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1 Introduction

The Chebyshev iteration has been one of the favorite Krylov space methods
for solving a large sparse linear system of equations in a parallel environment,
since, unlike methods based on orthogonalization (such as the conjugate gradi-
ent (CG) and biconjugate gradient (BiCG) methods and GMRes—to name
a few), it does not require to compute communication-intensive inner products
for the determination of the recurrence coefficients. Only the monitoring of the
convergence, that is, the determination of the norm of the residuals requires
inner products, and even this norm needs to be evaluated only occasionally
because its time-dependence can be forecast reliably.

The Chebyshev iteration, which in the older literature has often been referred
to as Chebyshev semiiterative method, requires some preliminary knowledge
about the spectrum σ(A) of the coefficient matrix A: an elliptic domain E ⊃
σ(A) with 0 "∈ E is normally assumed to be known in advance. Denote the
center of the ellipse by α, its foci by α ± c, and the lengths of the large and
the small semi-axes by a and b. When b = 0, the elliptic domain turns into
a straight line segment (or, interval) I :≡ [α − c,α + c]. At this point, both
α and c may be complex. Manteuffel [1] devised a technique to determine a
suitable ellipse from a given nonsymmetric matrix.

Mathematically the method can be defined by translating the Chebyshev poly-
nomials Tn from the interval [−1, 1] to the interval I and scaling them so that
their value at 0 is 1. On R the Chebyshev polynomials are defined by 1

Tn(ξ) :≡






cos(n arccos(ξ)) if |ξ| ≤ 1 ,

cosh(n arcosh(ξ)) if ξ ≥ 1 ,

(−1)n cosh(n arcosh(−ξ)) if ξ ≤ −1 .

Tn is even or odd if n is even or odd, respectively. All three formulas are valid
when we extend the definition to the complex plane, which we will indicate
by using the variable ζ . For example, we may define

Tn(ζ) :≡
1

2

[(
ζ +

√
ζ2 − 1

)n

+
(
ζ −

√
ζ2 − 1

)n]
.

The translated and scaled residual polynomials pn that characterize the Cheby-
shev iteration are

pn(ζ) :≡
Tn

(
ζ−α
c

)

Tn

(
−α

c

) . (1)

1 Definitions are marked by the symbol :≡, while := is used for algorithmic assign-
ments; often either one of the symbols could be used.
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If we let x0 be an initially chosen approximation of the solution of the linear
system Ax = b that has to be solved, and if r0 :≡ b − Ax0 denotes the
corresponding residual, then, by definition, the nth approximation and residual
satisfy

b−Axn = rn = pn(A)r0 .

The classical case for applying the method is when A is symmetric positive
definite (spd)—as assumed in CG—and, therefore, the interval I lies on the
positive real axis and contains the spectrum of A [2–4]. In this case Cheby-
shev iteration is known to be optimal in the sense that it yields, for every n,
the smallest nth maximum residual if the maximum is taken over all normal
matrices with spectrum on I.

Due to a wrong claim in [5] it has often been assumed that this optimality also
holds for the class of matrices with spectrum inside or on an ellipse whose foci
lie on the positive real axis, but Fischer and Freund [6,7] have shown that this
is not true in general; the exceptional cases are rather ill-conditioned, however.
In any case, for any elliptic compact set not containing 0 the correspondingly
chosen Chebyshev iteration is asymptotically optimal, as its recurrence co-
efficients approach those of a second order Richardson iteration, which is a
stationary 2-step method based on conformal mapping, see our discussion in
Section 6.

Of course, in practice we need an algorithm that generates the approximations
xn recursively. The usual approach is to derive a three-term recurrence from
the standard recursion for the Chebyshev polynomials. However, as has re-
cently been shown by Gutknecht and Strakoš [8], Krylov space methods based
on three-term recursions for iterates and residuals may suffer from a large
gap between recursively computed residuals rn and true residuals b − Axn,
and, therefore, may stagnate early with relatively large true residuals. In other
words, the ultimately achievable accuracy may be quite low. In particular, this
effect may even occur when CG is applied to an spd problem.

