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1 Introduction

One of the main tasks in computational electromagnetism is the computation
of the scattering of electromagnetic waves at a perfectly conducting body Ω ⊂
R3. It boils down to solving the time-harmonic Maxwell’s equations for a fixed
frequency, subject to vanishing tangential trace of the electric field on the surface
of the scatterer and Silver-Müller radiation conditions at ∞. It is known that
the exterior scattering problem for Maxwell’s equations has a unique solution
([26, Ch. 6] and [22]). In most technical applications the boundary Γ of Ω will
be only piecewise smooth.

Starting from the Stratton-Chu representation formulas [19, Sect. 3], an
indirect method yields a boundary integral equation, featuring the jump of a
magnetic field as principal unknown j [19, Sect. 4]. Cast in variational form this
integral equation is known as Rumsey’s principle and reads: Seek a complex
amplitude j ∈ H− 1

2 (divΓ,Γ) such that

〈VςdivΓj, divΓv〉 1
2
,Γ − ς2 〈Aς j,v〉||,Γ = f(v) ∀v ∈ H− 1

2 (divΓ,Γ) . (1)

Here, ς ∈ R+ is the wave number, the continuous linear functional f :

H− 1
2 (curlΓ,Γ) (→ C represents the excitation due to an incident wave, and

Vς ,Aς stand for scalar and vectorial single layer potential integral operators,
respectively. All pairings are assumed to be sesqui-linear throughout the paper.
Detailed explanations will be postponed to the following two sections.

Assumption 1.1 A solution of (1) exists for all admissible right hand sides f .

This assumption amounts to demanding that ς is bounded away from an
interior Maxwell eigenvalue of Ω ([19, Thm. 4.4]).

Recalling the derivation of (1), the unknown j emerges as the jump of tangen-
tial traces H×n of magnetic field solutions for the full Maxwell equations in the
interior and exterior of Ω. When stating Maxwell’s equations in the language
of differential forms [7, 14], which is doubtlessly the most concise formalism,
the magnetic field is modeled by a twisted 1-form. The same will hold for its
trace on Γ. This suggests that two-dimensional discrete twisted 1-forms built
upon a triangulation of Γ should be used to approximate j. Those are provided
by the boundary element counterparts of the 2D Raviart-Thomas H(div;Ω)-
conforming finite elements. We could also reason in an entirely discrete setting:
It is no longer a moot point that a suitable discretization of magnetic fields
is provided by H(curl;Ω)-conforming edge elements [42], which are discrete 1-
forms in 3D . Taking a look at their tangential trace, again, we discover Raviart-
Thomas elements mapped onto the surface [34]. Thus, we argue that the latter
offer a “natural” boundary element discretization of (1).

This discretization of (1) is commonplace in engineering codes. The first
theoretical examination was conducted by Bendali in [8, 9] based on a saddle
point formulation and elliptic regularization, which is inherently confined to
smooth surfaces. Using parametric variants of the Raviart-Thomas boundary
elements, he could establish asymptotic a-priori convergence estimates. Yet, all
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attempts to adapt this approach to non-smooth surfaces have fizzled. Recently,
Buffa, Costabel and Schwab succeeded in showing the convergence of a mixed
discretization of (1), which, however, is different from the “natural” scheme.

Obstructions to convergence estimates on non-smooth surfaces are threefold:
First, the correct function spaces and relevant surface differential operators have
to be properly characterized. For smooth domains, using smooth charts and
trace theorems for the entire scale of Sobolev spaces, this is not hard to do
[2, 22]. It becomes a challenge in a non-smooth setting, as is vividly conveyed in
the introduction of [20]. The first successes were achieved for piecewise smooth
Γ by A. Buffa and P. Ciarlet, Jr. in [16–18]. Lipschitz-boundaries were tackled in
[20]. We emphasize that only these results made possible the progress reported
in the current paper.

Secondly, with (1) we recognize the typical difficulty faced when dealing
with variational problems arising from Maxwell’s equations: Owing to the large
kernel of the surface divergence operator divΓ, it becomes impossible to assign
one term the role of a principal and, thus, the sesqui-linear form of (1) fails to
be coercive. A remedy was first found in the case of the Maxwell differential
equations [38, 40] and it is marked by the use of Hodge decompositions. Also for
boundary integral equations the idea is fruitful and was exploited many times
in order to recover coercive problems [3, 4, 19, 30].

Unfortunately, Hodge decompositions and the divergence conforming bound-
ary elements do not match easily. This is the third obstacle and it is also faced
in the analysis ofH(curl;Ω)-conforming finite element schemes. In that context
a solution has been devised, relying on judiciously juggling discrete and contin-
uous Hodge decompositions. This idea was successfully applied to the analysis
of multigrid methods for edge elements [6, 35, 37] and to the investigations into
“spurious free” discretizations of the Maxwell eigenproblem [10–12, 21, 41].

It is this idea that permits us to launch a successful attack on the discrete
problem (1) on non-smooth domains. Yet, it took sophisticated adjustments to
cope with the very poor regularity of the function spaces on Γ. Whereas for
problems on domains ⊂ R3 all the fields are at least square integrable, here
we find that surface vectorfields in H− 1

2 (divΓ,Γ) do not have this property. In
this paper we aim to elucidate how to handle this difficulty. Upon finishing this
paper we learned that S. Christiansen in [23] pursues a policy partly similar to
ours, but with a different objective and confined to smooth domains.

The paper is organized as follows: In the next section we summarize im-
portant results about spaces of tangential vectorfields on polyhedra. The third
section establishes the coercivity of the continuous variational problem with re-
spect to a Hodge decomposition ofH− 1

2 (divΓ,Γ). Then we introduce divergence
conforming boundary elements and review their main properties. In the fifth sec-
tion we define and scrutinize mappings that create a link between discrete and
continuous Hodge decompositions. The sixth section is dedicated to proving a
discrete inf-sup condition and asymptotic a-priori error estimates arising from
it.

It was our objective to keep the treatment as focused and self-contained as
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possible. To that end we forgo any generalizations and look at the simplest cases
only. By and large, generalizations are straightforward. Numerical experiments
can be skipped, since the popularity of the method gives ample evidence of its
efficacy.

2 Spaces

We assume that Ω is a Lipschitz-polyhedron (cf. introduction of [29]). In partic-
ular, we assume that the Lipschitz boundary Γ is the union of a finite number
of plane faces Γj , j = 1, . . . , NΓ, i.e. Γ̄ =

⋃
i Γ̄j . For convenience only we assume

further that Γ is simply connected (all assertions admit generalizations to the
multiply connected case invoking suitably modified Hodge-decompositions), i.e.
all its Betti numbers are zero. For each face Γj we find a constant unit normal
vector ni pointing into the exterior of Ω. These vectors can be blended into an
exterior unit normal vector field n ∈ L∞(Γ), defined almost everywhere on Γ.
In addition, we can fix two orthogonal unit vectors e1j , e

2
j that span the tangen-

tial plane for Γi. It goes without saying that each Γj can be identified with a
bounded subset of R2.

