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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

We analyze two-scale Finite Element Methods for the numerical solution of elliptic ho-
mogenization problems with coefficients oscillating at a small length scale ε ! 1. Based
on a refined two-scale regularity on the solutions, two-scale tensor product FE spaces are
introduced and error estimates which are robust (i.e. independent of ε) are given. We
show that under additional two-scale regularity assumptions on the solution, resolution of
the fine scale is possible with substantially fewer degrees of freedom and the two-scale full
tensor product spaces can be “thinned out” by means of sparse interpolation preserving
at the same time the error estimates.
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1 Introduction

The accurate and efficient numerical solution of partial differential equations with coefficients
or geometries that oscillate periodically at a small length scale ε ! 1 has received increasing
attention recently. Solutions to such problems contain several length scales that differ by many
orders of magnitude.

Such homogenization problems have been thoroughly analyzed by asymptotic analysis as ε → 0,
see [3, 7] and the references there. In this analytical approach the limiting problem as ε → 0
is identified first and then solved numerically by standard methods. In particular, no scale
resolution is required, since the fine scales are averaged out (homogenized). However, this
analytic homogenization process does not preserve the fine scale information of the solution and
the recovery of fine scale features by use of correctors proves as costly as the original problem.

The direct numerical treatment of multiple scale problems by the standard Finite Element
Method (FEM) [1, 9] on the other hand faces the difficulty of representing the microstructure.
The standard FEM yields reliable results only under the assumption of scale resolution, i.e. if
the FE mesh is refined to the smallest length scale. Such an approach is however infeasible if
the difference in scales is sufficiently large. However, a main feature of such problems is that the
spatial variation of the solutions is concentrated at length scales which are a-priori known or
can be estimated. Moreover, the regular patterns contained in the fine scale data can be used to
substantially lower the number of degrees of freedom requested by the resolution of this scale.

1.1 The Homogenization Problem

We consider here the following elliptic problem in divergence form

Lε
(x
ε
, ∂x

)
uε := −∇ ·

(
A
(x
ε

)
∇uε

)
+ a0

(x
ε

)
uε = f(x), (1)

where ε is a small parameter and we assume that A(y), a0(y) are 1-periodic in each variable and
that A(·) ∈ L∞

per(Q̂)n×n
symm, a0(·) ∈ L∞

per(Q̂) satisfy, for some γ > 0, ξ#A(y)ξ ≥ γ|ξ|2, a0(y) ≥ γ

for all ξ ∈ Rn and a.e. y ∈ Q̂ = [0, 1]n. The domain Q̂ = [0, 1]n will be referred to as unit-cell
domain. We consider (1) in a bounded Lipschitz domain Ω and we complete (1) by Dirichlet
boundary conditions on ∂Ω, i.e.,

uε = 0 on ∂Ω. (2)

1.2 Finite Element Approximation

The FEM is based on the variational form of (1), (2)

Find uε ∈ H1
0 (Ω) : Bε(uε, v) = (f, v) ∀ v ∈ H1

0 (Ω), (3)

where the bilinear form Bε : H1
0 (Ω)×H1

0 (Ω) → R is given by

Bε(u, v) =

∫

Ω

(
A
(x
ε

)
∇u(x)

)
·∇v(x) + a0

(x
ε

)
u(x)v(x) dx.

The variational problem (3) admits for every ε > 0 and every f ∈ L2(Ω) a unique solution
uε ∈ H1

0 (Ω).
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Let V ε
N ⊂ H1

0 (Ω) be any subspace of dimension N = dim (V ε
N ) < ∞. Then

uεN ∈ V ε
N : Bε(uεN , v) = (f, v) ∀ v ∈ V ε

N (4)

defines a unique FE solution and there exists C > 0 independent of ε such that

‖uε − uεN‖H1(Ω) ≤ C min
v∈V ε

N

‖uε − v‖H1(Ω). (5)

Even if the right hand side f , the domain Ω and the coefficients A and a0 are smooth (i.e., C∞),
if ε/diam(Ω) ! 1 the solution uε exhibits oscillations on the ε-scale obstructing FE convergence.
More specifically, there exist positive constants C = C(Ω) and C(α) = C(α,Ω), α ∈ Nn, such
that

‖uε‖L2(Ω) ≤ C, ‖Dαuε‖L2(Ω) ≤ C(α)ε1−|α|, ∀α ∈ N
n, |α| > 0. (6)

Let us denote by VN = Sp,1(Ω,TH) the usual FE space of continuous, piecewise polynomials of
degree p ≥ 1 on a quasiuniform mesh TH of meshwidth H. Then, the FE error with respect to
VN satisfies the following a-priori estimate

‖uε − uεN‖H1(Ω) ≤ Cmin(1, (H/ε)p),

with C > 0 being a constant independent of ε and H. Standard FEM, as e.g., piecewise linears
on a quasiuniform mesh TH of size H, thus converge only ifH < ε, i.e., if N = dimV ε

N = O(ε−n).
This scale resolution requirement is, especially if n = 3, computationally very expensive.