We will show here that the Chebyshev iteration, even in this implementation,
is not seriously affected by roundoff. Moreover, we will discuss five other im-
plementations that produce even more accurate solutions, that is, stagnate
ultimately with smaller true residuals. We also briefly look at the stationary
two-step method (the stationary second order Richardson iteration) that can
be viewed as the limit of the Chebyshev iteration, and we point out that it
can as well be realized by six analogous different algorithms.
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2 Chebyshev iteration with three-term recursion

Recursions for the residuals rn and the iterates xn of the Chebyshev itera-
tion are easily found from the standard three-term recursions for the classical
Chebyshev polynomials Tn,

Tn+1(ζ) := 2ζTn(ζ)− Tn−1(ζ) (n > 1). (2)

The following first realization of the method results.

Algorithm 1 (Three-term Chebyshev iteration) For solving Ax = b
choose x0 and let r0 := b − Ax0. Also set r−1 := x−1 := o. Choose the
parameters α and c so that the spectrum of A lies on the straight line segment
I :≡ [α − c,α + c] or on an elliptical domain E with foci α ± c that does not
contain 0. Then let η :≡ −α/c,

β−1 :≡ 0 , β0 :≡
c

2

1

η
= −

c2

2α
, γ0 :≡ −α , (3)

and compute, for n = 0, 1, . . . until convergence,

βn−1 :≡
c

2

Tn−1(η)

Tn(η)
=

(
c

2

)2 1

γn−1
if n ≥ 2, (4)

γn :≡
c

2

Tn+1(η)

Tn(η)
= −(α + βn−1) if n ≥ 1, (5)

xn+1 := −
(
rn + xnα + xn−1βn−1

)
/γn , (6)

rn+1 :=
(
Arn − rnα− rn−1βn−1

)
/γn . (7)

We cannot expect that a solver produces ultimately a much smaller residual
than what we get when we insert (the machine approximation of) the exact
solution x# :≡ A−1b into the definition of the residual: ‖fl(b−Ax#)‖. However,
due to the accumulation of rounding errors the achievable accuracy might be
perhaps much lower. Actually, the ultimate accuracy of Algorithm 1 (and
many others) is determined by the size of the gap fn between the updated
(or, recursively computed) residual rn and the true (or, explicitly computed)
residual b−Axn:

fn :≡ b−Axn − rn .

Here xn and rn denote the vectors computed in floating point arithmetic from
(6) and (7). In fact, if A satisfies the spectral assumption, then, normally,
rn → o as n → ∞ even in floating point arithmetic. Thus,

‖fl(b−Axn)‖ ≈ ‖fn‖ for large n .

A general result on this gap for methods updating residuals by three-term
recurrences was given in [8].

3



Theorem 1 ([8]) Assume iterates and residuals are updated according to

xn+1 := −
(
rn + xnαn + xn−1βn−1

)
/γn , (8)

rn+1 :=
(
Arn − rnαn − rn−1βn−1

)
/γn , (9)

where γn := −αn − βn−1. Then the gap fn :≡ b −Axn − rn satisfies, up to
O(ε2) (where ε denotes the roundoff unit),

fn+1 = f0 − l0

− l0
β0

γ1
− l1

− l0
β0β1

γ1γ2
− l1

β1

γ2
− l2

... (10)

− l0
β0β1 · · ·βn−1

γ1γ2 · · · γn
− · · ·− ln−1

βn−1

γn
− ln ,

where

ln :≡ (−bεn +Ahn + gn)
1

γn

is the local error whose components come from

rn+1 = (Arn − rnαn − rn−1βn−1 + gn)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1 + hn)/γn ,

γn = −(αn + βn−1 + εn).

If we assume that each row of A contains at most m nonzero elements and
that matrix-vector products with A are computed in the standard way, then
for the local error holds componentwise

|ln|≤
[
|b| (|αn|+ |βn−1|) + (m+ 6) |A| |rn|+ 3 (|A| |xn|+ |rn|) |αn|

+4 (|A| |xn−1|+ |rn−1|) |βn−1|
] ε

|γn|
+O(ε2),

where ε denotes the machine-epsilon. But more important than the size of the
local errors is the size of the potentially large factors βk−1/γk and of their
products in (10). In Algorithm 1, the factors and their products are
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β0

γ1
=

1

T2(η)
, (11a)

