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Summary We consider the Maxwell equations in a domain with
Lipschitz boundary and the boundary integral operatorA occuring in
the Calderón projector. We prove an inf-sup condition for A using a
Hodge decomposition. We apply this to two types of boundary value
problems: the exterior scattering problem by a perfectly conducting
body, and the dielectric problem with two different materials in the
interior and exterior domain. In both cases we obtain an equivalent
boundary equation which has a unique solution. We then consider
Galerkin discretizations with Raviart-Thomas spaces. We show that
these spaces have discrete Hodge decompositions which are in some
sense close to the continuous Hodge decomposition. This property
allows us to prove quasioptimal convergence of the resulting boundary
element methods.

1 Introduction

Time harmonic Maxwell equations occur in many applications and
often involve unbounded domains, making a boundary integral formu-
lation desirable. However, compared with other elliptic problems such
as the Helmholtz equation the Maxwell equations pose two additional
difficulties: boundary conditions are formulated in terms of tangential
components of electric and magnetic fields and the operators (both in
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the domain and on the boundary) are indefinite since the electric and
magnetic field energies occur with opposite signs in the Lagrangian
governing electromagnetic phenomena. Therefore, the general formal-
ism for obtaining strongly elliptic boundary integral equations [20] is
not directly applicable.

The first difficulty requires spaces so that traces and bilinear forms
are continuous, leading in a natural way to variational formulations
in H(curl,Ω) and H−1/2(div,Γ ). For smooth boundaries several ap-
proaches [3], [1], [26], [19] yielded quasioptimally convergent bound-
ary element methods. Some of these approaches do not generalize
to polyhedra or Lipschitz domains. There, the discretization must
be chosen carefully. More precisely, in [17] M. Costabel proved that
H0(div,Ω) ∩H(curl,Ω) is a closed subspace of H1(Ω) ∩H0(div,Ω)
as soon as Ω is a bounded polyhedral domain with reentrant corners
or edges (a similar result holds for exterior domains). This makes the
approximation of the electric and magnetic field by standard finite
elements infeasible and suggests that likewise standard, continuous
boundary elements should not be used to solve the related integral
equations [26].

The proper choice of spaces and trace operators for Maxwell’s
equations in polyhedra and Lipschitz domains was only recently un-
derstood [8], [9], [11]. Based on this functional setting, several types
of integral equation formulations are possible and attention has been
devoted to the electric field integral equation (EFIE), i.e., to the
exterior scattering problem by a perfectly conducting body. In this
context, methods proposed for regular domains have been very re-
cently generalized to non-smooth ones. In [1] the authors proposed
the direct use of the Hodge decomposition, requiring C1 boundary el-
ements. In [10], the authors introduce additional variables to obtain
a mixed method using standard H1,H1/2,H−1/2 spaces and provide
quasi optimal convergence in arbitrary polyhedral domain. Besides
the inconvenience of additional variables the convergence rate is lim-
ited by the index s∗ of the regularity of an auxiliary problem which is
not directly related to the regularity of the Maxwell solution. Engi-
neers have been using instead a simpler variational formulation set in
H−1/2(div,Γ ) and Raviart-Thomas boundary elements. This ‘natu-
ral’ formulation has been first analyzed by Bendali [3] for C∞ closed
manifolds. Recently, Hiptmair and Schwab [24] obtained stability of
the discrete problem and sub-optimal convergence rates for polyhe-
dral domains (the sub-optimality stemming from the “artificial” reg-
ularity parameter s∗.) In [7] the same ideas are applied to Lipschitz
(non orientable) screens and the method is proved to converge with



BEM for Maxwell Transmission Problems 3

optimal asymptotic rate (i.e., the convergence rate is bounded only
by the regularity of the solution and the degree of the polynomials).

Beyond the electric field integral equation, to our knowledge, no
theory seems to exist for integral equations related to the Maxwell
equations on Lipschitz domains, neither for the continuous or dis-
cretized setting. We refer to [12] for an overview over boundary value
problems of electromagnetics and boundary integral equations for the
smooth case. In the present paper, we present boundary integral equa-
tion formulations for electromagnetic transmission problems. To this
end, we give a systematic analysis of the operator A appearing in the
Calderón projector P = 1

2I +A associated to Maxwell equations un-
der minimal regularity assumptions on the boundary Γ . We proceed
similarly as in [28] for the Helmholtz equation and prove a symmetry
property and an inf-sup property for A. For electromagnetics the op-
erator A has the structureA =

(M C
C M

)

where C is the integral operator
arising in the EFIE for the perfect conductor problem. Because of the
symmetry, the inf-sup condition for A rests on an inf-sup condition of
the compactly perturbed operator C and on a compactness property
of the operator M . To establish these results is the main objective
of this paper. This implies in particular the unique solvability of the
boundary integral equations. At a discrete level, we use the general
setting introduced in [13] and we prove quasi optimal convergence
of Galerkin boundary element methods using Raviart-Thomas type
boundary element spaces. Finally, applications of the developed the-
ory are presented. Namely, the dielectric interface problem and the
direct method for the perfect conductor. In both applications, the
well-posedness of the continuous and discrete problems are shown to
be an elementary consequence of the previous analysis.

The paper is organized as follows: In sections 2 and 3 we state the
Maxwell equations and the appropriate spaces and trace mappings.
We also introduce a Hodge decomposition on the boundary, define
the integral operators and prove the continuous inf-sup condition for
A. In section 4 we show discrete inf-sup condition and quasioptimal
convergence provided a discrete Hodge decomposition which is in
some sense close to the continuous Hodge decomposition. We show
that this is satisfied e.g. for Raviart-Thomas spaces. In section 5 the
results are applied to the perfect conductor problem, and in section 6
we treat the dielectric problem.
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2 Maxwell equations

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ = ∂Ω.
The complement of Ω will be denoted by Ωc := R3 \ Ω. The unit
normal vector n on the boundary Γ points from Ω to Ωc. Let ε and µ
be the dielectric permittivity and magnetic permeability respectively.
We suppose that ε and µ are positive constants in R3.

By E andH we denote the electric and magnetic field, and suppose
they satisfy the linear Maxwell equations:

curlE− iωµH = 0 , curlH+ iωεE = 0 (2.1)

both in Ω and Ωc.
We define k := ω

√
µε. Both in Ω and Ωc, the system (2.1) can be

reduced to a second order equation for the electric field only which
reads:

curl curl u− k2u = 0 in Ω ∪Ωc, (2.2)

where the function u is the electric field E, the magnetic flux density

H is given by H =
1

iωµ
curl u. Further, we impose standard Silver

Müller radiation condition at infinity for the exterior domain Ωc (see,
e.g., [26], [12]):

∣

∣

∣

∣

curl u(r)×
r

|r|
− iku

∣

∣

∣

∣

= o

(

1

|r|

)

|r| → ∞. (2.3)

We will say that u is a Maxwell solution in Ω if u satisfies (2.2)
in Ω and that u is a Maxwell solution in Ωc if it satisfies (2.2) in Ωc

and (2.3) at infinity.
In order to obtain boundary value problems with a unique solution

suitable boundary conditions have to be added. We will discuss two
cases later: In section 5 we will consider a Dirichlet problem in Ωc,
and in section 6 we will consider a problem with different material
constants in Ω and Ωc with certain interface conditions on Γ .

