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1. Introduction. In this paper, we introduce and analyze local discontinuous
Galerkin (LDG) methods for the Stokes system

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = gD on ∂Ω,

(1.1)

where Ω is a bounded domain of Rd and the Dirichlet datum satisfies the usual
compatibility condition

∫
Ω gD ·n ds = 0, with n denoting the outward unit normal to

∂Ω. We thus continue the study of LDG methods as applied to diffusion-dominated
problems started by Castillo, Cockburn, Perugia and Schötzau [8], who carried out
the analysis of general LDG methods for the Laplacian on general triangulations, and
by Cockburn, Kanschat, Perugia and Schötzau [13], who obtained superconvergence
results for Cartesian grids and a special LDG method. Our long-term goal is to study
LDG methods for the incompressible Navier-Stokes equations; the analysis of the
Stokes system is thus a necessary intermediate step.
There are mainly two motivations for using LDG methods for the Navier-Stokes equa-
tions. The first one is that these methods can easily handle meshes with hanging
nodes, elements of general shapes, and local spaces of different types; this makes
them ideally suited for hp-adaptivity. The second one, of no less importance, is that
with their carefully devised numerical fluxes inherited from the corresponding DG
discretizations of non-linear hyperbolic conservation laws, see the work by Cockburn
and Shu [12, 15, 16, 17, 19], the LDG methods weakly enforce the conservation laws
element-by-element and in a conservative way. This last property is highly appre-
ciated by the practitioners of computational fluid dynamics, especially in situations
where there are shocks, steep gradients or boundary layers. In fact, it was for the
convection-dominated compressible Navier-Stokes equations that the DG discretiza-
tion techniques were applied for the first time by Bassi and Rebay in [4] with excellent
results; the LDG method was then introduced by Cockburn and Shu in [18] as an ex-
tension of Bassi and Rebay’s method to general convection-diffusion problems.
To give the reader a flavor of the LDG methods proposed in this paper, we briefly
compare them with other methods.
• Interior penalty methods. In the framework of the Stokes system, the main dif-
ficulty to obtain numerical approximations is the enforcement of the incompressibility
condition on the velocity. For continuous approximations of the velocity, it is well
known that a pointwise enforcement could yield an over-constrained velocity and the
only divergence-free function might turn out to be identically zero; this is the so-called
locking phenomenon. However, in 1990, Baker, Jureidini and Karakashian [2] showed
how to enforce the incompressibility condition pointwise inside each element and still
obtain optimal error estimates. They achieved this by using interior penalty (IP)
methods, that is, methods that take the velocity approximation to be discontinuous
and penalize the size of its discontinuity jumps across the element boundaries; see also
the recent extension of this method to the incompressible Navier-Stokes equations by
Karakashian and Katsaounis [28]. Arnold, Brezzi, Cockburn and Marini [1] briefly
review IP methods for purely elliptic problems and then relate and compare them
to the LDG and other DG methods. A similar comparison can easily be developed
for the Stokes system, but here we restrict ourselves to pointing out that, like the IP
method of Baker, Jureidini and Karakashian, the LDG methods use a discontinuous
approximate velocity whose discontinuity jumps across the element boundaries are
also penalized. However, unlike the IP method of Baker, Jureidini and Karakashian,
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the LDG methods use discontinuous pressure approximations and (at least in this
paper) do not try to impose the incompressibility condition pointwise inside the ele-
ments; instead, like in standard mixed methods, this condition is imposed weakly.
• Standard mixed methods. In his review of standard mixed methods for the
Navier-Stokes equations, Fortin [21] points out that the use of discontinuous approx-
imations for the pressure ensures a better conservation of mass in comparison with
the use of continuous approximations and refers to the work of Fortin, Pelletier and
Camarero [30] for situations that illustrate this point. This is a property that these
methods have in common with the LDG methods, not only because of the use of dis-
continuous approximations of the pressure, but also because the LDG methods ensure
mass conservation. Indeed, to obtain the LDG methods, we first rewrite the Stokes
system as the following collection of conservation laws

σ = ∇u in Ω, (1.2)

−∇ · σ +∇p = f in Ω, (1.3)

∇ · u = 0 in Ω, (1.4)

u = gD on ∂Ω, (1.5)

and then discretize them by using the DG technique, that is, element-by-element and
in a conservative way; this is what ensures mass conservation. Note that to achieve
this, we introduced the stress tensor σ. This could be considered a disadvantage of the
LDG methods with respect to the classical mixed methods, but this is not so because
σ can be eliminated independently and in parallel on each grid cell, as we shall see.
Let us briefly digress to point out that the issue of the possible advantages of methods
that, like the LDG methods, enforce the conservation laws locally and in a conserva-
tive way over finite element methods which cannot do that, and are typically based
on continuous approximations, is the subject of an ongoing discussion which is far
from being exhausted. Although it has been firmly established that this property
is certainly desirable for convection-dominated problems, its possible advantages in
other situations still remain to be thoroughly explored. About this very point, see
the review of DG methods by Cockburn, Karniadakis and Shu [14] and the paper
by Hughes, Engel, Mazzei, and Larson [25] where a comparison of discontinuous and
continuous Galerkin methods is carried out.
• Stabilized mixed methods. Finally, let us emphasize that for the LDG methods,
the approximation spaces for the velocity and the pressure can be chosen almost
arbitrarily; only a mild local condition has to be satisfied. This is so because the LDG
methods can be considered to be stabilized mixed methods; for a review of stabilized
mixed methods, see the article by Franca, Hughes and Stenberg [22]. They are thus
related to the Galerkin least squares (GLS) mixed methods introduced in 1986/1987
by Hughes, Franca and Balestra [27, 26] who used the jumps of the pressures across
boundary elements and residuals inside the elements to render them stable. However,
unlike these methods, LDG methods use discontinuous approximations to the velocity
and employs stabilization terms which involve jumps across the element boundaries
only. Variations of the LDG methods we study here could be easily constructed
which are closely related to the ‘locally’ stabilized methods introduced and numerically
studied in 1989 by Silvester and Kechkar [31] and then analyzed in 1992 by Kechkar
and Silvester [29]; however, this subject will not be considered in this paper. Finally,
we must also point out that in the GLS methods, one has, in particular for velocities
which are piecewise quadratic or of higher degree, and also for curvilinear mapped
elements, to evaluate the GLS stabilization terms which are quite costly due to the
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appearance of, e.g., the Laplacian in the bilinear forms. The LDG methods achieve,
as we prove here, the same stabilization effect but, as a rule, do this without recourse
to domain integrals of second-order derivatives of finite element functions. Rather,
only edge/face integrals of jumps are evaluated.
Now, let us briefly describe our results. We show that if we use polynomials of degree
k to approximate the pressure p, the stresses σ, and the velocity u, the order of
convergence of k is obtained for the L2-norm of p and σ, and of k + 1 for the L2-
norm of the velocity. These orders of convergence are sharp, as they are observed
in our numerical experiments. We also explore the situation in which polynomials of
degree k − 1 are used to approximate the pressure p and the stress tensor σ. In this
case, we prove that the above mentioned orders of convergence remain invariant; in
other words, in this case the error estimates are optimal. Our numerical experiments
confirm this fact; moreover, they also show that this choice of approximating spaces
gives rise to a method which is less efficient than the one obtained by using same
approximation spaces for all the variables. In Table 1.1, we summarize our theoretical
results and compare them with the orders of convergence obtained for the IP method
of Baker, Jureidini and Karakashian [2] and the stabilized mixed methods of Hughes
and Franca [26] (see also Franca and Stenberg [23] for a unified error analysis). Note
that when the approximations are continuous, the jumps across elements are zero and
the corresponding penalization term vanishes; we indicate this by writing ‘none’.

