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‡IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France



Boundary element methods for Maxwell’s equations on
non-smooth domains ∗

A. Buffa†, M. Costabel‡ and C. Schwab

Seminar für Angewandte Mathematik
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1 Introduction

The numerical solution of boundary value problems arising in electromagnetics has received
increasing attention in recent years. The equations to be solved are the time-harmonic Maxwell
equations and derived simplified formulations such as the time-harmonic eddy current model.
For the calculation of waves radiated e.g. from antenna or conductors, exterior boundary value
problems in a homogeneous ambient medium must be solved. It has long been recognized (e.g.
[8] and the references there) that in this case the boundary reduction of the problem to a
system of Fredholm integral equations on the surface of the conductor is advantageous. In [8],
several possible boundary reductions have been described and the mapping properties of the
resulting boundary integral operators in Hölder spaces were established with emphasis on the
classical integral equations of the second kind. Variational integral equation formulations of
the first kind have also been considered in recent years. As an example, we consider a perfect
conductor occupying the bounded domain Ω ⊂ R3 which is externally irradiated by a plane
wave Ein = deikc·x, with |d| = |c| = 1 and c ·d = 0. The scattered electric and magnetic fields
E and H, respectively, then solve the following equations in the exterior domain Ωe := R3\Ω



















curlE− iωµH = 0 in Ωe

curlH+ iεωE = 0 in Ωe

Silver-Müller radiation condition at ∞
γτ (E) = −γτ (E

in) at Γ.

Here, γτ denotes the tangential trace on the boundary Γ = ∂Ω which we assume to be smooth
for now.

With the Stratton-Chu representation formula, we may represent E(x) in Ωe in the form

E(x) = iωµ

∫

Γ
Φ(x,y)j(y) ds(y) +

i

εω
∇

∫

Γ
Φ(x,y)divΓ(j)(y) ds(y)

where

Φ(x,y) =
eik|x−y|

4π |x− y|
,

denotes the Helmholtz fundamental solution with wave number k = ω
√
εµ associated to the

frequency ω and where j is the jump of the total magnetic field across Γ. Inserting the
representation into the boundary condition, we arrive at the following variational boundary
integral equation of the first kind for the unknown tangential component jγ (the jump in
the normal component being zero) which is called the Rumsey Variational Principle: find

jγ ∈ H− 1
2 (divΓ,Γ) such that for all jtγ ∈ H− 1

2 (divΓ,Γ) there holds

iωµ 〈jtγ ,Vjγ〉 −
i

εω
〈divΓ(jtγ),VdivΓ(jγ)〉 = −〈jtγ , f 〉.

Here, divΓ denotes the surface divergence and V the single layer potential corresponding to
the Helmholtz fundamental solution and 〈·, ·〉 the H−1/2(Γ) × H1/2(Γ) duality pairing and

H− 1
2 (divΓ,Γ) denotes the set of tangential fields with weak surface divergence in H−1/2(Γ)

(we refer to [19] for a detailed discussion of these spaces on smooth surfaces Γ).
A Galerkin discretization of this boundary integral equation by means of the simplest

Raviart-Thomas finite elements on Γ is used in commercial codes. Its convergence analysis
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is involved since the bilinear form in the Rumsey principle does not have good coercivity
properties. A convergence proof for smooth surfaces was given by Bendali in [2]. The situation
on polyhedra or general Lipschitz surfaces is considerably more complicated. In particular,
the meaning of the dualities in the Rumsey principle are not clear on such surfaces and the
original convergence proof in [2] does not apply immediately on nonsmooth surfaces.

Using different techniques from harmonic analysis, Mitrea et al. [17, 16] developed a theory
of boundary integral equations for the time-harmonic Maxwell equations on Lipschitz domains.
So far, these techniques do not give enough information for the analysis of variational formula-
tions of the integral equations and hence for their numerical analysis. In particular, no Hodge
decomposition on the boundary is obtained.

An approach equivalent to the one presented here is being investigated in the thesis [20].
For the case of smooth closed and open surfaces, wavelet bases in standard nodal spline spaces
are considered that allow the analysis of fast algorithms for the numerical solution of our
integral equations.

The purpose of the present paper is to justify the Rumsey variational principle on Lipschitz
polyhedra and to derive a convergent boundary element discretization. Its outline is as follows:
in Section 2, we present the functional framework for our analysis. We use in particular recent
results from [4, 5, 6] on the trace spaces of Maxwell’s equations to clarify the meaning of the
dualities in the Rumsey principle and to prepare the principal tool for its analysis, namely the
boundary Hodge decomposition. Section 3 justifies the Stratton-Chu representation formula on
a Lipschitz surface Γ. Section 4 is then devoted to the derivation of the Rumsey principle, and to
a mixed reformulation by means of a Hodge decomposition of jγ which we prove to be strongly
elliptic in the sense that it satisfies a G̊arding-inequality on Γ. Finally, Section 5 is devoted
to the analysis of Galerkin Boundary Element discretizations of our mixed reformulation of
Rumsey’s principle. We establish quasioptimal asymptotic convergence rates of the Galerkin
discretization and give explicit and sharp bounds on the convergence rates in terms of the
Maxwell singularities described in [10]. An additional complication arises since the Lagrange
multiplier used for the weak formulation of the Laplace-Beltrami operator on Γ exhibits vertex
singularities. We examine these singularities which may be of interest in their own right and
show that in ‘typical’ situations they do not downgrade the asymptotic convergence rate.

2 Preliminaries

We shall make use of some recent results on the characterization of traces associated to Sobolev
spaces of interest for Maxwell’s equations. We present here a synopsis of these results and refer
to [4], [5] and to [6] for details and proofs.

We begin by introducing some definitions and notations. We denote by D(R3)3 the space
of the 3D vector fields with each component belonging to C∞

comp(R
3) and by D′(R3)3 the

corresponding dual space. The duality is denoted by 〈·, ·〉D .
Let Ω ⊂ R3 be a bounded Lipschitz domain in R3. We suppose that Ω is connected and

simply connected, i.e., all its Betti numbers are zero. We denote by Γ its boundary and,
thanks to the assumption on Ω, Γ is connected and simply connected also. Ωe denotes the
complementary R3 \ Ω̄, and n the outer unit normal vector to Ω. Moreover we denote by
Hs(Ω), Hs

loc(Ωe) ∀s ∈ R and Ht(Γ), ∀t ∈ [−1, 1] the standard (local in the case of the exterior
domain) complex valued, Hilbertian Sobolev space defined on Ω, Ωe and Γ respectively (with
the convention H0 = L2.)
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The duality pairing between H−s(Γ) and Hs(Γ) is denoted by 〈·, ·〉s,Γ. We set:

Hs(Ω) :=
(

Hs(Ω)
)3
, V =

(

H
1
2 (Γ)

)3
, V ′ =

(

H− 1
2 (Γ)

)3
. (1)

H(curl ,Ω) = {u ∈ L2(Ω) | curl u ∈ L2(Ω)}; (2)

Hloc(curl ,Ωe) = {u ∈ L2
loc(Ωe) | curl u ∈ L2

loc(Ωe)}; (3)

H(curl ,R3 \ Γ) = H(curl ,Ω) ∪Hloc(curl ,Ωe) (4)

L2
t (Γ) = {v ∈ L2(Γ) | n · v = 0 on Γ}; (5)

H−s
# (Γ) := {u ∈ H−s(Γ) | 〈u, 1〉s,Γ = 0} (s ∈ [0, 1]) (6)

H
3
2 (Γ) := {u|Γ | u ∈ H2(Ω)}. (7)

The space L2
t (Γ) is identified with the space of fields belonging to the tangent bundle TΓ

of Γ for almost every x ∈ Γ and which are square integrable.
The space H

3
2 (Γ) has no intrinsic definition on the surface Γ. Nevertheless it is a Hilbert

space endowed with the norm: ||λ|| 3
2
,Γ := infu∈H2(Ω){||u||2,Ω such that u|Γ = λ}. We denote

by H− 3
2 (Γ) its dual space with L2(Γ) as pivot space. Finally, when Ω is a polyhedron this

space can be characterized face by face. We refer to [4] for this characterization and to Section
2.2 for a brief presentation.

Definition 2.1 The “tangential components trace” mapping πτ : D(Ω̄)3 → L2
t (Γ) and the

”tangential trace” mapping γτ : D(Ω̄)3 → L2
t (Γ) are defined as u -→ n ∧ (u ∧ n)|Γ and u -→

u|Γ ∧ n, respectively.

We denote by γ the standard trace operator acting on vectors: γ : H1(Ω) → V , γ(u) = u|Γ.
Let γ−1 be one of its right inverses. We will also use the notation πτ (resp. γτ ) for the composite
operator πτ ◦ γ−1 (resp. γτ ◦ γ−1) which acts only on traces. By density of D(Ω̄)3|Γ into L2(Γ),

the operators πτ and γτ can be extended to linear continuous operators in L2(Γ).
We define:

Definition 2.2 Let Vγ := γτ (V ) and Vπ := πτ (V ).

Vγ and Vπ are Hilbert spaces endowed with norms that assure the continuity of the operators
γτ and πτ , respectively. We set:

||λ||Vγ = inf
u∈V

{||u||V | γτ (u) = λ} (8)

||λ||Vπ = inf
u∈V

{||u||V | πτ (u) = λ} (9)

Note that πτ : V → Vπ and γτ : V → Vγ are isomorphisms by construction. The spaces
Vγ and Vπ will be the bases of our construction. We denote by V ′

γ and V ′
π their dual spaces

respectively with L2
t (Γ) as pivot. V ′

γ and V ′
π are Hilbert spaces endowed with their natural

norms.