3 Definition and main properties of boundary integral
operators

3.1 Spaces and traces

We present function spaces in which variational boundary integral
equations on nonsmooth domains are set. Spaces on the boundary Γ
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shall be defined in terms of the following spaces in the domain Ω:

H(curl,Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3};
Hloc(curl,Ω

c) = {u ∈ L2
loc(Ω

c)3 : curl u ∈ L2
loc(Ω

c)3};
H(curl curl,Ω) = {u ∈ H(curl,Ω) | curl curl u ∈ L2(Ω)3 };

Hloc(curl curl,Ω
c) = {u ∈ Hloc(curl,Ω

c) | curl curl u ∈ L2
loc(Ω)3 }.

If u ∈ H(curl,Ω) is a Maxwell solution, then obviously u ∈
H(curl curl,Ω). If u ∈ Hloc(curl,Ωc) is a Maxwell solution, then
obviously u ∈ Hloc(curl curl,Ωc).

We shall use standard Sobolev spaces, Hs(Γ ), s ∈ [−1, 1] (with
the standard notation H0(Γ ) = L2(Γ )) of complex-valued functions
on the boundary Γ endowed with standard norms ‖·‖s. Moreover, we
denote by γ the standard trace operator mapping γ : Hs+1/2(Ω) →
Hs(Γ ), u +→ u|Γ , s ∈ (0, 1), continuously.

Finally, we define spaces of complex valued tangential vector fields
as:

V s
π = (n×Hs(Γ )3)× n s ∈ [0, 1] (3.1)

endowed with the induced operator norms ‖ · ‖V s
π
. We will be mainly

concerned with the space V 1/2
π and in this case we drop the super-

script, Vπ = V 1/2
π (compare with the notation adopted in [11].) More-

over, we denote by V ′
π its dual space with V 0

π as pivot space and by
〈·, ·〉V ′

π ,Vπ
the corresponding duality pairing. Finally we shall make

use of first order differential operators defined on Γ (we refer to [11]
for precise definitions).

Definition 3.1 For u ∈ C∞(Ω̄) we define the traces

γDu := (n× u)|Γ and γNu := k−1 (n× curl u)|Γ .

Let

X := {λ ∈ V ′
π | divΓ λ ∈ H−1/2(Γ ) }

endowed with the graph norm

‖λ‖X = ‖λ‖V ′
π
+ ‖divΓ λ‖−1/2 .

The following theorems have been proved in [11].

Theorem 3.2 The operators γD and γN are linear and continuous
from C∞(Ω̄) to V 0

π and they can be extended to linear and continuous
operators from H(curl,Ω) and H(curl curl,Ω), respectively, to X.
Moreover, they admit linear and continuous right inverses.
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For u ∈ Hloc(curl,Ωc), v ∈ Hloc(curl curl,Ωc) we define γcDu
and γcNv in the same way and the same mapping properties hold
true. We set then:

H0(curl,Ω) = {u ∈ H(curl,Ω) : γDu = 0}.

Clearly, H0(curl,Ω) is a closed subspace of H(curl,Ω). We further
need:

Theorem 3.3 The operator ×n : V 0
π → V 0

π associated with the map-
ping u +→ u× n can be extended to a linear and continuous isomor-
phism between X and its dual.

In the variational formulation of boundary integral equations we shall
need the mapping b : X×X → C defined by

b(v,w) =

∫

Γ
v · (w × n). (3.2)

This defines a duality pairing for the space X, i.e., b is continuous
and v +→ b(v, ·) maps X onto its dual. Note that b is antisymmetric,
i.e., b(v,w) = −b(w,v).

Finally, we need the following Hodge decomposition defined on the
space X. This theorem has been proved in [11] in the case of a simply
connected manifold Γ , and can be extended to general topology by
means of the results in [5], [6].

Theorem 3.4 Define

W := {λ ∈ X : divΓ λ = 0}

and

V := {λ ∈ X :

∫

Γ
λ ·w = 0 ∀w ∈ W ∩ V 0

π }.

Then there holds the decomposition

X = W ⊕V

where ⊕ denotes a direct sum which is orthogonal in the following
sense:

∀λ ∈ V , w ∈ W ∩ V 0
π

∫

Γ
λ ·w = 0.

The space W can be decomposed as follows:

W = W0 ⊕H , W0 = curlΓ H
1

2 (Γ ) ; dim{H} = 2Ne (3.3)
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where ⊕ denotes a direct sum and Ne is the first Betti number asso-
ciated with the domain Ω. Moreover, if u = v +w, v ∈ V, w ∈ W,
we have the following norm equivalence:

c1(‖v‖X + ‖w‖X) ≤ ‖u‖X ≤ ‖v‖X + ‖w‖X (3.4)

‖divΓ u‖−1/2 ≤ ‖v‖X ≤ c2 ‖divΓ u‖−1/2

where the constants c1, c2 depend only on the geometry.
Finally there holds V ↪→ V 0

π with compact injection.

Proof We need only to prove the last statement. To this end, we note
that by construction the space V can be characterized (see [11]) as
the space∇ΓH(Γ ) whereH(Γ ) := {u ∈ H1(Γ ) : ∆Γu ∈ H−1/2(Γ )}.
Then we have for v ∈ V that ‖v‖V 0

π
≤ C‖divΓ v‖−1,Γ . !

Remark 3.5 The space H is composed of the direct sum of the tan-
gential traces of the Neumann fields (see [2] for a suitable definition)
associated with Ω and with Ωc.

In Theorem 3.2, the existence of an extension operator is stated.
We shall need to use a “minimal energy” (in a proper sense) extension
operator for some choices of u ∈ X. The existence of such an operator
is the purpose of the following lemma.

Lemma 3.6 For any u ∈ X, there exists an extension U ∈
H(div,Ω) ∩ H(curl,Ω) such that divU = 0. Moreover, if u ∈ V 0

π ,
then U|Γ · n ∈ L2(Γ ) and

‖ U|Γ · n‖0 ≤ C‖u‖V 0
π
. (3.5)

Finally, for any u ∈ W0 the extension U can be chosen to satisfy
curlU = 0 and divU = 0.

Proof Since H0(curl,Ω) is a closed subspace of H(curl,Ω), given
u ∈ X we construct the extension U ∈ H(curl,Ω) to be H(curl)−
orthogonal to H0(curl,Ω). This means to solve the problem:

Find U ∈ H(curl,Ω) such that γDU = u and
∫

Ω(curlU · curl v +U · v) = 0 ∀v ∈ H0(curl,Ω).

Obviously, div(U) = 0 by construction. Using the regularity result
[16] we deduce that if u ∈ V 0

π , then U|Γ · n ∈ L2(Γ ) and (3.5) is
straightforward.