Then we can introduce two different tangential surface trace operators [20,
Sect. 2]: The tangential components trace πt is defined for u ∈ C∞(Ω̄) by
πtu(x) := n(x)× (u(x)×n(x)) for almost all x ∈ Γ. Accordingly, the tangential
surface trace γt can be computed through γtu(x) := u(x) × n(x). To begin
with, they supply functions in

L2
t(Γ) := {u ∈ (L2(Γ))3 ,u · n = 0} .

The usual Sobolev spaces of scalar functions and related functionals Hs(Γ),
and H−s(Γ) can be defined in the classical fashion for 0 ≤ s ≤ 1 [33, Sect. 1.3.3].
For larger indices s > 1 we resort to the piecewise definition

Hs(Γ) := {u ∈ H1(Γ), u|Γj
∈ Hs(Γj), j = 1 . . . , NΓ} .

This space is equipped with the natural graph norm

‖u‖2Hs(Γ) := ‖u‖2H1(Γ) +
NΓ∑

j=1

‖u‖2Hs(Γj)
.

Using the local coordinate systems introduced above, spaces of tangential vec-
torfields that feature certain Sobolev regularity in a piecewise sense, are readily
available

Hs
t(Γ) := {u ∈ L2

t(Γ), u|Γj
· eij ∈ Hs(Γj), j = 1, . . . , NΓ, i = 1, 2} .

By localization to the Γj we can define the tangential surface gradient gradΓ

[20, Def. 3.1]. Its continuity as a mapping Hs+1(Γ) (→ Hs
t(Γ), s ≥ 0, is

straightforward. The surface divergence is obtained as formal L2
t(Γ)-adjoint

3



divΓ : L2
t(Γ) (→ H−1

∗ (Γ), where H−s
∗ (Γ) := {φ ∈ H−s(Γ), 〈1,φ〉s,Γ = 0}.

The two operators can be used to define the surface Laplace-Beltrami oper-
ator ∆Γ : H1(Γ) (→ H−1

∗ (Γ) by ∆Γ := divΓ gradΓ. It will be a key tool as
theorem 5.3 of [19] reveals the following lifting property

Theorem 2.1 If f ∈ Hs
∗(Γ) for s ≥ −1, the (unique) solution u ∈ H1(Γ)/R

of −∆Γu = f belongs to H1+r(Γ) for 0 ≤ r ≤ min{s + 1, s∗}, where s∗ > 0
depends on the geometry of Γ in neighborhoods of vertices only.

In other words, with C̃ = C̃(t,Γ) and 0 ≤ r < min{1− s, s∗}

f ∈ Hs(Γ) , −∆Γu = f ⇒ ‖u‖Hr+1(Γ) ≤ C̃ ‖f‖Hs(Γ) . (2)

We adopt the convention that C and c stand for generic positive constants,
whose values might be different between different occurrences, but must not
depend on any concrete function. When tagged with a tilde on top, they may
only depend on ς , continuous function spaces, and the geometry of Γ. Hence,
the space

H− 1
2 (∆Γ,Γ) := {u ∈ H1(Γ), ∆Γu ∈ H− 1

2 (Γ)}

will actually be embedded in H1+r(Γ) for all 0 ≤ r ≤ min{ 3
2 , s

∗}. Based on
divΓ, we get the Hilbert spaces (s ≥ 0)

Hs(divΓ;Ω) := {u ∈ Hs
t(Γ), divΓu ∈ Hs(Γ)} .

Tangential traces of vectorfields in H1
loc(Ω) form the spaces H

1
2

|| (Γ) and

H
1
2

⊥(Γ) which were characterized in [17, Prop. 1.6]. Loosely speaking, H
1
2

|| (Γ)

contains the tangential surface vectorfields that are in H
1
2 (Γi) for each smooth

component Γi of Γ and feature a suitable “weak tangential continuity” across the
edges of the Γi. A corresponding “weak normal continuity” is satisfied by surface

vectorfields in H
1
2

⊥(Γ). For smooth Γ these spaces coincide with the spaces of

tangential surface vectorfields in H
1
2 (Γ). The associated dual spaces will be

denoted by H
− 1

2

|| (Γ) and H
− 1

2

⊥ (Γ), respectively, where the duality pairings are

taken with L2
t(Γ) as pivot space. We denote further by 〈·, ·〉||,Γ and 〈·, ·〉⊥,Γ

the respective duality pairings. A fundamental result of [17] asserts that the

tangential trace mapping πt : H1
loc(Ω) (→ H

1
2

|| (Γ) is continuous, surjective and

possesses a continuous right inverse (see proposition 1.7 in [17]).
One of the crucial insights gained in [17] and [20] was that the tangential

surface gradient gradΓ : H1(Γ) (→ L2
t(Γ) can be both extended and restricted

to continuous and injective linear operators

gradΓ : H̃
3
2 (Γ)/R (→ H

1
2

|| (Γ) , gradΓ : H
1
2 (Γ)/R (→ H

− 1
2

⊥ (Γ)

4



(cf. propositions 3.4 and 3.6 in [20]), where H̃
3
2 (Γ) is the space of traces of

functions in H2(Ω). Consequently, divΓ can also be read as continuous and
surjective operator

divΓ : H
− 1

2

|| (Γ) (→ H̃
− 3

2

∗ (Γ) , divΓ : H
1
2

⊥(Γ) (→ H
− 1

2
∗ (Γ) .

First, this is important for the definition of the space H− 1
2 (divΓ,Γ) introduced

in [17] by

H− 1
2 (divΓ,Γ) = {ζ ∈ H

− 1
2

|| (Γ), divΓζ ∈ H− 1
2 (Γ)} .

It is endowed with the natural graph norm ‖·‖
H

− 1
2 (divΓ,Γ)

.

The key role of Hodge decompositions was emphasized in the introduction.
The following theorem reveals the nature of the Hodge decomposition that we
will need. More details are given in [20, Sect. 5], [18], and [16].

Theorem 2.2 The space H− 1
2 (divΓ,Γ) has the direct and stable decomposition

H− 1
2 (divΓ,Γ) := gradΓ H

− 1
2 (∆Γ,Γ)⊕ (H− 1

2 (divΓ,Γ) ∩Ker(divΓ)) .

Moreover, when restricted to L2
t(Γ)∩H− 1

2 (divΓ,Γ) the decomposition is L2
t(Γ)-

orthogonal.

Any function in gradΓ H
− 1

2 (∆Γ,Γ)∩Ker(divΓ) must be the gradient of a func-
tion in the kernel of ∆Γ on Γ. Since Γ was assumed to be simply connected, the
latter only contains constants and therefore the decomposition is direct.

Next, pick some v ∈ H− 1
2 (divΓ,Γ). Since divΓ : H

1
2

⊥(Γ) (→ H
− 1

2
∗ (Γ) is

surjective, we can find ψ ∈ H
1
2

⊥(Γ) such that divΓψ = divΓv ∈ H
− 1

2
∗ (Γ). Define

ϕ ∈ H1(Γ)/R by

(gradΓ ϕ,gradΓ η)0;Γ = (ψ,gradΓ η)0;Γ ∀η ∈ H1(Γ)/R ,

that is, the unique weak solution of∆Γϕ = divΓψ. This yields the decomposition

v = gradΓ ϕ+ (ψ − gradΓ ϕ+ v −ψ) ,

whose second part is readily seen to be divergence-free. By the open mapping
theorem (divΓ surjective!) ψ can be chosen such that

‖ψ‖
H

1
2
⊥(Γ)

≤ C̃ ‖divΓψ‖
H− 1

2 (Γ)
.