βn−1

γn
=

Tn−1(η)

Tn+1(η)
, (11b)

βkβk+1 · · ·βn−1

γk+1γk+2 · · · γn
=

Tk(η)Tk+1(η)

Tn(η)Tn+1(η)
(0 ≤ k < n− 1) . (11c)

Hence, if 0 < α < c (as in the case when A is spd), so that η < −1 and
|Tk(η)| = cosh(karcosh(|η|)), we have, since cosh is monotone increasing on
the positive real axis,

|Tk(η)| < |Tn(η)| if k < n , (12)

and therefore all the factors in (10) are less than 1. Since lk appears in n−k+1
terms of (10), it may still get amplified by a factor smaller than n − k + 1,
but this is not too serious, in particular since typically most of the factors are
rather small.

We will show next that (12) does not hold in general, but that also in the
other case relevant for real-valued problems, namely when c ∈ R but α is
purely imaginary (so that the ellipse is still symmetric about the real axis),
the terms are all of absolute value smaller than 1.

For any η ∈ C\[−1, 1], we let ϑ be the larger solution of the quadratic equation

1

2

(
ϑ+

1

ϑ

)
= η . (13)

Note that the solutions come in pairs ϑ, ϑ−1 and that |ϑ| = 1 implies that
η = 1

2(ϑ+ϑ−1) = 1
2(ϑ+ϑ) = Re ϑ ∈ [−1, 1], which is excluded by assumption.

Therefore, we may assume that |ϑ| > 1 here. The mapping ϑ ,→ η of (13)
is the well-known Joukowski transformation, which allows us to express the
Chebyshev polynomials simply as

Tn(η) =
1

2

(
ϑn +

1

ϑn

)
. (14)

In fact, if we let
φ :≡ arcosh(η) with Re φ ≥ 0 ,

so that eφ+ e−φ = 2η = ϑ+ϑ−1, then, clearly, eφ = ϑ, and therefore, if η ≥ 1,
Tn(η) = cosh(n arcosh(η)) = 1

2(ϑ
n + ϑ−n), and this relation can be seen to be

valid for any η ∈ C. Consequently, the single factors from (10) can be written
as

βn−1

γn
=

Tn−1(η)

Tn+1(η)
=

ϑn−1 + ϑ−(n−1)

ϑn+1 + ϑ−(n+1)
. (15)

Obviously, these factors are rational functions of both η and ϑ.
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It is well-known that Tn+1 has n+1 simple zeros in (−1, 1). So, Tn−1(ζ)/Tn+1(ζ)
(after cancellation of the pole and zero at ζ = 0 if n is odd) has at most n+1
poles, and they lie all on (−1, 1). If considered as a function of ϑ, the quotient
has at most 2(n + 1) poles, and they all lie on the unit circle. Clearly, if we
choose η close enough to a pole, but not on [−1, 1], the quotient can be made
as large as we want. Consequently, as claimed, the factors are in general not
all of absolute value less than 1. So, amplification of a local error is possible.

If 0 < α < c, we have seen already that (12) holds, and, by symmetry, the
same is true for 0 > α > c. If α is still real, say α > 0, but c ∈ iR+, then
η :≡ −α/c ∈ iR+, and since the Joukowski transformation maps the part
above i of the imaginary axis on the positive imaginary axis, we have ϑ = iχ
with χ > 1. Then, from (15) and by setting

η̃ :≡
1

2

(

χ+
1

χ

)

,

so that η̃ > 1 (since the Joukowski transformation maps [1,∞) onto itself),
we obtain

βn−1

γn
=

Tn−1(η)

Tn+1(η)
==






−
χn−1 + χ−(n−1)

χn+1 + χ−(n+1)
= −

Tn−1(η̃)

Tn+1(η̃)
if n odd,

−
χn−1 − χ−(n−1)

χn+1 − χ−(n+1)
= −

Un−1(η̃)

Un+1(η̃)
if n even .

(16)

Here, Un is the nth Chebyshev polynomial of the second kind. For η̃ > 1, Un

can be expressed as

Un(η̃) = sinh(n arcosh(η̃)) .

