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Abstract

We investigate the numerical solution of strongly elliptic boundary inte-
gral equations on unstructured surface meshes Γ in R3 by Wavelet-Galerkin
boundary element methods (BEM). They allow complexity-reduction for ma-
trix setup and solution from quadratic to polylogarithmic (i.e. from O(N2)
to O(N(logN)a) for some small a ≥ 0, see, e.g. [2,3,9,10] and the references
there). We introduce an agglomeration algorithm to coarsen arbitrary sur-
face triangulations on boundaries Γ with possibly complicated topology and
to construct stable wavelet bases on the coarsened triangulations in linear
complexity. We describe an algorithm to generate the BEM stiffness matrix
in standard form in polylogarithmic complexity. The compression achieved
by the agglomerated wavelet basis appears robust with respect to the com-
plexity of Γ. We present here only the main results and ideas - full details
will be reported elsewhere.

∗This work was supported in part under the TMR network “Multiscale Methods in
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1 Introduction

1.1 Problem formulation

We consider the numerical solution of the boundary integral equation

Au = f on Γ. (1.1)

Here Γ is the boundary of a bounded Lipschitz domainΩ ∈ Rd (d = 2, 3), f ∈
L2(Γ ) and A a boundary integral operator of order 0. We assume that A is
injective and strongly elliptic in L2(Γ ) in the sense that it satisfies a G̊arding
inequality. Then, under these conditions, Galerkin discretizations of (1.1)
based on a dense sequence of subspaces of L2(Γ ) converge quasioptimally.

Galerkin discretizations of (1.1) lead to fully populated stiffness matrices
due to the nonlocal operator A entailing O(N2) complexity. It was shown in
[9,10] and the references there that this complexity can be reduced to polylog-
arithmic order by the use of suitable wavelet bases on Γ and by compression
of the stiffness matrix, i.e. by dropping most of the O(N2) entries in the
wavelet stiffness matrix. In [9,10], certain compression strategies were shown
to preserve the optimal asymptotic rate of convergence. The analysis of [9,10]
indicated, however, a strong dependence of the constants in the compression
estimates on the geometry of the surface and required a nested sequence
of meshes on Γ in an essential way. Numerical experiments confirmed that
this was not an artifact of the analysis, but that indeed the performance of
these wavelet algorithms deteriorates on complex surfaces. In practice, the
assumption of a nested sequence of triangulations on Γ is unrealistic, since for
complex surfaces the coarsest possible mesh already contains a large number
of degrees of freedom. The present paper presents algorithms which coarsen
arbitrary triangulations on surfaces Γ with possibly complicated topology
and then construct stable wavelet bases on the coarsened triangulations in
linear complexity. We sketch an algorithm which directly generates the com-
pressed stiffness matrix in standard form in polylogarithmic complexity.

1.2 Boundary Element Method

We illustrate our approach for the simplest boundary elements: we triangulate
Γ into a quasiuniform mesh TN (Γ ) of N panels {πi}Ni=1 with

Γ =
⋃

1≤i≤N

πi and πi ∩ πj = ∅, i $= j. (1.2)

To each panel π we assign the radius rπ and the center cπ

(rπ , cπ) = inf{(r, c) : π ⊂ Br(c), r, c ∈ Rd} (1.3)

where Br(c) is the ball with radius r and center c. With

h := max{rπ : π ∈ TN (Γ )} (1.4)
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the uniformity condition of the panels reads

rπ >
h

Cu
∀π ∈ TN (1.5)

with a constant Cu. We further assume that there is a constant Cµ such that
the part of TN in Br(c) satisfies

|Br(c) ∩ TN | ≤ Cµr
d−1 ∀r ≥ 0, c ∈ Rd. (1.6)

Throughout, |S| denotes the surface measure of the panels in the subset
S ⊂ TN .

We consider the Galerkin Boundary Elements based on piecewise constant
boundary elements with basis functions given by

φi(x) =

{

1, x ∈ πi

0, else
i = 1, . . . , N (1.7)

to discretize the integral equation (1.1). This leads to the linear system

AN uN = bN (1.8)

for the coefficients of the approximate solution uN(x) =
∑N

i=1 u
N
i φi(x) ∈ VN

where VN = span{φi, i = 1, . . . , N} ⊂ L2(TN ). Here

AN
ij

=

∫

Γ
φi(x)c(x)φj(x)dsx +

∫

Γ
φi(x)

∫

Γ
k(x, y)φj(y)dsydsx = (φi,Aφj)

uN = (uN
1 , uN

2 , . . . , uN
N )#, bNi =

∫

πi

φi(x)f(x)dsx

and the integrals in the definition of (φi,Aφj) must be understood, in general,
as Cauchy principal values. We assume that the kernel k(x, y) satisfies the
estimates

∣

∣

∣
Dα

xD
β
y k(x, y)

∣

∣

∣
≤ C

∣

∣x− y
∣

∣

2+|α|+|β|
|α| , |β| ≤ 1 (1.9)

where Dx, Dy denote partial derivatives with respect to the Cartesian co-

ordinates x, y ∈ R3 in a fixed open neighborhood of the boundary Γ . We
generalize the wavelet algorithm and the compression analysis of [7,9,10] to
general, nonnested triangulations on Γ .