In view of (5), the key to a robust discretization of (1) is the design of V ε
N . Rather than

incorporating e.g., the asymptotics of uε (which are not always defined, see [7] and the references
there) into V ε

N , we design V ε
N based on a refined two-scale regularity theory on uε. In contrast,

in [5, 4, 8] a generalized FEM based on non-polynomial FE spaces was proposed and analyzed.
For analytic f , this method was shown to give robust exponential rates of convergence.

1.3 Two-Scale Regularity

On the unbounded domain Rn (i.e., in the absence of boundary layers) the solution uε(x) can
be viewed as a map from the ‘slow’ variable x into the ‘fast’ variable x/ε: uε(x) = U ε(x, x/ε),
where U ε(x, y) depends smoothly on ε. In [6] we derived new, two-scale regularity results on
uε(x) by analyzing U ε(x, y). More precisely, the following two-scale shift theorem holds:

Theorem 1.1 Assume that A(·), a0(·) are smooth and 1-periodic in y = x/ε ∈ Q̂. Then, for
f ∈ Hk(Rn) (k ≥ 0), the solution uε(x) of (1) on Rn can be written as uε(x) = U ε(x, y)|y=x/ε,
x ∈ Rn, where U ε(x, y) satisfies in Ω = Rn the two-scale regularity estimate

‖U ε‖Hr(Ω,Hs
per(Q̂)) ≤ C(k) ‖f‖Hr+s−1(Ω) (7)

provided r + s ≤ k + 1, r, s ≥ 0, and

‖ε−1∇yU
ε‖Hr(Ω,Hs−1

per (Q̂)) ≤ C(k) ‖f‖Hr+s−1(Ω) (8)

provided r + s ≤ k + 1, r, s − 1 ≥ 0. Here, C(k) is independent of ε, but depends on r + s.

This two-scale point of view of regularity gives rise to a ‘natural’ FE discretization of (1) by
means of a non-standard two-scale FE-space V ε

N in Ω. With the two-scale FE spaces V ε
N robust

convergence rates as h,H → 0 can be achieved for uεN as we shall show in Section 2. These
two-scale approximation results are quite general and applicable whenever the solution has the
two-scale regularity. Section 2 is devoted to the definition and error analysis of the two-scale
FEM and its sparse version. In Section 3 we present numerical results which support our error
estimates.
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2 Two-Scale Finite Element Method

2.1 FE-Spaces

We assume that the domain Ω is axis-parallel and we take TH to be a quasiuniform mesh in Ω of
affine quadrilateral elements of size H. We take as macro FE space in Ω = (0, 1)n the standard
FE space Sp(Ω,TH) = {u ∈ H1(Ω) | u|K ◦ F−1

K ∈ Sp(K̂) ∀K ∈ TH}, where FK : K̂ → K is the

affine element map associated to the element K and Sp(K̂) denotes the space of polynomials of
degree p on the reference element K̂ = (0, 1)n.

Next, we resolve the fine scale by a FEM in Q̂ based on a periodic mesh T̂h, for simplicity also
affine, quasiuniform of width h. Then, we denote by Sµ

per(Q̂, T̂h) the finite element space of all

continuous, periodic piecewise polynomials of degree µ with respect to T̂h.

We take as two-scale FE space V ε
N the space of traces of the two-scale space Sp(Ω,TH ;Sµ

per(Q̂, T̂h)) =

{U(x, y) | ∀K ∈ T : U(FK(x̂), y) is polynomial of degree p w.r.t. x̂ in K̂ and continuous, peri-
odic p.w. polynomial w.r.t. T̂h in y ∈ Q̂ }. More specifically,

V ε
N = RεSp(Ω,TH ;Sµ

per(Q̂, T̂h)), (9)

where the trace operator Rε is given by (RεU)(x) = U(x, y)|y=x
ε
. Since {1} ⊂ Sµ

per(Q̂, T̂h),
V ε
N is a generalized FE-space. Note that the elements of the FE space V ε

N have the form
uεFE(x) =

∑
i,I ciINi(x)φI(x/ε), x ∈ Ω, with ciI ∈ R and shape functions Ni(·) ∈ Sp(Ω,TH),

φI(·) ∈ Sµ
per(Q̂, T̂h).