If u ∈ W0, the previous construction does not lead to the desired,
curl free extension. We need to use explicitly the fact that u = curlΓ p
for some p ∈ H1/2(Γ ). Denote by P ∈ H1(Ω) the harmonic extension
of p. Then ∇P verifies div∇P = 0, curl∇P = 0, and γD∇P =
curlΓ p. !
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3.2 First Green formula

From [11], we know that

∀u , v ∈ H(curl,Ω) :

∫

Ω
curl u·v−u·curl v = b(γDv, γDu). (3.6)

We define the bilinear form ΦΩ : H(curl,Ω)×H(curl,Ω) → C by

ΦΩ(u,v) :=

∫

Ω

(

k−1 curl u · curl v − ku · v
)

. (3.7)

For u,v ∈ H(curl,Ωc) we define correspondingly ΦΩc(u,v).
Assume that u ∈ H(curl,Ω) is a Maxwell solution in Ω and

v ∈ H(curl,Ω). Then

ΦΩ(u,v) = b(γDv, γNu). (3.8)

This relationship is a crucial tool for our analysis. Parallel to the
approach in [15] and [28], it allows to shift parts of the investigation
of the boundary integral operators to the domains Ω and Ωc.

Remark 3.7 There is the following symmetry between electric and
magnetic field quantities: Assume that u ∈ H(curl,Ω) is a Maxwell
solution in Ω and let ũ := k−1 curl u. Then we have

ũ = k−1 curl u, u = k−1 curl ũ

γDũ = γNu, γDu = γN ũ.

If additionally v ∈ H(curl,Ω) is a Maxwell solution in Ω and ṽ :=
k−1 curl v we then have using the first Green formula

b(γDu, γNv) = b(γDv, γNu) = ΦΩ(u,v) = −ΦΩ(ũ, ṽ)

= −b(γNu, γDv) = −b(γNv, γDu)

which is consistent with the antisymmetry of b.

3.3 Potentials

Let Gk denote the fundamental solution for the Helmholtz equation,
namely

Gk(x,y) =
eik|x−y|

4π |x− y|
. (3.9)

In the next sections we drop the subindex ·k and set G := Gk as we
work at a fixed wave number k. We shall also useG0, the fundamental
solution of Laplace’s equation.
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The single layer potential Ψ is given by

(Ψv)(x) :=

∫

Γ
G(x− y)v(y)dSy , x ∈ Ω ∪Ωc (3.10)

and we denote by Ψ0 the single layer potential associated with the
kernel G0. The single layer potential is applied also to tangent vectors
and, since it is never misleading, we shall use the same notation. We
shall need the following mapping and coercivity properties of the
potentials:

Theorem 3.8 The operators

Ψ, Ψ0 : H
− 1

2
+σ(Γ ) → H1+σ(Ω)×H1+σ

loc
(Ωc)

Ψ, Ψ0 : V
′
π → H1(Ω)3 ×H1

loc(Ω
c)3

are linear and continuous for any σ ∈
[

−1
2 ,

1
2

]

. Moreover, there holds:

∃α > 0 : 〈u, γΨ0u〉−1/2,1/2 ≥ α||u||2−1/2 , ∀u ∈ H−1/2(Γ ) ;

∃α > 0 : b(λ, γDΨ0λ) ≥ α||λ||2V ′
π
, ∀λ ∈ V ′

π.

For the proof of this theorem in the scalar case we refer to the pio-
neering work [27] which was adapted for Lipschitz domains in [15].
For the vector case we refer to [10] or [23].

We define a potential ΨE generated by an electric current j ∈ X
by

ΨEj := kΨ j+ k−1∇Ψ divΓ j. (3.11)

This can also be written as ΨEj := k−1 curl curlΨ j because of the
Helmholtz equation and the identity −∆ = curl curl−∇ div. We
define a “magnetic analogue” ΨM of ΨE generated by m ∈ X as

ΨMm := curlΨm. (3.12)

These potentials are solutions of the Maxwell equations in Ω and Ωc

satisfying

k−1 curlΨE = ΨM , k−1 curlΨM = ΨE. (3.13)

This and the mapping properties of Ψ show that ΨE ,ΨM are con-
tinuous mappings from X to H(curl curl,Ω) ×Hloc(curl curl,Ωc).
(Note that Ψ,ΨE ,ΨM are defined as mappings to a pair of functions,
one defined in Ω and the other defined in Ωc; hence equations (3.11),
(3.12), (3.13) are to be understood separately on Ω and Ωc.)
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Therefore the traces γD, γcD, γN , γcN can be applied to ΨE,ΨM and
yield continuous mappings from X to X. Note that we have from
(3.13)

γNΨE = γDΨM , γNΨM = γDΨE (3.14)

(and the same for the exterior traces).
In particular we are interested in the jumps [γD] := γD − γcD and

[γN ] := γN − γcN . There hold the following jump relations for ΨE

(see [10])

[γD]ΨE = 0 [γN ]ΨE = −I

implying with (3.14)

[γD]ΨM = −I [γN ]ΨM = 0

where I denotes the identity mapping.
This is related to the representation formula (see [10]): Assume

that u|Ω ∈ H(curl,Ω) is a Maxwell solution in Ω, and that u|Ωc ∈
Hloc(curl,Ωc) is a Maxwell solution in Ωc. Then we have with j :=
[γN ]u, m := [γD]u that on Ω ∪Ωc

u = −ΨEj− ΨMm (3.15)

We define for j,m ∈ X the boundary integral operators by
applying the symmetric parts {γD} := 1

2 (γD + γcD), {γN} := 1
2(γN +

γcN ) of the traces to (3.15):

A

(

m
j

)

:=

(

{γD}
{γN}

)

(−ΨEj− ΨMm) (3.16)

With the operators

C :=− {γD}ΨE = −{γN}ΨM ,

M :=− {γN}ΨE = −{γD}ΨM

(3.17)

we have

A =

(

M C
C M

)

.

The operator A : X2 → X2 is continuous, mapping the space of
Cauchy data to itself.

The Calderón projector P giving Cauchy data of a Maxwell
solution in the interior domain Ω is given by P = 1

2I + A. The
corresponding projector for the exterior domain Ωc is given by P c =
I − P = 1

2I − A. Note that the range of P coincides with the kernel
of P c.
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3.4 Strong Ellipticity

We shall now establish strong ellipticity of the boundary integral op-
erator A in (3.16). To this end, we define the following antisymmetric
bilinear form B : X2 ×X2 → C for two sets of Cauchy data:

B

((

m
j

)

,

(

m̃
̃

))

:= −b(m, ̃) + b(m̃, j)

We first need to prove the following symmetry property of the
operator A with respect to the antisymmetric form B.

Theorem 3.9 (Symmetry) We have for all m, j, m̃, ̃ ∈ X

B

(

A

(

m
j

)

,

(

m̃
̃

))

= B

(

A

(

m̃
̃

)

,

(

m
j

))

(3.18)

or equivalently

b(m̃, Cm) = b(m, Cm̃), b(m̃,M j) = b(j,Mm̃)

For the proof of this theorem, we need the following lemma and a few
notations. Let BR be a ball of radius R sufficiently large such that
Ω̄ ⊂ BR. We set SR := ∂BR and denote nR the exterior unit normal
vector to BR.

Lemma 3.10 Let u,v ∈ Hloc(curl,Ωc) be two solutions of the exte-
rior Maxwell problems. Then
∫

SR

(

γDu · (γNv×nR)−γDv · (γNu×nR)
)

→ 0 R → ∞. (3.19)

Proof By abuse of notation, for any u ∈ Hloc(curl,Ωc) we will denote
again by γD and by γN the Neumann and Dirichlet trace on SR.
Thanks to the Silver-Müller radiation condition, we have on SR:

iku+ γNu = o

(

1

R

)

R → ∞,

which implies

ikγD(u)− γNu× nR = o

(

1

R

)

R → ∞.