2 Construction of the Wavelet basis

On the possibly unstructured mesh TN , we construct an agglomerated wave-
let basis {ψτ,j} with vanishing moments of order 1, i.e. the mean value of the
wavelets with respect to the surface measure vanishes. It is well known that
this implies the smallness of certain entries of the stiffness matrix [7,9,10].



3

We emphasize, however, that in the compression estimates for the wavelets
constructed here the parametric boundary representation and its derivatives
do not enter. Only the regularity of the kernel function k(x, y) in the ambient
space matters.

To construct the agglomerated wavelet basis, we group the panels {π} to
clusters thereby introducing a hierarchical structure among them. As in [6]
we define

Definition 2.1. 1. A cluster τ is defined as a non empty set of panels

τ =
⋃

k

πik , πik ∈ TN .

Each cluster is assigned its radius rτ and its center cτ

(rτ , cτ ) = inf{(r, c) : τ ⊂ Br(c), r, c ∈ Rd}. (2.1)

2. A cluster pool P (TN ) = P defines an arbitrary but fixed selected subset
of all clusters of TN with TN ⊂ P and πi ⊂ P, ∀πi ∈ TN .

3. A cluster tree P(TN ) = P is a cluster pool P with a hierarchical structure

∀τ, τ̃ ∈ P : τ ∩ τ̃ ∈ {∅, τ, τ̃}.

4. For τ ∈ P, with a cluster tree P, we define child(τ) by the set of all
children of the cluster τ ∈ P

child(τ) := {τ ′ ∈ P : τ ′ ⊂ τ ∧ (τ ′ ⊂ τ ′′ ⇒ τ ⊂ τ ′′, ∀τ ′′ ∈ P)}.

5. The level LP ≤ 0 of a cluster tree P is defined by

LP :=

−max
τ∈P

{l ∈ N0 : τ ! τi1 ! . . . ! τil−1 ! τil = TN , τi1 , . . . , τil ∈ P}

6. The level lτ ≤ 0 of a cluster τ in the cluster tree P is defined by

lτ := LP

+max{l ∈ N0 : τ ! τi1 ! . . . ! τil−1 ! τil = TN , τi1 , . . . , τil ∈ P}.

7. The root of the cluster tree P is the cluster root(P) which fulfills

lroot(P) = LP .

The example in Fig. 2.1 and 2.2 illustrates these notions. In these figures,
T18 = {π}18i=1. The cluster tree P of Fig. 2.2 consists of the clusters {τ}35i=1

shown in the lower part of Fig. 2.1. In this example we have

LP = lτ1 = −6 (τ1 is the root of P)

lτ2 = lτ3 = −5

lτ4 = lτ5 = lτ6 = lτ7 = −4

lτ32 = lτ33 = lτ34 = lτ35 = 0

child(τ3) = {τ6, τ7}.
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π1 π2 π3

π4 π5 π6

π7 π8 π9

π10 π11 π12

π13 π14 π15

π16 π17 π18

τ1

τ2

τ3
τ4

τ5

τ6

τ7

τ8

τ9

τ10τ11τ12

τ13

τ14 τ15

τ16

τ17

τ18

τ19

τ20

τ21

τ22

τ23

τ24

τ25

τ26

τ27

τ28

τ29

τ30 τ31

τ32

τ33

τ34

τ35

Fig. 2.1. Partition TN = {πi}18i=1 with a cluster tree P = {τi}35i=1.

With the hierarchical structure of the mesh given by the cluster tree P
we can construct a wavelet basis of VN . For this construction we need the
following conditions. The function µ̂ on P is defined recursively by

µ̂(TN ) := 1, µ̂(τ ′) :=
µ̂(τ)

|child(τ)| for τ ′ ∈ child(τ).

This means that the division of τ ∈ P into |child(τ)| sons should correspond
to a division of the area into |τ ′| ≈ |τ |/|child(τ)|. The precise condition that
there are constants 0 < kl, k and CP such that

|child(τ)| =
{

0, or
klτ ≥ 2

(2.2)

klτ ≤ k (2.3)

|TN |µ̂(τ) ≤ CP (2.4)

rτ ≤ CPrroot(P)(µ̂(τ))
1/(d−1) (2.5)

for all τ ∈ P .
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τ1

τ2 τ3

τ4 τ5 τ6 τ7

τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15

τ16 τ17 τ18 τ19 τ20 τ21 τ22 τ23 τ24 τ25 τ26 τ27

τ28 τ29 τ30 τ31

τ32 τ33 τ34 τ35

Fig. 2.2. Cluster tree P corresponding to Fig. 2.1.

Remark 2.2. Note that the conditions (1.2), (1.6) and (2.3)-(2.5) are analo-
gous to those in [5] for the multipole method. They are not really a restriction
for reasonable surfaces Γ . Condition (2.2) is not a restriction on the surface
but depends on the type of tree used in the implementation.

