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1 Introduction

Krylov space methods based on the Lanczos process are particularly efficient
tools for solving large sparse non-symmetric systems of linear equations. In
contrast to competing methods based on orthogonal or minimal residual, they
feature short recurrences (that is, three-term or coupled two-term recurrences)
for generating the approximations (or iterates) xn and the corresponding residu-
als rn :≡ b−Axn. However, the classical biconjugate gradient (BiCG) method
of Lanczos [9] (reformulated by Fletcher [2]) has also a number of shortcomings:

(i) BiCG may break down (even for well-conditioned problems),

(ii) BiCG requires matrix-vector products with the transpose of the matrix,

(iii) BiCG needs two matrix-vector products to gain one dimension in the
search space,

(iv) the convergence often appears to be very erratic,

(v) roundoff causes loss of biorthogonality, inaccurate recurrence coefficients
(and, hence, inaccurate eigenvalue approximations), and, possibly, low
ultimate accuracy of the approximate solution of the linear system.

For all these shortcomings, there are at least partial remedies. Breakdowns can
be overcome by look-ahead; see [7] and references given there. The transpose and
the second matrix-vector product can be avoided by “squaring” BiCG, as sug-
gested by Sonneveld with his (bi)conjugate gradient squared (CGS) algorithm
[12]. These benefits of CGS persist in Van der Vorst’s BiCGStab [13], which
additionally smoothes the very erratic convergence behavior of CGS somewhat
and has become the model for a whole family of Lanczos-type product methods
(LTPMs). The smoothing effect results from an incorporated one-dimensional
local residual minimization.

This paper is devoted to a set of algorithms that realize a particular LTPM
first proposed 1993 by Zhang[15], where a 2-dimensional minimization is incor-
porated in each step, and which was therefore called BiCG×MR2 in [7]. In one
version, which independently was also proposed by Cao [1] and Gutknecht[6],
the implementation only requires a one-line modification of BiCGStab2 [5],
which does such a minimization in every other step. But Zhang also proposed a
version called GPBiCG that is fully based on coupled two-term recursions and
can therefore be expected to have a better roundoff behavior. It was recently
shown in [8] that under certain assumptions Krylov solvers based on a pair of
three-term recurrences attain typically a lower ultimate accuracy than those
based on two-term recurrences. However, Zhang’s algorithm GPBiCG is more
complicated and does not fit into the simple patterns compared in [8]. Our aim
was to find a version that is easier to analyze and can be shown to have high
ultimate accuracy at the same cost as GPBiCG.
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2 Lanczos-type product methods based on two

pairs of coupled

two-term recurrences

Starting point for LTPMs based on two pairs of two-term recurrences are, on
the one hand, the coupled recurrences for the Lanczos polynomials pn(ζ) (the
residual polynomials of BiCG) and the corresponding direction polynomials
p̂n(ζ)

pn+1(ζ) := pn(ζ)− ωnζp̂n(ζ), (1a)

p̂n+1(ζ) := pn+1(ζ)− ψnp̂n(ζ), (1b)

(to be started with p0(ζ) = 1, p̂0(ζ) = 1) and analogue recurrences for a second
pair of polynomials tl(ζ), t̂l(ζ)

tl+1(ζ) := tl(ζ) − ω̃lζ t̂l(ζ), (2a)

t̂l+1(ζ) := tl+1(ζ)− ψ̃l t̂l(ζ) (2b)

(also with t0(ζ) = 1, t̂0(ζ) = 1). The idea behind LTPMs is to use tn(A)pn(A)r0
as the nth residual of the method. For these and some other vectors that will
be used as intermediate quantities the following notation is introduced:

wl
n :≡ tl(A)pn(A)r0, (3a)

ŵl
n :≡ tl(A)p̂n(A)r0, (3b)

ul
n :≡ t̂l(A)pn(A)r0, (3c)

ûl
n :≡ t̂l(A)p̂n(A)r0. (3d)

Although these vectors are here defined for all nonnegative indices l and n, only
some where n− l is small will actually be needed and computed. In particular,
of course, the residuals wn

n of the method. The challenge is to find an efficient
and stable way to get from wn

n to the next residual wn+1
n+1. At the same time,

the Lanczos recurrence coefficients ωn, ψn and the coefficients ω̃n, ψ̃n have to
be computed. For the moment, we postpone the question of how to compute
the corresponding iterates xn

n and xn+1
n+1.