Noting that sinh is monotone increasing, we can conclude that Un+1(η̃) >
Un−1(η̃) > 0 if η̃ > 1. As we have seen before, also Tn+1(η̃) > Tn−1(η̃) > 0 if
η̃ > 1. Therefore, also in this situation, the factors βn−1/γn have an absolute
value smaller than 1. Summarizing, we have proved the following result.

Theorem 2 For an interval [α − c,α + c] ⊂ R or an ellipse with foci α ± c
symmetric about the real axis, the factors (11a)–(11c), which appear in (10),
are of absolute value less than 1.

A simple way to avoid the residual gap in the Chebyshev iteration is to replace
the recursively computed residuals by explicitly computed residuals.

Algorithm 2 (Three-term recursion, explicitly computed residuals)
Same as Algorithm 1 except that the recursion for computing rn+1 is replaced
by

rn+1 := b−Axn+1 . (17)
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This remedy could be applied in many Krylov solvers in order to increase
the ultimate accuracy. However, explicitly computed residuals are known to
slow down the convergence of projection methods like CG and BiCG due to
stronger roundoff effects in the Krylov space generation process [9]. But here,
unlike in these methods, the recurrence coefficients α, βn−1, and γn do not
depend on rn, and therefore the error of rn will only have little influence on
xm (m > n) and the convergence of the method.

3 Rutishauser’s Chebyshev iteration by updating corrections

The recursions (6) and (7) are of the form (8)–(9) with the consistency condi-
tion αn + βn−1 + γn = 0, which implies that rn = b−Axn for all n if it holds
for n = 0. Subtracting xn and rn, respectively, on both sides of (8) and (9),
using the consistency condition, and setting

∆xn :≡ xn+1 − xn , ∆rn :≡ rn+1 − rn ,

yields

∆xn :=
(
−rn +∆xn−1βn−1

)
/γn , (18)

∆rn :=
(
Arn +∆rn−1βn−1

)
/γn . (19)

This leads to the following reformulation of Algorithm 1.

Algorithm 3 (Chebyshev iteration by updating ∆xn and ∆rn) Same
as Algorithm 1 except that the recursions (6) and (7) for computing xn+1 and
rn+1 are replaced by (18)–(19) and

xn+1 := xn +∆xn , (20)

rn+1 := rn +∆rn . (21)

This is how Rutishauser [4] formulated the Chebyshev iteration and other
Krylov space solvers (which he called “gradient methods”).

It is easy to modify Rutishauser’s scheme so that the residuals are computed
explicitly.

Algorithm 4 (Updating ∆xn and explicitly computing rn) Same as
Algorithm 1 except that the recursions (6) and (7) for computing xn+1 and

7



rn+1 are replaced by (18), (20), and (17), that is,

∆xn :=
(
−rn +∆xn−1βn−1

)
/γn ,

xn+1 := xn +∆xn ,

rn+1 := b−Axn+1 .

4 Algorithms based on coupled two-term recurrences

For Krylov space solvers based on two-term updates for xn and rn (involving
additionally direction vectors vn),

vn := rn − vn−1ψn−1,n − vn−2ψn−2,n − · · ·− v0ψ0,n , (22)

xn+1 := xn + vnωn , (23)

rn+1 := rn −Avnωn , (24)

the gap between updated and true residuals is known to be often much smaller
than for those that update the residuals with three-term recurrences. It does
not matter whether the recursion (22) for vn is long or just two-term as in

vn := rn − vn−1ψn , (25)

because the same possibly inaccurate vn is used in (23) and (24). Examples for
algorithms of the form (23)–(24) with (25) are the standard Hestenes-Stiefel
or OMin version of CG and the standard BiOMin version of BiCG.

The above claim is based on a comparison between Theorem 1 and the follow-
ing result of Greenbaum [10], which improves on previous similar statements
in [11] and [12]. It explains why the gap between updated and true residuals
is relatively small: here, the gap is just a sum of local errors; these are not
multiplied by any potentially large factors.