The wavelet basis {ψτ,j} is constructed from the scaling functions {φi}Ni=1 in
(1.7) by the following agglomeration procedure. In a first step, we compute
for each τ ∈ P with child(τ) = ∅ the piecewise constant orthonormal basis
functions φτ ((φτ ,φτ ′) = δττ ′)

φτ (x) =

{

1/
√

|τ |, x ∈ τ
0, else

(2.6)

with |τ | =
∫

τ dsx. Afterwards for each cluster τ with child(τ) $= ∅ the wavelets
ψτ = {ψτ,j}|child(τ)|−1

j=1 and the coarsened scaling function φτ are computed by
the local wavelet transformation M

τ
. The constant normed function φτ with

supp(φτ ) = τ is needed to get the wavelets on the next lower level. At the
end of this recursive bottom up, the wavelet basis consists of the functions

φroot(P) and {ψτ,j}(τ,j)∈J (2.7)

where J = {(τ, j) : τ ∈ P ∧ child(τ) $= ∅, 1 ≤ j < |child(τ)|}. The construc-
tion of the agglomerated wavelet basis is realized by Algorithm 2.3.

Algorithm 2.3.

for l = 0 down to LP {
for all τ ∈ P with lτ = l {
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if child(τ) = ∅ {
compute φτ ;

} else {

compute

(

φτ

ψτ

)

= M#
τ







φτi1
...

φτi|child(τ)|






, τiλ ∈ child(τ)

}
}

}

3 Local transformation M
τ

For each tree P(T ) which satisfies the conditions 2.2 and 2.3 we can construct
the agglomerated wavelet basis of the space VN of piecewise constants by
applying Algorithm 2.3 and the local transformations M

τ
.

The local transformation M
τ
converts the scaling functions φτiλ

with

τiλ ∈ child(τ) into the local wavelet basis ψτ = {ψτ,j}|child(τ)|−1
j=1 and the

coarsened scaling function φτ :

(

φτ

ψτ

)

= M#
τ







φτi1
...

φτi|child(τ)|






. (3.1)

To get an orthonormal wavelet basis of VN the local transformation matrix
M

τ
= (mτ

1 , . . . ,m
τ
child(τ)) has to satisfy

M#
τ
M

τ
= I . (3.2)

For each cluster τ in the tree P we compute the local transformation
matrix M

τ
by defining M̃

τ
= (mτ

1 , m̃
τ
2 , . . . , m̃

τ
|child(τ)|) with

(mτ
1)

# =
1√
|τ |

(
√
|τi1 |, . . . ,

√
|τi|child(τ)|

|), τiλ ∈ child(τ)

and m̃τ
2 , . . . , m̃

τ
|child(τ)| such that

det(M̃
τ
) $= 0, (mτ

1)
#m̃τ

i = 0, 2 ≤ i ≤ |child(τ)|.

Applying the singular value decomposition (SVD) to the vectors m̃τ
2 ,. . .,

m̃τ
|child(τ)|, we get the matrix M

τ

(U
τ
, S

τ
, V

τ
) = SVD((m̃τ

2 , . . . , m̃
τ
|child(τ)|)) (3.3)

M
τ
= (mτ

1 , Uτ
) (3.4)

which satisfies (3.2).
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Proposition 3.1. With the local transformation matrix M
τ
defined above,

we get a local basis φτ , ψτ which is orthonormal with respect to the surface
measure on Γ , i.e.

‖φτ‖L2(Γ ) = 1 (3.5)

(φτ ,ψτ,j) = 0 1 ≤ j < |child(τ)| (3.6)

(ψτ,j,ψτ,j′) = δjj′ 1 ≤ j, j′ < |child(τ)|. (3.7)

In our implementation, we use the particular choice of M̃
τ
given in Asser-

tion 3.2.

Assertion 3.2. The matrix

M̃
τ
=





















m̃τ
1 −m̃τ

2 0 0 · · · 0
m̃τ

2 m̃τ
1 −m̃τ

3 0 . . . 0

m̃τ
3 0 m̃τ

2 −m̃τ
4

...
...

...
. . .

. . . 0
m̃τ

n−1 0 m̃τ
n−2 −m̃τ

n

m̃τ
n 0 · · · 0 m̃τ

n−1





















(3.8)

with τ ∈ P, τiλ ∈ child(τ), m̃τ
λ =

√

|τiλ |/|τ | and n = |child(τ)| has full rank.

Remark 3.3. The local transformation can be seen as an application of the
lifting scheme presented in [11,12] or the stable completion in [1,2]. We start
with the scaling function φτ and the wavelets

ψ̃τ,j = (m̃τ
j+1)

#







φτi1
...

φτi|child(τ)|






1 ≤ j < |child(τ)|

defined by the matrix M̃
τ
and {φτλ}. These wavelets are lifted to an or-

thonormal basis on Γ with vanishing mean value with respect to the surface
measure ds on Γ . This is done using a singular value decomposition.