By multiplying equations (1) with tl and t̂l as well as multiplying (2) with

2



pn and p̂n, we obtain in the notation (3)

wl
n+1 = wl

n −Aŵl
nωn, (4a)

ul
n+1 = ul

n −Aûl
nωn, (4b)

ŵl
n+1 = wl

n+1 − ŵl
nψn, (4c)

ûl
n+1 = ul

n+1 − ûl
nψn, (4d)

wl+1
n = wl

n −Aul
nω̃l, (4e)

ŵl+1
n = ŵl

n −Aûl
nω̃l, (4f)

ul+1
n = wl+1

n − ul
nψ̃l, (4g)

ûl+1
n = ŵl+1

n − ûl
nψ̃l. (4h)

These eight equations show the relations between the vectors wl
n, ŵ

l
n, u

l
n

and ûl
n. For a visualization of these relations we arrange the vectors in a table.

Vectors with the same indices are grouped in a block. We let the l-axis point
to the right and the n-axis point downwards.

3



Figure 1: The table of an LTPM based on two coupled two-term recurrences
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The result is shown in Figure 1. As mentioned above, wn
n will be the nth

residual and therefore the vectors in the upper left corner of the diagonal blocks
are the vectors we really aim at. Comparing equations (4) with Figure 1, we see
that three consecutive vectors in a row or a column are related. Now, suitable
relations can easily be found to compute the vectors of a diagonal block, provided
the vectors from the previous diagonal block are known. One possibility is the
following:

ŵn+1
n := ŵn

n −Aûn
nω̃n, (5a)

un
n+1 := un

n −Aûn
nωn, (5b)

wn+1
n+1 := wn

n −A
(
ŵn

nωn + un
n+1ω̃n

)
, (5c)

un+1
n+1 := wn+1

n+1 − un
n+1ψ̃n, (5d)

ûn
n+1 := un

n+1 − ûn
nψn, (5e)

ŵn+1
n+1 := wn+1

n+1 − ŵn+1
n ψn, (5f)

ûn+1
n+1 := ŵn+1

n+1 − ûn
n+1ψ̃n, (5g)

where we have rearranged the relations (4) suitably.

Determination of ωn and ψn in LTPMs

Up to now, we saw neither how to compute the coefficients of the BiCG poly-
nomial pn(ζ) nor the coefficients of the arbitrary polynomial tn(ζ).

The BiCG residual rn = pn(A)r0 fulfills rn ⊥ K̃n, where

K̃n ≡ K̃n(A
!, ỹ0) := span(ỹ0,A

!ỹ0, . . . , (A
!)n−1ỹ0), (6)

and ỹ0 is an arbitrary vector such that 〈r0, ỹ0〉 '= 0. Especially, for l < n,
tl(A!)ỹ0 is an element of K̃n and therefore orthogonal to rn:

0 = 〈tl(A
!)ỹ0, rn〉 = 〈ỹ0, tl(A)pn(A)r0〉 = 〈ỹ0,w

l
n〉, l < n. (7a)

For the direction vectors vn = p̂n(A)r0 ofBiCG the orthogonalityAvn ⊥ K̃n

holds, which implies that

0 = 〈ỹ0,Aŵl
n〉, l < n. (7b)

Replacing tl(ζ) by t̂l(ζ) in these derivations gives two additional orthogonality
conditions:

〈ỹ0,u
l
n〉 = 0, 〈ỹ0,Aûl

n〉 = 0, l < n. (7c)

Taking the orthogonality conditions (7) into account in the recursions (4)
for l = n and defining

δ̃n :≡ 〈ỹ0,w
n
n〉, δ̃′n :≡ 〈ỹ0,Aŵn

n〉 (8a)

5



leads to

ωn :=
δ̃n

δ̃′n
, ψn := −

δ̃n+1

δ̃′nω̃n

. (8b)

For the last equation we used

〈ỹ0,Awn
n+1〉 = −

1

ω̃n
〈ỹ0,w

n+1
n+1〉, (9)

which can be derived from the conditions (7) and equations (4). As we see from
(8), we can obtain the Lanczos coefficients ωn and ψn by computing just two
inner products.