Table 1.1
Theoretical orders of convergence for k ≥ 1.

method
penalization of the jumps
of velocity and pressure

‖u− uN‖0 ‖p− pN‖0

LDG O(h−1) O(h) k + 1 k
IP [2] O(h−1) none k + 1 k

Stabilized mixed [26, 23] none O(h) k + 1 k

Finally, let us point out that the technique we use in our analysis is an extension of that
used in [8] for the Laplacian. One of the contributions in this paper is that we make
the technique work for local spaces that might be different for different unknowns. In
fact, in all previous error analyses of LDG methods involving second-order operators,
see [18, 7, 9, 11, 8, 13, 20], the local spaces for both the auxiliary stresses and the main
unknowns have been taken to be identical. The second contribution is that we show
how to obtain the inf-sup condition, which is non-standard given the discontinuous
nature of our elements, in order to obtain error estimates for the pressure. Note
that, unlike the analysis technique used by Hughes, Franca and Balestra [27, 26] who
obtained error estimates of the pressure in certain mesh-dependent norms, we obtain
an error of the pressure in the L2-norm by using an inf-sup condition; in this respect,
our technique is closer to that employed in 1991 by Franca and Stenberg [23].
The paper is organized as follows. In section 2, we introduce the method, show that
it determines a unique approximate solution, and then state and discuss our main
results. Finally, a brief overview of its proof is given which is then completed in full
detail in section 3. Section 4 is devoted to numerical experiments devised to verify
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our theoretical results and to compare the effect that the use of different spaces has
on the quality of the LDG approximate solution. We end in section 5 by describing
extensions of our analysis and giving some concluding remarks.

2. The main results. In this section, we formulate the LDG method and show
that it possesses a well-defined solution. We then state and discuss our main results
and, finally, we present an abstract framework upon which our error analysis is based.
We assume throughout this section, in order to avoid unnecessary technicalities, that
the exact solution (u, p) of (1.1) belongs at least to H2(Ω)d ×H1(Ω).

2.1. Definition of the LDG method. To define the LDG method, we consider
the system of first-order conservation laws (1.2)–(1.5). We use the standard notation

(∇v)ij = ∂jvi and (∇ ·σ)i =
∑d

j=1 ∂jσij . We also denote by v⊗n the matrix whose
ij-th component is vi nj and write

σ : τ :=
d∑

i,j=1

σijτij , v · σ · n :=
d∑

i,j=1

viσijnj = σ : (v ⊗ n).

Multiplying equations (1.2), (1.3) and (1.4) by arbitrary, smooth test functions τ , v,
and q, respectively, and integrating by parts over an arbitrary subset K of the domain
Ω, we obtain

∫

K
σ : τ dx = −

∫

K
u ·∇ · τ dx+

∫

∂K
u · τ · nK ds, (2.1)

∫

K
σ : ∇v dx−

∫

∂K
σ : (v ⊗ nK)ds−

∫

K
p∇ · v dx+

∫

∂K
p v · nKds

=

∫

K
f · v dx, (2.2)

−

∫

K
u ·∇q dx+

∫

∂K
u · nK q ds = 0, (2.3)

where nK is the outward unit normal to ∂K. This is the weak form of the Stokes
system that we shall use to define the LDG method. We enforce the above equations
on each element K of a general triangulation T of Ω which can have hanging nodes
and elements of various shapes. Thus, since the above equations are well defined for
any functions (σ,u, p) and (τ ,v, q) in Σ× V ×Q where

Σ :={σ ∈ L2(Ω)d
2

: σij

∣∣
K

∈ H1(K), ∀K ∈ T , 1 ≤ i, j ≤ d},

V :={v ∈ L2(Ω)d : vi
∣∣
K

∈ H1(K), ∀K ∈ T , 1 ≤ i ≤ d},

Q :={q ∈ L2(Ω) :

∫

Ω
q dx = 0, q

∣∣
K

∈ H1(K), ∀K ∈ T },

we seek to approximate the exact solution (σ,u, p) with functions (σN ,uN , pN ) in the
finite element space ΣN × V N ×QN ⊂ Σ× V ×Q, where

ΣN :={σ ∈ L2(Ω)d
2

: σij

∣∣
K

∈ S(K), ∀K ∈ T , 1 ≤ i, j ≤ d},

V N :={v ∈ L2(Ω)d : vi
∣∣
K

∈ V(K), ∀K ∈ T , 1 ≤ i ≤ d},

QN :={q ∈ L2(Ω) :

∫

Ω
q dx = 0, q

∣∣
K

∈ Q(K), ∀K ∈ T },
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and the local finite element spaces S(K), V(K) and Q(K) typically consist of poly-
nomials.
The approximate solution (σN ,uN , pN ) is now defined by imposing that for allK ∈ T ,

for all (τ ,v, q) ∈ S(K)d
2
× V(K)d ×Q(K),

∫

K
σN : τ dx = −

∫

K
uN ·∇ · τ dx+

∫

∂K
ûN,σ · τ · nK ds, (2.4)

∫

K
σN : ∇v dx−

∫

∂K
σ̂N : (v ⊗ nK) ds−

∫

K
pN ∇ · v dx+

∫

∂K
p̂N v · nK ds

=

∫

K
f · v dx, (2.5)

−

∫

K
uN ·∇q dx+

∫

∂K
ûN,p · nK q ds = 0. (2.6)

Here, ûN,σ, σ̂N , p̂N and ûN,p are the so-called numerical fluxes, which are discrete
approximations to traces on the boundary of the elements. Note how the numerical
fluxes ûN,σ and ûN,p arise naturally from the weak formulation; although both are
approximations to the trace of the velocity u, they are defined in very different ways
since they are associated to different conservation laws.
To define these numerical fluxes, we need to introduce some notation associated with
traces. Let K+ and K− be two adjacent elements of T ; let x be an arbitrary point
of the set e = ∂K+ ∩ ∂K−, which is assumed to have a non-zero (d− 1)-dimensional
measure, and let n+ and n− be the corresponding outward unit normals at that
point. Let (σ,u, p) be a function smooth inside each element K± and let us denote
by (σ±,u±, p±) the traces of (σ,u, p) on e from the interior of K±. Then, we define
the mean values {{·}} and jumps [[·]] at x ∈ e as

{{p}} := (p+ + p−)/2, {{u}} := (u+ + u−)/2, {{σ}} := (σ+ + σ−)/2,

[[[[[[p]]]]]] := p+ n+ + p− n−, [[u]] := u+ · n+ + u− · n−, [[[[[[σ]]]]]] := σ+ · n+ + σ− · n−.

Note that the jumps [[[[[[p]]]]]] and [[[[[[σ]]]]]] are both vectors whereas the jump [[u]] is a scalar.
We also need to define a jump of the velocity u which is a matrix, namely,

[[u]] := u+ ⊗ n+ + u− ⊗ n−.