Then, we have:
∫

SR

(

γDu · (γNv × nR)− γDv · (γNu× nR)
)

=

∫

SR

γDu ·
γDv

ik
− γDv ·

γDu

ik
+ o(1) = o(1).

!
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Proof of Theorem 3.9. Using (3.8), for any v such that v|Ωc ∈
H(curl,Ωc) and v|Ω ∈ H(curl,Ω), and for any u solution of the
Maxwell equations (2.2) in Ω and Ωc, we have

ΦΩ(u,v) + ΦΩc(u,v) = b(γDv, γNu)− b(γcDv, γ
c
Nu) (3.20)

and rearranging terms

ΦΩ(u,v) + ΦΩc(u,v) = b([γD]v, {γN}u) + b({γD}v, [γN ]u) (3.21)

Let BR be the ball defined above and ΦΩc∩B̄R
be defined as in

(3.7). Let now (m, j) , (m̃, ̃) ∈ X2 and let u,v respectively be the
vector fields given by (3.15). Note that v 4∈ H(curl,Ωc); nevertheless,
exploiting the symmetry of the bilinear forms ΦΩ and ΦΩc∩BR

, we
have:

0 = ΦΩ(u,v) + ΦΩc∩BR
(u,v) − ΦΩ(v,u) − ΦΩc∩BR

(v,u)

= b([γD]v, {γN}u) + b({γD}v, [γN ]u)− b([γD]u, {γN}v)
− b({γD}u, [γN ]v) +

∫

SR

(

γDu · (γNv × n)− γDv · (γNu× n)
)

.

Now, we apply Lemma 3.10 to deduce that

b([γD]v, {γN}u)− b({γD}u, [γN ]v) =
b([γD]u, {γN}v) − b({γD}v, [γN ]u)

which coincides with (3.18) recalling the definition (3.16) of the op-
erator A. !

We can now state the main theorem of this section and to this
end, we need the following definition:

Definition 3.11 Let u ∈ X be decomposed as u = v + w, v ∈ V
and w ∈ W. We denote by Θ : X → X the isomorphism associated
with the mapping u = v +w +→ v −w.

Theorem 3.12 (Inf-sup condition) There exists a compact oper-
ator T : X2 → X2 and α > 0 such that for all m, j ∈ X

ReB

(

(A+ T )

(

m
j

)

,

(

Θm
Θj

))

≥ α

∥

∥

∥

∥

(

m
j

)∥

∥

∥

∥

2

X2

. (3.22)

In order to prove this theorem, we need the following compactness
argument:

Proposition 3.13 (Compactness) Let b(·, ·) be the bilinear form
defined in (3.2) and V, W the spaces defined in Theorem 3.4, then

b(·,M ·) : V ×V → C , b(·,M ·) : W×W → C

are compact bilinear forms.
(3.23)
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Proof Let v1,v2 ∈ V. We know that vi = ∇Γ pi, pi ∈ H(Γ ),
i = 1, 2 and then b(v1,v2) =

∫

Γ ∇Γp1 · (∇Γ p2 × n) ≡ 0. Then we
have:

b(v1,Mv2) = b(v1, (−γDΨM − I/2)v2) = b(v1,−γDΨMv2).

Let V1 be the lifting of v1 in Ω provided by Lemma 3.6. Then,

b(γDΨMv2,v1) =

∫

Ω
k−1 curlΨv2 · curlV1

−
∫

Ω
k−1 curl curlΨv2 ·V1.

Using the Maxwell equations, we have:

k−1 curl curlΨv2 = kΨv2 + k−1∇Ψ divΓ v2.

Integrating by parts and recalling that divV1 = 0, we have:
∫

Ω
k−1 curl curlΨv2 ·V1 = k

∫

Ω
Ψv2 ·V1

+ k−1
∫

Γ
V1|Γ · nΨ(divΓ v2).

(3.24)

Since v1 ∈ V 0
π , Lemma 3.6 ensures that ‖ V1|Γ · n‖0 ≤ C‖v1‖V 0

π
.

Collecting terms and using the mapping properties of the single layer
potential Theorem 3.8, we obtain:

b(v1,Mv2) ≤ C
(

(k−1 + k)‖v1‖X‖v2‖V ′
π

+ k−1‖v1‖V 0
π
‖divΓ v2‖−1

)

.
(3.25)

We deduce the first statement using thatV ↪→ V 0
π ↪→ V ′

π are compact
injections. Let now w1, w2 ∈ W. We use the splitting furnished by

Theorem 3.4

w1 = w0
1 + h1, w2 = w0

2 + h2 h1, h2 ∈ H, w0
1, w

0
2 ∈ W0.

Since H is finite dimensional, the mappings wi +→ hi, i = 1, 2 are
compact. Consequently, the bilinear form b : W × H → C is also
compact. As a consequence, it remains to study the bilinear form
b : W0 × W0 → C. We observe that again b(w0

1,w
0
2) = 0. Using

Lemma 3.6, we know that there exists W0
2 ∈ H(curl,Ω) such that

curlW0
2 = 0, γDW0

2 = w0
2. Using the Maxwell equations as above,

we deduce the identity:

k−1 curl curlΨw0
2 = kΨw0

2 ,
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since divΓw0
2 = 0. We then deduce further:

b(w0
1,Mw0

2) = k

∫

Ω
Ψw0

1 ·W0
2 ≤ k‖Ψw0

1‖0‖W0
2‖0.

We finish using the mapping properties of Ψ , Theorem 3.8, and the
compactness of the injection H1(Ω)3 ↪→ L2(Ω)3. !

Proof of Theorem 3.12. Let Ψ0 be the single layer potential associated
with the kernel G0 defined in (3.9) with k = 0. Correspondingly we
define

ΨE,0j := kΨ0j+ k−1∇Ψ0 divΓ j ΨM,0m := curlΨ0m, (3.26)

and also (compare with (3.17))

C0 := −{γD}ΨE,0 , M0 := −{γD}ΨM,0 , A0 =

(

M0 C0

C0 M0

)

.

Note that now {γD}ΨE,0 4= {γN}ΨM,0 and {γN}ΨE,0 4= {γD}ΨM,0,
but the alternate choice (namely C0 := −{γN}ΨM,0 and M0 :=
−{γN}ΨE,0) would be completely equivalent for our purposes. First
of all we need to prove that C − C0 and M − M0 are compact op-
erators. To this end let BR be a ball such that Ω ⊂ BR. Because of
the regularity of G − G0, we obtain that Ψ − Ψ0 is an operator of
order −4 and is continuous from H1(BR)′ to H3(BR). Let u ∈ X and
V ∈ H1(BR)3. Then there exists U ∈ H(curl,Ω) with γDU = u and
we have

∫

Γ
u · V|Γ = b(γDU, γDV) =

∫

Ω
curlV ·U− curlU ·V

Therefore we can consider u ∈ X as a distribution in
[

H1(BR)′
]3

and
we obtain that u +→ γD(Ψ − Ψ0)u is a compact mapping from X to
X using

X ↪→
[

H1(BR)
′
]3 Ψ−Ψ0−→ H3(BR)

3 c
↪→ H1(BR)

3 γD−→ X.