2.2 Two-Scale Finite Element Convergence

The goal of this section is to estimate the approximation error (5) for the two-scale FE space
V ε
N (9) and to obtain robust estimates with respect to ε for H/ε ≥ 1.

We have seen that the solution uε may be interpreted as uε(·) = RU ε(·, ·/ε), where U ε(·, ·) is
defined on Ω× Q̂ and R is the trace operator given by (Rf)(x) = f(x, x). This suggests to use
FE-interpolants in Ω and Q̂ to approximate U ε in Ω× Q̂ and take traces.

If H denotes the mesh size of the quasiuniform ‘macroscopic’ triangulation on Ω and h is the
mesh size of the quasiuniform ‘micro’ triangulation on the unit cell Q̂, we obtain (see [6]):

Proposition 2.1 For p, µ, k, s ≥ 1 and H/ε ∈ N the error in the two-scale FEM based on the
space (9) can be estimated as follows:

‖uε − uεFE‖H1(Ω) ≤

≤ CHmin(p,k)Φn(p, k)(‖ε
−1∇yU

ε‖Hk(Ω; L2
per(Q̂)) + ‖U ε‖Hk+1(Ω; L2

per(Q̂)))

+ Chmin(µ,s)Φn(µ, s)(‖ε
−1∇yU

ε‖Hn(Ω;Hs
per(Q̂)) + ‖U ε‖Hn(Ω;Hs+1

per (Q̂)). (10)

Here C > 0 is a positive constant independent of p, µ, k, s and ε and the functional Φn(p, k)
depends only on n, p and k. For p → ∞, Φn(p, k) ≤ Cp−(k−n+1).

The following result is a consequence of Proposition 2.1 and Theorem 1.1.

Theorem 2.2 Assume for the solution uε of (3) the two-scale regularity (7)–(8) in Ω. Then,
for H/ε ∈ N, it holds:

‖uε − uεFE‖H1(Ω) ≤ C1(k)H
min(p,k)Φn(p, k)‖f‖Hk(Ω)

+ C2(s)hmin(µ,s)Φn(µ, s)‖f‖Hn+s(Ω).
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So far we have only discussed the preasymptotic case when H ≥ ε and we obtained the robust
(in ε) error estimate ‖eεN‖H1(Ω) ≤ C(Hp+hµ). Let us choose p = µ. Then, for h ∼= H we obtain
‖eεN‖H1(Ω) ≤ Chp and N = dim (V ε

N ) = O(H−nh−n) = O(h−2n). Hence, in terms of number of
degrees of freedom, the two-scale FE error estimate is qualitatively of the form

‖eεN‖H1(Ω) ≤ CN− p
2n for N / ε−2n, (11)

since the total number of degrees of freedom at the critical value H ∼= ε, h ∼= ε is N = O(ε−2n).
At this transition point the fine scale is resolved and we switch from the two scale FE space to
full discretization with mesh size H = εh, h ≤ ε. This is achieved by breaking the periodicity
to get the full space with mesh width H = εh, h ≤ ε. The dimension of the FE space in
this asymptotic regime is N = O(H−n) = O(ε−nh−n). Using standard error estimates, i.e.,
‖eεN‖H1(Ω) ≤ CHp‖uε‖Hp+1(Ω), and the a-priori estimate (6) for uε we obtain

‖eεN‖H1(Ω) ≤ C

(
H

ε

)p

= Chp ≤ Cε−pN− p
n ≤ CN− p

2n for N 0 ε−2n.

We see that we obtain a robust convergence rate of O(N− p
2n ), as compared to the (non-robust)

rate of O(N− p
n ) of standard FEM. The robustness of the two-scale FEM was achieved by an

increase in dimension and the use of tensor product approximations in Ω× Q̂.

With two-scale FEM resolution, ε independent convergence is achieved by inflating the dimension
of the approximation: we resolve the fine scales by simultaneously approximating in (x, y) ∈
Ω× Q̂ ⊂ Rn. The tensor product two-scale FE space represents full interactions between scales.
The product structure of Ω× Q̂ and the anisotropic regularity in Theorem 1.1 allow, however,
to obtain the convergence in Theorem 2.2 with substantially fewer degrees of freedom: the scale
interaction is ‘thinned out’ by means of sparse tensor products.