In components, we have [[u]]2 =
∑d

i=1(u
+
i −u−

i )
2 and (u±⊗n±)2 =

∑d
i=1(u

±
i )

2. Also,

we remark that, since [[[[[[u]]]]]] =
∑d

i=1(u
+
i − u−

i )n
+
i , we have [[u]]2 ≤ [[u]]2, that is, the

norm of the scalar-valued jump of the velocity can be controlled by the norm of the
matrix-valued jump.
We are now ready to introduce the numerical fluxes. We begin by defining the nu-
merical fluxes σ̂ and ûσ associated with the Laplacian. We pick a direct extension
of the choice of numerical fluxes for the Laplace operator considered in [8] and [13].
That is, on a face e inside the domain Ω, we take

[
σ̂
ûσ

]
:=

[
{{σ}}
{{u}}

]
−

[
C11[[u]] + [[[[[[σ]]]]]]⊗C12

−[[u]] ·C12

]
, (2.7)

and if e lies on the boundary, we take
[
σ̂
ûσ

]
:=

[
σ+ − C11 (u+ − gD)⊗ n+

gD

]
. (2.8)
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Note that since the numerical flux ûσ is independent of the variable σ, it is possible to
use the equation (2.4) to solve σN in terms of uN only, element by element. This local
solvability, which allows us to eliminate the stresses σN from the equations, gives the
name to the LDG method (see [8, 18] for more details).
The numerical fluxes associated with the incompressibility constraint, ûp and p̂, are
defined by using an analogous recipe. If the face e is on the interior of Ω, we take

[
ûp

p̂

]
:=

[
{{u}}
{{p}}

]
+

[
D11 [[[[[[p]]]]]] +D12 [[u]]

−D12 · [[[[[[p]]]]]]

]
, (2.9)

and if e lies on the boundary, we take
[
ûp

p̂

]
:=

[
gD

p+

]
. (2.10)

The parameters C11, C12, and D11, D12 depend on x ∈ e. This completes the
definition of the LDG method for the Stokes system (1.1).
We would like to stress the following points about this method:
• The numerical fluxes are consistent in the sense that equations (2.4)–(2.6) coincide
with (2.1)–(2.3) for the exact solution (σ,u, p). Note also that the boundary condi-
tion is taken into consideration only through the numerical fluxes ûσ and ûp on the
boundary.
• The purpose of the coefficients C11 andD11 is to enhance the stability of the method.
They are thus referred to as the stabilization coefficients. As we shall see, they can
also affect the accuracy of the method. The parameters C12 and D12 can be chosen
as to reduce the sparsity of the matrices and, in special cases, to enhance the accuracy
of the method; see the case of the Laplacian treated in [13]. In this paper, we simply
assume that they are of order one.
• Note that if we rewrite the conservation law (1.3) as

−∇ · (σ − p I) = f in Ω,

where I is the identity tensor, we see that we need to define a single numerical
flux for (σ − p I) which, in fact, has been taken to be σ̂ − p̂ I. We could have
taken the following more general ansatz for the numerical flux for the pressure: p̂ =
{{p}}−D12 · [[[[[[p]]]]]] +D22 [[u]], but this would result in

σ̂ − p̂ I = {{σ}}− {{p}} I + D12 · [[[[[[p]]]]]] I −
(
C11[[u]] +D22 [[u]] I

)
.

Since, as we shall see, the role of the term C11 [[u]] is to control all the discontinuity
jumps of the velocity u whereas the term D22 [[u]] I can only induce a control on the
jumps of the normal component of the velocity, it is clear that we can always take
D22 ≡ 0.

2.2. The mixed setting. The study of the LDG method is greatly facilitated
if we recast its formulation in a classical mixed finite element setting. To do that, we
denote by Ei the union of all interior faces of the triangulation T and by ED the union
of faces lying on ∂Ω. By summing equations (2.4), (2.5) and (2.6) over all elements
and after simple algebraic manipulations, the LDG method can be reformulated more
compactly as follows. Find (σN ,uN , pN ) ∈ ΣN × V N ×QN such that

a(σN , τ)+b(uN , τ ) =f(τ),

−b(v,σN )+c(uN ,v)+d(v, pN )=g(v), (2.11)

−d(uN , q)+e(pN , q) =h(q)

6



for all (τ ,v, q) ∈ ΣN × V N ×QN .
Here,

a(σ, τ):=

∫

Ω
σ : τ dx,

b(u, τ ):=
∑

K∈T

∫

K
u ·∇ · τ dx−

∫

Ei

({{u}}+ [[u]] ·C12) · [[[[[[τ]]]]]] ds,

c(u,v):=

∫

Ei

C11[[u]] : [[v]] ds+

∫

ED

C11(u⊗ n) : (v ⊗ n) ds,

d(v, p):=−
∑

K∈T

∫

K
p∇ · v dx+

∫

Ei

({{p}}−D12 · [[[[[[p]]]]]])[[v]] ds+

∫

ED

pv · n ds,

e(p, q) :=

∫

Ei

D11[[[[[[p]]]]]] · [[[[[[q]]]]]] ds,

and

f(τ ):=

∫

ED

gD · τ · n ds,

g(v):=

∫

Ω
f · v dx+

∫

ED

C11(gD ⊗ n) : (v ⊗ n) ds,

h(q):=−

∫

ED

gD · n q ds.

Note that, by integration by parts, the forms b and d can also be expressed as

b(u, τ)=−
∑

K∈T

∫

K
∇u : τ dx+

∫

Ei

({{τ}}− [[[[[[τ]]]]]]⊗C12) : [[u]] ds+

∫

ED

τ : (u⊗ n) ds,

d(v, p)=
∑

K∈T

∫

K
v ·∇p dx−

∫

Ei

({{v}}+D12[[v]]) · [[[[[[p]]]]]] ds.

Finally, in order to analyze the method, we write the mixed system (2.11) in the
following equivalent form:
Find (σN ,uN , pN ) ∈ ΣN × V N ×QN such that

A(σN ,uN , pN ; τ ,v, q) = F(τ ,v, q) (2.12)

for all (τ ,v, q) ∈ ΣN × V N ×QN , by setting

A(σ,u, p; τ ,v, q) := a(σ, τ) + b(u, τ)− b(v,σ) + c(u,v) + d(v, p)− d(u, q) + e(p, q),

F(τ ,v, q) := f(τ ) + g(v) + h(q).

2.3. Existence and uniqueness of LDG solutions. Next, we show that the
LDG method defines a unique approximate solution provided that for each element
K ∈ T the following mild conditions on the local spaces hold:

u ∈ V(K) :

∫

K
∇u · v dx = 0 ∀v ∈ Sd(K) implies ∇u ≡ 0 on K, (2.13)

q ∈ Q(K) :

∫

K
v ·∇q dx = 0 ∀v ∈ Vd(K) implies ∇q ≡ 0 on K. (2.14)

7



See [8] for simple examples of local spaces not satisfying the above conditions.
Proposition 2.1 (Well-posedness of the LDG method). Consider the LDG method
defined by the weak formulation (2.4)–(2.6) and by the numerical fluxes given by (2.7)–
(2.10). Suppose that the coefficients C11 are D11 positive. Finally, assume that the
conditions (2.13) and (2.14) on the local spaces are satisfied. Then the LDG method
defines a unique approximate solution (σN ,uN , pN) ∈ ΣN × V N ×QN .
Proof. It is enough to show that the only possible solution to the system (2.11) with
f = 0 and gD = 0 is (σN ,uN , pN) = (0,0, 0). Indeed, taking τ = σN , v = uN ,
q = pN in (2.11) and adding the three equations yields

a(σN ,σN ) + c(uN ,uN ) + e(pN , pN ) = 0,

which implies σN = 0, [[uN ]] = 0 on Ei, uN = 0 on ED, and [[[[[[pN ]]]]]] = 0 on Ei since the
coefficients C11 and D11 are positive. Consequently, the first equation in (2.11) reads

∑

K∈T

∫

K
∇uN : τ dx = 0, ∀τ ∈ ΣN .

Assumption (2.13) implies that ∇uN = 0 on every K ∈ T , and, since [[uN ]] = 0 on Ei
and uN = 0 on ED, we must have uN = 0.
Taking σN = 0 and uN = 0, the second equation in (2.11) becomes

∑

K∈T

∫

K
v ·∇pN dx = 0, ∀v ∈ V N .

Analogously, we conclude from assumption (2.14) that ∇pN = 0 on every K ∈ T ,
and, since [[[[[[pN]]]]]] = 0, that pN is a constant. Since we also require that

∫
Ω pN dx = 0,

we conclude that pN = 0.