In the same way we obtain that the mappings γD∇(Ψ −Ψ0) divΓ and
γD curl(Ψ − Ψ0) are compact mappings from X to X using

X
divΓ−→ H−1/2(Γ ) ↪→ H1(BR)

′ ∇(Ψ−Ψ0)−→ H2(BR)
3 c
↪→ H1(BR)

3 γD−→ X

and

X ↪→
[

H1(BR)
′
]3 curl(Ψ−Ψ0)−→ H2(BR)

3 c
↪→ H1(BR)

3 γD−→ X.
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Thus C−C0 and M−M0 are compact mappings fromX to X. Hence
the operator A − A0 is compact and it is sufficient to prove (3.22)
with A replaced by A0.

The symmetry of A (Theorem 3.9) implies that the bilinear form
B(A0ξ, ξ̃)−B(A0ξ̃, ξ) : X2 ×X2 → C is compact.

Let ξ :=
(

m
j

)

. We decompose both m and j by means of Theorem
3.4. We set:

m = mV +mW , j = jV + jW (3.27)

for mV , jV ∈ V and mW , jW ∈ W. Let then ξV =
(

mV

jV

)

, ξW =
(

mW

jW

)

and Θξ := ξ
V − ξ

W
. Then

ReB(A0ξ,Θξ) =ReB(A0ξ
V , ξ

V
)− ReB(A0ξ

W , ξ
W
)

+ReB(A0ξ
W , ξ

V
)− ReB(A0ξ

V , ξ
W
).

(3.28)

Due to the symmetry of A and the fact that G0 is real, we have:

B(A0ξ
W , ξ

V
) = B(A0ξ

V , ξ
W
) + compact,

then the sum of the last two terms in (3.28) is a compact operator in
X2. We consider now the first term in (3.28).

B(A0ξ
V , ξ

V
) = −b(C0j

V , j
V
) + b(mV , C0m

V )+

−b(M0j
V , j

V
) + b(mV ,M0m

V ).
(3.29)

Proposition 3.13 and the fact that M − M0 is a compact operator
ensure that the last two terms in (3.29) are compact. Using the anti-
symmetry of the form b, we are then left with:

B(A0ξ
V , ξ

V
) = b(j

V
, C0j

V ) + b(mV , C0m
V ) + compact. (3.30)

Let us consider for example the first term. Using the definition of C0

and integration by parts:

−b(C0j
V , j

V
) =− k b(j

V
, γDΨ0j

V )

+ k−1〈divΓ j
V
, γ(Ψ0 divΓ j

V )〉−1/2,1/2

(3.31)

where γ denotes the standard trace operator. Using the mapping
properties of Ψ0, we have that (see [10] for more details):

b(j
V
, γDΨ0j

V ) ≥ c
∥

∥jV
∥

∥

2

V ′
π

〈divΓ j
V
, γ(Ψ0 divΓ j

V )〉−1/2,1/2 ≥ C
∥

∥divΓ j
V
∥

∥

2

−1/2
.

(3.32)
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By the norm equivalence (3.4) and the compactness of the injection
V ↪→ V ′

π, we finally deduce that there exists α > 0 such that:

Re b(j
V
, C0j

V ) ≥ α
∥

∥jV
∥

∥

2

X
−
∥

∥T0j
V
∥

∥

2

X
(3.33)

where T0 : X → X is a compact operator. The same holds true for
the second term in (3.30).

We consider now the second term in (3.28). Using again Proposi-
tion 3.13,

−B(A0ξ
W , ξ

W
) = −b(j

W
, C0j

W )− b(mW , C0m
W ) + compact.

Since divΓw = 0 for all w ∈ W, using the definition of C0 and
integrating by parts, we have:

−B(A0ξ
W , ξ

W
) = b(j

W
, γDΨ0j

W )

+ b(mW , γDΨ0m
W ) + compact.

(3.34)

Now, collecting (3.30) and (3.34), and using (3.33) together with
the ellipticity of γD Ψ0, we obtain:

ReB(A0ξ,Θξ) ≥ α(
∥

∥ξW
∥

∥

X2 +
∥

∥ξV
∥

∥

X2)− ‖T1ξ‖X2

where T1 : X2 → X2 is again a compact operator. The claim follows
now from the norm equivalence (3.4). !

4 Discrete decompositions and convergence

We obtained an inf-sup condition for the operator A using the Hodge
decomposition X = V ⊕W. The statement of this inf-sup condition
involves the isomorphism from Definition 3.11. For a discretization
method we use Galerkin projection onto a sequence of finite dimen-
sional subspacesXh ⊂ X. But the Hodge decomposition of a function
in Xh gives in general functions which are no longer contained inXh.
This prevents us from immediately applying Theorem 3.12 and stan-
dard results about conforming Galerkin discretizations on coercive
variational problems. We therefore need to consider discrete decom-
positions Xh = Vh ⊕ Wh. If these discrete decompositions are in
some sense close to the continuous decomposition we will be able to
prove a discrete inf-sup condition and quasioptimal convergence.

We will first give an abstract formulation of this idea. Then we will
show that the assumptions are satisfied for our Hodge decomposition
X = V⊕W and boundary elements of Raviart-Thomas and Brezzi-
Douglas-Marini type.
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4.1 Abstract convergence theorem

Consider a Hilbert space X with X = V ⊕ W so that we have for
u ∈ X a unique decomposition u = v + w with ‖v‖X + ‖w‖X ≤
C ‖u‖X . Then we can define the continuous mapping Θ : X → X
with u = v + w +→ v − w.

Consider a sequence of closed subspaces Xh ⊂ X with decompo-
sitions Xh = Vh ⊕Wh which satisfy the following assumptions:

(A1) The family {Xh}h is dense in the space X, namely

⋃

h

Xh = X.

(A2) We have Wh ⊂ W and

For all vh ∈ Vh: inf
v∈V

‖vh − v‖X ≤ δh ‖vh‖X (4.1)

with δh → 0 for h → 0.

These assumptions turn out to be natural in our framework and
were first used in [13], see also [7].

Theorem 4.1 Assume that A : X → X ′ is continuous and that there
exist a compact operator T : X → X ′ and a constant α > 0 such that
for all u ∈ X

Re 〈(A+ T )u,Θu〉 ≥ α ‖u‖2X
where 〈·, ·〉 denotes the duality pairing between X ′ and X. Assume
further that A is one-to-one. Let {Xh}h denote a sequence of sub-
spaces of X satisfying (A1) and (A2).

Then there exists h0 > 0 such that for all f ∈ X ′ and h ≤ h0 the
Galerkin equation

〈Auh, ũh〉 = 〈f, ũh〉 for all ũh ∈ Xh

has a unique solution uh in Xh which converges quasioptimally, i.e.,

‖u− uh‖X ≤ C inf
ũh∈Xh

‖u− ũh‖X

where u ∈ X satisfies Au = f .

Proof This proof is mainly inspired by [13], [10] and follows [7].
Since A+T is invertible and A is one-to-one, A and its adjoint A′

are invertible. As

〈(A+ T )u,Θu〉 =
〈

Au, (I + (A′)−1T ′)Θu
〉
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we have with Θ̃ := (I + (A′)−1T ′)Θ that

∀u ∈ X : Re
〈

Au, Θ̃u
〉

≥ α ‖u‖2X .