This implies

‖gradΓ ϕ‖L2(Γ) ≤ ‖ψ‖L2(Γ) ≤ ‖ψ‖
H

1
2
⊥(Γ)

≤ C̃ ‖divΓψ‖
H− 1

2 (Γ)
,

which confirms the stability of the decomposition. For v ∈ L2
t(Γ)∩H

− 1
2 (divΓ,Γ)

the L2
t(Γ)-orthogonality is immediate from the definition of divΓ.
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In the sequel we write

X := gradΓ H
− 1

2 (∆Γ,Γ) and N := H− 1
2 (divΓ,Γ) ∩Ker(divΓ).

From the stability of the Hodge decomposition we conclude that both X and
N are closed subspaces of H− 1

2 (divΓ,Γ). If v ∈ X satisfies divΓv ∈ Hs(Γ) for
some s ≥ − 1

2 then for all 0 ≤ r ≤ min{s+ 1, s∗}

v ∈ Hr
t(Γ) and ‖v‖Hr(Γ) ≤ C̃ ‖divΓv‖Hs

t
(Γ) ,

with a constant C̃ = C̃(r, s). v ∈ X means v = gradΓ ϕ for some ϕ ∈ H1(Γ).
By definition of X we see ∆Γϕ = divΓv, and the assertion follows from theorem
2.1.

In particular, we conclude

‖v‖
H

− 1
2

|| (Γ)
≤ ‖v‖L2(Γ) ≤ C̃ ‖divΓv‖

H− 1
2 (Γ)

, ∀v ∈ X . (3)

3 Continuous variational problem

We recall the scalar single layer potential ΨV
ς : H− 1

2 (Γ) (→ H1
loc(R

3) for the
Helmholtz operator −∆ + ς2 [39, Ch. 9]. Its relative, the vectorial Helmholtz

single layer potential ΨA
ς (v) for v ∈ H

− 1
2

|| (Γ) is given by

ΨA
ς (v)(x) :=

∫

Γ

Φς(x,y)v(y) dS(y) , Φς(x,y) :=
exp(iς |x− y|

4π|x− y|
.

For every v ∈ H
− 1

2

|| (Γ) it defines a function inH1
loc(R

3) and, as a consequence of
the trace theorem, we can introduce the vectorial single layer boundary operator

Aς : H
− 1

2

|| (Γ) (→ H
1
2

|| (Γ) , A := πt ◦Ψ
A
ς

and the scalar single layer integral operator

Vς : H
−1/2(Γ) (→ H

1
2 (Γ) , V := γ ◦ΨV

ς ,

where γ : H1
loc(R

3) (→ H
1
2 (Γ) is the standard trace operator. In the case ς = 0

these operators are coercive. The operators V0 and A0 are continuous, selfad-
joint and elliptic, i.e. there are constants c̃1, c̃2 > 0 only depending on Γ such

that for all µ ∈ H− 1
2 (Γ) and all µ ∈ H

− 1
2

|| (Γ)

〈V0µ, µ〉 1
2
,Γ ≥ c̃1 ‖µ‖

2

H− 1
2 (Γ)

, 〈A0µ,µ〉 1
2
,Γ ≥ c̃2 ‖µ‖

2

H
− 1

2
||

(Γ)
.

See [27] or corollary 8.13 in [39], and theorem 6.2 in [36] or proposition 4.1 in
[19].
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Along with the following result this yields the coercivity of Vk and Ak

(compare the proof of theorem 4.4 in [19]). The operators δVς := Vς − V0 :

H− 1
2 (Γ) (→ H

1
2 (Γ) and δAς := Aς − A0 : H

− 1
2

|| (Γ) (→ H
1
2

|| (Γ) are compact.

We denote by Gς the Green’s operator in R3 for the Helmholtz equation, de-
fined by (Gςϕ)(x) =

∫
y∈R3 Φς(x,y)ϕ(y)dy for ϕ ∈ C∞

0 (R3). By the continuity

γ : Hs
loc(R

3) → Hs−1/2(Γ), s ∈ (1/2, 3/2) of the trace map (Lemma 3.6 in [27]),
we find δVς = γ ◦ (Gς − G0) ◦ γ′ : H−1/2(Γ) → H1/2(Γ) compactly, since the
kernel Φς(x,y) − Φ0(x,y) of the operator Gς − G0 belongs to C∞(R3 × R3).
The vectorial case can be treated analogously.

The main tool in the analysis of the variational problem (1) are Hodge de-
compositions according to theorem 2.2 (cf. [19, Sect. 4.3]). We Hodge-decompose
trial and test functions j := j⊥+ j0, j⊥ ∈ X, j0 ∈ N, and v := u⊥+v0, v⊥ ∈ X,
v0 ∈ N in (1). This way, we end up with the equivalent variational problem:
find j⊥ ∈ X, j0 ∈ N such that for all v⊥ ∈ X, v0 ∈ N

〈
VςdivΓj⊥, divΓv⊥

〉
1
2
,Γ
− ζ2

〈
Aςj

⊥,v⊥
〉
||,Γ

− ζ2
〈
Aςj

0,v⊥
〉
||,Γ

= f(v⊥) ,

ζ2〈Aςj⊥,v0〉||,Γ + ζ2〈Aςj0,v0〉||,Γ = f(v0) .

(4)

Here, 〈., .〉||,Γ denotes the H
1
2

|| (Γ)×H
− 1

2

|| (Γ) duality pairing.
The natural setting for this formulation is the Hilbert space G := X ⊗ N

which we endow with the graph norm
∥∥(v⊥,v0)

∥∥2
G
:=

∥∥v⊥
∥∥2
H

− 1
2 (divΓ,Γ)

+
∥∥v0

∥∥2
H

− 1
2

|| (Γ)
, (v⊥,v0) ∈ G .

Thanks to theorem 2.2 the space G thus defined is isomorphic to H− 1
2 (divΓ,Γ)

algebraically and topologically.
We denote by a : G × G (→ C the sesqui-linear form related to (4) which is

continuous

|a(ϕ,η)| ≤ C̃a ‖ϕ‖G ‖η‖G ∀ϕ,η ∈ G

Then we can express the continuous variational problem (4) as: find ι ∈ G such
that

a(ι,η) = f(η) ∀η ∈ G , (5)

where f(η) := f(v⊥) + f(v0), η := (v⊥,v0). We point out that (5) is entirely

equivalent to (1) in the sense that, if j ∈ H− 1
2 (divΓ,Γ) is a solution of (1),

then ι := (j⊥, j0) ∈ G will solve (5). In particular, assertions on existence and
uniqueness of solutions of (1) instantly carry over to (5).