2.3 Sparse Two-Scale Interpolation

Let us consider Ωκ ⊂ Rn, κ = 1, 2 two Lipschitz bounded domains, keeping in mind that
for us they will be Ω1 = Ω and Ω2 = Q̂. We give first a rather abstract construction of a
sparse grid in Ω1 × Ω2 and it is in this most general setting that we prefer to work out the
error estimates. Assume that {Sκ

L}
∞
L=0, κ = 1, 2, are two dense hierarchic sequences of finite

dimensional subspaces of H1(Ωκ)

Sκ
0 ⊂ Sκ

1 ⊂ . . . ⊂ Sκ
L ⊂ H1(Ωκ). (12)

At level L, Nκ
L will denote the dimension of Sκ

L. In order to employ this hierarchy in the context
of FE methods the following approximation property is needed:

min
v∈Sκ

L

‖u− v‖H1(Ωκ) ≤ Ψκ(Nκ
L, s)‖u‖Hs+1(Ωκ), ∀u ∈ Hs+1(Ωκ), (13)

where Ψκ(N, s) → 0 for s > 0 as N → ∞. For regular solutions the usual FE-spaces based on
quasiuniform, shape regular meshes are suitable.

Let {THL
}L∈N be a nested sequence of regular affine triangulations of a Lipschitz domain Ω of

meshwidth HL = HL−1/2, ∀L ≥ 1 and let p ≥ 1 be a polynomial degree. Then

SL := Sp(Ω,THL
) := {u ∈ C0(Ω̄) : u|K ∈ Sp(K) ∀K ∈ THL

} (14)

4



satisfies (12), while the approximation property reads

min
v∈Sp(Ω,THL

)
‖u− v‖H1(Ω) ≤ Ψ(NL, s)‖u‖Hs+1(Ω), (15)

where Ψ(N, s) = O(N−min(p,s)/n). Estimates similar to (15) also hold for p-version or spectral
element methods, i.e. on fixed T as p = pL → ∞.

Within this abstract setting we follow [10] and introduce the so called hierarchic excess of the
scale (12), by

W κ
L := Sκ

L 1 Sκ
L−1 L ≥ 0. (16)

We also set Sκ
−1 := {0} and we note that complements are uniquely defined by some given Hilbert

structure which produces the usual topology in H1(Ωκ). Further, P κ
L will be the orthogonal

projection on Sκ
L with respect to this Hilbert structure. We remark that (13) still holds for

L = −1, by choosing Ψκ(Nκ
−1, s) to be the embedding constant of H1(Ωκ) in Hs+1(Ωκ). With

respect to the Hilbert structure mentioned above, Sκ
L is an orthogonal sum of the form Sκ

L =⊕
0≤i≤LW κ

i . Using this decomposition, we define the full tensor product FE-space in Ω1 × Ω2

at level L ∈ N by

SL,L := S1
L ⊗ S2

L =
⊕

0≤i,j≤L

(W 1
i ⊗W 2

j ) ⊂ H1,1(Ω1 × Ω2), (17)

and the sparse tensor product FE-space at level L by

ŜL,L :=
⊕

0≤i+j≤L

(W 1
i ⊗W 2

j ) ⊂ H1,1(Ω1 × Ω2). (18)

This correlation shows the main difference between standard (full) tensor product spaces and
the sparse interpolation spaces: if for the full tensor product space the resolution is defined in
each direction separately, the overall resolution for the sparse tensor product spaces is limited
by L; the sparse two-scale spaces result therefore from skipping certain subspaces (degrees of
freedom).

For a given U ∈ H1(Ω1 × Ω2) we define the sparse interpolant of U in ŜL,L, as given by

ÛL :=
∑

0≤i+j≤L

(P 1
i − P 1

i−1)⊗ (P 2
j − P 2

j−1)U. (19)

With these notations, the following estimate will enable us to deduce from (13) an approximation
property of the sparse scale (ŜL,L)L∈N, too.