Except for the way of computing ûn+1
n+1 the assignments (5) and (8) cor-

respond to those of the general CGS (GCGS) algorithm of Fokkema, Slei-
jpen, and Van der Vorst [3]. Several particular algorithms can be deduced
from them. If we let tn(ζ) = pn(ζ), Sonnevelds CGS is retrieved. The choice
tn(ζ) = (1− µζ)pn−1(ζ) yields shifted CGS of [3], where simply ω̃n := ωn−1

and ψ̃n := ψn−1. However, if the aim is to capitalize on the free parameters ω̃n

and ψ̃n for a local 2-dimensional residual norm minimization as in BiCGStab2
and GPBiCG, the recursions (5) need to be modified.

Determination of ω̃n and ψ̃n−1 in BiCG×MR2

Given t̂n−1 and tn, we need according to the coupled recurrences (1) both ψ̃n−1

and ω̃n in order to compute t̂n and tn+1. Recall that both are implicitly needed
to compute the new residual wn+1

n+1 and that we want to choose the two coeffi-
cients such that the norm of this new residual is as small as possible. How to
attain this goal is not so straightforward here. First, we need to express wn+1

n+1

as a function of the two coefficients, and then the challenge is to find alternative
recursions that provide wn+1

n+1 and formulas for computing the two coefficients

ψ̃n−1 and ω̃n so that still only two matrix-vector products are required per step.
Zhang[15] succeeded to solve this problem. Here, we present a slightly different
solution, one among several that were explored in [11].

First, a suitable expression for wn+1
n+1 is

wn+1
n+1 = wn

n+1 −Awn
n+1ω̃n +Aun−1

n+1ψ̃n−1ω̃n, (10)

which leads to the minimization problem

‖wn+1
n+1‖ = min

ω̃n,ψ̃n−1

‖wn
n+1 −Awn

n+1ω̃n +Aun−1
n+1ψ̃n−1ω̃n‖ (11)

in order to minimize the norm of the residualwn+1
n+1 with respect to ω̃n and ψ̃n−1.

This minimization problem is a standard least square problem. The solution
can be found by solving the 2×2 system

(
‖Awn

n+1‖
2
2 〈Aun−1

n+1,Awn
n+1〉

〈Aun−1
n+1,Awn

n+1〉 ‖Awn
n+1‖

2
2

)(
ω̃n

χ

)
=

(
〈wn

n+1,Awn
n+1〉

〈wn
n+1,Aun−1

n+1〉

)
(12)

6



and by solving χ = −ψ̃n−1ω̃n for ψ̃n−1 afterwards. It requires to compute five
inner products. For n = 0 we let ψ̃−1 := 0 and determine ω̃0 by a 1-dimensional
minimization. In the following, the determination of the coefficients ω̃n and
ψ̃n−1 by solving (11) is indicated by the function

f : wn
n+1,Awn

n+1,Aun−1
n+1 )→ [ω̃n, ψ̃n−1] (13)

The solution of (12) requires the two matrix-vector products Awn
n+1 and

Aun−1
n+1, which do not appear in (5) and which are not easily expressed by other

known matrix-vector products. Nevertheless it is possible to find recursions
so that a total of two matrix-vector products per iteration are enough. The
following Algorithm 2.1 achieves this.

Algorithm 2.1 For computing Ax = b choose an initial approximation x0 and
let ŵ0

0 := w0
0 := b − Ax0. Set u−1

1 := Au−1
1 := Aû−1

0 := 0. Choose ỹ0 such

7



that δ̃0 := 〈ỹ0, ŵ0
0〉 '= 0 and 〈ỹ0,Aŵ0

0〉 '= 0. Then, compute for n = 0, 1, . . .