To establish strong ellipticity of the form a(·, ·), we write a = a0+ k0, where
k0 : G × G (→ C reads

k0((j
⊥, j0), (v⊥,v0)) :=

〈
δVςdivΓj

⊥, divΓv
⊥
〉

1
2
,Γ

− ς2
〈
δAςj

⊥,v⊥
〉
||,Γ

−

− k2
〈
δAς j

0,v⊥
〉
||,Γ

+ ς2〈δAςj⊥,v0〉||,Γ + ς2〈δAςj0,v0〉||,Γ ,

7



and where a0 : G×G (→ C emerges from a by replacing Vk → V0 and Ak → A0.
The next lemma is crucial for establishing the strong ellipticity of the variational
problem (5). The operator L : X (→ X′, defined by Lu⊥(z⊥) :=

〈
A0u

⊥, z⊥
〉
||,Γ

,

for all u⊥, z⊥ ∈ X, is compact. Consider a bounded sequence (u⊥
n )n∈N

in X.
By Lemma 2 it is also bounded in Ht

t(Γ). By Rellich’s theorem we can find a
subsequence, also designated by (u⊥

n )n that converges in L2
t(Γ). Observe that

due to the continuity of the vectorial single layer boundary integral operator

∥∥Lz⊥
∥∥
X′ = sup

v∈X

(Lz⊥)(v)

‖v‖
H

− 1
2 (divΓ,Γ)

≤ sup
v∈X

〈
A0z

⊥,v
〉
||,Γ

‖v‖
H

− 1
2

||
(Γ)

≤

≤
∥∥A0z

⊥
∥∥
H

1
2
||
(Γ)

≤ C̃
∥∥z⊥

∥∥
H

− 1
2

||
(Γ)

≤ C̃
∥∥z⊥

∥∥
L2(Γ)

.

Thus (Lu⊥
n )n will converge in X′.

To establish the strong ellipticity of the form a(·, ·), we further split a0(·, ·)
according to a0 = d− k1 where the sesqui-linear form k1 : G×G (→ C is defined
by k1((j⊥, j0), (v⊥,v0)) := ζ2

〈
A0j

⊥,v⊥
〉
||,Γ

, and d : G × G (→ C reads

d((j⊥, j0), (v⊥,v0)) :=
〈
V0divΓj

⊥, divΓv
⊥
〉

1
2
,Γ
− ς2

〈
A0j

0,v⊥
〉
||,Γ

+

+ ς2〈A0j⊥,v0〉||,Γ + ς2〈A0j0,v0〉||,Γ .

Theorem 3.1 The sesqui-linear form a : G × G (→ C is coercive, that is, it
can be written as the sum of a G-elliptic sesqui-linear form d and a compact
sesqui-linear form k : G × G (→ C.

Recall a = a0 + k0. Lemma 3 reveals that k0 is a compact perturbation of a0.
Further, a0 = d− k1 and Lemma 3 implies that k1 is a compact perturbation of
d. From the ellipticity of the single layer boundary integral operators in lemma
3 we immediately get

|d((v⊥,v0), (v⊥,v0))| = |
〈
V0divΓv

⊥, divΓv
⊥
〉

1
2
,Γ
+ ς2〈A0v0,v0〉||,Γ| ≥

≥ c̃1
∥∥divΓv⊥

∥∥2
H− 1

2 (Γ)
+ c̃2ς

2
∥∥v0

∥∥2
H

− 1
2

|| (Γ)

for all (v⊥,v0) ∈ G. Now, we can appeal to (3) and obtain

|d(ϕ,ϕ)| ≥ c̃d ‖ϕ‖
2
G ∀ϕ ∈ G .

Setting k = k0 − k1 yields a = d+ k with a principal part d which is positive on
G and a compact perturbation k, as claimed.

Since we take existence of solutions of (1) (and (5)) for granted, Fredholm
theory also provides uniqueness and we infer the following inf-sup condition for
a(·, ·)

sup
ν∈G

|a(ϕ,ν)|

‖ν‖G
≥ c̃a ‖ϕ‖G ∀ϕ ∈ G . (6)
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4 Boundary element spaces

We equip Γ with a family of shape-regular, quasi-uniform triangulations (Γh)h>0
[24] comprising only flat triangles. The parameter h designates the meshwidth,
that is, the length of the longest edge. Let H stand for the collection of mesh-
widths occurring in (Γh)h∈H

and assume that H ⊂ R+ forms a decreasing se-
quence converging to zero. The set Th will include all triangles of Γh, and Eh
stands for the set of edges of Γh.

Using the local coordinate systems on the faces Γj , j = 1, . . . , NΓ, each
T ∈ Th can be embedded in R2. Then we can define the local spaces (cf. [43])

RT 0(T ) := {x (→ a+ βx, a ∈ R
2, β ∈ R} , T ∈ Th .

They give rise to the global boundary element space

RT 0(Γh) := {v ∈ H(divΓ;Γ), v|T ∈ RT 0(T )∀T ∈ Th} .

Keep in mind that this definition is based on a weak notion of divΓ. So Green’s
formula applied to the surface triangles can be used to confirm that the “edge-
normal” components of the tangential vectorfields in RT 0(Γh) must be contin-
uous across inter-element edges. This renders the following degrees of freedom
well defined

φe : RT 0(Γh) (→ C , φe(vh) :=

∫

e

(vh × nj) · d*s , e ∈ Eh ,

where nj is the normal of a face Γj in whose closure e is contained. Given the
degrees of freedom we have nodal interpolation operators Πh onto RT 0(Γh) at
our disposal that, to begin with, can be declared for {Γj}-piecewise continuous
tangential surface vectorfields, whose edge-normal components are continuous,
too. It turns out that this is not enough and we badly need to apply Πh to
less regular surface vectorfields. A first step is the following lemma (cf. formula
(3.40) in [15]). For any s > 0 the local interpolation operator ΠT : Hs(T ) ∩
H(div;T ) (→ RT 0(T ), T ∈ Th, is continuous. Only the case s ≤ 1

2 is of
interest. We consider a single degree of freedom on T : Pick an edge e ⊂ ∂T and

regard its characteristic function χe as an element in W
1− 1

q
q (e) for q := 1+s. As

1 < q < 2 theorem 1.4.5.2 of [33] reveals that extension by zero of χe onto all of

∂T will provide a function ψ̃ in W
1− 1

q
q (∂T ). Then we can use the trace theorem

[33, Thm. 1.5.1.3] to extend ψ̃ to a function ψ ∈ W 1
q (T ) in a continuous fashion.

Using Green’s formula, extended by continuity, we estimate for any smooth
vectorfield v

∫

e

v · ne ds =

∫

∂T

ψ̃v · n ds =

∫

T

gradψ · v + ψ div v dx ≤

≤ ‖gradψ‖Lq(T ) ‖v‖Lp(T ) + ‖ψ‖L2(T ) ‖div v‖L2(T ) ,
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where p is the exponent conjugate to q, i.e. p−1+ q−1 = 2. The Sobolev embed-
ding theorem [1, Thm. 4.5] gives the continuous inclusions

W 1
q (T ) ↪→ )L2(T ) , Hs(T ) ↪→ Lp(T ) .