Remark 3.4. In case of a binary tree, the local transformation matrix M
τ

is

M
τ
=

[
√

|τ1|/|τ | −
√

|τ2|/|τ |
√

|τ2|/|τ |
√

|τ1|/|τ |

]

for τ1, τ2 ∈ child(τ). Then the singular value decomposition can be omitted.

Remark 3.5. Note that the support of the wavelets is not necessarily con-
nected. Therefore, we can collect the surface patches in a certain region of
Rd in a cluster independent of the boundary Γ . This leads to a compression
rate of the stiffness matrix which is not spoiled by the geometry.
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4 Properties of the agglomerated wavelet basis

For any triangulation TN on Γ , Algorithm 2.3 generates an agglomerated
wavelet basis. The forward and backward transformation of the pyramid
scheme for vectors fφ and fψ are standard and omitted, since they are almost
identical to Algorithm 2.3. The agglomerated wavelet basis has the desirable
properties:

Proposition 4.1. The wavelet basis obtained from Algorithm 2.3 is an
L2(Γ, ds) orthonormal basis of VN .

a) The wavelets fulfill the vanishing moment property

∫

Γ
ψτ,j(x)dsx = 0 for (τ, j) ∈ J (4.1)

with J defined as in (2.7).
b) The agglomerated wavelet basis satisfies Paseval’s equation in L2(Γ, ds).

‖u‖2L2(Γ ) = (u,φroot(P))
2 +

∑

(τ,j)∈J

(u,ψτ,j)
2 (4.2)

for all u ∈ VN .
c) With Wl = span{ψτ,j : lτ = l− 1, 1 ≤ j < |child(τ)|}, l > LP , it holds

VN = WLP ⊕WLP+1 ⊕ . . .⊕W0 (4.3)

where we have set WLP = span{φroot(P)}

Equation (4.2) is a consequence of the clusters on the same level being
disjoint and of the orthogonality of the wavelets between different levels. The
orthogonality between different levels follows from (3.6).

Remark 4.2. If we refine TN beyond level l = 0 by regular subdivision of
each πi ∈ TN , the corresponding spaces of piecewise constants are dense in
L2(Γ, ds) and the finite sum in Parseval’s equality (4.2) can be extended to
an infinite one as for example in [7,10].

5 Examples

We give examples of the agglomerated wavelets and exhibit some special
properties of them.

In the first example, we computed some wavelet coefficients of the function
f(x) = (1 − x1)(1 − x2) on the unit square. As shown in Fig. 5.1, we chose
a uniform triangulation with N = 200 triangles. We effect the agglomeration
of the panels by a binary tree (other types of trees are also possible). We
construct the tree recursively by computing the Čebyšev center and radius of
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0.4
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0.7

0.8

0.9

1

Fig. 5.1. Unit square with uniform, nonhierarchical mesh – 200 triangles.

a set of the panels and a dyadic subdivision of this panel set. An algorithm
to compute the Čebyšev center and radius efficiently can be found in [6]. The
recursion starts with the whole geometry and stops when only two panels
belong to the panel set of the node. To each node in the binary tree we can
assign a node of the cluster tree P . In Fig. 5.2 the approximation fN of f
is plotted. Figure 5.3 shows the different levels of the wavelets. In the left
picture the approximation of f is restricted to the wavelets on level LP + 4
on the right hand side the level LP + 5 is plotted.

The second example is the surface shown in Fig. 5.4 left. The agglomera-
tion is done as in the previous example. The clusters are assigned to Čebyšev
balls of the binary tree instead of Čebyšev circles of the 2d example. A single
wavelet is shown in Fig. 5.5 – one clearly sees that the support consists of two
connected parts, since with the binary tree the panels are aggregated in space
and not on the surface anymore. The agglomerated wavelets are not restricted
to hierarchical meshes anymore. In addition, our scheme generates wavelets
with supports of “small” diameter. This pays in the matrix compression.

6 Complexity of the transformation

In this section the complexity of Algorithm 2.3 is estimated. In a first step
of the algorithm we generate the cluster tree P . With the assumptions in
section 1 and 2 on the boundary Γ , we see that we can compute a cluster
tree P with LP = O(logN) (see [5]). To insert the leafs πi into the cluster
tree we need for each leaf at most LP = O(logN) operations. Therefore, we
can compute the cluster tree P for N leafs in O(N logN) operations. In [6]
a binary tree is presented which fulfills the conditions (2.2) and (2.3). With
this cluster tree we apply Algorithm 2.3.
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Fig. 5.2. Function fN (x) =
∑

N

i=1
fiφi(x) with N = 200 on the unit square

Proposition 6.1. Algorithm 2.3 takes Wtot = O(N) operations.