Let iπ : L2
t (Γ) → L2(Γ) be the adjoint operator of πτ . This operator is nothing but the

identification of two-dimensional tangential vectors fields, sections of the tangent bundle TΓ
of Γ, with three-dimensional vector fields on Γ (with zero normal component). Thanks to the
Lipschitz assumption, a local system of orthonormal coordinates (τ 1, τ 2,n) can be defined at
almost every x ∈ Γ. Here τ 1 and τ 2 are two orthonormal vectors belonging to the tangent
plane for almost every x ∈ Γ, while n is the outer normal to Ω. Of course, the vectors τ 1 and



4

τ 2 can also be considered as “tangent fields” (sections of the tangent bundle) and, for the sake
of clarity, we denote by τ̃ 1 and τ̃ 2 this basis of tangent fields. We have:

u ∈ L2
t (Γ) u = u1τ̃ 1 + u2τ̃ 2 iπ(u) = u1τ 1 + u2τ 2. (10)

This operator can be extended in the following way:

iπ : V ′
π →

(

ker{πτ} ∩ V
)◦ ⊂ V ′ (11)

where ·◦ denotes the polar set. The following proposition obviously holds:

Proposition 2.3 The operator iπ : V ′
π →

(

ker{πτ} ∩ V
)◦

is an isomorphism.

A suitable characterization of the space
(

ker{πτ} ∩ V
)◦

can be found in [6].

2.1 Definition of tangential differential operators

In the following we need various differential operators defined on the surface Γ, a closed Lip-
schitz surface without boundary. The tangential functional spaces defined here above are
suitable for their definition. The operators:

∇Γ : H1(Γ) → L2
t (Γ), curlΓ : H1(Γ) → L2

t (Γ)

are defined on Γ in the usual way by a localization argument (see [18] or [6]). The adjoint
operators of −∇Γ and curlΓ are:

divΓ : L2
t (Γ) → H−1

# (Γ), curlΓ : L2
t (Γ) → H−1

# (Γ)

respectively, and they are linear and continuous for these choices of spaces. The operators ∇Γ

and curlΓ can be restricted to more regular spaces. In [6] (see [4]-[5] for the case of polyhedra)
the following operators are proved to be continuous:

∇Γ : H
3
2 (Γ) → Vπ ∇Γ : H

1
2 (Γ) → V ′

γ

curlΓ : H
3
2 (Γ) → Vγ curlΓ : H

1
2 (Γ) → V ′

π.

(12)

Moreover they verify:

||p||
H

1
2 (Γ)/R

≤ C||∇Γp||V ′
γ

||p||
H

1
2 (Γ)/R

≤ C||curlΓp||V ′
π

(13)

As a consequence, their adjoint operators divΓ : Vγ → H
− 1

2
# (Γ) and curlΓ : Vπ → H

− 1
2

# (Γ) are
linear continuous and surjective operators.

Finally, we define the Laplace-Beltrami operator on the Lipschitz manifold Γ as ∆Γu =
divΓ(∇Γu) for any u ∈ H1(Γ). It is easy to see that ∆Γ : H1(Γ) → H−1

# (Γ) is linear, continuous
and admits a right inverse.
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2.2 The case of the polyhedron

When Ω is a polyhedron, the spaces Vγ , Vπ and H
3
2 (Γ) can be fully characterized. To this

end, we introduce some notation. We denote by Γj , j = 1, .., NΓ the boundary faces of the
polyhedron Ω and by eij = Γ̄j ∩ Γ̄i (for some i, j) the set of edges. Let τ ij be a unit vector
parallel to eij and nj = n|Γj

; τ i := τ ij ∧ nj. The couple (τ i, τ ij) is an orthonormal basis of

the plane generated by Γi (resp. Γj); (τ i, τ ij,ni) is an orthonormal basis of R3. Finally, we
denote by Ij the set of indices i such that Γi shares an edge (namely eij) with Γj.

For any ϕ ∈ L2(Γ) we adopt the notation ϕj = ϕ|Γj
. This notation is used whenever

the restriction to a face is considered, that is as regards to any functional space in which the
restriction to a face is meaningful.

We set H
1
2

−(Γ) := {ϕ ∈ L2
t (Γ) such that ϕj ∈ H

1
2 (Γ)2}. For any ϕ ∈ H

1
2

−(Γ), we define:

N ‖
ij(ϕ) :=

∫

Γi

∫

Γj

|ϕi(x) · τ ij −ϕj(y) · τ ij|2

||x− y||3
dσ(x)dσ(y) ∀ i ∈ Ij ∀ j

N⊥
ij (ϕ) :=

∫

Γi

∫

Γj

|ϕi(x) · τ i −ϕj(y) · τ j|2

||x− y||3 dσ(x)dσ(y) ∀ i ∈ Ij ∀ j

and we adopt the notation ϕi · τ ij

1
2= ϕj · τ ij at eij , i ∈ Ij (resp. ϕi · τ i

1
2= ϕj · τ j at eij ) if

and only if N ‖
ij(ϕ) (resp. N⊥

ij (ϕ)) is finite.
The proof of the following lemma can be found in [5].

Lemma 2.4 Let Ω be a polyhedron. The spaces Vπ and Vγ can be characterized in the following
way:

Vπ ≡ H
1
2

‖ (Γ) :=

{

ψ ∈ H
1
2
−(Γ) | ψi · τ ij

1
2= ψj · τ ij at eij ∀i ∈ Ij, ∀j

}

.

Vγ ≡ H
1
2

⊥(Γ) :=

{

ψ ∈ H
1
2

−(Γ) | ψi · τ i

1
2= ψj · τ j at eij ∀i ∈ Ij, ∀j

} (14)

The norms

||ψ||2
‖, 1

2
,Γ

:=
N
∑

j=1

||ψj ||21
2
,Γj

+
N
∑

j=1

∑

i∈Ij

N ‖
ij(ψ). (15)

||ψ||2
⊥, 1

2
,Γ

:=
N
∑

j=1

||ψj||21
2
,Γj

+
N
∑

j=1

∑

i∈Ij

N⊥
ij (ψ). (16)

are equivalent to (8) and (9) respectively.

In Section 5.2, we shall make use also of more “regular” spaces that we define here for
convenience. For any t > 1, we define the space:

Ht(Γ) = {u ∈ H1(Γ) | uj ∈ Ht(Γj)} (17)

endowed with its natural norm ‖u‖t,Γ :=
(

‖u‖21,Γ +
∑NΓ

j=1 ‖uj‖2t,Γj

)
1
2
. We define:

Hs
−(Γ) = {ϕ ∈ L2

t (Γ) | ϕj ∈ Hs(Γj)2} (s ≥ 0) ;

Hs
‖(Γ) = {ϕ ∈ Hs

−(Γ) | ϕi · τ ij = ϕj · τ ij at eij} (s > 1
2 ) ;

Hs
⊥(Γ) = {ϕ ∈ Hs

−(Γ) | ϕi · τ i = ϕj · τ i at eij} (s > 1
2) .

(18)
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The space Hs
−(Γ) is endowed with its natural norm ‖ϕ‖s,−,Γ :=

(

∑NΓ

j=1 ‖ϕj‖2s,Γj

)
1
2
. The spaces

Hs
‖(Γ) and Hs

⊥(Γ) are closed subspaces of Hs
−(Γ) for any s > 1

2 . Finally it is easy to see that,

for any s ≥ 1
2 , the operators

∇Γ : Hs+1(Γ) → Hs
‖(Γ) ; curlΓ : Hs+1(Γ) → Hs

⊥(Γ)

are linear and continuous. Moreover, it holds:

‖p‖s+1,Γ ≤ ‖∇Γp‖s,−,Γ ‖p‖s+1,Γ ≤ ‖curlΓp‖s,−,Γ ∀ p ∈ Hs+1(Γ)/R. (19)

Remark 2.5 The inequalities (19) correspond to (13), but they hold true for a wider range
of indices. Moreover, the definition (17) seems natural for polyhedra, but cannot be extended
to the general case of Lipschitz surfaces. In particular, in the case s = 3/2, in [4] it is shown
that the two definitions (7) and (17) give the same space both algebraically and topologically.