This implies, with C̃ = C̃(s, T )

∫

e

v · ne ds ≤ C̃
(
‖gradψ‖2Lq(T ) + ‖ψ‖2W 1

q (T )

) 1
2
(
‖v‖2Hs(T ) + ‖div v‖2L2(T )

) 1
2

for all v ∈ Hs(T )∩H(div;T ) and the assertion of the theorem, since ψ is fixed.
The importance of the interpolation operator Πh is due to the commuting

diagram property [15, Prop. 3.7]:

divΓΠhv = QhdivΓv ∀v ∈ H(div;Γ) ∩Dom(Πh) , (7)

where Qh is the L2(Γ)-orthogonal projection onto the space

Q0(Γh) := {µ ∈ L2(Γ), µ|T = const., ∀T ∈ Th} .

Identity (7) is a simple consequence of the definition of the degrees of freedom
and Gauß’ theorem applied to elements. An important consequence is that

divΓv = 0 ∧ v ∈ Dom(Πh) ⇒ divΓ(Πhv) = 0 .

It also reveals that divΓRT 0(Γh) = Q0(Γh).
Remark. The reader should be aware that we have restricted ourselves to

lowest order Raviart-Thomas elements only for the sake of simplicity. All other
H(div;Ω)-conforming finite elements in 2D that provide valid discrete 1-forms
could be used as well. A rich collection is offered in [15, Sect. III.3]. All arguments
in the sequel will carry over to these elements with only slight alterations.

The Raviart-Thomas elements form an affine family of finite elements in the
sense of [24] with respect to Piola’s transformation [15, §III.1.3]

PT : L2(T̂ ) (→ L2
t(T ) , PT (v̂h)(x) := | detDΦT |

−1DΦT v̂h(Φ
−1
T (x)), x ∈ T ,

where T̂ is the reference triangle T̂ := {x ∈ R2, x1, x2 > 0, x1+x2 < 1}, T ∈ Th,
and ΦT the unique affine mapping that takes T̂ to T . The Piola transform pre-
serves the values of degrees of freedom. Shape-regularity and quasi-uniformity
guarantee that | detDΦT | 4 h2 and ‖DΦT ‖ 4 h uniformly in T ∈ Th and
h ∈ H. Here and in the sequel, we are using the symbol 4 to indicate equiva-
lence up to constant that may depend on Γ and the shape regularity of {Γh}h,
but is independent of h. The same should be true for all generic constants unless
they bear a tilde. Now, using standard affine equivalence techniques, the effect
of Piola’s transform on fractional Sobolev norms can be controlled: The Piola
transform PT , T ∈ Th, satisfies for 0 ≤ s ≤ 1

|û|
Hs(T̂ ) 4 hs |PT û|Hs(T ) ∀û ∈ Hs(T̂ ) ,
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with constants only depending on the shape-regularity of T . See lemma 3 in
[43] for the cases s = 0 and s = 1. The rest follows by interpolation.

Remark. Using Piola’s transform one easily constructs parametric
divergence-conforming surface elements [9, 31] for piecewise smooth Γ. Thus,
our approach can be instantly extended to curved Lipschitz-polyhedra.

5 Hodge mapping

Coercivity of the sesqui-linear form related to (1) could only be established in the
split space G arising from the Hodge decomposition. This means that, though
the boundary element spaces RT 0(Γh) perfectly fit (1), theorem 3.1 gives no
immediate information about the convergence of the Galerkin discretization.
The reason is that we needed conforming finite element subspaces of both X

and N to apply the usual results (cf. [45, Sect. 2.3]) about the convergence of
Galerkin schemes for coercive variational problems.

A discrete L2
t(Γ)-orthogonal Hodge decomposition

RT 0(Γh) = Xh ⊕Nh , Nh := Ker(divΓ) ∩RT 0(Γh) , (8)

yields Nh ⊂ N, but we cannot expect Xh ⊂ X. In short, Xh provides only
a non-conforming discretization of X. On the other hand, no modification of
the sesqui-linear form a(·, ·) is necessary, if we decided to pose the variational
problem (5) over Gh := Xh × Nh. This is simply due to the fact that every-

thing remains perfectly conforming in H− 1
2 (divΓ,Γ). In particular, Gh can be

equipped with the norm ‖·‖G . However, embedding and regularity properties of
X are crucial and the space Xh lacks them. We deal with this by introducing
semi-discrete spaces arising from the continuous Hodge decomposition of the
discrete boundary element space: we split vh ∈ RT 0(Γh) in two ways

vh =

{
v⊥
h + v0

h , v⊥
h ∈ Xh, v0

h ∈ Nh ,

v⊥ + v0 , v⊥ ∈ X, v0 ∈ N .

The discrete field v⊥
h is the one realized in the computation, the semidiscrete

field v⊥ has desirable properties. We have labeled it semi-discrete because
divΓv⊥ = divΓvh is still piecewise constant and hence v⊥ still depends on
the triangulation. To bridge the gap between v⊥

h and v⊥ we need the following
device (cf. Def. 4.1 in [37]): We define the Hodge mapping Hh : RT 0(Γh) (→ X

by

Hhvh ∈ X : divΓHhvh := divΓvh , vh ∈ RT 0(Γh) .

Owing to (3) this is a valid definition the Hodge mappings are uniformly
continuous with respect to h ∈ H. The Hodge mapping creates the desired link
betweenXh and X (cf. Lemma 4.2 in [37]): For any s ≥ − 1

2 the Hodge mapping

11



satisfies the estimate

‖vh −Hhvh‖L2(Γ) ≤ Chr ‖divΓvh‖Hs(Γ) ∀vh ∈ Xh .

with 0 ≤ r ≤ min{s+ 1, 1, s∗} and constants only depending on s, r,Γ, and the
shape-regularity of the surface triangulations. We follow the proof of lemma
4.2 from [37], pick uh ∈ RT 0(Γh), and focus on an single triangle T ∈ Γh. Take
Hhuh|T to the reference element and set ŵ := P−1

T Hhuh By (2) ŵ ∈ Ht(T̂ ),
so that the assumptions of lemma 4 are satisfied and we have for any eligible t

‖Π̂ŵ‖
L2(T̂ ) ≤ C̃(r) (‖ŵ‖

Hr(T̂ ) + ‖div ŵ‖L2(T̂ )) ,

where Π̂ is the local interpolation operator on T̂ . Remember that divΓHhuh is
piecewise constant, which also renders div ŵ constant. Exploiting the equiva-
lence of all norms on finite dimensional spaces, we can easily bound ‖div ŵ‖L2(T̂ )

and arrive at

‖Π̂ŵ‖
L2(T̂ ) ≤ C̃(r) ‖ŵ‖

Hr(T̂ ) .

Constant vectorfields on T̂ are preserved by the interpolation Π̂. Thus, for any
p ∈ R2

‖ŵ− Π̂ŵ‖
L2(T̂ ) = ‖ŵ− p− Π̂(ŵ − p)‖

L2(T̂ )≤ ‖ŵ− p‖
L2(T̂ ) + C̃(r) ‖ŵ − p‖Hr(T̂ ) .

From the definition of the fractional Sobolev norm [33, Def. 1.3.2.1] and 0 ≤
r ≤ 1, it is immediate that

‖ŵ− p‖2Hr(T̂ ) = ‖ŵ− p‖2
L2(T̂ ) + |ŵ|2Hr(T̂ ) .