Proof Each leaf in the cluster tree P corresponds to a degree of freedom in
the one scale basis {φ}Ni=1. Therefore we have

|{τ ∈ P : child(τ) = ∅}| = N. (6.1)

Using (2.2), we find that each cluster τ with child(τ) $= ∅ corresponds to
at least one degree of freedom in the wavelet basis. This leads to

|{τ ∈ P : child(τ) $= ∅}| ≤ N. (6.2)

With

|{τ ∈ P}| = |{τ ∈ P : child(τ) = ∅}|+ |{τ ∈ P : child(τ) $= ∅}|

and the equations (6.1), (6.2) we find

|{τ ∈ P}| ≤ 2N. (6.3)

The work for the local transformations in each cluster is bounded by Ck3

where C is independent of k and N . The term k3 stems from the singular
value decomposition of the |child(τ)| × |child(τ)| local transformation
matrix M̃

τ
(see [4]) where |child(τ)| is estimated by k in (2.3). With

equation (6.3) we get

Wloc ≤ Ck3 ⇒ Wtot ≤ Ck3 · |{τ ∈ P}| ≤ Ck32N.

12
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Fig. 5.3. Contribution to the wavelet representation of the function f by the
wavelets on level l. Left: l = LP + 4 and Right: l = LP + 5.
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10 slits

Fig. 5.4. L-shaped domains with slits.

We illustrate in Fig. 6.1 the result of Proposition 6.1. The forward and
backward transformation is applied to a vector in the one scale basis. The
diagram shows the cpu-time for the pyramid scheme for the unit-square prob-
lem and for the L-shaped domain with slits. The thickness of the L-shaped
domain and the slits is always one triangle. Therefore an increase of the de-
grees of freedom in the L-shaped domain problem induces also more slits and
changes consequently the geometry. This leads to a series of domains where in
Fig. 5.4 the domains with 6 (N = 1500) and 10 slits (N = 3772) are plotted.
The increase in the number of degrees of freedom in the square is due to the
subdivision of the domain into smaller triangles. We see that the cpu-time of
the algorithm for the unit-square problem and for the L-shaped domain with
slits is almost equal and behaves like O(N) as stated in Proposition 6.1.
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Fig. 5.5. Wavelet with non connected support.
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y=0.002*x                 
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N 

Fig. 6.1. cpu-time to compute the cluster tree and to apply the pyramid scheme
to a vector versus the number of degrees of freedom. In the diagram we compare
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7 Evaluation of the compressed stiffness matrix

In the preceding sections we discussed an algorithm to construct the agglom-
erated wavelet basis. In this section an algorithm is derived to compress the
stiffness matrix using the new wavelets. The algorithm to locate the nonzero
entries is essentially the same as presented in [7] but the computation of the
entries is different. Contrary to [7], we do not require a hierarchical mesh
and the computation of entries in the compressed stiffness matrix is more
difficult, since through the aggregation process the shape of the clusters is a
priori unknown and no standard integration formula can be applied. A naive
splitting of the cluster into panels leads to a O(N2) algorithm. We overcome
this difficulty by approximating the compressed stiffness matrix entries by a
multipole-type algorithm. We directly obtain the standard form of the com-
pressed stiffness matrix in contrast to [13] where the non-standard form is
computed.

7.1 Localization of entries in the compressed stiffness matrix

To describe our localization algorithm for the compressed stiffness matrix, we
begin by presenting some needed definitions. Analogously to (1.8) and (1.9),
we write the linear equation system in the wavelet basis as

ALuL = bL (7.1)

with

AL
(τ,j)(τ ′,j′)

=
∫

τ ψτ,j(x)(Aψτ ′,j′)(x)dsx
uL = (uroot(P), u

L
τ1,1, . . . , u

L
τt,|child(τt)−1|)

bNτ,j =
∫

τ ψτ,j(x)f(x)dsx

(7.2)

where t = |{τ ∈ P : child(τ) $= ∅}|. The matrix AL can be subdivided into

the subblocks AL
ll′

which represents all entries AL
(τ,j)(τ ′,j′)

, 1 ≤ j < |child(τ)|,
1 ≤ j′ < |child(τ ′)| with lτ = l and lτ ′ = l′. For each blockmatix AL

ll′
there

exists a truncation parameter δll′ at our disposal. Setting

δll′ ≥ max{a
0
∏

µ=LP

k
− 1

2
µ

0
∏

µ=l

k
α
2
µ

0
∏

µ=l′

k
α̃
2
µ ,

l−1
∏

µ=LP

k
− 1

2
µ ,

l′−1
∏

µ=LP

k
− 1

2
µ } (7.3)

for a > 1, s, s̃ ∈ [0, 1] and α ≥ s+1
2 , α̃ ≥ s̃+1

2 we approximate the matrix AL

by the sparse one

Ã
L

ll′,(τ,j)(τ ′,j′)
:=

{

AL
ll′,(τ,j)(τ ′,j′)

if dist(τ, τ ′) ≤ δll′

0 otherwise
. (7.4)

Note that δll′ corresponds to the truncation parameter in [10].
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Proposition 7.1. The compressed wavelet Galerkin matrix Ã
L
has

N =

{

O(N log2(N)) if α = α̃ = 1
O(N log(N)) otherwise

nonzero entries (see also [10]).