2.4. A priori estimates. In this section we state and discuss our a priori error
bounds for the LDG method. We assume that every element K of the triangulation
T is affinely equivalent, see [10, Section 2.3], to one of several reference elements in an
arbitrary but fixed set; this allows us to use elements of various shapes with possibly
curved boundaries. For each K ∈ T , we denote by hK the diameter of K and by ρK
the diameter of the biggest ball included in K; we set, as usual, h := maxK∈T hK .
The triangulations we consider can have hanging nodes but have to be regular , that
is, there exists a positive constant σ1 such that

hK

ρK
≤ σ1, ∀ K ∈ T ; (2.15)

see [10, Section 3.1]. Moreover, we let the maximum number of neighbors of a given
element K be arbitrary but fixed. To formally state this property, we need to introduce
the set 〈K,K ′〉 defined as

〈K,K ′〉 =

{
∅ if meas(d−1)(∂K ∩ ∂K ′) = 0,

interior of ∂K ∩ ∂K ′ otherwise.

Thus, we assume that there exists a positive constant σ2 < 1 such that, for each
element K ∈ T ,

σ2 ≤
hK′

hK
≤ σ−1

2 ∀K ′ : 〈K,K ′〉 /= ∅ . (2.16)
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These three hypotheses allow for quite general triangulations and are not restrictive
in practice.
We assume that the local finite element spaces satisfy the following inclusions, for
i = 1, . . . , d,

∂iV(K) ⊆ S(K), ∂iS(K) ⊆ V(K), ∂iV(K) ⊆ Q(K), ∂iQ(K) ⊆ V(K). (2.17)

Note that (2.17) also implies the assumptions (2.13) and (2.14) on the local spaces.
We denote by P κ(K) the set of all polynomials of degree at most κ on K, and by
Qκ(K) the polynomials of degree at most κ in each variable. Then, in order to
guarantee certain approximation properties of the local spaces, we assume that they
contain at least the following polynomial spaces

P k(K) ⊆ V(K), P l(K) ⊆ S(K), Pm(K) ⊆ Q(K), (2.18)

with approximation orders k ≥ 1 and l,m ≥ 0. Since ∂iP k(K) ⊂ P k−1(K) and
∂iQk(K) ⊂ Qk(K), conditions (2.17) and (2.18) are satisfied, for example, by

V(K) = P k(K), S(K) = P l(K), Q(K) = Pm(K), (2.19)

with k ≥ 1, l = k or l = k − 1, and m = k or m = k − 1, or by

V(K) = Qk(K), S(K) = Qk(K), Q(K) = Qk(K), k ≥ 1. (2.20)

Next, we introduce a seminorm that appears in a natural way in the analysis of LDG
methods. We denote byHs(D), D being a domain in Rd, the Sobolev spaces of integer
orders, and by ‖ · ‖s,D and | · |s,D the usual norms and seminorms in Hs(D), Hs(D)d

and Hs(D)d
2
; we omit the dependence on the domain in the norms whenever D = Ω.

We define

| (σ,u, p) |2A := ‖σ‖20 +Θ2(u, p),

where

Θ2 (u, p) =

∫

Ei

(
C11[[u]]

2 +D11[[[[[[p]]]]]]
2
)
ds+

∫

ED

C11(u⊗ n)2 ds.

We assume that the stabilization coefficients C11 andD11 defining the numerical fluxes
in (2.7) and (2.9) are given by

C11(x) =

{
c11 min{hγ

K+ , h
γ
K−} if x ∈ 〈K+, K−〉,

c11h
γ
K+ if x ∈ ∂K+ ∩ ∂Ω,

(2.21)

D11(x) = d11 min{hδ
K+ , hδ

K−} x ∈ 〈K+, K−〉, (2.22)

with c11, d11 > 0, −1 ≤ γ, δ ≤ 1 independent of the meshsize and |C12| as well as
|D12| of order one.
We are now ready to state our a priori error estimates for the LDG method. The
first result is concerned with the error in the seminorm | · |A and the L2-error in the
pressure.
Theorem 2.2. Let (σ,u, p) be the solution of (1.2)–(1.5) and let (σN ,uN , pN) be the
approximate solution given by the LDG method (2.4)–(2.6) with numerical fluxes (2.7)–
(2.10). Assume the hypotheses (2.15), (2.16) on the triangulations, the hypotheses
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(2.17), (2.18) on the local spaces, with approximation orders k ≥ 1 and l,m ≥ 0, and
the hypotheses (2.21), (2.22) on the form of the stabilization parameters. For σ ∈
H l+1(Ω)d

2

, u ∈ Hk+1(Ω)d and p ∈ Hm+1(Ω), we have that the errors eσ = σ − σN ,
eu = u− uN and ep = p− pN satisfy

| (eσ, eu, ep) |A ≤ C
[
hl+ 1−γ

2 ‖σ‖l+1 + hk‖u‖k+1 + hm+ 1+min(−γ,δ)
2 ‖p‖m+1

]
,

as well as

‖ep‖0 ≤ C
[
hl+ 1−γ

2 ‖σ‖l+1 + hk‖u‖k+1 + hm+ 1+min(−γ,δ)
2 ‖p‖m+1

]
,

where the constants C solely depend on Ω, σ1, σ2, c11, d11, d, and the dimensions of
the local spaces, but are independent of the meshsize h.
To prove a priori bounds for the L2-error in u, we assume elliptic regularity, that is,
we assume that the solution (z, q) of the homogeneous Stokes problem

−∆z +∇q = λ in Ω, (2.23)

∇ · z = 0 in Ω, (2.24)

z = 0 on ∂Ω, (2.25)

with right-hand side λ ∈ L2(Ω)d satisfies the estimate

‖z‖2 + ‖q‖1 ≤ C‖λ‖0 (2.26)

for a constant C > 0 just depending on Ω. For the inequality (2.26) to hold, certain
restrictions on Ω are necessary; see, for example, Proposition 2.3 in Témam [32].
Theorem 2.3. Under the same assumptions as in Theorem 2.2 and the elliptic
regularity assumption (2.26), we have that

‖eu‖0 ≤ C
[
hl+min(−γ,δ)+1‖σ‖l+1 + hk+ 1+min(−γ,δ)

2 ‖u‖k+1 + hm+min(−γ,δ)+1‖p‖m+1

]

with a constant C that solely depends on Ω, σ1, σ2, c11, d11, d, the dimensions of the
local spaces and the constant in (2.26), but that is independent of the meshsize h.
Let us briefly discuss the results of Theorems 2.2 and 2.3:
• We begin by noting that the convergence orders are limited by the exponent
min(−γ, δ) and we conclude that, in order to maximize the orders of convergence
of the LDG approximation, γ in (2.21) should be chosen to be negative and δ in
(2.22) to be positive. In fact, the quantity min(−γ, δ) achieves its maximum, 1, for
γ = −1, δ = 1, i.e., for C11 = O(1/h) and D11 = O(h).
• When P k- or Qk-elements with k ≥ 1 are used for all field variables, i.e, the local
spaces are chosen as in (2.19) with l = k and m = k or as in (2.20), we obtain for

smooth solutions σ ∈ Hk+1(Ω)d
2
, u ∈ Hk+1(Ω), p ∈ Hk+1(Ω), the error bounds

| (eσ, eu, ep) |A + ‖ep‖0 ≤ Chk, ‖eu‖0 ≤ Chk+ 1+min(−γ,δ)
2 ,

for γ, δ ∈ [−1, 1]. These estimates are summarized in Table 2.1 for some choices of
C11 and D11. Although these rates are sharp in the sense that they are actually
observed in the numerical experiments of section 4, they are not optimal in terms of
the approximation properties of the FE spaces.
• If the P -elements used for σ and p are of one order lower than the ones used for
the velocities u, i.e., if we consider P -elements as in (2.19) with l = m = k − 1 and
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Table 2.1
Orders of convergence for smooth solutions and P k- or Qk-elements.