As, according to Prop. 6.1 in [32], a Bramble-Hilbert-type estimate of the form

inf
c∈R

‖f − c‖L2(T̂ ) ≤ C̃(r) |f |Hr(T̂ ) ∀f ∈ Hr(T̂ ) .

also holds in fractional Sobolev spaces, we end up with the estimate

‖ŵ− Π̂ŵ‖
L2(T̂ ) ≤ C̃(r) |ŵ|Hr(T̂ ) .

Since interpolation and the Piola transform commute, we may use lemma 4 to
pull the estimate back to element T

‖Hhuh − ΠhHhuh‖L2(T ) ≤ Chr ‖Hhuh‖Hr(T ) .

At this stage shape-regularity starts affecting the constants. Squaring and sum-
ming up over all elements yields

‖Hhuh −ΠhHhuh‖L2(Γ) ≤ Chr ‖Hhuh‖Hr(Γ) ,
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which, in light of lemma 2, involves

‖Hhuh −ΠhHhuh‖L2(Γ) ≤ Chr ‖divΓuh‖Hs(Γ) . (9)

By the commuting diagram property of Πh we conclude from divΓ(vh−Hhvh) =
0 that also divΓ(vh−ΠhHhvh) = 0. This means vh−ΠhHhvh ∈ Nh and makes
it possible for us to apply Nedelec’s trick [42, Sect. 3.3]

‖uh −Hhuh‖
2
L2(Γ) = (uh −Hhuh,uh −ΠhHhuh +ΠhHhuh −Hhuh)0;Γ =

= (uh −Hhuh,ΠhHhuh −Hhuh)0;Γ .

Together with (9) this shows the assertion of the lemma.
Now, we fix t := min{ 1

2 , s
∗} and keep it constant for the remainder of this

paper. A legal choice for r in the previous lemma is r = t for s = − 1
2 and

we denote the associated constant by C3. The decomposition RT 0(Γh) =

Xh ⊕ Nh is uniformly H− 1
2 (divΓ,Γ)-stable. For uh ∈ Xh we can use the

Hodge projection and the previous lemma to estimate

‖uh‖
H

− 1
2

||
(Γ)

≤ ‖uh −Hhuh‖L2(Γ) + ‖Hhuh‖
H

− 1
2

||
(Γ)

≤ C(ht + 1) ‖divΓuh‖H− 1
2 (Γ)

,

as Hhuh ∈ X. Since divΓHhuh = divΓuh and H is bounded, the proof is fin-
ished.

We shall also require the following right inverse of the Hodge mapping. We
define the linear continuous mapping Th : X (→ Xh by

Thw ∈ Xh : divΓThw = Q− 1
2
divΓw ∀w ∈ X ,

where Q− 1
2
: H− 1

2 (Γ) (→ Q0(Γh) is the H− 1
2 (Γ)-orthogonal projection.

Note that only due to the preceding stability result this definition makes
real sense. Besides, lemma 5 guarantees that the family of operators (Th)h∈H

is
uniformly continuous, as

‖Thw‖
H

− 1
2

|| (Γ)
≤ C ‖divΓThw‖

H− 1
2 (Γ)

≤ C ‖divΓw‖
H− 1

2 (Γ)
.

For fixed w ∈ X we have

lim
h→0

‖w − Thw‖
H

− 1
2 (divΓ,Γ)

= 0 .

We resort to the same trick as in the proof of lemma 5 and useHhThw−w ∈ X

‖Thw −w‖
H

− 1
2

||
(Γ)

≤ ‖HhThw − Thw‖L2(Γ) + ‖HhThw −w‖
H

− 1
2

||
(Γ)

≤ C3h
t ‖divΓThw‖

H− 1
2 (Γ)

+ C̃ ‖divΓ(HhThw −w)‖
H− 1

2 (Γ)

≤ Cht ‖divΓw‖
H− 1

2 (Γ)
+ C̃ inf

µh∈Q0(Γh)
‖divΓw − µh‖

H− 1
2 (Γ)

.

As
⋃

h∈H
Q0(Γh) is dense in L2(Γ), which is dense in H− 1

2 (Γ), the lemma holds
true.
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6 Stability of the Galerkin scheme

Galerkin discretization of (5) leads to the discrete variational problem: Seek
ιh ∈ Gh such that

a(ιh,ηh) = f(ηh) ∀ηh ∈ Gh . (10)

From theorem 3.1 we saw that problem (5) is strongly elliptic, i.e. a = d + k,
with a G-elliptic sesqui-linear form d and a G-compact form k. Discretization
of (5) by a dense family of finite dimensional subspaces would therefore imply
quasioptimal asymptotic convergence of the approximate solutions. The problem
here is that Gh is a truly non-conforming approximation space, i.e Gh 5⊂ G.
Therefore, coercivity in the discrete setting must be established by a separate
argument. For the proof, we draw on an idea of A. Schatz [44].

To get compact formulas, we replace bilinear forms by the associated Riesz
operators. First, A : G (→ G′ is associatd to the sesqui-linear form a. Next, the
operator K : G (→ G′ is associated with the sesqui-linear form k defined in the
proof of theorem 3.1. Both operators are continuous from G (→ G′. However,
since Gh is non-conforming, these operators are not defined on Gh a priori.

We will use Hodge mappings on Gh which are defined through

Hh : Gh (→ G , Hh(v
⊥
h ,v

0
h) := (Hhv

⊥
h ,v

0
h) ∈ G , (v⊥

h ,v
0
h) ∈ Gh .

Lemma 5 ensures the uniform boundedness in h of this family of operators. We
also define the extension Th : G (→ Gh of the right inverse of the Hodge map
Th, h ∈ H in Definition 5 to G:

Th(v
⊥,v0) := (Thv

⊥,Q
− 1

2

h v0) ∈ Gh (v⊥,v0) ∈ G ,

where Q
− 1

2

h is the H
− 1

2

|| (Γ)-orthogonal projection N (→ Nh. The operator Th is

well defined, since Nh ⊂ N and N is a closed subspace of H
− 1

2

|| (Γ). Density of⋃
h∈H

Nh in N and lemma 5 confirm that

lim
h→0

‖ϕ−Thϕ‖G = 0 ∀ϕ ∈ G . (11)

Next, we consider the operator S : G′ (→ G defined as the solution operator of
the G-elliptic variational problem

d(Sη′,ϕ) = η′(ϕ) ∀ϕ ∈ G, η′ ∈ G′ .

Continuity and ellipticity of the sesqui-linear form d give

C̃−1
d ‖η′‖G′ ≤ ‖Sη′‖G ≤ c̃−1

d ‖η′‖G′ ∀η′ ∈ G′ , (12)

where Cd := ‖d‖. Note that also the operator S is confined to the continuous
setting. There is a function b : H (→ R+ with b(h) → 0 as h → 0 such that

‖(Th − Id)SKη‖G ≤ b(h) ‖η‖G ∀η ∈ G .