δ̃′n := 〈ỹ0,Aŵn
n〉,

ωn := δ̃n/δ̃
′

n,

un−1
n+1 := un−1

n −Aûn−1
n ωn if n ≥ 1,

wn−1
n+1 := wn−1

n −Aŵn−1
n ωn if n ≥ 1,

wn
n+1 := wn

n −Aŵn
nωn,

Aun−1
n+1 :=

1

ω̃n−1

(
wn−1

n+1 −wn
n+1

)
if n ≥ 1,

[ω̃n, ψ̃n−1] := f(wn
n+1,Awn

n+1,Aun−1
n+1),

un
n+1 := wn

n+1 − un−1
n+1ψ̃n−1,

Aun
n+1 := Awn

n+1 −Aun−1
n+1ψ̃n−1,

wn+1
n+1 := wn

n+1 −Aun
n+1ω̃n,

δ̃n+1 := 〈ỹ0,w
n+1
n+1〉,

ψn := −δ̃n+1/(δ̃
′

nω̃n),

ŵn
n+1 := wn

n+1 − ŵn
nψn,

Aŵn
n+1 := Awn

n+1 −Aŵn
nψn,

Aûn
n := Aŵn

n −Aûn−1
n ψ̃n−1,

Aûn
n+1 := Aun

n+1 −Aûn
nψn,

ŵn+1
n+1 := ŵn

n+1 −Aûn
n+1ω̃n.

Not yet given are recursions for the approximate solutions of the given system
Ax = b. We actually obtain two per iteration: xn−1

n and xn
n are implicitly

defined by
wl

n ≡: b−Axl
n (l = n− 1, n). (14)

From (4a) and (4e) we see by subtracting b, multiplying by −A−1, and inserting
(14) that

xn
n+1 := xn

n + ŵn
nωn, xn+1

n+1 := xn
n+1 + un

n+1ω̃n. (15)

Together with the recursions in Algorithm 2.1 this defines a first version of the
methodBiCG×MR2 2×2. It is similar to, but different from Zhang’sGPBiCG.

Our error analysis suggested to modify it further. To be precise, we modi-
fied the recursions for Aun−1

n+1 and un−1
n+1, for reasons that will become clear in

8



Section 4. We replace the corresponding relations in Algorithm 2.1 by

Aun−1
n+1 := Aun−1

n +
ωn

ω̃n−1

(
Aŵn

n −Aŵn−1
n

)
, (16a)

un−1
n+1 := un−1

n +
ωn

ω̃n−1

(
ŵn

n − ŵn−1
n

)
. (16b)

Due to this replacement, other equations can be rearranged or become redun-
dant. Further, we combine both equations in (15) to get a new recursion for the
iterates xn ≡ xn

n:
xn+1 := xn + ŵn

nωn + un
n+1ω̃n. (17)

Altogether we obtain the following Algorithm 2.2.

Algorithm 2.2 (BiCG×MR2 2×2) For computing Ax = b choose an initial
approximation x0 and let ŵ0

0 := w0
0 := b−Ax0. Set u−1

1 := Au−1
1 := Aû−1

0 :=

0. Choose ỹ0 such that δ̃0 := 〈ỹ0, ŵ0
0〉 '= 0 and 〈ỹ0,Aŵ0

0〉 '= 0. Then, compute
for n = 0, 1, . . .