Theorem 3 ([10]) Assume iterates and residuals are updated according (23)–
(24). Then the gap fn :≡ b−Axn−rn between the true and the updated residual
satisfies

fn = f0 − l0 − · · ·− ln ,

where

ln :≡ Ahn + gn

is the local error whose components come from

xn+1 = xn + vnωn + hn , rn+1 = rn −Avnωn + gn .
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In particular,

||fn||
||A|| ||x||

≤(ε+O(ε2))
[
n + 2 + (1 + µ+ (n+ 1)(10 + 2µ))Θn

]
,

where ε denotes the machine-epsilon, µ :≡ m
√
N with m the maximum number

of nonzeros in a row of A, N the order of A, and

Θn :≡ max
k≤n

||xk||
||x#||

.

5 Chebyshev iteration based on coupled two-term recurrences

Theorem 3 suggest to search for a coupled-two term recursion as an alterna-
tive realization of the Chebyshev method. Recursions (23)–(24) call for the
following “Ansatz” in a polynomial formulation:

p̂n(ζ) := pn(ζ)− ψn−1p̂n−1(ζ), (26)

pn+1(ζ) := pn(ζ)− ζωnp̂n(ζ), (27)

with p0(ζ) := p̂0(ζ) := 1, ψ−1 :≡ 0. To determine ωn and ψn we insert (26)
into (27), make use of (27) with n replaced by n − 1, and then compare the
result with the polynomial reformulation of (7): if n ≥ 1,

pn+1(ζ) = pn(ζ)− ζωnpn(ζ) + ζωnψn−1p̂n−1(ζ)

= pn(ζ)− ζωnpn(ζ) + ψn−1
ωn

ωn−1

(
pn−1(ζ)− pn(ζ)

)

=
(
1− ψn−1

ωn

ωn−1

)

︸ ︷︷ ︸
= −α/γn

pn(ζ) − ωn︸ ︷︷ ︸
= 1/γn

ζpn(ζ) + ψn−1
ωn

ωn−1︸ ︷︷ ︸
= −βn−1/γn

pn−1(ζ) .

We obtain

βn−1 =
ψn−1

ωn−1
(n ≥ 1), γn = −

1

ωn

(n ≥ 0), (28)

α = −βn−1 − γn =
1

ωn

−
ψn−1

ωn−1
(n ≥ 1), (29)

and, conversely,

ψn−1 = −
βn−1

γn−1
(n ≥ 1), ωn = −

1

γn
(n ≥ 0). (30)

If n = 0, we have ψ−1 := 0 and hence just p1(ζ) = p0(ζ)− ζω0p0(ζ), so

ω0 = −
1

γ0
=

1

α
.

9



Like βn−1 and γn we can express ωn and ψn−1 in terms of the Chebyshev
polynomials and derive recursions for them. First, inserting the left-hand side
equations from (4) and (5) into (30) we see that

ωn = −
2

c

Tn(η)

Tn+1(η)
, ψn−1 = −

(
Tn−1(η)

Tn(η)

)2

. (31)

Then, inserting the right-hand side equations from (4) and (5) we get

ωn = −
1

γn
= (α + βn−1)

−1 =
(
α +

(
c

2

)2 1

γn−1

)−1

=






(
α−

( c
2

)2
ωn−1

)−1

(if n ≥ 2),
(
α−

c2

2α

)−1

(if n = 1)

and

ψn−1 = −
βn−1

γn−1

=






−
(
c

2

)2 1

γ2
n−1

= −
(
c

2

)2

ω2
n−1 (n ≥ 2) ,

−
c2

2α2
(n = 1) .

Summarizing we obtain the following coupled two-term Chebyshev iteration
[13].

Algorithm 5 (Coupled two-term Chebyshev iteration) For solving
Ax = b choose x0 and let r0 := b − Ax0. Choose the parameters α and
c so that the spectrum of A lies on the straight line segment I :≡ [α− c,α+ c]
or on an elliptical domain E with foci α± c that does not contain 0. Then let
η :≡ −α/c,

ψ−1 :≡ 0, ψ0 :≡ −
1

2

(
c

α

)2

, (32)

ω0 :≡
1

α
, ω1 :≡

(
α−

c2

2α

)−1

. (33)
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and compute, for n = 0, 1, . . . until convergence,

ψn−1 :≡ −
(
Tn−1(η)

Tn(η)

)2

:= −
(
c

2

)2

ω2
n−1 (n ≥ 2), (34)

ωn :≡ −
2

c

Tn(η)

Tn+1(η)
:=

(

α−
(
c

2

)2

ωn−1

)−1

(n ≥ 2), (35)

vn := rn − vn−1ψn−1 , (36)

xn+1 := xn + vnωn , (37)

rn+1 := rn −Avnωn . (38)

Also in Algorithm 5 we can avoid the residual gap by replacing the recursively
computed residuals by explicitly computed residuals.

