3.164e-3 -1.43
16 | 8.316e-4 -1.45 | 1.176e-3 -1.46 || 8.322e-4 -1.45 | 1.178e-3 -1.46
32 | 3.038e-4 -1.49 | 4.290e-4 -1.48 || 3.037e-4 -1.48 | 4.286e-4 -1.48
64 | 1.085e-4 1.538e-4 1.087e-4 1.536e-4

result because it implies that the statistical error retains the O(N~1/2) behavior
expected of Monte-Carlo simulation, but the coefficient of this term actually
decreases with n.

4.8  Comparison of different algorithms.

We now show our results which compare Algorithm 3.2 with other probabilistic
methods of solving problem (3.1) appearing in the literature. We chose an n = 3
dimensional problem and the domain D = S3.

4.3.1 Comparing algorithms.

For convenience, we summarize the basic features of all algorithms discussed
in (4.3-4.5). To simplify notation we define the increments as

AX = Xk—i—l - Xk and AZ = Zk—i—l - Zk

and neglect subscripts k41 also on h, r and £. Using this notation, the algorithms
take the following form:

e simplest random walk [9]:

AX = Vhe

(4.3)
AZ = g(X)h
e walk on cubes (see Algorithm 3.1):

AX = Vhe¢
AZ = g(X)h+0g(X)tlei + Lag(x)L
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e walk on spheres of global order h o r? [10]:

AX = r€

“4) AZ = g(X)=

e walk on spheres of global order h? oc r* [10]:

AX = 7€

2 .
AZ = g(X)% +09(X) gy 7€ + 309(X) sty

(4.5)

In Table 4.4 the random variables, width of boundary layers I'r (I's) denoted
by pr (ds) and the global order of convergence as predicted by theory are sum-
marized for all four algorithms.

Table 4.4: Random variables, boundary layers and global order of convergence
for the algorithms compared.

Algorithm random variables or dg | order
(4.3) &' = +1 with probability 3 | vVnh  h h
3.1 £ asin (3.5) 3nh h? | B2
(4.4) . ” r r2 r?
(45) & uniform on 957 . A 4

For the algorithms 3.1 and (4.3) we used the ran3 random number gener-
ator [12] to generate the ¢!, while the random variables uniform on 9S7 for
algorithms (4.4,4.5) were generated using normal random variables from the
Blitz++ library [13, 14] and scaling the resulting vectors to unit length. We
always chose D = ST for the domain.

2
In order to compare the convergences, we set h = .

4.3.2  Exit time problem.

In Section 4.2 we found a truncation error of order h for Algorithm 3.2, whereas
theoretically order A% should be achieved.

Figure 4.2 shows that the algorithm (4.5) also does not achieve the predicted
rate of convergence (order h? = r). Instead its convergence rate is of the same
order as that of walk-on-cubes, Algorithm 3.2. The simplest random walk (4.3)
has the same order of convergence (it achieves the predicted order h) whereas
the simpler walk on spheres (4.4) converges immediately. It should be noted,
that for this simple problem, fewer steps are better (the stopping layer I'g is
wider for the low order algorithms, see Table 4.4).
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Exit time problem: comparison.
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initial stepsize h=r/n

Figure 4.2: Absolute error |u(0) — uf (0)| versus initial stepsize h = % when
applying Algorithms 3.2 and (4.3,4.4,4.5) to the problem (3.1) with g = 1,4 = 0.
Parameters are f = 0.05, N = 10* and the dimension is n = 3. O is Algorithm
3.1, 0is (4.5), x is (4.3) and + is (4.4).

4.8.3  Varying source term g(x)

In this section we consider problem (3.1) with
(4.6) g(x) = HCOS(?ﬂ'kixi), E=1,2,..., k=(k'...,k").
i=1

A solution is easily found to be u(z) = g(z)/(27%|k|?) which we assigned as
boundary condition 1 (z) to get uniqueness on the surface of the hypersphere.

From Figure 4.3 we see that for a harder problem (right plot) with higher
frequencies k!, higher order algorithms show better performance than low order
algorithms. Furthermore, Algorithm 3.2 shows better convergence than algo-
rithm (4.5).
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Figure 4.3: Absolute error |u(0) — uf (0)| versus initial stepsize h = % when

applying Algorithms 3.2 and (4.3,4.4,4.5) to the problem (3.1) with g(x) from
(4.6) with k = (1,1,1) (left) and k = (2,4,6) (right). Parameters are f = 0.05,
N = 10* and the dimension is n = 3. [ is Algorithm 3.1, o is (4.5),  is (4.3)
and + is (4.4).