δ̃′n := 〈ỹ0,Aŵn
n〉,

ωn := δ̃n/δ̃
′

n,

wn
n+1 := wn

n −Aŵn
nωn,

un−1
n+1 := un−1

n +
ωn

ω̃n−1

(
ŵn

n − ŵn−1
n

)
if n ≥ 1,

Aun−1
n+1 := Aun−1

n +
ωn

ω̃n−1

(
Aŵn

n −Aŵn−1
n

)
if n ≥ 1,

[ω̃n, ψ̃n−1] := f(wn
n+1,Awn

n+1,Aun−1
n+1),

un
n+1 := wn

n+1 − un−1
n+1ψ̃n−1,

Aun
n+1 := Awn

n+1 −Aun−1
n+1ψ̃n−1,

xn+1 := xn + ŵn
nωn + un

n+1ω̃n,

wn+1
n+1 := wn

n+1 −Aun
n+1ω̃n,

δ̃n+1 := 〈ỹ0,w
n+1
n+1〉,

ψn := −δ̃n+1/(δ̃
′

nω̃n),

ŵn
n+1 := wn

n+1 − ŵn
nψn,

Aŵn
n+1 := Awn

n+1 −Aŵn
nψn,

Aûn
n+1 := Aun

n+1 − (Aŵn
n −Aûn−1

n ψ̃n−1)ψn,

ŵn+1
n+1 := ŵn

n+1 −Aûn
n+1ω̃n.

9



method mv(s) axpy dot memory

BiCG 2 6.5 2 7
CGS 1 3.25 1 7
BiCGStab 1 3 2 7
BiCGStab2 1 5.5 2.75 10
BiCGStab(2) 1 3.75 2.25 9
GPBiCG 1 7.5 3.5 11
Algorithm 2.1 1 7 3.5 11
BiCG×MR2 2×2 1 7 3.5 12

Table 1: Average costs per Krylov space dimension

3 BiCG×MR2 2×2 in comparison with GPBiCG

Two questions arise when comparing our algorithm BiCG×MR2 2×2 with
Zhang’s GPBiCG: are they mathematically equivalent and, if equivalent, what
are the differences between them?

The answer to the first question was given in [11]:

Theorem 3.1 The algorithms BiCG×MR2 2×2 and GPBiCG generate in
exact arithmetic with identical starting values x0 and ỹ0 the same iterates
xn, n = 1, . . . .

The idea of the proof is to show that the residuals are the same and thus
also the iterates. In both algorithms, the residuals are defined by a product
of two polynomials. So it is sufficient to prove the identity of the underlying
polynomials, which can be achieved by induction.

One small difference between the two algorithms is in the requirements in
operations and memory usage. Table 1 shows the average costs per Krylov space
dimension for different methods. Our Algorithm 2.1 uses the same amount of
vectors as GPBiCG, whereas BiCG×MR2 2×2 requires one additional vector.
The number of operations per Krylov space dimension is slightly lower in both
our algorithms.

Although the algorithms BiCG×MR2 2×2 and GPBiCG realize the same
method in exact arithmetic, they behave differently in finite arithmetic due to
different recurrences. An example is shown in Figure 3 with the matrix “Sher-
man5” from the Matrix Market [http://math.nist.gov/MatrixMarket/]. Our
algorithm attains a slightly higher ultimate accuracy. However, numerical ex-
periments show, that the behavior is different for other starting values. Thus,
we made for each matrix ten different experiments and show the averages in
Table 3. We report the number of iterations n12 to reduce the residual norm by
a factor of 1012 and the ultimate (relative) accuracy where the residual norm
stagnates. All matrices can be retrieved from the Matrix Market. As can be
seen, there are not any significant differences between the algorithms. The dif-
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Figure 2: Sherman5

ferences in n12 are less than 5%. The ultimate accuracy of BiCG×MR2 2×2 is
mostly slightly higher than the one of GPBiCG.

4 Error analysis of BiCG×MR2 2×2

In exact arithmetic the residuals wn
n and the iterates xn satisfy the equation

wn
n = b−Axn. (18)

However, in finite arithmetic, this equation does no longer hold, in particular if
we compute wn

n by recursions, as we do here. Therefore we call wn
n the recursive

residual and the right hand side of equation (18) the true residual (actually we
should say “true residual of the recursively computed xn”). We define the gap
en between these residuals as

en := b−Axn −wn
n. (19)

All vectors appearing on the right hand side in (19) denote the values from
Algorithm 2.2 computed in floating-point arithmetic.