C11 D11 | (eσ, eu, ep) |A ‖ep‖0 ‖eu‖0

O(1),O(1/h) O(1) k k k + 1/2
O(1) O(h) k k k + 1/2

O(1/h) O(h) k k k + 1

k ≥ 1, then an optimal order error estimate is obtained for γ = −1, δ = 1, i.e., for
C11 = O(1/h), D11 = O(h). In this case we have for σ ∈ Hk(Ω)d

2

, u ∈ Hk+1(Ω)d

and p ∈ Hk(Ω) the estimate

| (eσ, eu, ep) |A + ‖ep‖0 ≤ Chk, ‖eu‖0 ≤ Chk+1,

which is optimal in terms of the approximation properties and of the regularity re-
quirements of the exact solution.

2.5. The setting for the error analysis. The purpose of this section is to
display as clearly as possible the main ingredients of the proof of our a priori results
in section 2.4. To do so, we base our analysis on a similar abstract setting as the one
introduced in [8] for the Laplacian.
We split the error (eσ, eu, ep) = (σ − σN ,u− uN , p− pN) into the following sum:

(eσ, eu, ep) = (σ −Πσ,u−Πu, p−Πp) + (Πeσ,Πeu,Πep),

where Π : Σ → ΣN , Π : V → V N and Π : Q → QN are fixed projections onto the
corresponding finite element spaces.

The basic ingredients. The basic ingredients of our error analysis are two.
The first one is, as it is classical in finite element error analysis, the so-called Galerkin
orthogonality property, namely,

A(eσ, eu, ep; τ ,v, q) = 0 ∀(τ ,v, q) ∈ ΣN × V N ×QN . (2.27)

This property is a straightforward consequence of the consistency of the numerical
fluxes and is valid since (u, p) ∈ H2(Ω)d ×H1(Ω).
The second ingredient is a couple of inequalities that reflect the approximation prop-
erties of the projections Π, Π and Π, namely, we assume that there exist error bounds
KA and KB such that

| A(σ −Πσ,u−Πu, p−Πp; τ −Πτ ,v −Πv, q−Πq) | ≤ CKA(σ,u, p; τ ,v, q) (2.28)

for any (σ,u, p), (τ ,v, q) ∈ Σ× V ×Q, and

| A(σ −Πσ,±(u−Πu), p−Πp; τ ,±v, q) | ≤ C| (τ ,v, q) |A KB(σ,u, p) (2.29)

for any (τ ,v, q) ∈ ΣN × V N × QN and (σ,u, p) ∈ Σ × V × Q and with constants
C which are independent of the meshsize (specific forms for KA and KB shall be
provided below). As we show next, all the error estimates we are interested in can be
obtained in terms of KA and KB.
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Error in the A-seminorm. The error in | · |A can be estimated as follows.
Lemma 2.4. We have

| (eσ, eu, ep) |A ≤ CK1/2
A (σ,u, p;σ,u, p) + CKB(σ,u, p),

with C independent of the meshsize.
Proof. This is a straightforward extension of [8, Lemma 2.3]. We present the proof
for the sake of completeness. Since | (·, ·, ·) |A is a seminorm, we have

| (eσ, eu, ep) |A ≤ | (σ −Πσ,u−Πu, p−Πp) |A + | (Πeσ,Πeu,Πep) |A.

By the definition of A in (2.12), by Galerkin orthogonality (2.27), and by assumption
(2.29),

| (Πeσ,Πeu,Πep) |
2
A =A(Πeσ,Πeu,Πep;Πeσ,Πeu,Πep)

=A(Πσ − σ,Πu− u,Πp− p;Πeσ,Πeu,Πep)

≤C| (Πeσ,Πeu,Πep) |AKB(σ,u, p),

we have that

| (Πeσ,Πeu,Πep) |A ≤ CKB(σ,u, p), (2.30)

and so,

| (eσ, eu, ep) |A ≤ | (σ −Πσ,u−Πu, p−Πp) |A + CKB(σ,u, p).

The estimate now follows from a simple application of assumption (2.28). This com-
pletes the proof.

Error in the pressure. To obtain an error estimate in the pressure, we shall
prove a stability result which allows us to measure the error of the pressure in the
L2-norm. It can be viewed as a discrete counter–part of the standard continuous inf–
sup condition for the Stokes problem (see e.g., [6, 24]), adapted to the discontinuous
spaces considered here. Its proof is obtained by following the techniques used by
Franca and Stenberg [23] in subsection 3.4 below.
Proposition 2.5. Assume that C11 and D11 are of the form (2.21) and (2.22),
respectively. Then there exist positive constants κ1 and κ2 independent of the meshsize
such that for all (τ ,v, q) ∈ ΣN × V N ×QN there is a w ∈ V N with

A(τ ,v, q; 0,w, 0) ≥ κ1‖q‖
2
0 − κ2| (τ ,v, q) |

2
A, | (0,w, 0) |A = Θ(w, 0) ≤ ‖q‖0. (2.31)

Based in this inf-sup condition we obtain the following estimate for ep.
Lemma 2.6. We have

‖ep‖0 ≤ ‖p−Πp‖0 + CKB(σ,u, p),

with C independent of the meshsize.
Proof. We only have to find an estimate for ‖Πep‖0, since we trivially have ‖p−pN‖0 ≤
‖p−Πp‖0 + ‖Πep‖0. To do that, we see that, by Proposition 2.5, there exists a test
function w ∈ V N such that (2.31) is satisfied for (τ ,v, q) = (Πeσ,Πeu,Πep). By
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(2.31), Galerkin orthogonality (2.27), assumption (2.29), estimate (2.30), the Cauchy-
Schwarz inequality and the properties of w, we obtain

κ1‖Πep‖
2
0 ≤ A(Πeσ,Πeu,Πep; 0,w, 0) + κ2| (Πeσ,Πeu,Πep) |

2
A

= A(Πσ − σ,Πu− u,Πp− p; 0,w, 0) + κ2| (Πeσ,Πeu,Πep) |
2
A

≤ C1| (0,w, 0) |AKB(σ,u, p) + C2KB(σ,u, p)
2

≤
C1

2ε
‖Πep‖

2
0 + (C1

ε

2
+ C2)KB(σ,u, p)

2

for all ε > 0. We can now choose ε in such a way that

‖Πep‖0 ≤ CKB(σ,u, p)

with a constant C depending on C1 and C2. The assertion follows.

Error in the velocity. The estimate for the error ‖eu‖0 is based on a duality
argument similar to the one used in [8].
Lemma 2.7. Assume that the elliptic regularity inequality (2.26) holds. Then, we
have

‖eu‖0 ≤ C sup
λ∈L2(Ω)d

KA(σ,u, p; ζ, z, q̃)

‖λ‖0
+ CKB(σ,u, p) sup

λ∈L2(Ω)d

KB(ζ, z, q̃)

‖λ‖0
, (2.32)

with (z, q) denoting the solution of (2.23)–(2.25) with right-hand side λ and ζ = −∇z,
q̃ = −q.
Proof. We introduce the linear functional Λ(u) = (λ,u), where (·, ·) denotes the
L2(Ω)d-inner product. Then we have

‖eu‖0 = sup
λ∈L2(Ω)d

Λ(eu)

‖λ‖0
. (2.33)

Now, let (z, q) be the solution of the adjoint equation (2.23)–(2.25) with right-hand
side λ. It is easy to verify that, if we set ζ = −∇z, q̃ = −q, we have

A(−ζ, z,−q̃;−τ ,w,−r) = Λ(w),

for all (τ ,w, r) ∈ Σ×V ×Q. Taking (τ ,w, r) = (eσ, eu, ep), we get by the definition
of A in (2.12) and by Galerkin orthogonality (2.27)

Λ(eu) =A(−ζ, z,−q̃;−eσ, eu,−ep)

=A(eσ, eu, ep; ζ, z, q̃)

=A(eσ, eu, ep; ζ −Πζ, z −Πz, q̃ −Πq̃)

=A(Πeσ,Πeu,Πep; ζ −Πζ, z −Πz, q̃ −Πq̃)

+A(σ −Πσ,u−Πu, p−Πp; ζ − Πζ, z −Πz, q̃ −Πq̃).