2.3 Traces of H(curl ,Ω)

We are now in the position to introduce the spaces of interest in the characterization of the space
of tangential traces and tangential components for vector fields in H(curl ,Ω), or analogously
in Hloc(curl ,Ωe). Let

H− 1
2 (divΓ,Γ) := {λ ∈ Vπ

′ | divΓ(λ) ∈ H− 1
2 (Γ)} (20)

H− 1
2 (curlΓ,Γ) := {λ ∈ Vγ

′ | curlΓ(λ) ∈ H− 1
2 (Γ)}. (21)

They are Hilbert spaces endowed with the induced graph norms, e.g.,

||u||
H−

1
2 (divΓ,Γ)

:= ||u||V ′
π
+ ||divΓ(u)||− 1

2
,Γ. (22)

The following theorem holds true. The proof can be found in [6] (see also [5] for the case of
polyhedra):

Theorem 2.6 The operators πτ and γτ can be extended to linear continuous operators act-

ing on H(curl ,Ω). Namely, πτ : H(curl ,Ω) → H− 1
2 (curlΓ,Γ) and γτ : H(curl ,Ω) →

H− 1
2 (divΓ,Γ) are linear continuous and surjective. Defining

T := {ξ ∈ V ′ | ∃η ∈ H− 1
2 (Γ) : ∀φ ∈ H2(Ω) : V ′〈ξ, γ(∇φ)〉V = 〈η, γφ〉 1

2
,Γ}, (23)

the isomorphism iπ verifies:

iπ
(

H− 1
2 (divΓ,Γ)

)

≡ T

Finally, the spaces H− 1
2 (divΓ,Γ) and H− 1

2 (curlΓ,Γ) verify the following:

Theorem 2.7 Let

H(Γ) := {α ∈ H1(Γ) such that ∆Γα ∈ H− 1
2 (Γ)}. (24)

The following Hodge decompositions hold:

H− 1
2 (divΓ,Γ) = ∇ΓH(Γ)⊕ curlΓH

1
2 (Γ) (25)

H− 1
2 (curlΓ,Γ) = curlΓH(Γ)⊕∇ΓH

1
2 (Γ).
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Moreover these spaces can be put in duality. Let u ∈ H− 1
2 (divΓ,Γ) and v ∈ H− 1

2 (curlΓ,Γ)
such that u = ∇Γαu + curlΓβu and v = ∇Γαv + curlΓβv; we define

γ〈u, v〉π := −〈∆Γαu,αv〉 1
2
,Γ + 〈∆Γβv,βu〉 1

2
,Γ. (26)

The following integration by parts formula holds true:

∫

Ω
{curlu · v− u · curl v} = γ〈γτ (v),πτ (u)〉π. (27)

The proof of this theorem can be found in [5] in the case of Lipschitz polyhedra and in [6] in
the case of general Lipschitz domains.

In order to give a precise meaning to the objects that will be introduced in the jump
relations and integral representations of the next section, we need to use a different notation for

elements in T (three-dimensional vectors on the surface Γ) and the elements in H− 1
2 (divΓ,Γ).

If u ∈ H(curl ,Ω), we denote by γτ (u) ∈ H− 1
2 (divΓ,Γ) the tangential trace interpreted as

two-dimensional vector fields. We adopt the notation u ∧ n = iπ(γτ (u)). By construction,
u ∧ n ∈ T , and it is a three dimensional vector field on the surface Γ. Note that for general
Lipschitz surfaces, the space T can indeed consist of general three-dimensional fields, see [6]
Section 5. In the case of polyhedral manifolds, loosely speaking, the vectors in T have, in
general, a third non-zero component at edges and vertices.

3 Representation Formula

Let E , H ∈ H(curl ,R3 \ Γ) be such that (Ei,Hi) = (E|Ω,H|Ω) and (Ee,He) = (E|Ωe
,H|Ωe

)
are solutions of the interior and exterior Maxwell problem, respectively:

{

curlE− iωµH = 0
curlH+ iεωE = 0

in Ω;







curlE− iωµH = 0
curlH+ iεωE = 0
Silver-Müller radiation condition at ∞

in Ωe

(28)
We set j = n∧Hi−n∧He and m = n∧Ei−n∧Ee and we set jγ := i−1

π (j) and mγ := i−1
π (m),

jγ , mγ ∈ H− 1
2 (divΓ,Γ). We would like to express then the whole fields E and H in terms of

their “jumps” jγ and mγ , or j and m, across Γ. In order to do that some preliminary results
and definitions are needed.

Lemma 3.1 (Jump relation) Let u ∈ H(curl ,R3 \ Γ) and set
[

n ∧ u
]

= n ∧ ui − n ∧ ue.
We denote by curlu the curl of u in the sense of distributions in R3, and we set

(curlu) =

{

curl (ui) in Ω
curl (ue) in Ωe

Then
[

n ∧ u
]

belongs to T (see Theorem 2.6) and the following jump relation holds:

curlu = (curlu)−
[

n ∧ u
]

δΓ (29)

where 〈
[

n ∧ u
]

δΓ, v〉D = V ′〈
[

n ∧ u
]

, v|Γ〉V .
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Proof: This proof is standard (see, e.g., [7]) on regular surfaces. We report here the (short)
proof, only with the aim of showing that it holds even on Lipschitz surfaces. The integration
by parts formulas

∫

Ω
ui · curl v−

∫

Γ
v · curl ui = V ′〈ui ∧ n,v|Γ〉V ,

∫

Ω
ue · curl v−

∫

Γ
v · curl ue = − V ′〈ue ∧ n,v|Γ〉V

(30)

hold true for any Lipschitz domain Ω ⊆ R3, ui ∈ H(curl ,Ω), ue ∈ Hloc(curl ,Ωe), v ∈ D(R3)3

(see e.g., [12]).
For any v ∈ D(R3)3, using the integrations by parts (30) and the definition of the jumps

[·], we obtain:

〈curl u,v〉D =

∫

R3

(curl u)v− V ′〈
[

n ∧ u
]

,v|Γ〉V .

Finally, using the definition of [n∧u]δΓ,we see that this is just (29), and the proof is achieved.
!

Let now k = ω
√
εµ be the wave number associated to the frequency ω and

Φ(x,y) =
eik|x−y|

4π |x− y|
, Φ0(x,y) =

1

4π |x− y|
(31)

be the fundamental solutions associated to the scalar Helmholtz equation in R3 with wave
number k (i.e. to (∆+ k)Φ = δ) and to the Laplace operator, respectively.

We are now in the position to prove the validity of the so-called Stratton-Chu representation
formula for non–smooth domains:

Theorem 3.2 Let E,H ∈ Hloc(curl ,R3 \ Γ) be the unique solution of the system (28) with
assigned jumps: j = n∧Hi−n∧He and m = n∧Ei−n∧Ee. As before, j = iπ(jγ),m = iπ(mγ),

with jγ , mγ ∈ H− 1
2 (divΓ,Γ). E and H can be formally represented in the following way for

almost every x ∈ Ωe ∪ Ω:

E(x) = iωµ
∫

Γ Φ(x,y)j(y) ds(y) +
i

εω
∇

∫

ΓΦ(x,y)divΓ(jγ)(y) ds(y)+

curl
∫

Γ Φ(x,y)m(y) ds(y)

H(x) = −iωε
∫

ΓΦ(x,y)m(y) ds(y)− i

µω
∇

∫

ΓΦ(x,y)divΓ(mγ)(y) ds(y)+

curl
∫

Γ Φ(x,y)j(y) ds(y)

(32)

Proof: The fact that the system (28) with assigned jumps admits a unique solution
is a direct consequence of the surjectivity of the trace operators stated in Theorem 2.6 and
standard results in functional analysis.

Based on Theorems 2.6, 4.2 and Lemma 3.1, we can prove (32) in the usual way, see e.g.,
[19], or [8].

Due to the the jump relation (29), (E,H) verifies the following system of equations in the
sense of distributions:

curlE− iωµH = mδΓ curlH+ iωεE = jδΓ
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where 〈mδΓ,v〉D = V ′〈m,v|Γ〉V . We first prove the following equality

div (j δΓ) = divΓ(jγ)δΓ in D′(R3). (33)

Actually, recalling that j = iπ(jγ) with jγ ∈ H− 1
2 (divΓ,Γ), for any ξ ∈ D(R3)3

〈div (j δΓ), ξ〉D = − V ′〈iπ(jγ),∇ξ|Γ〉V = −V ′
π
〈jγ ,∇Γξ〉Vπ = 〈divΓ(jγ), ξ〉 1

2
,Γ.

We concentrate now on the integral representation of the electric field since the one for the
magnetic field is analogous. We set first m = 0 and we use the following Hodge decomposition
in R3

E = A+∇W with div (A)− k2W = 0.

By standard manipulation and using (33), we obtain that the scalar potential W verifies

∆W + k2 W = − i

ωε
divΓ(jγ)δΓ which implies the following:

W (x) =
i

ωε

∫

Γ
Φ(x,y)divΓ(jγ) ds(y). (34)

On the other side, the vector potential A verifies ∆A + k2A = −iωµjδΓ and it admits then
the following representation:

A(x) = iωµ

∫

Γ
Φ(x,y)j(y) ds(y).

Now, using the equation (28), by symmetry with the magnetic field, we deduce that the
part of the electric field depending on m reads

curl

∫

Γ
Φ(x,y)m(y) ds(y). (35)

!

4 The perfect conductor

We consider the scattering problem associated to Maxwell’s equations when the scatterer Ω is
a perfectly conducting body with Lipschitz boundary.

4.1 Single layer potential

For any u ∈ C0(Γ)3, we denote the (vector) single layer potential by:

Su(x) =
∫

Γ
Φ(x,y)u(x)ds(y)

and we set Vu = γ(Su). The same operators corresponding to k = 0 are denoted by S0 and V0,
respectively. We report some properties of these operators which will be useful in the sequel.
The following result was stated and proved in [9], for example:
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Proposition 4.1 The operators

S :
(

H− 1
2
+σ(Γ)

)3 → H1+σ
loc (Ω) , V :

(

H− 1
2
+σ(Γ)

)3 →
(

H
1
2
+σ(Γ)

)3
(36)

are linear and continuous for any σ ∈
[

−1
2 ,

1
2

]

. Moreover, it holds:

∃α > 0 : V ′〈u,V0u〉V ≥ α||u||2V ′ , ∀u ∈ V ′.