Proposition 2.3 Assume that the sequence (12) of FE-spaces {Sκ
L}L has the approximation

property (13) and s, t > 0. Then there exists C > 0 such that for all U ∈ Hs+1,t+1(Ω1 × Ω2) it
holds:

min
V ∈ŜL,L

‖U − V ‖H1,1(Ω1×Ω2) ≤ ‖U − ÛL‖H1,1(Ω1×Ω2)

≤ C

{
[
L+1∑

i=0

Ψ1(N1
i−1, s)Ψ

2(N2
L−i, t)]‖U‖Hs+1,t+1(Ω1×Ω2) (20)

+ [
∞∑

i=L+1

Ψ1(N1
i , s)]‖U‖Hs+1,1(Ω1×Ω2)

}
.
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Concerning the approximation quality, the accuracy of the sparse grid interpolant is only slightly
deteriorated with a logarithmic factor but the number of dof is reduced to that of the discretiza-
tion of one subdomain only (here again up to some logarithmic factor):

Proposition 2.4 Assume that U ∈ Hs+1,s+1(Ω1 × Ω2). Then, with the hierarchic sequences
S1
L = Sp(Ω1,THL

), S2
L = Sµ(Ω2,ThL

), HL
∼= hL, p ∼= µ, the sparse interpolant converges, as

L → ∞, with the rate

min
V ∈ŜL,L

‖U − V ‖H1,1(Ω1×Ω2) ≤ C(logN̂L)
1+δN̂−δ

L ‖U‖Hs+1,s+1(Ω1×Ω2), (21)

where δ = min(p, s)/n.

Proof. Taking into account that Nj = O(2nj) and using (15) in (20), with s = t, we obtain

min
V ∈ŜL,L

‖U − V ‖H1,1(Ω1×Ω2) ≤ C · logNL ·N−δ
L ‖U‖Hs+1,s+1(Ω1×Ω2). (22)

In (22), NL = dim(SL) = O(2nL). Also, due to (18), N̂L := dim(ŜL,L) = O(L · 2nL). Therefore,

rephrasing (22) in terms of the number of degrees of freedom N̂L we obtain (21).

We return now to the two-scale homogenization problem and recall that for sufficiently smooth
data the solution uε can be viewed as uε(x) = U ε(x, x/ε), where U ε(x, y) depends smoothly on
ε.

We have then constructed two-scale FE spaces as traces of full tensor product spaces in Ω×Q̂ and
we have showed that the FE method based on these spaces leads to robust rates of convergence
at the price of discretizing both in Ω and Q̂, i.e. in R2n. The anisotropic regularity of U ε

and the tensor product structure of the two-scale FE-spaces allow to apply the ideas of sparse
interpolation.

Assume that we have the following two sequences of hierarchic FE spaces {S1
i }

L
i=0 ⊂ H1(Ω)

and {S2
j}

L
j=0 ⊂ H1

per(Q̂). As before, we have in mind sequences of FE spaces of the form

S1
i = Sp(Ω,THi

) and S2
j = Sµ

per(Q̂, T̂hj
) where {THi

} and {T̂hj
} are sequences of affine nested

FE meshes in Ω and Q̂, respectively, and {T̂hj
} are periodic. We assume further that p ∼= µ

and Hi
∼= hi for all i = 0, . . . , L. We denote by ŜL,L the sparse FE space associated to these

sequences.

For the sparse two-scale FEM convergence result we need a slightly modified approximation
property in both Ω and Q̂. More precisely, the approximation property reads: for all α ∈ Nn

0
with 0 ≤ αj ≤ 1, for all s ≥ n− 1, t ≥ 0 and for i, j = 0, . . . , L it holds:

(
∑

K∈THi

‖Dα(u− P 1
i u)‖

2
L2(K))

1/2 ≤ ψ1
α(N

1
i , s)‖u‖Hs+1(Ω)

‖v − P 2
j v‖H1

per(Q̂) ≤ ψ2(N2
j , t)‖v‖Ht+1(Q̂)

‖∇(v − P 2
j v)‖L2

per(Q̂) ≤ ψ2(N2
j , t)‖∇v‖Ht(Q̂)

(23)

with Ψ1
α(N, s),Ψ2(N, t) → 0 as N → ∞. Using then the same arguments as for the proof of

Proposition 2.1, Theorem 2.2 and Proposition 2.3 we obtain the following result on convergence
of the sparse two-scale FEM:

6



Proposition 2.5 Assume for the solution uε of (3) the two-scale regularity

‖U ε‖Hs+1(Ω,Hs+1
per (Q̂)) + ‖ε−1∇yU

ε‖Hs+1(Ω,Hs
per(Q̂)) ≤ C ‖f‖H2s+1(Ω)

for some s ≥ n− 1, where C = C(s, n) > 0 is a constant independent of ε. Let V̂ ε
N be the sparse

two-scale FE space V̂ ε
N := RεŜL,L, where Rε is the trace operator given by (RεU)(x) = U(x, x/ε).