We obtain with assumption (2.29) and estimate (2.30)

| A(Πeσ,Πeu,Πep; ζ −Πζ, z −Πz, q̃ −Πq̃)|

= | A(ζ −Πζ,−(z −Πz), q̃ −Πq̃;Πeσ,−Πeu,Πep) | ≤ CKB(σ,u, p)KB(ζ, z, q̃),
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and hence,

|Λ(eu) | ≤ CKB(σ,u, p)KB(ζ, z, q̃)

+ | A(σ −Πσ,u−Πu, p−Πp; ζ −Πζ, z −Πz, q̃ −Πq̃) |.

The estimate now follows from a simple application of assumption (2.28) and from
the characterization (2.33) of the L2-norm.

Conclusion. Thus, in order to prove our a priori estimates, all we need to do is
to obtain the functionals KA and KB, as well as the stability estimate in Proposition
2.5; this will be carried out in the next section. Then, Theorems 2.2 and 2.3 will
immediately follow after a simple application of Lemmas 2.4, 2.6 and 2.7.

3. Proofs. In this section, we prove our main results in the setting of section
2.5. We proceed as follows. After presenting some preliminary results, we obtain the
functional KA for general projection operators Π, Π and Π. To obtain the functional
KB, the projections Π, Π and Π are chosen as L2-projections.

3.1. Preliminaries. The following two lemmas contain all the information we
actually use about our finite elements. The first one is a standard approximation
result, valid for any linear continuous and polynomial preserving operator Π from
Hs+1(K) onto a finite dimensional space N (K) ⊃ P κ(K); it can be easily obtained
by using the techniques of [10]. The second one is a standard inverse inequality.
Lemma 3.1. Let Π be a linear continuous operator from Hs+1(K), s ≥ 0, onto
N (K) ⊃ P κ(K) such that Πw = w for all w ∈ P κ(K), κ ≥ 0. Then we have

|w −Πw|r,K ≤ Chmin(s,κ)+1−r
K ‖w‖s+1,K , r = 0, 1,

‖w −Πw‖0,∂K ≤ Ch
min (s,κ)+ 1

2
K ‖w‖s+1,K ,

for some constant C that solely depends on σ1 in inequality (2.15), the dimension of
N (K), d and s.
Lemma 3.2. There exists a positive constant Cinv that solely depends on σ1 in in-
equality (2.15), the dimension of N (K) and d, such that for all s ∈ N (K) we have

s0,∂K ≤ Cinvh
− 1

2
K ‖s‖0,K, for all K ∈ T .

Let Π : Σ → ΣN , Π : V → V N and Π : Q → QN be projection operators onto the
corresponding FE spaces satisfying (componentwise) the assumptions in Lemma 3.1.
We will make use of the following short-hand notation

ξ
σ
= σ −Πσ, ξu = u−Πu, ξp = p−Πp,

for (σ,u, p) ∈ Σ× V ×Q. We also define the quantities

C∂K
11 := inf{C11(x) : x ∈ ∂K}, C

∂K
11 := sup{C11(x) : x ∈ ∂K},

D∂K
11 := inf{D11(x) : x ∈ ∂K \ ∂Ω}, D

∂K
11 := sup{D11(x) : x ∈ ∂K \ ∂Ω}.

3.2. The functional KA. Using Cauchy-Schwarz’s inequality, the approxima-
tion properties in Lemma 3.1 and the assumptions (2.15) and (2.16) on the meshes, we
can prove, in exactly the same way as in [8, Section 3.2], the following approximation
results for the LDG forms.
Lemma 3.3. Assume (2.15), (2.16) and (2.18). Let Π, Π and Π be projection op-
erators satisfying (componentwise with κ = k, κ = l, and κ = m, respectively) the
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assumptions in Lemma 3.1. Let σ ∈ Hr+1(Ω)d
2
, τ ∈ Hr+1(Ω)d

2
, u ∈ Hs+1(Ω)d,

v ∈ Hs+1(Ω)d, p ∈ Ht+1(Ω) and q ∈ Ht+1(Ω) for r, r, s, s, t, t ≥ 0. Then we have

|a(ξ
σ
, ξ

τ
)| ≤ C

( ∑

K∈T

h2min(r,l)+2
K ‖σ‖2r+1,K

) 1
2
( ∑

K∈T

h2min(r,l)+2
K ‖τ‖2r+1,K

) 1
2 ,

|b(ξu, ξτ )| ≤ C
( ∑

K∈T

h2min(s,k)
K ‖u‖2s+1,K

) 1
2
( ∑

K∈T

h2min(r,l)+2
K ‖τ‖2r+1,K

) 1
2 ,

|c(ξu, ξv)| ≤ C
( ∑

K∈T

C
∂K
11 h2min(s,k)+1

K ‖u‖2s+1,K

) 1
2
( ∑

K∈T

C
∂K
11 h2min(s,k)+1

K ‖v‖2s+1,K

) 1
2 ,

|d(ξu, ξq)| ≤ C
( ∑

K∈T

h2min(s,k)
K ‖u‖2s+1,K

) 1
2
( ∑

K∈T

h2min(t,m)+2
K ‖q‖2t+1,K

) 1
2 ,

|e(ξp, ξq)| ≤ C
( ∑

K∈T

D
∂K
11 h2min(t,m)+1

K ‖p‖2t+1,K

) 1
2
( ∑

K∈T

D
∂K
11 h2min(t,m)+1

K ‖q‖2t+1,K

) 1
2 ,

with constants C independent of the meshsize.
For the special form of C11 and D11 proposed in (2.21) and (2.22), respectively, we
have as a consequence of Lemma 3.3 and (2.16) the following result.
Corollary 3.4. Under the same assumptions as in Lemma 3.3 and for coefficients
C11 and D11 of the form (2.21) and (2.22), respectively, we have

|a(ξ
σ
, ξ

τ
) ≤ Chmin(r,l)+min(r,l)+2‖σ‖r+1‖τ‖r+1,

|b(ξu, ξτ )| ≤ Chmin(s,k)+min(r,l)+1‖u‖s+1‖τ‖r+1,

|c(ξu, ξv)| ≤ Chmin(s,k)+min(s,k)+1+γ‖u‖s+1‖v‖s+1,

|d(ξu, ξq)| ≤ Chmin(s,k)+min(t,m)+1‖u‖s+1‖q‖t+1,

|e(ξp, ξq)| ≤ Chmin(t,m)+min(t,m)+1+δ‖p‖t+1‖q‖t+1,

with constants C independent of the meshsize.
From Corollary 3.4 we immediately obtain a general expression for the functional KA

since

A(ξ
σ
, ξu, ξp; ξτ , ξv, ξq) = a(ξ

σ
, ξ

τ
) + b(ξu, ξτ )− b(ξv, ξσ)

+c(ξu, ξv) + d(ξv, ξp)− d(ξu, ξq) + e(ξp, ξq). (3.1)

In the situations encountered in Lemmas 2.4 and 2.7 we obtain the following results.
Corollary 3.5. Assume (2.15), (2.16) and (2.18) with approximation orders k ≥ 1,
l,m ≥ 0. Assume the coefficients C11 and D11 to be of the form (2.21) and (2.22),
respectively. Let Π, Π and Π be projection operators as in Lemma 3.3. Let σ ∈
H l+1(Ω)d

2
, u ∈ Hk+1(Ω)d and p ∈ Hm+1(Ω). Then we have in Lemma 2.4

KA(σ,u, p;σ,u, p) ≤ C
[
h2l+2‖σ‖2l+1 + h2k+1+γ‖u‖2k+1 + h2m+1+δ‖p‖2m+1

]
.