To compute the entries efficiently, we need an algorithm which locates these
entries in O(N ) operations.

Remark 7.2. Later on we will show that once we have located the entries
that we will be able to compute them in O(log3(N)) operations.

The observation
δll′ ≥ δl̃l̃′ , for l ≤ l̃, l′ ≤ l̃′.

leads to a fast algorithm because with this we can skip the whole subtree
τ̃ ′ ⊂ τ ′ if dist(τ, τ ′) > δlτ lτ′ . In Algorithm 7.4 we also use the symmetry of
the matrix (δll′ ) which leads to a symmetric sparsity pattern of Ã

L
.

To define the location algorithm we need a lexicographical order of the
clusters. Because of the hierarchical structure of the cluster tree P we can
introduce a breadth-first ordering.

Definition 7.3. We denote by (τ, τ ′) the cluster in P on the highest possible
level such that it contains τ and τ ′.

τ, τ ′ ⊂ (τ, τ ′) ∧ (τ, τ ′ ⊂ τ̂ ∈ P ⇒ (τ, τ ′) ⊂ τ̂). (7.5)

A lexicographical order of the clusters τ, τ ′ ∈ P can now be defined by

τ < τ ′ ⇔ lτ < lτ ′ or (lτ = lτ ′ and λ < λ′) (7.6)

for τ ⊂ τ̂iλ , τ
′ ⊂ τ̂iλ′ and τ̂iλ , τ̂iλ′ ∈ child((τ, τ ′)), λ,λ′ ∈ {1, . . . , |child((τ, τ ′))|}.

With this definition we get for example for the cluster tree in Fig. 2.2 the
ordering

τ1 < τ2 < τ3 < τ4 < τ5 < τ6 < τ7 < τ8 < τ9 < τ10 < τ11 < τ12 < τ13
τ13 < τ14 < τ15 < τ16 < τ17 < τ18 < τ19 < τ20 < τ21 < τ22 < τ23 < τ24
τ24 < τ25 < τ26 < τ27 < τ28 < τ29 < τ30 < τ31 < τ32 < τ33 < τ34 < τ35

With the lexicographical order of the clusters the algorithm to locate the
nonzero entries is [7]:

Algorithm 7.4.
assemble(τ, τ ′) {

if (dist(τ, τ ′) ≤ δlτ lτ′ ) and (τ ′ < τ or τ = τ ′) {
evaluate Eψ

ττ ′ , E
ψ
τ ′τ and update Ã

L

for all τ̃ ′ ∈ child(τ ′) with child(τ̃ ′) $= ∅
assemble(τ, τ̃ ′)

}
}
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with the calling sequence

for all τ ∈ {τ ′ ∈ P : child(τ ′) $= ∅}
assemble(τ, root(P))

The matrices Eψ
ττ ′ and Eψ

τ ′τ denote the element stiffness matrices in the
wavelet basis.

Because of the symmetric sparsity pattern of Ã
L
we have to call assemble

at most N +N < 2N times (at most N recursive calls and N calls from the
calling sequence). Without computing the matrices Eψ

ττ ′ and Eψ
τ ′τ each call

of assemble takes at most O(k) operations (condition (2.3)). This leads to

Assertion 7.5. Algorithm 7.4 locates the nonzero entries of Ã
L

in O(N )
operations.

7.2 Computation of the entries in the compressed stiffness

matrix

To get polylogarithmic complexity O(N log5(N)) = O(N )O(log3(N)) for the

matrix setup, we have to compute any entry in the stiffness matrix Ã
L

in

O(log3(N)) work. This is done with the panel clustering method with η ∈
(0, 1). The nearfield and farfield of a cluster τ ∈ P are defined by

Nη(τ) = {τ ′ ∈ P : rτ + rτ ′ ≥ η‖cτ − cτ ′‖} (7.7)

Fη(τ) = {τ ′ ∈ P : rτ + rτ ′ < η‖cτ − cτ ′‖}. (7.8)

We assume that all integrations can be executed exactly. That means that
there is no error in the evaluation of the multipole coefficients and in the
interaction between two panels (this assumption is generally not valid in
practice but with an appropriate numerical integration scheme as presented in
[10] the error becomes sufficiently small while preserving the polylogarithmic
work-estimates).

The algorithm to compute the compressed stiffness matrix can be subdi-
vided into four steps:

Step 1 The multipole coefficients Φτ
p , 0 ≤ p ≤ m, of order m in cτ are

computed for each leaf of the cluster tree P introduced in section 2.