Denote by ûεFE the FE solution with respect to V̂ ε
N . Then, it holds

‖uε − ûεFE‖H1(Ω) ≤ C(log N̂L)
1+δN̂−δ

L ‖f‖H2s+1(Ω), (24)

where N̂L = dimV̂ ε
N , δ = min(p, s)/n and C > 0 is a constant independent of N̂L, ε and f .

Proof. Let us denote by ûε,L the sparse two-scale interpolant of uε in the sparse two-scale FE
space V̂ ε

N given by ûε,L = RεÛ ε,L, where Û ε,L is the sparse interpolant of U ε in ŜL,L as given
by (19). We split the sparse two-scale FE-error in elemental contributions on the macro mesh
TH = THL

and use the trace Lemma 3.1 in [6] to obtain:

‖uε − ûε,L‖2H1(Ω) ≤ C
∑

K∈THL

{ ∑

0≤αj≤1

|α|≥1

ε2(|α|−1)‖Dα
x (U

ε − Û ε,L)‖2
L2(K×Q̂)

+
∑

0≤αj≤1

ε2|α|‖Dα
x (ε

−1∇y)(U
ε − Û ε,L)‖2

L2(K×Q̂)

}
. (25)

Due to the approximation property (23) we have that

∑

K∈THL

‖Dα
x (U

ε − Û ε,L‖2
L2(K×Q̂)

≤ C

{ L∑

i=0

[ ∑

K∈THi

‖Dα
x (P

1
i − P 1

i−1)⊗ (Id2 − P 2
L−i)U

ε‖2
L2(K×Q̂)

]1/2

+
∞∑

i=L+1

[ ∑

K∈THi

‖Dα
x (P

1
i − P 1

i−1)⊗ Id2U ε‖2
L2(K×Q̂)

]1/2}2

≤ C

{ L+1∑

i=0

Ψ1
α(N

1
i−1, s)Ψ

2(N2
L−i, t)‖U

ε‖Hs+1(Ω,Ht+1(Q̂))

+
∞∑

i=L+1

Ψ1
α(N

1
i , s)‖U

ε‖Hs+1(Ω,H1
per(Q̂))

}2

and a similar estimate can be derived for
∑

K∈THL
‖Dα

x (ε
−1∇y)(U ε − Û ε,L)‖2

L2(K×Q̂)
. For the

spaces considered here there holds

Ψ1
α(N, s) = H−|α|O(N−min(p,s+1)/n) and Ψ2(N, t) = O(N−min(µ,t)/n).

Taking s = t ≥ n− 1, µ ∼= p, Hi
∼= hi and using that ε/HL ≤ 1 we conclude the proof.
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Figure 1: Energy error for the full version of the two-scale FEM
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Figure 2: Two-scale FEM and sparse two-scale FEM with p = µ = 1: relative error in the energy
versus the mesh size H = h → 0 (left) and versus # dof (right), respectively

2.4 Numerical Results

We illustrate our error estimates for the two-scale FEM for problem (1), (2) in the one dimen-
sional case Ω = (0, 1) with data f(x) = ex, A(y) = 2+ cos(2πy) and a0(y) = 0. The shift Theo-
rem 1.1 applies on Ω and the solution does not exhibit boundary layers, since uε(x) = U ε(x, x/ε),
with U ε(x, y) smooth on Ω× Q̂ and 1-periodic in y.

In Figure 1 we plot for different p = µ ∈ {1, 2, 3, 4} the energy error versusH = h. Computations
were performed for two different ε-scales, 10−2 and 10−4, respectively. We see that the rate of
convergence of ‖uε − uεFE‖

2
H1(Ω) is proportional to H2p as expected from the error estimates

in Theorem 2.2. Moreover, we observe robustness of the convergence rates with respect to the
parameter ε.

In Figure 2 we compare the performances of the two-scale FEM and its sparse version for
ε = 10−3. The left plot shows the relative error in the energy versus H = h → 0 for both
methods in the case p = µ = 1. We see that the error curves are practically at the top of each
other. In the right figure we plot the same relative error in the energy versus # dof for the two-
scale FEM and for the sparse two-scale FEM. We clearly see the O(N−1) rate of convergence
for the two-scale FEM and the O(N−2(log N)4)-convergence rate for the sparse two-scale FEM,
as predicted by Proposition 2.5.
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