Furthermore, assume the elliptic regularity inequality (2.26) and let (z, q) denote the
solution of (2.23)–(2.25) with right-hand side λ ∈ L2(Ω)d, ζ = −∇z, q̃ = −q. Then
we have in Lemma 2.7

KA(σ,u, p; ζ, z, q̃) ≤ C
[
h2+l‖σ‖l+1 + h1+k‖u‖k+1 + h1+δ+m‖p‖m+1

]
‖λ‖0.

Proof. The assertions follow immediately from Corollary 3.4, the identity (3.1), the
choice of the coefficients C11 and D11, and from the elliptic regularity estimate (2.26)
which yields ‖ζ‖1 + ‖u‖2 + ‖q̃‖1 ≤ C‖λ‖0.
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3.3. The functional KB. In this subsection we determine the functional KB

reflecting the approximation properties in equation (2.29). We start by investigating
the forms a, c and d. Lemma 3.1 and Cauchy-Schwarz’s inequality immediately give
the following estimates.
Lemma 3.6. Assume (2.15), (2.16) and (2.18). Let Π, Π and Π be projection op-
erators satisfying (componentwise with κ = k, κ = l, and κ = m, respectively) the

assumptions in Lemma 3.1. Let σ ∈ Hr+1(Ω)d
2
, u ∈ Hs+1(Ω)d and p ∈ Ht+1(Ω) for

r, s, t ≥ 0. Then we have

|a(ξ
σ
, τ)| ≤ C

( ∑

K∈T

h2min(r,l)+2
K ‖σ‖2r+1,K

) 1
2
‖τ‖0, ∀ τ ∈ Σ,

|c(ξu,v)| ≤ C
( ∑

K∈T

C
∂K
11 h2min(s,k)+1

K ‖u‖2s+1,K

) 1
2
Θ(v, 0), ∀v ∈ V ,

|e(ξp, q)| ≤ C
( ∑

K∈T

D
∂K
11 h2min(t,m)+1

K ‖p‖2t+1,K

) 1
2
Θ(0, q), ∀q ∈ Q,

with constants C independent of the meshsize.
Next, we estimate the forms b and d in the case where Π : Σ → ΣN , Π : V → V N

and Π : Q → QN are chosen to be L2-projections. Note that these projections clearly
satisfy the assumptions of Lemma 3.1. It is also important to note that this is the
only part of our analysis in which we actually use the inclusion properties (2.17).
Lemma 3.7. Assume (2.15), (2.16) and (2.17), (2.18). Let Π, Π and Π be the
(componentwise) L2-projections onto the corresponding finite element spaces. Let σ ∈
Hr+1(Ω)d

2
, u ∈ Hs+1(Ω)d and p ∈ Ht+1(Ω) for r, s, t ≥ 0. Then we have

|b(ξu, τ)| ≤ C
( ∑

K∈T

h2min(s,k)
K ‖u‖2s+1,K

) 1
2
‖τ‖0, ∀ τ ∈ ΣN ,

|b(v, ξ
σ
)| ≤ C

( ∑

K∈T

1

C∂K
11

h2min(r,l)+1
K ‖σ‖2r+1,K

) 1
2
Θ(v, 0), ∀v ∈ V N ,

|d(ξu, q)| ≤ C
( ∑

K∈T

1

D∂K
11

h2min(s,k)+1
K ‖u‖2s+1,K

) 1
2
Θ(0, q), ∀q ∈ QN ,

|d(v, ξp)| ≤ C
( ∑

K∈T

1

C∂K
11

h2min(t,m)+1
K ‖p‖2t+1,K

) 1
2
Θ(v, 0), ∀v ∈ V N ,

with constants C independent of the meshsize.
Proof. We start by proving the estimates for the form b.
We note that

∫
K (u −Πu) · ∇ · τ dx = 0 due to the properties of the L2-projection

and the inclusion property ∂iS(K) ⊂ V(K) in (2.17). Therefore, using the fact that
C12 is of order one, a repeated application of Cauchy-Schwarz’s inequality gives

|b(ξu, τ)| =

∣∣∣∣

∫

Ei

({{ξu}}+ [[ξu]] ·C12) · [[[[[[τ]]]]]] ds

∣∣∣∣

≤ C
( ∑

K∈T

h−1
K ‖ξu‖

2
0,∂K

) 1
2
( ∑

K∈T

ĥK‖τ‖20,∂K

) 1
2
,

where ĥK = sup{hK′ : 〈K,K ′〉 /= ∅}. Assumption (2.16) implies that ĥK ≤ σ−1
2 hK

and, therefore, the desired estimate follows from Lemma 3.1 and the inverse inequality
in Lemma 3.2.
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Furthermore, we also note that
∫
K ∇v : (σ − Πσ) dx = 0, since Π|K is the L2-

projection into S(K) and ∂iV(K) ⊂ S(K) in (2.17). Thus, we obtain

|b(v, ξ
σ
)| =

∣∣∣∣

∫

Ei

({{ξ
σ
}}− [[[[[[ξ

σ
]]]]]]⊗C12) : [[v]] ds+

∫

ED

ξ
σ
: (v ⊗ n) ds

∣∣∣∣

≤
( ∫

Ei

1

C11
({{ξ

σ
}}− [[[[[[ξ

σ
]]]]]]⊗C12)

2 ds+

∫

ED

1

C11
ξ2
σ
ds
) 1

2
Θ(v, 0).

≤ C
( ∑

K∈T

1

C∂K
11

‖ξ
σ
‖20,∂K

) 1
2
Θ(v, 0).

The second estimate for the form b follows from Lemma 3.1.
The estimates for d are obtained in a similar way from Lemma 3.1, observing again
that D12 is of order one and that the volume terms vanish due to the properties of the
L2-projections and the inclusions in (2.17). Thus, using the inclusion ∂iQ(K) ⊂ V(K),
we have

|d(ξu, q)| =

∣∣∣∣

∫

Ei

({{ξu}}+D12[[ξu]]) · [[[[[[q]]]]]] ds

∣∣∣∣

≤
( ∫

Ei

1

D11
({{ξu}}+D12[[ξu]])

2 ds
) 1

2
Θ(0, q)

≤ C
( ∑

K∈T

1

D∂K
11

‖ξu‖0,∂K
) 1

2
Θ(0, q),

and using the inclusion ∂iV(K) ⊂ Q(K),

|d(v, ξp)| =

∣∣∣∣

∫

Ei

({{ξp}}−D12 · [[[[[[ξp]]]]]])[[v]] ds+

∫

ED

ξpv · n ds

∣∣∣∣

≤ C
( ∑

K∈T

1

C∂K
11

‖ξp‖
2
0,∂K

) 1
2
Θ(v, 0).