Recently it has been shown that for three-term recurrences [8], the gap
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matrix BiCG×MR2 2×2 GPBiCG

ult.acc. n12 ult.acc. n12

fs6802 1.7e-14 1075 1.2e-14 1056
nos3 3.3e-15 223 3.3e-15 222
nos6 7.9e-13 2565 1.3e-12 2650
1138bus 1.1e-12 2766 1.3e-12 2809
saylr3 4.1e-15 450 4.5e-15 448
saylr4 1.0e-12 2273 6.3e-13 2254
gre115 1.0e-14 100 4.9e-15 97
gre185 5.0e-11 675 7.4e-11 671
e05r0000 5.3e-11 508 1.6e-10 525
sherman1 6.2e-13 494 6.2e-13 491
sherman3 3.9e-09 6524 3.6e-09 6546
sherman4 6.4e-13 122 6.5e-13 122
sherman5 3.3e-10 2589 7.9e-10 2648

Table 2: Comparison of BiCG×MR2 2×2 und GPBiCG for various matrices
from the Matrix Market

between the recursive and the true residual has the form:

en+1 = e0 −
n∑

j=0

lj

− l0

(
β0

γ1
+ · · ·+

β0 · · ·βn−1

γ1 · · · γn

)

− l1

(
β1

γ2
+ · · ·+

β1 · · ·βn−1

γ2 · · · γn

)

...

− ln−1

βn−1

γn
.

(20)

The vectors ln are the local errors due to the roundoff in step n. In contrast,
for 2-term recurrences the gap is just a sum of local errors lGj [4]:

eGn+1 = e0 −
n∑

j=0

lGj . (21)

Since the local errors lj and lGj are of comparable size, the level of accuracy
for 2-term recursions is usually better than the one of 3-term recursions. The
difference may be very large if some of the quotients in (20) are large, which
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may even happen if the conjugate gradient method is applied to a symmetric
positive definite matrix. We refer the reader to [8] for further information.

In the following, we will derive a formula for the gap en resulting from
Algorithm 2.2. Since the equations in this algorithm are not exactly fulfilled in
finite arithmetic, we add in each equation an error term fxn , x ∈ {a, . . . , p},
which is either a scalar or a vector depending on the equation. As an example
the third equation gives:

wn
n+1 = wn

n −Aŵn
nωn + fcn. (22)

The vector Aŵn
n denotes the matrix-vector product computed in finite arith-

metic. In contrary Aŵn
n is the exact matrix-vector product of A with ŵn

n from
Algorithm 2.2. Thus, we have to replace each matrix-vector product in Algo-
rithm 2.2 by its underlined equivalent. Additionally, we introduce the vectors

f̃1n := Aŵn
n −Aŵn

n, (23)

f̃2n := Awn
n+1 −Awn

n+1. (24)

They express the errors resulting from the computation of the matrix-vector
products Aŵn

n and Awn
n+1 in floating point arithmetic. Moreover, we define

the vectors

en := Aun
n+1 −Aun

n+1, (25)

ẽn := Aun−1
n+1 −Aun−1

n+1. (26)

to simplify the notation.
Starting point for the following derivation is the definition (19), where we

substitute equations for xn+1, w
n+1
n+1 and wn

n+1 from Algorithm 2.2:

en+1 = b−Axn+1 −wn+1
n+1

= en + enω̃n + f̃1nωn −Af in − f jn − fcn.
(27)

In the same way we get for en:

en = −ẽnψ̃n−1 + f̃2n + fhn −Afgn . (28)

and for ẽn:

ẽn = en−1 −
ωn

ω̃n−1

(
f̃1n + f̃2n−1 − f̃1n−1ψn−1 + fnn−1 −Afmn−1

)
+ fen −Afdn . (29)

Without the modified equations for un−1
n+1 and Aun−1

n+1 in Algorithm 2.2, the
derivation for (29) would not be possible.