Algorithm 6 (Two-term recursions and explicitly computed resid-
uals) Same as Algorithm 5 except that the recursion for computing rn+1 is
replaced by rn+1 := b−Axn+1.

6 The second order Richardson iteration as limiting case

From (14) we see that in view of |ϑ| > 1

Tn(η)

Tn+1(η)
=

ϑn + ϑ−n

ϑn+1 + ϑ−(n+1)
= ϑ−1 1 + ϑ−2n

1 + ϑ−2(n+1)
→ ϑ−1 . (39)

as n → ∞. We can conclude that for any admissible value of η the coefficients
of both the three-term and the two-term Chebyshev iterations converge:

βn−1 →
c

2ϑ
≡: β γn →

cϑ

2
≡: γ as n → ∞ , (40)

ψn−1 → −ϑ2 ≡: ψ ωn → −
2

cϑ
≡: ω as n → ∞ . (41)

This gives rise to six additional related algorithms that are analogous to Al-
gorithms 1–6 but use the limit values of the coefficients. For example, for the
iterates hold the three-term recurrences

xn+1 := −
(
rn + xnα+ xn−1β

)
/γn , (42)

and the coupled two-term recurrences

vn := rn − vn−1ψ , (43)

xn+1 := xn + vnω . (44)
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These additional six algorithms are different implementations of the second-
order Euler method that can be associated with the ellipse E . This method
belongs to the class of iterative methods based on conformal mappings, intro-
duced by Kublanovskaya in 1959; see [14–17]. It is, at least in the case where
the ellipse E collapses to an interval I, better known as stationary second-order
Richardson iteration; see [3]. It can easily be generalized for mildly non-linear
systems of equations, and for those it seems more suitable than the nonlinear
Chebyshev iteration; see [18,19]. Note that

∣∣∣∣∣
β

γ

∣∣∣∣∣ =
∣∣∣ϑ−2

∣∣∣ = e−2 Re φ < 1 . (45)

Therefore, for the three-term version of the second-order Richardson iteration,
all the multiplicative factors in (10) of Theorem 1 are actually smaller than 1.

The conformal map associated with the recursion (42) is 2

f(ζ) :≡
γ

ζ
+ α + β ζ . (46)

In view of (45) f maps a neighborhood of the unit disk one-to-one onto the
exterior of an ellipse with the foci α ± c. In particular, the disk Dη̂ around
0 with radius η̂ :≡ |γ/β| = |ϑ2| is mapped onto the exterior of the interval
or line segment [α − c,α + c]. If 1 < η < η̂, the disk Dη is mapped onto the
exterior of a confocal ellipse, and if all the eigenvalues of A lie in this ellipse,
the iteration converges asymptotically at least with the rate 1/η. If all the
eigenvalues lie on [α − c,α + c], the asymptotic rate is 1/η̂. These rates are
the same as for the Chebyshev iteration.

7 Numerical results

We consider first real matrices of order 500 whose eigenvalues are randomly
chosen as complex conjugate pairs in an ellipse with foci α ± c and longer
semi-axis a. These matrices have been constructed by unitarily transform-
ing a block-diagonal matrix (with 2 × 2 blocks) with these randomly chosen
eigenvalues. Note that these matrices are not very ill-conditioned as long as
the ellipse does not come very close to the origin: they are normal and their
condition number is bounded by the quotient of the distances from the origin
of the farthest point and the closest point. However, if we considered very
ill-conditioned matrices instead, the rate of convergence would be very slow.
We report the number n12 of iterations needed to reduce the residual norm by

2 In [15–19] the mapping p related to f by f(ζ) = 1− 1/p(ζ) is considered instead.
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a factor of 1012 and the ultimate relative accuracy where the residual norm
stagnates.