Note that Θ̃−Θ = (A′)−1T ′Θ is compact. Let Ph : X → Xh denote a
uniformly bounded family of projection operators, i.e. ‖Ph‖X→X ≤ C
with C indendent of h. Then

∥

∥

∥
(I − Ph)Θ̃uh

∥

∥

∥

X
≤

∥

∥

∥
(I − Ph)(Θ̃ −Θ)uh

∥

∥

∥

X
+ ‖(I − Ph)Θuh‖X

By assumption (A1) we have for all U ∈ X that ‖(I − Ph)U‖X → 0
as h → 0. Since Θ̃ −Θ is compact we obtain that

εh :=
∥

∥

∥
(I − Ph)(Θ̃ −Θ)

∥

∥

∥

X→X
→ 0 as h → 0.

Let now uh ∈ Xh be arbitrary. Then uh has the decomposition uh =
v + w with v ∈ V , w ∈ W , and we have Θuh = v − w. There is also
the decomposition uh = vh+wh with vh ∈ Vh, wh ∈ Wh. We have for
Θuh = v − w

‖(I − Ph)Θuh‖X =
∥

∥

∥
(I − Ph)

(

Θuh − (vh − wh)
)
∥

∥

∥

X

≤ (1 + C) ‖(v − w)− (vh − wh)‖X
≤ (1 + C)(‖v − vh‖X + ‖w − wh‖X).

Let ΠV : X → V denote the projection operator corresponding to
the decomposition X = V ⊕ W . Then v = ΠV uh = ΠV vh (since
wh ∈ Wh ⊂ W ). According to assumption (A2) there exists ṽ ∈ V
such that ‖vh − ṽ‖X ≤ 2δh ‖vh‖X and we have

‖vh − v‖X = ‖(I −ΠV )vh‖X = ‖(I −ΠV )(vh − ṽ)‖X
≤Cδh ‖vh‖X ≤ Cδh(‖vh − v‖X + ‖v‖X)

‖vh − v‖X ≤
Cδh

1− Cδh
‖v‖X ≤ 2Cδh ‖uh‖X

where we used v = ΠV uh and assume that h is sufficiently small so
that Cδh ≤ 1

2 . As w − wh = −(v − vh) we obtain

‖v − vh‖X + ‖w − wh‖X ≤ Cδh ‖uh‖X
and we obtain for all uh ∈ Xh

∥

∥

∥
(I − Ph)Θ̃uh

∥

∥

∥

X
≤ (εh + Cδh) ‖uh‖X .

which implies that for sufficiently small h and for all uh ∈ Xh

Re〈Auh, PhΘ̃uh〉 ≥ Re〈Auh, Θ̃uh〉−C(εh+Cδh) ‖uh‖2X ≥ α/2 ‖uh‖2X .
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Since PhΘ̃ : Xh → Xh is bounded independently of h, we have proved
that there exists α > 0 and h0 > 0 such that for all h < h0

inf
0)=uh∈Xh

sup
0)=vh∈Xh

|〈Auh, vh〉|
‖uh‖X ‖vh‖X

≥
α

2
. (4.2)

It is well known that this discrete inf-sup condition implies that the
Galerkin equations have a unique solution and that the error is qua-
sioptimal. !

4.2 Application to standard finite element families

Let {Xh}h be a family of finite dimensional subspaces of X. We set:

Wh := {wh ∈ Xh : divΓwh = 0}

Vh := {vh ∈ Xh :

∫

Γ
vh ·wh = 0 ∀wh ∈ Wh}.

(4.3)

Note that by construction, Wh ⊂ W, but in general Vh 4⊂ V. We
now make the additional assumption thatΩ is a polyhedron, possibly
curvilinear.

Let now Th be a family of regular triangulations decomposing Γ .
Th can be composed of triangles or quadrilaterals (or both), and no
quasi-uniformity is required.

Both Raviart-Thomas (RT) and the Brezzi-Douglas-Marini (BDM)
finite elements (see e.g., [22] and [4] respectively, for definitions and
properties) can be defined on Th and are conforming approximations
of the space X0 := {u ∈ V 0

π : divΓ u ∈ L2(Γ )} endowed with the
graph norm

‖u‖X0 := ‖u‖V 0
π
+ ‖divΓ u‖0 .

Note that the injectionX0 ⊂ X is dense. We say that a family of finite
elements is of order k when locally at each triangle or quadrilateral
the polynomials of degree k are contained in the family. In particular,
the lowest order RT element has order k = 0 and the lowest order
BDM element has order k = 1.

In this section we denote byXh the approximation ofX generated
either by RT or by BDM finite elements of order k ≥ 0 (k ≥ 1
respectively).

Let Πh be the standard interpolation operator [4] from regular
vectors on Γ onto Xh. We recall that this interpolation operator is
obtained defining the degrees of freedom on the reference triangle
(or square) T̂ and then transforming vectors by the standard Piola
transform [4, Section III.1.3]. Moreover the moments up to order k of
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the normal component to the edges are among the degrees of freedom.
We refer to [21] (see also [13] or [24]) for a suitable definition on
curved surfaces. The properties of this operator have been intensively
studied, and we report here the ones we need:

(P1) For any s > 0, Πh : X0 ∩ V s
π → Xh is linear and continuous

(uniformly in h) [4, formula (3.40)] and there exists a function
(depending on s) δs : R+ → R+, such that δs(h) → 0 when h → 0
and:

‖u−Πhu‖X0 ≤ Cδs(h)
(

‖u‖X0 + ‖u‖V s
π

)

.

Moreover, let Ṽh = {v ∈ X : divΓ v ∈ divΓXh}, and s > 0, then:

u ∈ Ṽh ∩ V s
π , ‖u−Πhu‖V 0

π
≤ Cδs(h)‖u‖V s

π
.

This statement comes from an argument due to V. Girault which
was first used in [14, Proof of Lemma 4.1].

(P2) Let Ph denote the L2-orthogonal projection from L2(Γ ) onto
the space divΓ(Xh). Note that for RT of order k and BDM of
order k − 1 the space divΓ(Xh) consists of piecewise polynomials
of degree k, [4]. Then, for any s > 0 [4, Proposition 3.7]:

u ∈ X0 ∩ V s
π , divΓ(Πhu) = Ph ‖divΓ u‖0 .

The following statement has been proved in [7], see also [24] for
partial results:

Theorem 4.2 The RT and the BDM finite elements of any order k
verify assumptions (A1) and (A2).

Proof As far as (A1) is concerned, we refer again to [22] or [4]. Con-
cerning (A2) we sketch the proof following verbatim [7] (see also [24]).
Let vh ∈ Vh and p ∈ H1(Γ )/C be the solution of the problem:

divΓ∇Γ p = divΓ vh. (4.4)

From [10, Theorem 5.3], we know that there exists a s∗ > 0 depending
on the geometry such that ∇Γ p ∈ V t

π , t < s∗. Of course, ∇Γp ∈
X0∩V ε

π , for any fixed ε with 0 < ε < min{s∗, 1/2}. (P2) implies that
Πh∇Γ p− vh ∈ Wh; then, since Vh ⊥ Wh, we have

‖vh −∇Γ p‖V 0
π
≤ ‖∇Γp−Πh∇Γp‖V 0

π
.