Algorithm 7.6.

for all {τ ∈ P : child(τ) = ∅}
compute Φτ

p , 0 ≤ p ≤ m

Step 2 For each cluster τ which is not a leaf compute the multipole coeffi-
cients Φτ

p, 0 ≤ p ≤ m, of order m in cτ by shifting the coefficients of its
children to the cluster center and multiplication with the local transfor-
mation matrix.
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Algorithm 7.7.

for l = 0 down to LP

for all {τ ∈ P : child(τ) $= ∅ and lτ = l}
for all τλj

∈ child(τ), j = 1, . . . , |child(τ)|
shift the multipole coefficients

from cτj to cτ (Φ
τj
p → (Φ̂

τ

p)j)

Φτ
p = (mτ

1)
#Φ̂

τ

p

Step 3 Compute the nearfield entries of the one scale matrix on each level
bottom up. To simplify notation we use for τ, τ ′ ∈ P , τiλ ∈ child(τ), 1 ≤
λ ≤ |child(τ)| and τ ′jλ′

∈ child(τ ′), 1 ≤ λ′ ≤ |child(τ ′)| the abbreviations

a
φτ ,φτ′

=

(

∫

τiλ

φτiλ
(Aφτ ′

j
λ′
)ds

)

τiλτ ′
j
λ′

aN
φτ ,φτ′

=

(

∫

τiλ

φτiλ
(Aφτ ′

j
λ′
)ds

)

τiλτ ′
j
λ′

τ ′jλ′
∈ Nη(τiλ)

aF
φτ ,φτ′

=

(

∫

τiλ

φτiλ
(Aφτ ′

j
λ′
)ds

)

τiλτ ′
j
λ′

τ ′jλ′
∈ Fη(τiλ )

aφτ ,φτ′ =

∫

τ
φτ (Aφτ ′)ds

MPEF
τ,τ ′ =





m
∑

p,p′=0

Φ
τiλ
p F

τiλτ ′
j
λ′

pp′ Φ
τ ′
j
λ′

p′ )





τiλτ ′
j
λ′

τ ′jλ′
∈ Fη(τiλ )

where the matrices are expanded with zeros up to a dimension of |child(τ)|

×|child(τ ′)|. F
τiλτ ′

j
λ′

pp′ denotes the (p, p′) derivative of the kernel function

evaluated at the centers cτiλ and cτ ′
j
λ′

and Φ
τiλ
p is the p-th multipole

moment with respect to the cluster center cτiλ .
With lτ = lτ ′ we can write the entries of the one scale matrix on each
level by the following formula

aφτ ,φτ′ = (mτ
1)

#a
φτ ,φτ′

mτ ′

1

= (mτ
1)

#aN
φτ ,φτ′

mτ ′

1 + (mτ
1)

#aF
φτ ,φτ′

mτ ′

1

≈ (mτ
1)

#aN
φτ ,φτ′

mτ ′

1 + (mτ
1)

#MPEF
τ,τ ′m

τ ′

1

The algorithm for step three looks like

Algorithm 7.8.

for l = 0 down to LP

for all {τ ∈ P : lτ = l}
for all τ ′ ∈ Nη(τ) and lτ ′ = lτ {

aφτ ,φτ′ = (mτ
1)

#aN
φτ ,φτ′

mτ ′

1 + (mτ
1)

#MPEF
τ,τ ′m

τ ′

1
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Step 4 For τ, τ ′ ∈ P and lτ ≥ lτ ′ compute the approximate element matrix
Eψ

ττ ′ . To describe the algorithm we need in addition to the abbreviations
of step 3 the notation

a
ψτ ,ψτ′

=

(
∫

τi

ψτ,i(Aψτ ′,j)ds

)

i,j

M̂
τ
= (mτ

2 , . . . ,m
τ
|child(τ)|)

with 1 ≤ i < |child(τ)| and 1 ≤ j < |child(τ ′)|. The element matrices can
be approximated by the formula

Eψ
ττ ′ = a

ψτ ,ψτ′
= M̂

#

τ
a
φτ ,φτ′

M̂
τ ′

= M̂
#

τ
aN
φτ ,φτ′

M̂
τ ′ + M̂

#

τ
aF
φτ ,φτ′

M̂
τ ′

≈ M̂
#

τ
aN
φτ ,φτ′

M̂
τ ′ + M̂

#

τ
MPEF

τ,τ ′M̂ τ ′ (7.9)

The term M̂
#

τ
aN
φτ ,φτ′

M̂
τ ′ is split recursively in a sum over the nearfield

and the farfield of the children cluster of τ ′. This splitting is done up to
level lτ . On level lτ the nearfield entries were computed in step three and
the recursion ends.
The algorithm of step four consists of two parts. The first part computes
the element matrices Eψ

ττ ′ and Eψ
τ ′τ

needed by Algorithm 7.4. The second
part is the recursive function elementMatrix which performs equation
(7.9).

Algorithm 7.9.

Eψ
ττ ′ = M̂

#

τ
elementMatrix(τ , τ ′)M̂

τ ′

Eψ
τ ′τ

= M̂
#

τ ′elementMatrix(τ ′, τ)M̂
τ

Algorithm 7.10.
E ← elementMatrix(τ , τ ′) {

E = MPEF
τ,τ ′

if lτ > lτ ′

for all {τ ′iλ ∈ child(τ ′) : τ ′iλ ∈ Nη(τ̂ ), τ̂ ∈ child(τ),
1 ≤ λ ≤ |child(τ ′)|}

E = E + elementMatrix(τ , τ ′iλ)m
τ ′
iλ

1 e#λ
else if lτ < lτ ′

for all {τiλ ∈ child(τ) : τiλ ∈ Nη(τ̂ ′), τ̂ ′ ∈ child(τ ′),
1 ≤ λ ≤ |child(τ)|}

E = E + eλ(m
τiλ
1 )#elementMatrix(τiλ , τ

′)
else

E = E + aN
φτ ,φτ′

}
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eλ denotes the λ’th unit vector (0, . . . , 0, 1, 0, . . . , 0)#.