We need to study the coercivity property of the single layer potential when acting on
tangential traces. We prove the following proposition:

Theorem 4.2 The operators S and V act on vectors λ ∈ V ′
π according to:

S(λ) = S(iπ(λ)) , V(λ) = γ(S(λ)). (37)

Correspondingly, the operator V0 : V ′
π → V is linear and continuous and it verifies:

∀λ ∈ V ′
π : V ′

π
〈λ,πτ (V0λ)〉Vπ ≥ C||λ||2V ′

π
. (38)

Proof: For any λ ∈ L2
t (Γ), the operator iπ is defined by (10) and it is then obvious that

S(λ) = S(iπ(λ)). Since Vπ is dense in L2
t (Γ), the equality (37) holds true. Using (36) and

Proposition 2.3, we immediately deduce that also

V ′
π
〈λ,πτV0(λ)〉Vπ =V ′ 〈iπ(λ),V0(λ)〉V ≥ C||iπ(λ)||2V ′ ≥ C ′||λ||2V ′

π
. (39)

!

Remark 4.3 Theorem 4.2 allows to replace the vectors j and m by the corresponding jγ =
i−1
π (j), mγ = i−1

π (m) in the integrals appearing in (32).

4.2 Boundary reduction

The conductor Ω is irradiated by an external source which is as usual assumed to be a plane
wave Ein = deikc·x, with |d| = |c| = 1 and c · d = 0. The scattered fields E and H solve the
following equations in the exterior domain:



















curlE− iωµH = 0 in Ωe

curlH+ iεωE = 0 in Ωe

Silver-Müller radiation condition at ∞
γτ (E) = −γτ (E

in) at Γ.

(40)

We set E = −Ein and H = −Hin in the interior domain since the body is a perfect
conductor and the total electromagnetic field inside must be equal to zero.

As a consequence, the jump at the interface Γ of the electric field is equal to zero, while the
jump j of the magnetic fields turns out to be equal to the tangential component of the total
magnetic field:

j = −n ∧H− n ∧Hin = −n ∧Htot

By using the Stratton-Chu representation formula (32) and (37), we obtain (recall that
iπ(jγ) = j):

E(x) = iωµ

∫

Γ
Φ(x,y)jγ(y) ds(y) +

i

εω
∇

∫

Γ
Φ(x,y)divΓ(jγ)(y) ds(y). (41)
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In the remainder of this section, we deduce a boundary integral equation from (41) and
we prove that it is uniquely solvable under suitable conditions on the frequency. We set

f := πτ (E
in), f ∈ H− 1

2 (curlΓ,Γ).
Using standard continuity properties across the interface Γ of the single layer potential,

and multiplying by a test function jtγ ∈ H− 1
2 (divΓ,Γ), we obtain:

γ〈jtγ ,πτ (E)〉π = iωµ γ〈jtγ ,πτVjγ〉π +
i

εω
γ〈jtγ ,∇Γ

(

VdivΓ(jγ)
)

〉π (42)

where the duality γ〈·, ·〉π is the one defined in Theorem 2.7. Using now that divΓ(j
t
γ) ∈ H− 1

2 (Γ),

the definition of the divergence operator and the fact that πτ (E) = −πτ (E
in) = −f, we

easily obtain the following variational BIE, sometimes also referred to as Rumsey Variational

Principle: find jγ ∈ H− 1
2 (divΓ,Γ) such that for all jtγ ∈ H− 1

2 (divΓ,Γ) holds

iωµ γ〈jtγ ,πτVjγ〉π −
i

εω
〈divΓ(jtγ),VdivΓ(jγ)〉 1

2
,Γ = −γ〈jtγ , f 〉π. (43)

Finally, we introduce some nomenclature that we shall use in the next sections. We set:

B(jγ , j
t
γ) := iωµ γ〈jtγ ,πτVjγ〉π, C(divΓ(jγ),divΓ(j

t
γ)) :=

i

εω
〈divΓ(jtγ),VdivΓ(jγ)〉 1

2
,Γ. (44)

We write:

B(·, ·) = B0(·, ·) + (B(·, ·)−B0(·, ·)), C(·, ·) = C0(·, ·) + (C(·, ·) − C0(·, ·)),

where B0 and C0 are the principal parts of the bilinear formsB(·, ·) and C(·, ·) which are given,
respectively, by

B0(jγ , j
t
γ) := iωµγ〈jtγ ,πτV0jγ〉π , C0(divΓ(jγ),divΓ(j

t
γ)) :=

i

εω
〈divΓ(jtγ),V0divΓ(jγ)〉 1

2
,Γ. (45)

4.3 Strong ellipticity

Theorem 4.4 Let ω be bounded away from the spectrum of the interior Maxwell problem.

Then BIE (43) admits a unique solution jγ ∈ H− 1
2 (divΓ,Γ) and we have continuous dependence

on the data:
||jγ ||H−

1
2 (divΓ,Γ)

≤ C||f ||
H−

1
2 (curlΓ,Γ)

.

For the proof of this theorem we need the following abstract result.

Proposition 4.5 Let H be a separable Hilbert space, H ′ its dual space and a : H ×H → C a
continuous sesquilinear form on H. If there exist a positive constant α > 0, an isomorphism
Θ : H → H and a compact sesquilinear form c : H ×H → C such that, for any u ∈ H

|a(u,Θ(u))| ≥ α||u||2H − |c(u, u)| (46)

and if
sup
v∈H

|a(u, v)| > 0 ∀u ∈ H , u 8= 0H (47)

then, for any f ∈ H ′, the variational problem a(u, v) = H′〈f, v〉H admits a unique solution
u ∈ H verifying:

||u||H ≤ C||f ||H′ .
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The proof of this result can be deduced from [14], for example. In the following, we shall refer
to (46) as Generalized G̊arding inequality.

Proof of Theorem 4.4: In the right hand side of (43), none of the terms represents the
principal part of the boundary integral operator and, moreover, since they have different sign,
choosing jγ = jtγ will not establish coercivity of the boundary integral operator. Therefore, we
will establish the more general condition (46) with Θ different from the identity is required.

In the case of regular surfaces a proof of existence and uniqueness of solutions to the BIE
(43) can be found in e.g., [19] (see also [2] or [8]). Here, we use the Hodge decomposition (25)

for the space H− 1
2 (divΓ,Γ).

By Theorem 2.7, we may decompose both test and trial functions as

jγ = ∇Γp+ curlΓϕ and jtγ = ∇Γq + curlΓψ

for unique p, q ∈ H(Γ)/R and ϕ, ψ ∈ H
1
2 (Γ)/R. Using these decompositions, we obtain the

following equivalent reformulation of (43): find (p,ϕ) ∈ H := H(Γ)/R×H
1
2 (Γ)/R such that

B(∇Γp+ curlΓϕ,∇Γq)− C(∆Γp,∆Γq) = − γ〈∇Γq, f〉π ∀q ∈ H(Γ) (48)

B(∇Γp+ curlΓϕ, curlΓψ) = − γ〈curlΓψ, f〉π ∀ψ ∈ H
1
2 (Γ).

where the bilinear forms B(·, ·) and C(·, ·) have been defined in (44) (see also (45)). Selecting
the form a(·, ·) in (46) as

a(p,ϕ; q,ψ) = B(∇Γp+ curlΓϕ,∇Γq + curlΓψ)− C(∆Γp,∆Γq)

and since the terms B(·, ·) − B0(·, ·) and C(·, ·) − C0(·, ·) are compact perturbations of the
principal parts, it is sufficient to prove the generalized inf-sup condition (46) for the principal
part B0(·, ·) − C0(·, ·) of a(·, ·). To prove (46), for given u = (p,ϕ) ∈ H, we choose (q,ψ) =
Θ(u) = (−p̄, ϕ̄). Then there exist positive c1, c2, c3 such that

9(B0(∇Γp+ curlΓϕ,−∇Γp̄)) + 9(C0(∆Γp,∆Γp̄))

≥ c1||∆Γp||2− 1
2

− c2||∇Γp||2V ′
π
− |B0(curlΓϕ,∇Γp̄, )|,

9(B0(∇Γp+ curlΓϕ, curlΓϕ̄)) ≥ c3||curlΓϕ||2V ′
π
− |B0(curlΓϕ,∇Γp̄)|

where 9 denotes the imaginary part.
Now, the term ||∇Γp||2V ′

π
is compact with respect to ||∆Γp||2− 1

2
,Γ
, since

||∇Γp||2V ′
π
≤ ||∇Γp||2L2

t (Γ)
≤ c||∆Γp||2−1,Γ.

This implies immediately that the norm ||∆Γp||− 1
2
,Γ+||curlΓϕ||V ′

π
is equivalent to the norm de-

fined in (22). By the continuity of the bilinear formB0 : V ′
π×V ′

π → C, the term |B0(curlΓϕ,∇Γp̄)|
is also compact. This proves (46).

The injectivity (47) required in Proposition 4.5 is proved by going back to the original
differential problem. If

B(jγ , j
t
γ)− C(divΓ(jγ),divΓ(j

t
γ)) = 0 ∀ jtγ ∈ H− 1

2 (divΓ,Γ)
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then the electric field E in (41) solves the equation in Ωe:















curl curl E− k2E = 0 in Ωe

γτ (E) = 0 on Γ

Silver-Müller Radiation condition at ∞ .