Now, using (P1), recalling that p solves (4.4), and ∇Γp ∈ Ṽh ∩ V ε
π ,

we have:

‖vh −∇Γ p‖V 0
π
≤ Cδε(h) ‖∇Γp‖V ε

π
≤ Cδε(h) ‖divΓ vh‖−1+ε,Γ .

Since divΓ(vh −∇Γp) = 0, this implies (A2). !
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5 Electromagnetic scattering at a perfect conductor

As a first application of the results of the previous sections we consider
the perfect conductor problem which is the Dirichlet problem for the
Maxwell equations. The analogous Neumann problem can be solved
with exactly the same boundary integral equation because of the
symmetry of electric and magnetic quantities. However, the Neumann
problem seems to be less relevant in practical applications.

The perfect conductor problem for non-smooth boundaries was
already considered in [10], [24] and [7] where an indirect method was
used. Here we use the so-called direct method where the unknown is
the Neumann trace of the solution. Both approaches have the same
operator C on the left hand side of the equation. The inf-sup condition
for this operator follows as a special case from Theorem 3.12. For this
case we actually do not need the compactness of the operator M in
Proposition 3.13.

5.1 Definition of the problem

We assume that we have in the exterior domain Ωc a material with
constants µ, ε > 0 and k := ω

√
µε. We assume that we have a perfect

conductor in the bounded domain Ω. The normal vector n on the
boundary points from Ω to Ωc.

We consider an incident field uinc ∈ H(curl,Ωc) with curl curl uinc

−k2uinc = 0. We want to find a scattered field u in Ωc such that

u ∈ Hloc(curl,Ω
c), (5.1a)

curl curl u− k2u = 0 (5.1b)
∣

∣

∣

∣

curl u(r)×
r

|r|
− iku

∣

∣

∣

∣

= o

(

1

|r|

)

|r| → ∞ (5.1c)

Because of the properties of the perfect conductor the total field
utot := uinc + u in Ωc should satisfy γcDu

tot = 0, i.e., we have with
m0 := −γcDu

inc

γcDu = m0. (5.1d)

We will assume that we are given data m0 ∈ X and want to find u
satisfying (5.1).

The uniqueness for the exterior problem is a direct consequence
of Rellich’s theorem (see [25] for a proof):

Theorem 5.1 The perfect conductor problem (5.1) has at most one
solution.
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The corresponding homogeneous interior problem can have nontrivial
solutions.

Theorem 5.2 Assume that u ∈ H(curl,Ω) is a Maxwell solution
in Ω with γDu = 0. Then u = 0 unless k2 ∈ SΩ where the set SΩ of
eigenvalues is countable and has no finite accumulation point.

Proof Taking the divergence in the equation (5.1b), we deduce that
divu = 0. Thus, it is easily proved that u is solution of the problem:
Find u ∈ V := {v ∈ H0(curl,Ω) : divu = 0} such that

∫

Ω
curl u · curl v− k2

∫

Ω
u · v = 0 ∀v ∈ V.

Since the injection V ↪→ L2(Ω)3 is compact [2], the Fredholm alter-
native applies and this proves the statement. !

5.2 Boundary integral formulation

We consider the unknown Neumann data

j = γcNu. (5.2)

Because of the properties of the Calderón projector we have that

(12I +A)

(

m0

j

)

= 0 (5.3)

if and only if there exists u satisfying (5.1) and (5.2).
By just using the first row of (5.3) we get

Cj = −(12I +M)m0. (5.4)

Theorem 5.3 Assume k2 /∈ SΩ. Then the boundary integral equa-
tion (5.4) holds if and only if there exists u satisfying (5.1) and (5.2).

Proof Obviously (5.3) implies (5.4). To prove the other direction as-
sume that (5.1) holds and let

(

m̃
j̃

)

:= (12I + A)
(

m0

j

)

. Equation (5.4)

states that m̃ = 0. Now
(

m̃
j̃

)

is in the range of the Calderón projector

for Ω, i.e.,
(

m̃
j̃

)

are Cauchy data
(γD
γN

)

ũ of a Maxwell solution ũ in Ω

with γDũ = 0. Since we assume k2 /∈ SΩ Theorem 5.2 implies that
j̃ = 0, hence (5.3) holds. !

Recall the mapping Θ : X → X (Definition 3.11) which maps u ∈
X with Hodge decomposition u = v+w to v−w. Then we have the
following coercivity property for C:
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Theorem 5.4 There is a compact operator T : X → X and α > 0
such that for all j ∈ X

Re b(Θj, (C + T )j) ≥ α ‖j‖2X .

Proof We use Theorem 3.12 with m = 0 and obtain

Re b(Θj, Cj) = ReB

(

A

(

0
j

)

,

(

0
Θj

))

≥ α ‖j‖2X − ‖T0j‖2X

where T0 : X → X is compact. !

Corollary 5.5 Assume k2 /∈ SΩ. Then the boundary integral equa-
tion (5.4) has for every m0 ∈ X a unique solution j ∈ X.

Proof By the previous theorem C plus a compact operator is invert-
ible, hence C has index zero. By Theorem 5.3 a solution of (5.4) with
m0 = 0 corresponds to a solution of problem (5.1) with zero data.
Then Theorem 5.1 gives j = 0. Hence C : X → X is invertible. !

If k2 ∈ SΩ we still have that j = γcNu is a solution of (5.4).
However, the general solution of (5.4) has the form j = γcNu + γN ũ
where ũ is a Maxwell solution in Ω with γDũ = 0. Using this j and
m0 in the representation formula then gives

ΨEj+ ΨMm0 =

{

u in Ωc

−ũ in Ω

so we still obtain the correct result in Ωc.

5.3 The discretized problem

We choose a family {Xh}h of finite dimensional subspaces of X satis-
fying Assumptions (A1) and (A2) of section 4.1 and use the Galerkin
method: Find jh ∈ Xh such that

b(̃jh, Cjh) = −b(̃jh, (
1
2I +A)m0) for all j̃h ∈ Xh (5.5)

We now apply Theorem 5.4 together with Theorem 4.1 and obtain

Theorem 5.6 Assume k2 /∈ SΩ and let j denote the solution of (5.4).
There exists h0 > 0 and C0 such that for all h ≤ h0 the discretized
problem (5.5) has a unique solution jh ∈ Xh. The Galerkin solution
converges quasioptimally:

‖jh − j‖X ≤ C0 inf
j̃h∈Xh

∥

∥j̃h − j
∥

∥

X
.
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6 Electromagnetic scattering at a dielectric interface

We now consider the transmission problem between two dielectric
media with different magnetic properties in the two domains Ω and
Ωc and derive a boundary integral formulation. The coercivity prop-
erty of the operator in this formulation follows from the coercivity
property of the operator A =

(M C
C M

)

in Theorem 3.12. Here (unlike
the case of the perfect conductor problem) we need the general case
of this theorem which requires the compactness property of M in
Proposition 3.13.