14



Set B1(G) := {ϕ ∈ G : ‖ϕ‖G ≤ 1}. As K : G (→ G′ is compact, the set
KB1(G) is precompact in G′. Thanks to the continuity of S the closure w.r.t.
the ‖·‖G-norm

M := SKB1(G)

is compact. Pick some ε > 0 and write Bε(ν) for the ε-neighborhood of ν
in G. We can find finitely many ν1, . . . ,νL, L = L(ε) ∈ N, in M such that
M ⊂

⋃
l Bε(νl). From (11) we learn that there is h0 = h0(ε) ∈ H such that

‖Thνl − νl‖G ≤ ε ∀h < h0, l = 1, . . . , L .

For any η ∈ M there exists an νl such that η ∈ Bε(νl). Hence

‖Thη − η‖G ≤ ‖Thη −Thνl‖G + ‖Thνl − νl‖G + ‖νl − η‖G ≤ (‖Th‖G (→G + 2)ε ,

if h < h0. Undoing the substitutions, we get

‖(Th − Id)SKη‖G ≤ (‖Th‖G (→G + 2)ε ∀η ∈ B1(G), h < h0 .

A homogeneity argument finishes the proof.
We prove the discrete inf-sup condition for the form a(·, ·). For any ηh ∈ Gh

we set
ϕh := (Id−ThSKHh)ηh ∈ Gh.

The uniform boundedness with respect to h of the operators involved ensures
that there is C4 > 0 independent of h ∈ H and ηh such that

‖ϕh‖G ≤ C4 ‖ηh‖G . (13)

We therefore estimate

|a(ηh,ϕh)| = |a(ηh, (Id−ThSKHh)ηh)|

= |a(ηh, ((Id−Th)(SKHh) + (Id− SKHh))ηh)|

≥ |a(ηh, (Id− SKHh)ηh)|− |a(ηh, (Id−Th)SKHhηh)|

≥ |a(ηh, (Id− SKHh)ηh)|− C̃a ‖ηh‖G ‖(Id−Th)SKHhηh‖G

≥ |a(ηh, (Id− SKHh)ηh)|− b(h)C̃a ‖ηh‖
2
G

the final inequality being a consequence of lemma 6. We further estimates the
first term

|a(ηh, (Id− SKHh)ηh)| = |a(ηh, ((Id−Hh) + (Id− SK)Hh)ηh)|

≥ |a(ηh, (Id− SK)Hh)ηh)|− |a(ηh, (Id−Hh)ηh)|

≥ |a(ηh, S(S
−1 −K)Hhηh)|− C̃a ‖ηh‖G ‖(Id−Hh)ηh‖G

≥ |a(ηh, S(S
−1 −K)Hhηh)|− C̃aC3h

t ‖ηh‖
2
G ,

by lemma 5.
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Now we note that ψ := S(S−1−K)λ ∈ G, λ ∈ G, satisfies !!! VORZEICHEN
: a = d+ k Kann durch geeignete Wahl von ϕh erreicht werden ohne Argument
zu aendern.

d(ψ,ν) =
〈
(S−1 −K)λ,ν

〉
= d(λ,ν)− k(λ,ν) = a(λ,ν)

for all ν ∈ G. In short, S(S−1 − K) = SA. This enables us to continue the
estimates

|a(ηh, S(S
−1−K)Hhηh)| = |a(ηh −Hhηh +Hhηh, SAHhηh)|

≥ |a(Hhηh, SAHhηh)|− C̃a ‖(Id−Hh)ηh‖G ‖SAHhηh‖G

≥ |d(SAHhηh, SAHhηh)|− C̃2
a c̃

−1
d C3h

t ‖ηh‖
2
G .

For the last time we target the first term

|d(SAHhηh, SAHhηh)| ≥ c̃d ‖SAHhηh‖
2
G ≥ c̃dC̃

−1
d ‖AHhηh‖

2
G′

≥ c̃dC̃
−1
d c̃a ‖ηh − (Id−Hh)ηh‖

2
G

≥ c̃4(‖ηh‖
2
G − ‖(Id−Hh)ηh‖

2
G)

≥ c̃4 ‖ηh‖
2
G − c̃4C3h

t ‖ηh‖
2
G ,

with c̃4 := c̃dC̃
−1
d c̃a. Summing up, we have obtained

|a(ηh,ϕh)| ≥
(
c̃4 − (c̃4 + C̃2

a c̃
−1
d + C̃a)C3h

t − C̃ab(h)
)
‖ηh‖

2
G .

If h < h∗ with (c̃4 + C̃2
a c̃

−1
d + C̃a)C3ht

∗ + C̃ab(h∗) < 1
2 c̃4, we obtain the lower

bound

|a(ηh,ϕh)| ≥
1

2
c̃4 ‖ηh‖

2
G ∀h < h∗ .

This is valid for any ηh. Recalling (13), an immediate consequence is the discrete
inf-sup condition

sup
ϕh∈Gh

|a(ηh,ϕh)|

‖ϕh‖G
≥

c̃4
2C4

‖ηh‖G ∀ηh ∈ Gh, h < h∗

Based on this discrete stability condition, the stability of the continuous problem
and the continuity of the bilinear forms involved, we obtain quasioptimality of
the sequence of Galerkin solutions.

Theorem 6.1 There exists a constant C > 0 only depending on Γ, ς, and the
shape-regularity of the triangulations Γh such that the discrete problem (10) has
a unique solution ιh and the family {ιh}h converges quasioptimally:

‖ι− ιh‖G ≤ C inf
ϕh∈Gh

‖ι−ϕh‖G ,

provided that h < h∗ with a sufficiently small h∗.
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7 Convergence Rates

Eventually, we are interested in getting a convergence estimate depending on
the smoothness of the continuous solution j of (1) only. The next lemma is a
first step towards this goal. If j ∈ Hσ(divΓ;Ω), 0 < σ, and h < h∗, then

‖ι− ιh‖G ≤ C
(
‖j−Πhj‖

H
− 1

2
|| (Γ)

+ hr ‖divΓj‖Hσ(Γ)

)

with r = min{1, s∗}. Lemma 4 tells us that j is sufficiently regular to render
Πhj well defined. Then we take a look at the Hodge decompositions

j = j⊥ + j0 , j⊥ ∈ X, j0 ∈ N and Πhj = v⊥
h + v0

h , v⊥
h ∈ Xh, v

0
h ∈ Nh .

The commuting diagram property (7) yields, with a constant merely depending
on the shape regularity of {Γh}h,
∥∥divΓj⊥ − divΓv

⊥
h

∥∥
H− 1

2 (Ω)
= ‖divΓj− divΓΠhj‖

H− 1
2 (Ω)

= ‖(Id−Qh)divΓj‖
H− 1

2 (Ω)

≤ Chmin{ 3
2
, 1
2
+σ} ‖divΓj‖Hσ(Γ) .

This is a consequence of approximation estimates for the L2(Γ)-orthogonal pro-
jections Qh in negative norms, which can be verified by duality techniques. We
rely on the above estimate and lemma 5 to get

∥∥j⊥ − v⊥
h

∥∥
H

− 1
2

||
(Γ)

≤
∥∥j⊥ −Hhv

⊥
h

∥∥
L2(Γ)

+
∥∥Hhv

⊥
h − v⊥

h

∥∥
L2(Γ)

≤ C̃
∥∥divΓj⊥ − divΓv

⊥
h

∥∥
H− 1

2 (Ω)
+ Chr ‖divΓj‖Hσ(Γ)

≤ Chr ‖divΓj‖Hσ(Γ) .