By our hypotheses, this problem admits as unique solution E = 0. Using again Maxwell’s
equation, we obtain that also H = 0 which means jγ = 0. By means of the representation
Theorem, Proposition 4.5, the assertion follows. !

Remark 4.6 From Theorem 4.4 and the continuity with respect to the norm (22) of the bilinear
form

a(jγ , j
t
γ) := B(jγ , j

t
γ)− C(divΓ(jγ),divΓ(j

t
γ))

in the Rumsey principle (42) it follows in particular that the form a(·, ·) satisfies an inf-sup

condition on H− 1
2 (divΓ,Γ) equipped with the norm (22). This is an immediate consequence of

the fact that an inf-sup condition is necessary and sufficient for the unique solvability of the
variational problem (42) shown in Theorem 4.4.

4.4 Mixed formulation

In this section, we propose a mixed formulation of the Rumsey principle (43), or equivalently
of (48). Our aim is to write the variational integral equation (43) in such a way that the
discretization by means of standard Galerkin boundary elements can be easily analyzed and
stability can be shown. Unfortunately this is neither possible for (43) nor for (48).

In [2] a mixed discretization of (43) by H(div ,Γ) conforming finite elements of Raviart-
Thomas type was proposed for C∞ surfaces. In Remark 4.6, we observed that the form b(·, ·)
in (42) is continuous and satisfies an inf-sup condition on H− 1

2 (divΓ,Γ). For the stability

of Bendali’s H− 1
2 (divΓ,Γ)-conforming Galerkin discretization of the Rumsey principle (43), a

discrete inf-sup condition must be proved for the Raviart-Thomas boundary elements. This
cannot be done with arguments in the proof of Theorem 4.4.

On the other hand, the discretization of (48) with two unknowns, namely p ∈ H(Γ) and

ϕ ∈ H
1
2 (Γ) would involve the construction of C1 continuous finite elements on a boundary

with edges and corners. Although this is in principle possible, from an implementational point
of view C1-conforming boundary elements on curved surfaces and general triangulations are
difficult to realize.

In the following we propose therefore a mixed formulation which does not contain the
Laplace Beltrami operator explicitly. It will be shown that stable Galerkin approximations of
this formulation can be obtained by means of standard, low order boundary elements on the
surface. The drawbacks of our approach are:

• two extra unknowns are added.

• some regularity on the datum f is necessary to ensure the equivalence of the mixed and
primal formulations of the boundary integral equations.

Concerning the regularity of the data, we need to assume f ∈ H− 1
2 (curlΓ,Γ) ∩ L2

t (Γ).

In terms of the Hodge decomposition, let f = ∇Γα + curlΓβ, α ∈ H
1
2 (Γ) , β ∈ H(Γ), our

assumption corresponds to α ∈ H1(Γ). If the conductor is irradiated by a plane wave, then
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f = πτ (E
in) and this hypothesis is satisfied. We remark also that the two extra unknowns

introduced by the mixed formulation of the Beltrami operator lead only to sparse blocks of the
global stiffness matrix.

We now introduce the multipliers. We assume that jγ and jtγ are Helmholtz-decomposed,
i.e.

jγ = ∇Γp
′ + curlΓϕ

′ and jtγ = ∇Γq + curlΓψ,

with p′ , q ∈ H(Γ) and ϕ′,ψ ∈ H
1
2 (Γ). We set

m = −∆Γp
′ mt = −∆Γq (49)

and we substitute them in equations (48). We then considerm, mt ∈ H− 1
2 (Γ) as new unknown

and new test function, respectively. We impose conditions (49) weakly by means of Lagrange
multipliers. This leads to a saddle point problem that we will prove to be equivalent to (48).
To formulate it, we introduce the space

X = H1(Γ)/R ×H
1
2 (Γ)/R ×H

− 1
2

# (Γ)×H1(Γ)/R

and we denote by ||| · |||X the norm associated to X. With f = ∇Γα+ curlΓβ, we set

RHS = −
∫

Γ
∇Γα ·∇Γq − 〈∆Γβ,ψ〉 1

2
,Γ.

The saddle point problem reads:

Find
(

p′,ϕ′,m,λ
)

∈ X such that ∀
(

q,ψ,mt,λt
)

∈ X

B(∇Γp′ + curlΓϕ′,∇Γq + curlΓψ) −
∫

Γ ∇Γq ·∇Γλ = RHS

−C(m,mt) +〈mt,λ〉 1
2
,Γ = 0

−
∫

Γ∇Γp′ ·∇Γλt +〈m,λt〉 1
2
,Γ = 0

(50)

with B(., .) and C(., .) as in (44). Note that we do not assume that q ∈ H(Γ) and therefore,

in general, jtγ = ∇Γq + curlΓψ does not belong to H− 1
2 (divΓ,Γ) anymore. This is the reason

why more regularity of the data f is needed. The strong form of (50) reads:








iωµ divΓπτ
(

V∇Γ
)

iωµ divΓπτ
(

VcurlΓ
)

0 −∆Γ

iωµ curlΓπτ
(

V∇Γ) iωµ curlΓπτ
(

VcurlΓ
)

0 0

0 0 − i
ωεV 1

−∆Γ 0 1 0

















p
ϕ
m
λ









=









∆Γα
−∆Γβ
0
0









.

(51)
We next prove the strong ellipticity of the system (50). To this end, we introduce the bilinear
form

B((p′,ϕ′,m,λ), (q,ψ,mt ,λt)) = −C(m,mt) +B(∇Γp
′ + curlΓϕ

′,∇Γq + curlΓψ) + (52)

−
∫

Γ
∇Γq ·∇Γλ+ 〈mt,λ〉 1

2
,Γ −

∫

Γ
∇Γp

′ ·∇Γλ
t + 〈m,λt〉 1

2
,Γ.

Theorem 4.7 The bilinear form B : X×X → C is continuous and strongly elliptic, i.e. there
exists α > 0, an isomorphism Θ : X → X and a compact form c : X ×X → C such that for
every (p,ϕ,m,λ) ∈ X there holds

|B((p,ϕ,m,λ),Θ(p,ϕ,m,λ))| ≥ α |||p,ϕ,m,λ|||2X − |c(p,ϕ,m,λ)| (53)

sup
(q,ψ,mt,λt)∈X

|B(p,ϕ,m,λ, q,ψ,mt,λt)| > 0 ∀ (p,ϕ,m,λ) 8= OX . (54)
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In particular, for any f ∈ H− 1
2 (curlΓ,Γ) ∩ L2

t (Γ) the problem (50) admits a unique solution
(p′,ϕ′,m,λ) ∈ X.

Finally, let (p,ϕ) ∈ H(Γ)/R×H
1
2 (Γ)/R be the solution of (48); then the following holds:

p′ ≡ p ϕ′ ≡ ϕ m = −∆Γp. (55)

Proof: Choosing Θ : X → X as

Θ(p′,ϕ′,m,λ) = (−λ̄, ϕ̄′,−m̄,−p̄′)

we obtain:

B(p′,ϕ′,m,λ,−λ̄, ϕ̄′,−m̄, p̄′) = C(m, m̄) +B(∇Γp
′ + curlΓϕ

′,−∇Γλ̄+ curlΓϕ̄
′) +

+

∫

Γ
∇Γλ ·∇Γλ̄− 〈m̄,λ〉 1

2
,Γ +

∫

Γ
∇Γp

′ ·∇Γp̄
′ + 〈m, p̄′〉 1

2
,Γ.

The terms

B(∇Γp
′ + curlΓϕ

′,−∇Γλ̄) , B(∇Γp
′, curlΓϕ̄

′) , −〈m̄,λ〉 1
2
,Γ , 〈m, p̄′〉 1

2
,Γ

are compact in X. Arguing as in the proof of Theorem 4.4, we obtain (53).
We prove now injectivity, i.e. (54), and at the same time (55). The third equation in (50),

imposes exactly that −∆Γp′ = m. By using as test functions (q, 0,−∆Γq, ·) and (0,ψ, 0, ·) in
the system (50), we recover immediately equations (48) and this implies (55). Now, since any
solution (p′,ϕ′,m,λ) ∈ X of (50) verifies (55) and th solution of (48) is unique, in order to
prove injectivity, we simply have to show that, given p′ , ϕ′ and m, there is only one possible
multiplier λ ∈ H1(Γ) solving (50).

Choosing now ψ = 0 in the first equation of (50), we find

−
∫

Γ
∇Γλ ·∇Γq = B(∇Γp+ curlΓϕ,∇Γq)−

∫

Γ
∇Γα ·∇Γq ∀ q ∈ H1(Γ). (56)

By means of Proposition 4.5 the proof is complete. !

5 Boundary element method

We now present a discretization of the saddle point form (50) of the Rumsey principle by
boundary elements and analyze its convergence. Throughout, we assume that Ω ⊂ R3 is a
simply connected polyhedron with Lipschitz boundary Γ which is moreover a finite union of
planar sides Γj , straight edges ek and vertices v(.