8 Numerical Experiments

In this section we present a numerical experiment obtained with the described
implementation of the multiscale scheme (see Section 7). In a series of L-
shaped domains with slits (see Section 6 and Fig. 5.4) we consider the interior
Dirichlet Problem

∆U = 0 on Ω
U = f on Γ

(8.1)

where f is the function

f(x) =
1

√

(x1 − 2)2 + (x2 − 2)2 + (x3 − 2)2
.

This problem was solved with the double layer ansatzU(x) =
∫

Γ k(x, y)u(y)dsy
with

k(x, y) =
1

4π

n(y) · (y − x)

|y − x|3 . (8.2)

where k satisfies equation (1.9). We measured the cpu-time to compute the
compressed stiffness matrix. The result was obtained on a single processor
(SUN UltraSPARC-II, 336 MHz) with 1 GB RAM using MATLAB and the
g++ 2.95 Compiler for some C routines. In Fig. 8.1 we plotted the cpu-
time versus the number of unknowns for the parameters η = 0.5, m = 6,
a = 1 and α = α̃ = 0.5 described in (7.3), (7.7), (7.8) and on page 16.
This time includes the construction of the cluster tree, the computation of
the multipole expansion and of the matrix entries. The cpu-time grows with
O(N log(N)) (lower dashed line) which confirms Proposition 7.1. The upper
dashed line corresponds to O(N log2(N)). This leads to the supposition that
our estimations in Section 7.2 were too pessimistic and that the cpu-time
increases linearly with the number of non-zero entries.

9 Conclusions

In this report we presented an agglomerated Haar wavelet basis based on
piecewise constant functions. These wavelets have one vanishing moment and
satisfy Parseval’s equation on the boundary. With these ingredients we are
able to compress the wavelet stiffness matrix. The compression rate with the
new wavelets is geometry insensitive because the wavelets are orthogonal to
constant functions in R3 with respect to the surface measure.

In the second part we introduced an algorithm to compute directly the
compressed wavelet stiffness matrix in the standard form for complex geome-
tries. The algorithm is a combination of the panel clustering and the standard
wavelet algorithm.
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Fig. 8.1. Generating the compressed stiffness matrix in standard form for L-shaped
domains with slits: cpu-time versus number of unknowns.
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3. W. Dahmen, S. Prössdorf, R. Scheider. Wavelet approximation methods for
pseudodifferential equations II: Matrix compression and fast solution Adv.
Comput. Math. 1, pp. 259-335, 1993

4. G.H. Golub, C.F. van Loan. Matrix Computations, The Johns Hopkins Univer-
sity Press, 1989

5. W. Hackbusch, Z. P. Nowak.On the Fast Matrix Multiplication in the Boundary
Element Method by Panel Clustering, Numer. Math. 54, pp. 463-491, 1989.

6. Ch. Lage. Softwareentwicklung zur Randelementmethode: Analyse und En-
twurf effizienter Techniken, Dissertation at Christian-Albrechts-Universität
Kiel, 1995.

7. Ch. Lage, Ch. Schwab. Wavelet Galerkin Algorithms for Boundary Integral
Equations, SIAM J. Sci. Comput., Vol 20, No. 6, pp. 2195-2222, 1999.

8. P. Oswald. Multilevel Finite Element Approximation: Theory and Applications

Teubner Skripte zur Numerik, B. G. Teubner Stuttgart, 1994.
9. R. Schneider. Multiskalen- und Wavelet-Matrixkompression Advances in Nu-

merical Mathematics, B.G. Teubner Stuttgart, 1998.
10. T. von Petersdorff, Ch. Schwab. Fully Discrete Multiscale Galerkin BEM,

Wavelet Analysis and its Application, Volume 6 (287-346), Academic Press
1997.



20

11. W. Sweldens. The Lifting Scheme: A Custom-Design Construction of Biorthog-

onal Wavelets, Appl. Comput. Harmon. Anal., Vol. 3, 2, pp. 186-200, 1996.
12. W. Sweldens. The Lifting Scheme: A Construction of Second Generation

Wavelets, SIAM J. Math. Anal., Vol. 29, 2, pp. 511-546, 1998.
13. J. Tausch, J White Multiscale bases for the sparse representation of boundary

integral operators on complex geometry, SMU Math Report 2000-01



Research Reports

No. Authors Title

00-15 G. Schmidlin, C. Schwab Wavelet Galerkin BEM on unstructured
meshes by aggregation

00-14 B. Cockburn,
G. Kanschat, D. Schötzau,
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