Table 1 summarizes the results for four such matrices for the three-term, two-
term, and Rutishauser versions of the Chebyshev iteration using recursively
computed residuals. Table 2 contains the corresponding results if explicitly
computed residuals are used instead. We see that in these examples the num-
ber of iterations needed to reach relative accuracy 10−12 is not affected by
the choice of the version. The ultimate accuracy is worst for the three-term
version with updated residuals, and by replacing them by explicitly computed
residuals we gain nearly up to two orders of magnitude. In other words, for
the three-term version with updated residuals the loss of accuracy is notable,
but not really serious. This reflects what we can expect from Theorem 2. For
all the other versions, the ultimate accuracy is higher than 10−14.

matrix 3-term 2-term Rutishauser

α c a ult.acc. n12 ult.acc. n12 ult.acc. n12

100 50 90 1.6e-14 195 1.6e-15 195 2.1e-15 195

100 70 90 5.9e-15 159 1.7e-15 159 2.3e-15 159

100 70 99 4.9e-14 1663 3.2e-15 1663 3.9e-15 1663

100 90 99 1.1e-13 1040 3.1e-15 1040 5.7e-15 1040

Table 1
Comparison of the three-term, two-term, and Rutishauser versions of the Chebyshev
iteration using recursively computed residuals. Normal matrices with eigenvalues in
the ellipse with foci α± c and semi-axis a.

matrix 3-term 2-term Rutishauser

α c a ult.acc. n12 ult.acc. n12 ult.acc. n12

100 50 90 9.2e-16 195 1.0e-15 195 9.1e-16 195

100 70 90 9.1e-16 159 9.5e-16 159 9.3e-16 159

100 70 99 2.1e-15 1663 1.7e-15 1663 1.7e-15 1663

100 90 99 1.8e-15 1040 1.9e-15 1040 1.7e-15 1040

Table 2
Comparison of the three-term, two-term, and Rutishauser versions of the Chebyshev
iteration using explicitly residuals. Normal matrices with eigenvalues in the ellipse
with foci α± c and semi-axis a.

In Figures 1–3 we show for the first example with α = 100, c = 50, and
a = 90 the residual histories for the two three-term versions, the two two-
term versions, and the two Rutishauser versions, respectively. For each pair
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of algorithms, both the true residuals and the residuals used in the recursion
are plotted. Needless to say that for the algorithms using explicitly computed
residuals there is no difference between those and the true residuals.
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Fig. 1. Chebyshev iteration with three-term recursions
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Fig. 2. Chebyshev iteration with coupled two-term recursions

Now we want to try to construct an example with much stronger degradation of
the ultimate accuracy in case of the three-term version with updated residuals.
We know that the influence of the roundoff hinges in this case mainly on the
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Fig. 3. Chebyshev iteration with Rutishauser’s recursions for updating corrections

factors (11a)–(11c) in (10). Clearly, the absolute value of the factor (11c),
∣∣∣∣∣
βkβk+1 · · ·βn−1

γk+1γk+2 · · · γn

∣∣∣∣∣ =

∣∣∣∣∣
Tk(η)Tk+1(η)

Tn(η)Tn+1(η)

∣∣∣∣∣ (0 ≤ k ≤ n− 1) (47)

(which simplifies to the absolute value of (11b) if k = n−1) can become large,
if the absolute value of the denominator is very small, that is if η is close to a
zero of Tn or Tn+1. These zeros all lie in the interval (−1, 1), while |Tn(η)| > 1
if η > 1 or η < −1. Hence we need a complex η to get a small denominator.
In Figure 4 we display this factor for k = 1 and n = 3 as a function of η in the
domain 0 ≤ Re η ≤ 2, 0 ≤ Im η ≤ 0.5. The poles of the function at the three
positive zeros of T3 and T4 are well visible; the zero of T3 at η = 0 cancels
with the one of T1. Clearly, we can make the fraction as large as we want by
choosing η close enough to a pole. Then at least one term in (10) will be large.

However, if η is close to such a pole (and, hence, to the real axis), say to a
zero of Tn, then the residual polynomial pn of (1) is large at some points of the
prescribed, necessarily very flat elliptic domain. (Recall that the straight line
segment determined by the foci of the ellipse must “pass” very close to the
origin.) Therefore, the residual rn of a system with a matrix whose spectrum is
spread in this ellipse or on the straight line segment will have some eigensystem
components that have not been damped or have even been amplified.