5 (Generalizations.

The generalization of Algorithm 3.2 to the more general Dirichlet problem
(1.1)

1 .
(5.1) §Au(:c) + 0" (x)0;u(x) 4+ c(z)u(z) + g(z) =0 x € D, u‘aD = Y(x)
with ¢(z) < 0 is straight forward: Instead of system (3.2) consider the system
[10],

dX'(t) =dWi(t), i=1,...,n
(5.2) dY (t) = e(X)Ydt + b (X)YdW'(t)

dZ(t) =Y g(X)dt
together with the initial conditions X (0) = =, Y (0) = 1 and Z(0) Then the

=0.
probabilistic representation of the solution to problem (5.1) isu(z) = E [¢(X (7)Y (7)+
Z(7)]. Analogous to (3.3), we introduce

99 (@) = O (&) + b ()b ()
7 (@) = ie(a) + b (@)e(a)
(@) = g5 AW (@) + (b(a), TH (@) + c(@)bi(2)

o
o
—
8
S~—
Il
|
>
o
—
8
S~—
+
o
(V]
B
+
=
—
8
:_/
<
O
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where (-,-) denotes the standard scalar product in R™. Making further use of
the identity

t+h s _ t+h t+h psi
/ / dsedW*(s1) = h/ dW*(s) —/ / dW*(s2)ds1
t t t t t

we get the following one step approximation for Algorithm 3.2:

10 h% % 00 h?
Z=Z+Y(g(X)h+C (X)€" +¢ (X);)

(5.3)Y =Y (1 (0 + A% XOMAAE (X179 (X) D (660 +2)

i0 0i e i ooy I
() =00 e 500
n (5.3), & is as in (3.5) and and the (n x n)-array =% is distributed according
to the law [6]

3 » 1
(5.4) PE'=-1=1, PEY=+1]=; for i<}

Note that Z is skew symmetric w.r.t. the off-diagonal elements (2% = —Z7% i, j =
1,...,n,j # i) with —1 on the diagonal. For this skew symmetric part, any
higher order bounded approximation to gaussian random numbers is adequate.

6 Conclusions.

From the examples of two Poisson problems with Dirichlet boundary condi-
tions in hyperspherical domains, we have seen that Monte-Carlo simulations of
stochastic differential equations can indeed give very satisfactory results for the
Dirichlet problem in n dimensions. From our examples, we also saw that it is
not difficult for the random walk, which uses bounded approximations for the
Brownian increments, to find the boundary. Furthermore, as the dimension of
the space is increased, not only does the canonical O(N~1/2) statistical error
remain valid, but the coefficient of N~/2 actually seems to decrease as the di-
mension n increases. We think this is an encouraging result. As n increases,
termination of the walk at the boundary also seems to become less sensitive to
the initial step size. This conclusion seems valid for each of the methods tested:
a simple walk with AX; = ++v/h for each coordinate i, but also the higher or-
der methods walk on spheres (see [7]) and walk on cubes (see Algorithm 3.1).
The global order of accuracy is sometimes not as theoretically predicted (see
Table 4.4).

However, there is reason to believe the three models (above) for the increments
of Brownian motion have weaknesses. In one dimension, the walk on spheres
procedure is the same as the simple 2-point method (simple random walk). The
walk on cubes increment, which has an advantage that it lends itself readily
to Runge-Kutta approaches ([6], [8], [11]), is not isotropically distributed in
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n—space. Thus none of these models has all the properties we would like. The
walk on spheres increment is isotropically distributed, but the radial distribution
doesn’t model the p ~ exp(—72?/(2h))r"~! radial density well. Walk on cubes
has a somewhat better radial distribution, but isn’t isotropic. Although in a
few cases the global order is the expected O(h?), in others it is only O(h).
This is clearly better than the crude estimate O(h'/?) with an unsophisticated
boundary finding algorithm, however. It is our hope that better bounded models
for Brownian increments will show improved accuracy. The current results,
however, have to be considered stimulating: higher dimensional problems do
not seem any less tractable than lower dimensional ones as we see at the end of
Subsection 2.3 and in Table 4.3.
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