In the course of the estimates both (3) and lemma 5 have been used. By the
triangle inequality

∥∥j0 − v0
h

∥∥
H

− 1
2

||
(Γ)

≤ ‖j−Πhj‖
H

− 1
2

||
(Γ)

+
∥∥j⊥ − v⊥

h

∥∥
H

− 1
2

||
(Γ)

≤ ‖j−Πhj‖
H

− 1
2

||
(Γ)

+ Chr ‖divΓj‖Hσ(Γ) .

Taking into account theorem 6.1 and the definition of the graph norm ‖·‖G the
assertion follows.

Unfortunately, plain interpolation error estimates based on affine equivalence
techniques and a Bramble-Hilbert type result (cf. proof of lemma 5) leave us
with the suboptimal estimate

‖j−Πhj‖
H

− 1
2

|| (Γ)
≤ hmin{1,σ} ‖j‖Hσ(Γ) ,

because interpolation thwarts duality estimates. An improvement is only pos-
sible, if we can lift interpolation off the boundary. This by no means wishful
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thinking, because j is the jump [γtH]Γ of the tangential traces of magnetic
field solutions of Maxwell boundary value problems in Ω and its complement
Ω′ := R3 \ Ω. If the source term (incident wave) has has minimal smoothness,
regularity theory for solutions of Maxwell’s equations [28] shows that

H ∈ H
1
2
+σ(curl;Ω ∪ Ω′) , curlH ∈ H

1
2
+σ(curl;Ω ∪ Ω′) , (14)

for some σ > 0, where

Hσ(curl;Ω) := {V ∈ Hσ
loc(Ω), curlV ∈ Hσ

loc(Ω)} .

Prerequisite to exploiting the information about H is an “extension” of the
surface triangulations. We call the family of surface meshes {Γh}h∈!

extensible,
if there is R > 0 such that Ω is contained in a cube BR with diameter R and a
family of tetrahedral meshes {Ωh}h∈H

covering BR that satisfy

• {Ωh}h is shape-regular and quasi-uniform, and h retains its meaning as
the meshwidth of Ωh.

• Γh is composed of those simplices of Ωh that are located on Γ.

Extensibility is not far-fetched, considering practical ways to obtain a family
{Γh}h: Whenever the meshes Γh are created by regular refinement of some coarse
initial mesh, an extensible family will naturally emerge. This property makes it
possible to switch to three-dimensional interpolation by means of Nd́élec’s edge
elements [42] temporarily. If {Γh}h∈H

is extensible and j := γ′
tH

′ − γtH, for

magnetic fields H ∈ H
1
2
+σ(curl;Ω), H′ ∈ H

1
2
+σ(curl;BR \ Ω), 0 < σ ≤ 1

2 ,
then

‖j−Πhj‖
H

− 1
2

||
(Γ)

≤ Ch
1
2
+σ

(
‖H‖

H
1
2
+σ(curl;Ω)

+ ‖H′‖
H

1
2
+σ(curl;BR\Ω)

)

We are going to write Ωh for the meshes obtained by extending Γh into Ω, and
Ω′

h for the exterior extensions into Ω′
R := Ω′ ∩BR. Recall Nédélecs lowest order

curl-conforming elements on tetrahedral, the so-called edge elements. We refer
to [13, 25, 42] for the definition of the local spaces. The resulting global spaces
have feature tangential continuity across inter-element faces and will be denoted
by ND1(Ωh) and ND1(Ω′

h). Suitable degrees of freedom are given by path
integrals along the edges of the triangulations. This defines nodal interpolation
operators Θh : C∞(Ω) (→ ND1(Ωh) and Θ′

h : C∞(Ω)Ω′
R (→ ND1(Ω′

h). As
explained in [34], there holds

γtΘhH = ΠhγtH , ∀H ∈ H
1
2
+σ(curl;Ω) . (15)

Next, Lemma 4.7 from [5] teaches that edge element interpolation is well de-

fined for vectorfields in H
1
2
+σ(curl;Ω) and H

1
2
+σ(curl;Ω′

R). A fundamen-
tal trace theorem for H(curl;Ω) (Theorem 4.1 of [20]) states that γt :
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H(curl;Ω ∪ Ω′
R) (→ H− 1

2 (divΓ,Γ), is continuous with a continuous right in-
verse. Combined with j = γ′

tH
′ − γtH and (15), this means

‖j−Πhj‖
H

− 1
2

||
(Γ)

= ‖γ′
tH

′ − γtH− (γ′
tΘ

′
hH

′ − γtΘhH)‖
H

− 1
2

||
(Γ)

≤ C
(
‖H−ΘhH‖H(curl;Ω) + ‖H−Θ′

hH‖H(curl;Ω′
R)

)
.

The last step is based on an estimate for the interpolation error in edge element
space [25, Lemma 3.2]

‖H−ΘhH‖H(curl;Ω) ≤ Ch
1
2
+σ ‖H‖

H
1
2
+σ(curl;Ω)

.

It is applied to both Ω and Ω′
R.

Recall that according to [20, Formula (29)]

divΓ(j) = curlH · n− curlH′ · n .

Now, we appeal to (14) and standard trace theorems for Sobolev spaces, and
see that divΓj ∈ Hσ(Γ). Thus, we can merge Lemmata 7 and 7 into the final
convergence result.

Theorem 7.1 Assume the a σ-regularity, σ > 0, according to (14) for the inte-
rior and exterior magnetic field solutions of Maxwell’s equations subject to some
excitation. The family of triangular surface meshes {Γh}h∈H

with meshwidths h
is to be shape-regular, quasi-uniform, and extensible. Then there is h∗ > 0 such
that for r := min{1, s∗} and all h < h∗

‖j− jh‖
H

− 1
2 (divΓ,Γ)

≤ C
(
hmin{1, 1

2
+σ}

(
‖H‖

H
1
2
+σ(curl;Ω)

+ ‖H′‖
H

1
2
+σ(curl;Ω′

R
)

)
+

hr
(
‖curlH‖

H
1
2
+σ(Ω)

+ ‖curlH′‖
H

1
2
+σ(Ω′

R
)

))
,

with C > 0 depending on Γ, ς, and the shape-regularity of the surface and volume
meshes.

However, this estimate is optimal in the sense that the spread of Sobolev
scales occurs as the exponent of h. What spoils any attempt to raise the ex-
ponent further is the presence of the L2(Γ)-norm in the estimate of lemma
5. Thus, in various estimates we are forced to trade a negative norm for the
L2(Γ)-norm without compensation. Yet, we cannot avoid this, because interpo-
lation estimates for Πh are not available in negative norms. Unfortunately, Πh

is indispensable due to the commuting diagram property.
Remark. In [19] an equivalent mixed formulation of (1) is proposed that takes

the variational problem into classical Sobolev spaces. There duality techniques
are available that really provide an optimal asymptotic convergence, provided
that s∗ is sufficiently large.
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