5.1 Galerkin Discretization

The Galerkin discretization of the problem (50) is based on a family {Xh}h of finite dimensional
spaces satisfying the following properties:

• Density:
⋃

h↓0Xh = X where the closure is taken w.r.t. ||| · |||X ;

• both variables p and λ are discretized with the same subspace of H1(Γ).
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If f = ∇Γα + curlΓβ, set RHSh = −
∫

Γ(∇Γα · ∇Γqh + curlΓβ · curlΓψh). The Galerkin
discretization of problem (50) reads

Find
(

ph,ϕh,mh,λh

)

∈ Xh such that ∀
(

qh,ψh,mt
h,λ

t
h

)

∈ Xh

B(∇Γph + curlΓϕh,∇Γqh + curlΓψh) −
∫

Γ∇Γqh ·∇Γλh = RHSh

−C(mh,mt
h) +

∫

Γm
t
h λh = 0

−
∫

Γ ∇Γph ·∇Γλt
h +

∫

Γmh λt
h = 0

(57)

Theorem 5.1 There exists a value h0 > 0 such that for any h ≤ h0 the discretized problem
(57) admits a unique solution uh =

(

ph,ϕh,mh,λh

)

∈ Xh. This Galerkin solution is quasiop-
timal, i.e. there is a constant C independent of h and of f such that if u = (p,ϕ,m,λ) ∈ X is
the solution of the continuous problem (50),

|||u − uh|||X ≤ C inf
ξh∈Xh

||u− ξh|||X . (58)

Proof: Since Xh ⊂ X, the proof of Theorem 4.7 can be applied also to the well-posedeness
of the discrete problem (57). We sketch the argument for completeness: By Theorem 4.7, there
exists a continuous operator Θ̃ : X → X realizing the inf-sup condition

|B(u, Θ̃(u))| ≥ α̃|||u|||2X ∀u ∈ X ,

and such that Θ − Θ̃ : X → X is compact. Given uh ∈ Xh, let vh ∈ Xh be the best
approximation of v = Θ̃(uh) ∈ X. According to our assumptions, we have Θ(uh) ∈ Xh, and
with the density of {Xh}h in X and the compactness of Θ − Θ̃ it follows then easily that
|||vh − v|||X ≤ δh|||uh|||X with δh independent of uh and δh → 0 as h → 0. For h < h0
sufficiently small, one finds from this the discrete inf-sup condition

|B(uh,vh)| ≥
α̃

2
|||uh|||X |||vh|||X .

The quasioptimal error estimate (58) is then straightforward. !

The assumption of the density of the family Xh in X implies with (58) immediately the
convergence of the Galerkin approximations as h → 0.

We emphasize that an advantage of the saddle-point formulation (50) is that suitable spaces
Xh can be built from standard finite element spaces on the surface Γ. We illustrate this by the
easiest choice. Let T p

hp
, T ϕ

hϕ
and T m

hm
be three possibly different, regular meshes consisting of

shape-regular (triangular or quadrilateral) elements with meshwidths hp, hϕ, hm, respectively,
on Γ. We set

Sk$,i(T (
h$
,Γ) = {u ∈ H i(Γ) such that u|K ∈ P

k$(K) ∀K ∈ T (
h$
}

for the fields 0 = p,ϕ,m and i = 0, 1. Here Pk$(K) denotes the space of polynomials of degree
k( on K if K is a triangle and, respectively, the space of polynomials of degree p( in each
variable if K is a quadrangle. We remark that for i = 1 we have continuous finite elements,
while for i = 0 we have discontinuous ones. For the Galerkin discretization (57), the lowest
order choice of Boundary Element space is

Xh =
(

S1,1(T p
hp
,Γ)× S1,1(T ϕ

hϕ
,Γ)× S0,0(T m

hm
,Γ)× S1,1(T p

hp
,Γ)

)

/R4 (59)

Note again that the finite element space for the variable λ must be equal to the one for the
variable p. Without this condition the discrete inf-sup condition and hence the validity of
Theorem 5.1 is not assured.
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Remark 5.2 Looking at the system in its matrix form (51), it is not hard to see that only
two kinds of operators must be discretized: the Laplace-Beltrami operator and the single layer
potential integrals. The blocks can be built in a fast fashion and the Laplace-Beltrami part turns
out to be sparse. Moreover, if T p

hp
= T ϕ

hϕ
= T m

hm
= Th which consists only of triangles T , the

matrix setup for (57) with the subspace (59) requires only the evaluation of the integrals

∫

T

∫

T ′

Φ(x,y) ds(y)ds(x), T, T ′ ∈ Th.

5.2 Regularity

In this section, we discuss the regularity of the solution of the system (50). Before tackling di-
rectly this problem, we need the classification of singularities of the Laplace-Beltrami operators
on Γ.

To describe the singularities, we require some geometric notions. For any vertex v, we
denote by ωv ⊂ S2 the domain on the unit sphere in R3 cut out by the tangent cone Kv to Γ
with vertex at v. Then ωv is a curvilinear polygon on S2, the boundary of which is a union of
arcs of great circles.

5.2.1 Regularity of ∆Γ

Here, we consider regularity of the Laplace-Beltrami operator on Γ, i.e. of the boundary value
problem: Find

u ∈ H1(Γ)/R 〈∇Γu,∇Γv〉0,Γ = 〈f, v〉0,Γ ∀v ∈ H1(Γ)/R. (60)

This problem admits, for every f ∈ H−1
# (Γ), a unique solution u ∈ H1(Γ)/R. Assume now

that f ∈ Hs(Γ) for some s > −1. Then we are interested in whether u belongs to H2+s(Γ).
The following result addresses this.

Theorem 5.3 If the data f in (60) satisfies f ∈ Hs(Γ) for some s > −1, the solution u of
(60) belongs to H1+t(Γ) for 0 ≤ t < s∗(s) where

s∗(s) = min

{

2π

L
, s+ 1

}

(61)

with L = maxv∈Γ{|∂ωv|} denoting the maximal boundary length (in radians) of the spherical
domains ωv ⊂ S2 corresponding to the vertices v.

Proof: We are going to use the nomenclature introduced in Subsection 2.2. The strong
form of (60) reads:

−∆uj = fj in Γj, (62)

and on any edge eij = Γ̄i ∩ Γ̄j there holds

ui = uj , τ i ·∇Γu = τ j ·∇Γu on eij . (63)

Let Γ̄ij = Γ̄i∪ Γ̄j and uij = u|Γij
and χij be any regular function in the plane parametrized

by (τ ij , τ i) on Γi and (τ ij, τ i) on Γj. We assume that χij has compact support on Γij.
Using (62)-(63), we deduce that∆(uijχij) ∈ Hs−1(Γij) for s <

3
2 (on the parametric plane).

By the standard shift theorem, we have that uijχij ∈ Hs+1(Γij).
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Therefore, singularities of u can only arise in the vertices v(. By localization, it is sufficient
to consider a generic vertex v which we assume w.l.o.g. to coincide with the origin O in R3

and denote Γj and ek only the faces and edges meeting at O. To determine the regularity,
we compute the dominant singular form. It is well known (see, e.g., [15],[11]), that the corner
singularities of ∆Γ in Γj are of power-logarithmic type. We look for nontrivial solutions U =
U(|x|, x/|x|) of the homogeneous problem

∆ΓU = 0 on KO (64)

subject to the transmission conditions (63) on all edges ek ⊂ KO meeting at O. By homogeneity
of ∆Γ, we separate variables and express the restriction Uj of U to the face Γj in polar
coordinates r = |x| and θ centered at O in the face Γj:

∆ΓUj = (r−1∂r(r∂r) + r−2∂2
θ )u

j
λ(r, θ)

As Uj = ujλ(r, θ) = rλU j(θ) with U j(θ) = ujλ(1, θ), this gives on each face Γj that

∂2
θU

j + λ2U j = 0 on (0, θj) (65)

where θj denotes the opening angle of Γj at O. This gives in Γj:

U j(θ) = C1je
−iλθ + C2je

iλθ θ ∈ (0, θj)

We denote the sum of opening angles of Γj at O by L =:
∑

j θj and by U(θ) the function

composed of the U j: U |(0,θj) = U j . Note that U(θ) is a function of θ ∈ (0, L). The transmission

conditions (63) imply that U ∈ C0
per([0, L]). Further, since U j is analytic, U is piecewise

analytic in [0, L]. The transmission conditions (63) also imply that

τ i ·∇Γui(1, θ) = ∂θu(1, θ) = U ′(θ)

must be continuous and L-periodic in θ ∈ [0, L].

Evidently, λ = 0 is a simple eigenvalue of (65) with eigenfunction U = const.. Consider
now an eigenvalue λ 8= 0. The continuity and the piecewise analyticity of U and (65) imply
that U ′′ ∈ C0

per([0, L]). Iterating this argument, we obtain that U(θ) ∈ C∞
per([0, L]) and that U

is piecewise a trigonometric function. It follows that U(θ) is globally on (0, L) a trigonometric
function, i.e. U(θ) = C exp(±iλθ). The L-periodicity of U implies the value of λ:

λ = k
2π

L
, k = 1, 2, ..., uλ(r, θ) = r

2kπ
L e±i2kπθ/L (66)

The dominant singularity in the solution occurs for k = 1 which proves the assertion. !

We remark that for polyhedra with a finite number of edges meeting at any vertex v, L remains
finite. This means that for f ∈ Hs

#(Γ) s > −1, the solution of problem (60), always belongs to
H1+t(Γ) for some strictly positive t. However, there are examples where t can be arbitrarily
small, i.e. L arbitrarily large. For example, if the number of edges meeting in a vertex gets
large, it is possible that L → ∞. These cases are rather pathologic, however.
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Figure 1: Example of a vertex where L is large.