Combining equations (28) and (29) leads to a recursion for en:

en = −en−1ψ̃n−1 + ln−1

=

(
n−1∏

k=0

ψ̃k

)

e0 +
n−2∑

i=0

(
n−1∏

k=i+1

ψ̃k

)

li + ln−1,
(30)
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where

ln−1 = f̃2n + fhn −Afgn

+ ψ̃n−1

(
ωn

ω̃n−1

(
f̃1n + f̃2n−1 − f̃1n−1ψn−1 + fnn−1 −Afmn−1

)
+ fen −Afdn

)
. (31)

In summary we have the following formula for the gap en:

en+1 = en + enω̃n + ln

= e0 +
n∑

i=0

(eiω̃i + li) ,
(32)

with the local error
ln = f̃1nωn −Af in − f jn − fcn. (33)

As expected, (32) looks like formula (21) for 2-term recursions. Unfortu-
nately, en is part of en, and its recursion is similar to the error of a 3-term
recursion.

Next, we investigate the influence of en on the error en. First, we modify
Algorithm 2.2, by replacing the indirect computation of Aun−1

n+1 by the corre-
sponding direct matrix-vector product. As a consequence, the error en has now
the form

emod
n+1 = e0 +

n∑

i=0

(f̃3i ω̃i + li), (34)

where f̃3n := Aun
n+1−Aun

n+1. In other words, the error emod
n+1 is now independent

of en.
In Table 3, we compare Algorithm 2.2 without and with the above modifi-

cation. We list again the number of iterations n12 to reduce the residual norm
by a factor of 1012 and the (relative) ultimate accuracy. All reported values are
averages of 10 different numerical experiments. We observe that the ultimate
accuracy is higher for Algorithm 2.2 with three matrix-vector products. The
difference is especially significant if n12 is greater than the dimension of the
matrix. This seems obvious, since the norm of the error en is likely to grow
with increasing n.

5 Conclusions

We have derivedBiCG×MR2 2×2, an LTPM whose second sequence of polyno-
mials is determined through a 2-dimensional minimization of the residual norm
in each step, like in Zhangs’s GPBiCG. Both algorithms are mathematically
equivalent and based on two pairs of coupled 2-term recurrences. However,
BiCG×MR2 2×2 determines the recurrence coefficients of the second set of
polynomials in a different way and uses not the same intermediate quantities as
GPBiCG. Some of the recursions for residuals and iterates are simpler and are
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matrix alg. 2 alg. 2 with 3mv

ult.acc n12 ult.acc n12

fs6801 6.0e-15 357 2.3e-15 353
fs6802 3.5e-14 1051 2.6e-15 1020
nos3 5.0e-15 221 2.5e-15 222
nos6 3.2e-12 2629 2.0e-14 2384
1138bus 1.2e-12 2862 2.1e-14 2921
saylr3 6.8e-15 449 3.1e-15 442
saylr4 1.1e-12 2279 5.0e-14 2234
gre115 1.8e-15 97 6.6e-16 97
gre185 6.3e-11 760 3.4e-12 640
e05r0000 1.5e-10 534 1.6e-12 514
sherman1 2.5e-13 486 1.1e-13 485
sherman3 3.5e-09 6889 1.5e-10 6988
sherman4 6.5e-13 121 4.3e-13 122
sherman5 2.9e-10 2506 5.4e-11 2534

Table 3: Accuracy of Algorithm 2.2 with two and three matrix-vector products
per iteration

closer related to each other in order to make the gap between updated and true
residuals as small as possible. We have analyzed this gap and have provided a
formula for it. Despite the use of 2-term recurrences it has still some elements
of a 3-term recurrence in it, but it is much easier to estimate than the one for
GPBiCG.

The recurrences of our algorithm allow to improve it further. Approaches
to avoid a significant loss of accuracy have been investigated and tested in [11]:
it turns out that the adaptation of the correction scheme of Van der Vorst and
Ye [14] is quite complicated, while variations of Neumaier’s scheme [10] can be
implemented more easily. Finally, a look-ahead algorithm for our main version
of BiCG×MR2 2×2 has been implemented in [11].
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