6.1 Definition of the problem

In the bounded domain Ω we have material constants µ1, ε1 > 0,
in the exterior domain Ωc we have material constants µ2, ε2 > 0.
The circular frequency ω is the same in both domains, but we have
k1 := ω

√
µ1ε1, k2 := ω

√
µ2ε2. The normal vector n on the boundary

points from Ω to Ωc. Let γ̂Nu := n× curl u|Γ denote the Neumann
trace without the factor k−1.

We consider an incident field uinc
2 ∈ H(curl,Ωc) with curl curl uinc

2
−k22u

inc
2 = 0. We want to find scattered fields u1 in Ω and u2 in Ωc

such that

u1 ∈ H(curl,Ω), u2 ∈ Hloc(curl,Ω
c), (6.1a)

curl curl u1 − k21u1 = 0, curl curl u2 − k22u2 = 0 (6.1b)
∣

∣

∣

∣

curl u2(r)×
r

|r|
− iku2

∣

∣

∣

∣

= o

(

1

|r|

)

|r| → ∞ (6.1c)

For u1 in Ω and the total field uinc
2 + u2 in Ωc the tangential com-

ponent of the electric field and the magnetic flux densities should
be continuous across Γ , i.e., we have with m0 := γcDu

inc
2 and j0 :=

µ−1
2 γ̂cNuinc

2

γDu1 = γcDu2 +m0, µ−1
1 γ̂Nu1 = µ−1

2 γ̂cNu2 + j0. (6.1d)

We will assume that we are given data m0, j0 ∈ X and want to find
u1,u2 satisfying (6.1). We have a uniqueness result:

Theorem 6.1 The dielectric problem (6.1) has at most one solution.

Proof This proof is actually quite standard; we just sketch it here and
we refer to [12] or [26] for details. Set m0 = j0 = 0 and suppose there
exists a nontrivial solution u1,u2 of (6.1). Then, let BR be a ball of
radius R sufficiently large to ensure Ω ⊂ BR. Using the equations
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(6.1b), multiplying the first one by u1, the second one by u2, and
using (6.1d) and the integration by parts formula (3.6), we obtain:

∫

∂BR

(curl u2 × nR) · u2 =
∫

BR\Ω
|curl u2|2 − k2 |u2|2 +

∫

Ω
|curl u1|2 − k1 |u1|2 .

Thus, Im(
∫

∂BR
(curl u2×nR) ·u2) = 0. Using the radiation condition

(6.1c) and Rellich theorem, we can easily deduce u2 = 0. Now, u1

solves (6.1a) and verifies: γDu1 = γNu1 = 0. Thus, u1 = 0. !

6.2 Boundary integral formulation

We define the operators Aj, Cj ,Mj for j = 1, 2 as in the previous
section using k = kj . We define

Âj :=

(

1 0
0 kjµ

−1
j

)

Aj

(

1 0
0 k−1

j µj

)

=

(

Mj k−1
j µjCj

kjµ
−1
j Cj Mj

)

Note that Theorem 3.9 and Theorem 3.12 (with constants depending
on µj) also hold for Âj.

We now consider the Cauchy data defined by

ξ1 =

(

γD
µ−1
1 γ̂N

)

u1, ξ2 =

(

γcD
µ−1
2 γ̂cN

)

u2 (6.2)

and let ξ0 :=
(

m0

j0

)

. Because of the properties of the Calderón projec-
tor we have that

(12I − Â1)ξ1 = 0, (12I + Â2)ξ2 = 0, ξ1 − ξ2 = ξ0. (6.3)

if and only if there exist u1,u2 satisfying (6.1) and (6.2). We can
now obtain the boundary integral formulation in the same way as in
[18]: Writing ξ1 = ξ2+ξ0 and subtracting the first equation from the
second equation gives

(Â1 + Â2)ξ2 = (12I − Â1)ξ0. (6.4)

Theorem 6.2 The boundary integral equation (6.4) holds if and only
if there exist u1,u2 satisfying (6.1) and (6.2).
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Proof Obviously (6.3) implies (6.4). To prove the other direction as-
sume that (6.4) holds and let ξ1 := ξ2 + ξ0. Consider now ξ̃1 :=
(12I − Â1)ξ1, ξ̃2 := (12I + Â2)ξ2. Equation (6.4) states that ξ̃1 = ξ̃2.

Now ξ̃1 is in the range of the Calderón projector for Ωc with k = k1,

i.e., ξ̃1 are Cauchy data
( γc

D

µ−1

1
γ̂c
N

)

ũ1 of a Maxwell solution ũ1 in Ωc

with k = k1. Similarly, ξ̃2 is in the range of the Calderón projector
for Ω with k = k2, i.e., ξ̃2 are Cauchy data

( γD
µ−1

2
γ̂N

)

ũ2 of a Maxwell

solution ũ2 in Ω with k = k2. Therefore ũ2 in Ω and ũ1 in Ωc is the
solution of a homogeneous dielectric problem with material constants
ε2, µ2 in Ω and ε1, µ1 in Ωc. By Theorem 6.1 (which holds for any
material constants in Ω and Ωc) we must have ξ̃1 = ξ̃2 = 0, hence
(6.3) holds. !

Again we have a coercivity property with the operator Θ : X → X
(Definition 3.11) which maps u ∈ X with Hodge decomposition u =
v +w to v −w:

Theorem 6.3 There is a compact operator T : X2 → X2 and α > 0
such that for all m, j ∈ X

ReB

(

(Â1 + Â2 + T )

(

m
j

)

,

(

Θm
Θj

))

≥ α

∥

∥

∥

∥

(

m
j

)
∥

∥

∥

∥

2

X2

(6.5)

Proof We use that for Â1 and Â2 Theorem 3.12 holds. Therefore we
have with ξ̃ :=

(Θm
Θj

)

that

ReB((Â1 + T1 + Â2 + T2)ξ, ξ̃) ≥ α1 ‖ξ‖2X + α2 ‖ξ‖2X
yielding (6.5) with T = T1 + T2 and α = α1 + α2. !

Corollary 6.4 The boundary integral equation (6.4) has a unique
solution ξ2 ∈ X2 for every ξ0 ∈ X2.

Proof By the previous theoremQ := Â1+Â2 plus a compact operator
is invertible, so Q has index zero. By Theorem 6.2 a solution of (6.4)
with ξ0 = 0 corresponds to a solution of problem (6.1) with zero data.
Then Theorem 6.1 gives ξ2 = 0. Hence Q : X2 → X2 is invertible. !

6.3 The discretized problem

We choose a family {Xh}h of finite dimensional subspaces of X satis-
fying Assumptions (A1) and (A2) of section 4.1 and use the Galerkin
method: Find ξ2,h ∈ X2

h such that

B((Â1+ Â2)ξ2,h, ξ̃h) = B((12I− Â1)ξ0, ξ̃h) for all ξ̃h ∈ X2
h (6.6)

We use Theorem 6.3 together with Theorem 4.1 and obtain
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Theorem 6.5 Let ξ2 denote the solution of (6.4). There exists h0 >
0 and C0 such that for all h ≤ h0 the discretized problem (6.6) has a
unique solution ξ2,h ∈ X2

h. The Galerkin solution converges quasiop-
timally:

∥

∥ξ2,h − ξ2
∥

∥

X2
≤ C0 inf

ξ̃h∈X
2
h

∥

∥ξ̃2,h − ξ2
∥

∥

X2
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