5.2.2 Maxwell Singularities

In this section, we study the actual regularity of the solution (p,ϕ,m,λ) of the problem (50).
Once the regularity result is settled, we shall immediately know the convergence rate of the
boundary element discretization proposed in Section 5.1.

First of all, thanks to Theorem 4.4, we know that jγ = −γτ (H
tot). Now, from Theorem 4.7,

we also know that:

−γτ (H
tot) = ∇Γp+ curlΓϕ divΓ(γτ (H

tot)) = m. (67)

Since all the considerations concerning regularity are independent of the radiation condition at
infinity, we denote by BR ⊂ R3 the ball centered at the origin and with radius R large enough
to ensure that Ω̄ ⊂ BR.

Finally, we need the following functional spaces for any µ ≥ 0:

Hµ(curlΓ,Γ) := {λ ∈ Hµ
−(Γ) : curlΓλ ∈ Hµ(Γ)}

Hµ(divΓ,Γ) := {λ ∈ Hµ
−(Γ) : divΓλ ∈ Hµ(Γ)}.

The main result of this section is the following:

Theorem 5.4 Assume that the datum f verifies:

f = ∇Γα+ curlΓβ α , β ∈ Hk(Γ)

for k ∈ R, k ≥ 2.
Then there exists a real σ#, 0 < σ# ≤ 1

2 , such that the solution jγ of the problem (43)
belongs to Hσ(divΓ,Γ) for any σ < σ#.

Moreover, let (p,ϕ,m,λ) ∈ X be the solution of the problem (50). Then the following holds:

p ∈ H1+t(Γ) m ∈ Hσ(Γ) ϕ ∈ Hs(Γ) λ ∈ Ht%(Γ); (68)

where 0 ≤ σ < σ#, t < s#(σ), s = min{1 + σ, 1 + t} and t# = max{1 + σ, 1 + t}.

The proof of this theorem requires the following lemma:

Lemma 5.5 Let s > 1
2 , ϕ ∈ Hs

‖(Γ), ψ ∈ Hs
⊥(Γ) and Hs−1(Γ) = {u ∈ H1(Γ) such that ∆Γu ∈

Hs−1(Γ)}. Then the following Hodge decompositions hold:

∃!α ∈ H1+t(Γ)/R , β ∈ Hs−1(Γ)/R ϕ = ∇Γα+ curlΓβ ∀ t < s#(s− 1) ; (69)

∃!α ∈ Hs−1(Γ)/R , β ∈ H1+t(Γ)/R ψ = ∇Γα+ curlΓβ ∀ t < s#(s− 1). (70)
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Proof of Lemma 5.5: We focus our attention only on the proof of (69). In [5], it is proved
that

∃!α , β ∈ H1(Γ)/R such that ϕ = ∇Γα+ curlΓβ.

Moreover, β is the solution of the problem

curlΓϕ = curlΓcurlΓβ = ∆Γβ.

Now, since curlΓϕ ∈ Hs−1(Γ), we deduce β ∈ Hs−1(Γ). Using Theorem 5.3, we also know
that β ∈ H1+t(Γ), 0 ≤ t < s#(s − 1). By difference, we deduce ∇Γα ∈ Ht

−(Γ). Using (19), we
deduce α ∈ H1+t(Γ)/R. !

Proof of Theorem 5.4: To shorten the notation, we rename Ψ := Htot
|BR\Ω̄. Of course jγ =

γτ (Ψ) holds. Using equations (40), the known regularity results for Maxwell’s equations [10],

and the assumption on the datum, we have Ψ ∈ H
1
2
+σ(BR \ Ω̄) and curlΨ ∈ H

1
2
+σ(BR \ Ω̄),

for any σ < σ# and where σ# is the singularity exponent associated to the magnetic problem
[10]. By standard decomposition in regular and singular part [1], [12], we have that for any
σ < σ#:

∃ ξ ∈ H
3
2
+σ(BR \ Ω̄) , q ∈ H

3
2
+σ(BR \ Ω̄) such that Ψ = ξ +∇q (71)

Taking now the tangential trace, and using (67), we have:

γτ (Ψ) = γτ (ξ) + curlΓq divΓ(γτ (ξ)) = m,

which immediately implies m ∈ Hσ(Γ).
We focus now our attention on γτ (ξ). Using Lemma 5.5, we have that

γτ (ξ) = ∇Γp
′ + curlΓq

′ p′, q′ ∈ H1+t(Γ) 0 ≤ t < s#(σ).

Using this decomposition in (71) and comparing with (67), we obtain:

p = p′ , ϕ = q + q′ , m = ∆Γp
′,

which implies the regularity result for p and ϕ.
Concerning now λ, using the second equation of (50), we obtain:

λ =
i

ωε
V(m). (72)

Since we are working on a polyhedron, σ < σ# and σ# is smaller than the singularity exponent
for the Laplace operator with Neumann boundary conditions, we deduce that λ ∈ H1+σ(Γ).

In order to prove that λ ∈ H1+t(Γ), for any 0 ≤ t < s#(σ), we consider equation (56),
where without loss of generality we set α = 0. Rearranging terms, we have:

∫

Γ
∇Γλ ·∇Γq = iωµ

∫

Γ
∇Γq · πτ (V(∇Γp+ curlΓϕ)). (73)

Using the previous result on the regularity of p and ϕ, we have ∇Γp+curlΓϕ ∈ Hs−1
− (Γ). Since

s − 1 < 1
2 , it is easy to see that iπ(∇Γp + curlΓϕ) ∈ Hs−1

− (Γ) = Hs−1(Γ)3. Using standard
properties of the single layer potential on the polyhedral domains and the fact that s− 1 < σ,
we deduce V(∇Γp + curlΓϕ) ∈ Hs(Γ) and then ξ := πτ (V(∇Γp + curlΓϕ)) ∈ Hs

‖(Γ). Using
now Lemma 5.5, we decompose ξ as

ξ = ∇Γu+ curlΓv u , v ∈ H1+t(Γ) 0 ≤ t < s#(σ),
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since s#(s−1) ≥ s#(σ). Plugging this decomposition into equation (73), we see that λ = iωµu,
thus λ ∈ H1+t(Γ). The proof is complete.

!

The assumption on the datum f in Theorem 5.4 is unrealistic. In the next lemma, precise
and realistic assumptions are furnished on f. The influence of the regularity of the datum is
analyzed.

Lemma 5.6 The same regularity stated in Theorem 5.4, holds for any right hand side f veri-
fying:

f ∈ Hσ(curlΓ,Γ) ∩Ht
‖(Γ) ∀σ < σ# , t < s#(σ). (74)

Moreover, if only f ∈ Hµ(curlΓ,Γ) for any fixed µ ≥ σ#, then the first three components
p, ϕ, m of the solution u = (p,ϕ,m,λ) of (50) verify the same regularity as in Theorem 5.4,
while λ ∈ Ht%(Γ) with t# = min{1 + µ, 1 + t}, for any t < s#(σ).

Proof: The assumption, f ∈ Hσ(curlΓ,Γ) for any σ < σ#, ensures that the solution

of the problem (40) belongs to H
1
2
+σ

loc (curl ,R3 \ Ω̄). The proof of the regularity of the first
three components p, ϕ, m of the solution u of (50) works with no change. Concerning λ, the
regularity λ ∈ H1+σ(Γ) comes from (72). Let now

f = ∇Γα+ curlΓβ α , β ∈ H1(Γ).

Using equation (56), the proof of Theorem 5.4, proves that λ−α ∈ H1+t(Γ), for any t < s#(σ).
Now, the assumption (74) ensures that α ∈ H1+t(Γ). If we only have that f ∈ Hµ(curlΓ,Γ) for
any µ ≥ σ#, then, α ∈ Hs(Γ), for s = min{1 + µ, 1 + 0}, ∀ 0 < 0 < s#(µ). The assertion of the
Lemma is a consequence. !

Remark 5.7 The two different regularity assumptions on the datum in Lemma 5.6 are some-
how technical, but natural. The first assumption (74), corresponds to the situation when f

is the tangential component of a “regular field”, as Ein. The assumption f ∈ Hµ(curlΓ,Γ),
corresponds to a general charge density distributed on the boundary of the conductor Ω.

5.3 Convergence Rates

In order to deduce from the a-priori error estimate (58) asymptotic convergence rates, we shall
use the regularity results proved in the previous Subsection.

We set, for any s ≥ 0,

Xs = H1+s(Γ)/R ×H
1
2
+s(Γ)/R×H− 1

2
+s(Γ)/R ×H1+s(Γ)/R

with the convention X ≡ X0.
Using the approximation properties of Xh in X, Theorem 5.1, and Theorem 5.4, we have:

Proposition 5.8 Let t,σ, s be defined in Theorem 5.4. We denote by u := (p,ϕ,m,λ) ∈ X
and uh :=

(

ph,ϕh,mh,λh

)

∈ Xh be the (unique) solutions of (50) and (57) respectively. The
following holds:

|||u − uh|||X ≤ C

{

ht−p
(

||p||1+t−,Γ + ||λ||1+t− ,Γ
)

+ h
σ+ 1

2
m ||m||σ,Γ + h

s− 1
2

ϕ ||ϕ||s,Γ
}

(75)
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where t− = min{1, t}. Moreover, let η = min{1
2 + σ, t} for any t < s#(σ) and σ < σ#, and

h = max{hp, hϕ, hm}, we have:
|||u− uh|||X ≤ Chη. (76)

C stand as a uniform constant both in (75) and (76).