There is the question what happens with the other quotients in (10). To explore
that, we show in Figures 5 and 6 the factors (47) for 0 ≤ k ≤ n − 1 < 100
when η = 0.85 + 0.05i and when η = 0.865 + 0.001i, respectively. In the first
case, the plot shows a clear ridge where k = n−1, but except for small values
of n, the quotient |βn−1/γn| remains smaller than one.
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Fig. 5. The factors (47) in (10) for η = 0.85 + 0.05i as a function of k and n.

In fact, since βn−1 → β and γn → γ (see (40)), and since the asymptotic
convergence rate |β/γ| is bounded by 1 (see (45)), this is what we must expect.
Moreover, this asymptotic rate is also the asymptotic convergence factor of
both the Chebyshev iteration and the second order Richardson iteration if the
eigenvalues of A lie on the straight line segment [α− c,α+ c]. A rate close to
1 means that, in general (that is, when the eigenvalues of A can be anywhere
on the line segment), the iteration will converge very slowly. In Figure 5 this
rate is around 0.83. Away from the ridge, the factors (47) quickly decay.
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The second plot shows a few very high peaks and a regular pattern of many
smaller peaks that are still higher than 1. (Note the new scale of the vertical
axis!) But, in view of what we just said, this can only mean that on the line
k = n−1 the quotients are still far away from their asymptotic value, which is
around 0.996 here. So, in an example with a matrix with this kind of spectrum
we could notice a serious influence of roundoff propagation on the ultimate
accuracy, but the method would converge so slowly that we rather do not
want to apply it. In the initial phase the residuals may strongly increase in
this situation, because some of the residual polynomials are large on the line
segment.

8 Conclusions

We have compared six different implementations of Chebyshev iteration with
respect to convergence speed and ultimate accuracy attained. Several conclu-
sions can be drawn from both theoretical and experimental investigations. The
theoretical conclusion also hold, and the experimental ones can be expected to
hold, for the related stationary method, the second order Richardson iteration.

• In our fairly well-conditioned examples, the number of iterations needed to
reduce the residual norm by 1012 did not depend on which of the six versions
is applied.

• The ultimate accuracy turned out worst for the classical 3-term recursion
with recursively computed residuals, as had to be expected from theoretical
results.
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• Explicitly computed residuals yield the higher ultimate accuracy, and, for
all three types of iterations, roughly the same.

• In contrast to CG, BiCG, and related methods, explicitly computed resid-
uals do not cause a slowdown of convergence. They also do not have higher
computational cost. Therefore they should be preferred.

If the (standard) three-term recursion for the residuals is applied nevertheless,
the ultimate accuracy is still likely to be quite high, and this for the following
reasons.

• If the Chebyshev iteration is applied to a matrix with spectrum on an
interval [α− c,α+ c] ⊂ R or an ellipse with foci α± c symmetric about the
real axis, then, in contrast to CG and BiCG, the loss of ultimate accuracy
is never very pronounced, because the multiplicative factors in (10) in front
of the local errors in the expression for the residual gap are all of absolute
value smaller than one.

• If the Chebyshev iteration is applied to an ellipse whose foci α ± c do not
lie on the real axis, but for which the line segment [α − c,α + c] passes
close to the origin (which implies that the ellipse must be very flat or must
collapse to an interval), then some local errors may amplify dramatically and
might cause a large residual gap, so that the ultimate accuracy deteriorates.
However, this can only happen when the Chebyshev iteration converges very
slowly.
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Discontinuous hp-Finite Element Methods for
Advection-Diffusion Problems

00-06 W.P. Petersen Estimation of Weak Lensing Parameters by
Stochastic Integration

00-05 M.H. Gutknecht A Matrix Interpretation of the Extended Eu-
clidean Algorithm

00-04 M.J. Grote Nonreflecting Boundary Conditions for Time
Dependent Wave Propagation

00-03 M.H. Gutknecht On Lanczos-type methods for Wilson
fermions

00-02 R. Sperb, R. Strebel An alternative to Ewald sums. Part 3: Im-
plementation and results

00-01 T. Werder, K. Gerdes,
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