When looking at the estimates (75) (76), it is clear that the convergence rate can be arbi-
trary small since t− (and η consequently) can be arbitrary close to zero. Moreover, these error
estimates are quasioptimal with respect to the considered norm. The error we are interested
in computing is actually ∇Γ(p− ph) + curlΓ(ϕ−ϕh) in V ′

π and m−mh in H− 1
2 (Γ). The next

Proposition has the purpose to study the asymptotic rate for the quantity:

‖∇Γ(p − ph)‖V ′
π
+ ‖ϕ− ϕh‖ 1

2
,Γ + ‖m−mh‖− 1

2
,Γ.

By means of an Aubin-Nitsche duality argument we will now prove:

Proposition 5.9 As in Theorem 5.1, we denote by u := (p,ϕ,m,λ) ∈ X and uh :=
(

ph,ϕh,mh,λh
)

∈
Xh be the (unique) solutions of (50) and (57) respectively. Let σ, s as in Theorem 5.4 and
h = max{hp, hϕ, hm}. The following holds for any 0 < µ < s#(−1

2):

||p − ph|| 1
2
,Γ + ‖∇Γ(p − ph)‖V ′

π
≤ Chµ|||u− uh|||X (77)

||ϕ− ϕh|| 1
2
,Γ ≤ Chµ|||u− uh|||X + C ′h

s− 1
2

ϕ ‖ϕ‖s,Γ (78)

||m−mh||− 1
2
,Γ ≤ Chµ|||u− uh|||X + C ′h

1
2
+σ

m ‖m‖σ,Γ. (79)

where C and C ′ are uniform constants with respect to the mesh sizes.

Proof: First of all, we observe that the bilinear form B defined in (52) is symmetric. This
means that the corresponding differential operator is self-adjoint.

Let ξ ∈ H1(Γ) and v = (q,ψ,mt,λt) be any function in X. We consider the problem: Find
χ(ξ) ∈ X such that

B(v,χ(ξ)) =
∫

Γ
∇Γq ·∇Γξ. (80)

This problem admits a unique solution χ(ξ) ∈ X. We want now to estimate ||p − ph|| 1
2
,Γ and

write, by duality:

||p − ph|| 1
2
,Γ = sup

λ∈Vγ

〈divΓλ, p − ph〉 1
2
,Γ

||divΓλ||− 1
2
,Γ

.

Integrating by parts and using the properties of the Laplace-Beltrami operator, we deduce:

||p− ph|| 1
2
,Γ ≤ sup

ξ∈H(Γ)

∫

Γ ∇Γξ ·∇Γ(p− ph)

||ξ||H(Γ)
.

Now, we use the adjoint problem (80) with v = u−uh and we obtain by Galerkin orthogonality:

‖p− ph‖ 1
2
,Γ ≤ sup

ξ∈H(Γ)

B(u− uh,χ(ξ)− χh)

‖ξ‖H(Γ)

for any χh ∈ Xh. Using the continuity of the bilinear form B in X, we have:

‖p− ph‖ 1
2
,Γ ≤ C|||u− uh|||X inf

χh∈Xh

|||χ(ξ)− χh|||X
‖ξ‖H(Γ)

.
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By means of Theorem 5.3, H(Γ) ⊆ H1+µ(Γ), for any 0 ≤ µ < s#(−1
2). This implies that

ξ ∈ H1+µ(Γ), for any 0 ≤ µ < s#(−1
2) and ‖ξ‖1+µ,Γ ≤ ‖ξ‖H(Γ). We are in the situation of

Lemma 5.6 with
f = ∇Γξ .

The proof of that lemma shows that χ(ξ) ∈ Xµ.
Using standard approximation properties of the space Xh, we obtain:

‖p− ph‖ 1
2
,Γ ≤ Chµ|||u− uh|||X

where C is a uniform constant. We estimate now the quantity ‖∇Γ(p− ph)‖V ′
π
, by duality:

‖∇Γ(p− ph)‖V ′
π
= sup

λ∈Vπ

V ′
π
〈∇Γ(p− ph),λ〉Vπ

||λ||Vπ

.

By Lemma 5.5 and using the same argument as before, we have:

‖∇Γ(p− ph)‖V ′
π
≤ sup

α∈Hµ+1(Γ)

∫

Γ∇Γ(p − ph) ·∇Γα

‖α‖µ+1,Γ
.

Applying again the Aubin-Nitsche trick, we deduce (77).
For the estimate of ||ϕ− ϕh|| 1

2
,Γ, it is enough to choose in the first equation of (50) and of

(57) the test function (0,ψh). By subtraction we obtain the Galerkin orthogonality:

B(∇Γ(p− ph) + curlΓ(ϕ− ϕh), curlΓψh) = 0 ∀ψh ∈ S1,1(T ϕ
hϕ
,Γ).

By standard argument, we obtain that:

‖ϕ− ϕh‖ 1
2
,Γ ≤ C1‖∇Γ(p− ph)‖V ′

π
+ C2 inf

ψh∈S1,1(T ϕ
hϕ

,Γ)
‖ϕ− ψh‖ 1

2
,Γ.

The inequality (78) is then straightforward using (77).
In order to prove now the estimate (79), we have to pass through the estimate of ||λ−λh|| 1

2
,Γ.

The discrete solution verifies:

B(∇Γph + curlΓϕh,∇Γqh)−
∫

Γ
∇Γqh∇Γλh = γ〈∇Γqh, f〉π. ∀ qh ∈ S1,1(T p

hp
,Γ)

Consider the solution λ̃ ∈ H1(Γ) to the problem

B(∇Γph + curlΓϕh,∇Γq)−
∫

Γ
∇Γq∇Γλ̃ = γ〈∇Γq, f〉π. ∀ q ∈ H1(Γ).

By a duality argument applied to the operator
∫

Γ∇Γp · ∇Γq = 〈f, q〉 1
2
,Γ and using Theorem

5.3, we obtain:

||λ̃− λh|| 1
2
,Γ ≤ Chµ||λ̃− λh||1,Γ ∀µ < s#(−1

2
)

||λ̃− λ||1,Γ ≤ C{||∇Γ(p − ph)||V ′
π
+ ||curlΓ(ϕ− ϕh)||V ′

π
}.

As a consequence, ||λ− λh|| 1
2
,Γ ≤ Chµ|||u− uh|||X .

Now, using the second equation of (50) and of (57) and taking their difference, we obtain:

−C(m−mh,m
t
h) + 〈mt

h,λ− λh〉 1
2
,Γ = 0.

Using the same reasoning as in the estimate of ||ϕ− ϕh|| 1
2
,Γ and the previous estimate on the

quantity ||λ− λh|| 1
2
,Γ, the inequality (79) is finally proved. !
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Corollary 5.10 Let η = min{1
2 + σ, t} for any t < s#(σ), and µ be any value satisfying

µ < s#(−1
2). The following holds:

‖∇Γ(p− ph)‖V ′
π
+ ‖ϕ− ϕh‖ 1

2
,Γ + ‖m−mh‖− 1

2
,Γ ≤ C(hµhη + h

1
2
+σ).

Remark 5.11 The leading singularities are the one of Laplace Beltrami operator only in
“pathological vertices” as the one in Figure 5.1. When such a situation occurs, the use of
the Aubin-Nitsche trick doubles the convergence rate. More in detail:

s#(σ) > 1
2 + σ

{

|||u− uh|||X ≤ Ch
1
2
+σ

‖∇Γ(p − ph)‖V ′
π
+ ‖ϕ − ϕh‖ 1

2
,Γ + ‖m−mh‖− 1

2
,Γ ≤ Ch

1
2
+σ.

1
2

(

1
2 + σ

)

< s#(σ) < 1
2 + σ

{

|||u− uh|||X ≤ Cεhs
%(σ)−ε

‖∇Γ(p − ph)‖V ′
π
+ ‖ϕ − ϕh‖ 1

2
,Γ + ‖m−mh‖− 1

2
,Γ ≤ Ch

1
2
+σ

s#(σ) < 1
2

(

1
2 + σ

)

{

|||u− uh|||X ≤ Cεhs
%(σ)−ε

‖∇Γ(p − ph)‖V ′
π
+ ‖ϕ − ϕh‖ 1

2
,Γ + ‖m−mh‖− 1

2
,Γ ≤ Cεh2(s

%(σ)−ε)

(81)
where ε > 0, C stands for a uniform constant and Cε stands for a constant exposing with ε.
The leading singularity is the one of Laplace Beltrami operator only when 2s#(σ) : 1

2 + σ.

Remark 5.12 The convergence analysis of the scheme is done regardless of the characteriza-
tion of singularities at neighborhood of vertices and edges. The worse singularity exponent is
considered in any case.

Of course, far from the geometric singularities the local convergence will be much faster than
what announced in the present section. On the other hand, the exact singularity exponents for
edges and corners could be deduced for each variable using the results in [10], [11] and the ones
in this section. The convergence rate could be then improved considering local refined meshes.
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00-17 M.H. Gutknecht, S. Röllin Variations of Zhang’s Lanczos-Type Product
Method
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