The application of Lemma 3.1 completes the proof.
For the special form of C11 and D11 proposed in (2.21) and (2.22), respectively, we
have as a consequence of Lemma 3.6, Lemma 3.7 and (2.16) the following result.
Corollary 3.8. Assume (2.15), (2.16) and (2.17), (2.18). Let the coefficients C11

and D11 be given by (2.21), (2.22), and let Π, Π and Π be the (componentwise)

L2-projections onto the corresponding finite element spaces. Let σ ∈ Hr+1(Ω)d
2
,

u ∈ Hs+1(Ω)d and p ∈ Ht+1(Ω) for r, s, t ≥ 0. Then we have

|a(ξ
σ
, τ )| ≤ Chmin(r,l)+1‖σ‖r+1‖τ‖0, ∀ τ ∈ Σ,

|b(ξu, τ )| ≤ Chmin(s,k)‖u‖s+1‖τ‖0, ∀ τ ∈ ΣN ,

|b(v, ξ
σ
)| ≤ Chmin(r,l)+ 1−γ

2 ‖σ‖r+1Θ(v, 0), ∀v ∈ V N ,

|c(ξu,v)| ≤ Chmin(s,k)+ 1+γ
2 ‖u‖s+1Θ(v, 0), ∀v ∈ V ,

|d(ξu, q)| ≤ Chmin(s,k)+ 1−δ
2 ‖u‖s+1Θ(0, q), ∀q ∈ QN ,

|d(v, ξp)| ≤ Chmin(t,m)+ 1−γ
2 ‖p‖t+1Θ(v, 0), ∀v ∈ V N ,

|e(ξp, q)| ≤ Chmin(t,m)+ 1+δ
2 ‖p‖t+1Θ(0, q), ∀q ∈ Q,
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with constants C independent of the meshsize.
From Corollary 3.8 we are able to derive the following estimate for KB.
Corollary 3.9. Assume (2.15), (2.16) and (2.17), (2.18), with approximation orders
k ≥ 1, l,m ≥ 0. Let the coefficients C11 and D11 be given by (2.21), (2.22), and let Π,

Π, Π denote L2-projections. For σ ∈ H l+1(Ω)d
2
, u ∈ Hk+1(Ω)d and p ∈ Hm+1(Ω)

the error bound (2.29) is satisfied with

KB(σ,u, p) ≤ C
[
hl+ 1−γ

2 ‖σ‖l+1 + hk‖u‖k+1 + hm+ 1+min(−γ,δ)
2 ‖p‖m+1

]
.

Furthermore, assume the elliptic regularity (2.26) and let (z, q) denote the solution of
(2.23)–(2.25) with right-hand side λ ∈ L2(Ω)d, ζ = −∇z, q̃ = −q. Then we have in
Lemma 2.7

KB(ζ, z, q̃) ≤ Ch
1+min(−γ,δ)

2 ‖λ‖0.

Proof. The first assertion follows from the fact that

A(ξ
σ
,±ξu, ξp; τ ,±v, q) = a(ξ

σ
, τ )± b(ξu, τ)∓ b(v, ξ

σ
)± c(ξu,v)

±d(v, ξp)∓ d(ξu, q) + e(ξp, q),

from the definition of the A-seminorm and from Corollary 3.8.
The second assertion follows similarly from Corollary 3.8, substituting (σ,u, p) by
(ζ, z, q̃), observing the special form of C11 and D11, and (2.26) which gives ‖ζ‖1 +
‖z‖2 + ‖q̃‖1 ≤ C‖λ‖0.

3.4. Proof of Proposition 2.5. We prove the stability result in Proposition 2.5.
To do so, we fix (τ ,v, q) ∈ ΣN × V N × QN . Then, by the continuous inf-sup
condition for the standard Stokes forms (see, e.g., [6, 24]) there is a velocity field
u ∈ H1

0 (Ω)
d = {u ∈ H1(Ω)d : u|∂Ω = 0} satisfying

−

∫

Ω
q∇ · u dx ≥ κ‖q‖20, ‖u‖1 ≤ ‖q‖0, (3.2)

with a constant κ > 0 just depending on Ω. Let Πu be the L2-projection of u onto
the FE space V N . By definition of A, we have

A(τ ,v, q; 0,Πu, 0) = −b(Πu, τ) + c(v,Πu) + d(Πu, q) =: T1 + T2 + T3.

We set ξu := u−Πu and estimate each of the terms T1–T3 separately.
For T1 we have, by Corollary 3.8,

|T1| ≤ |b(ξu, τ )|+ |b(u, τ )| ≤ C‖u‖1‖τ‖0 +

∣∣∣∣

∫

Ω
∇u : τ dx

∣∣∣∣ ≤ C‖u‖1‖τ‖0,

and, by (3.2),

T1 ≥ −
C1

ε1
‖q‖20 − C1ε1‖τ‖

2
0.

For the second term T2 we have, analogously,

T2 = c(v,Πu) = c(v, ξu) ≤ Ch
1+γ
2 ‖u‖1Θ(v, 0),
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and hence

T2 ≥ −
C2h

1+γ
2

ε2
‖q‖20 − C2ε2Θ

2(v, q).

For the third term, we write

T3 = d(Πu, q) = d(u, q)− d(ξu, q).

Since, by Corollary 3.8 and (3.2)

|d(ξu, q)| ≤ Ch
1−δ
2 ‖u‖1Θ(0, q) ≤

Ch
1−δ
2

ε3
‖q‖20 + Cε3Θ

2(v, q),

and d(u, q) = −
∫
Ω q∇ · u dx, we obtain

T3 ≥ κ‖q‖20 −
C3h

1−δ
2

ε3
‖q‖20 − C3ε3Θ

2(v, q).

From the above estimates we conclude that

A(τ ,v, q; 0,Πu, 0)

≥
(
κ−

C1

ε1
−

C2h
1+γ
2

ε2
−

C3h
1−δ
2

ε3

)
‖q‖20 − C1ε1‖τ‖

2 − (C2ε2 + C3ε3)Θ
2(v, q).

Since the exponents γ and δ are in [−1, 1], by the definition of the coefficients C11

and D11 in (2.21) and (2.22), respectively, we see that the parameters {εi}3i=1 can be
chosen in such a way that

A(τ ,v, q; 0,Πu, 0) ≥ K1‖q‖
2
0 −K2| (τ ,v, q) |

2
A,

with constants Ki independent of the meshsize.
Furthermore, we have by Corollary 3.4 and by the choice of the coefficient C11

| (0,Πu, 0) |2A = c(Πu,Πu) = c(ξu, ξu) ≤ Ch1+γ‖u‖21 ≤ K2
3‖q‖

2
0.

The function w = Πu/K3 then satisfies the assertion in Proposition 2.5, with κ1 =
K1/K3 and κ2 = K2/K3. This completes the proof.

3.5. Proof of the main results. Theorems 2.2 and 2.3 follow now immediately
by choosing the projection operators Π, Π and Π as L2-projections, by combining
Corollaries 3.5, 3.9 with Lemmas 2.4, 2.6 and 2.7 and by taking into account the form
of the coefficients C11 and D11.

4. Numerical results. The numerical experiments we present in this section
are devised to verify our theoretical error estimates. We also explore the effect of
the use of several combinations of polynomial spaces on the efficiency of the resulting
LDG methods. The numerical tests are carried out by using the finite element library
deal.II by Bangerth and Kanschat [3].
We consider the Stokes system (1.1) with Ω = (−1, 1)2 and right-hand side f and
Dirichlet boundary condition gD chosen such that the exact solution is

u1(x1, x2) = −ex1(x2 cosx2 + sinx2),

u2(x1, x2) = ex1x2 sinx2,

p(x1, x2) = 2ex1 sinx2.

In all our experiments, we use uniform triangulations made of squares; the grid whose
squares have size h = 2−ν+1 is called a grid of level ν.
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Table 4.1
Convergence rates for P k-elements.

degree grid |e|A ‖eσ‖0 ‖eu‖0 ‖ep‖0

k level error order error order error order error order
3 3.4e-1 0.94 2.1e-1 0.69 8.4e-3 2.07 2.0e-2 1.57

1 4 1.7e-1 0.96 1.2e-1 0.85 2.1e-3 2.03 8.2e-3 1.27
5 8.8e-2 0.98 6.2e-2 0.93 5.1e-4 2.01 3.4e-3 1.25
3 1.2e-2 1.87 9.1e-3 1.73 2.0e-4 3.07 5.1e-4 2.46

2 4 3.2e-3 1.84 2.5e-3 1.88 2.4e-5 3.06 1.2e-4 2.08
5 9.2e-4 1.80 6.4e-4 1.94 2.9e-6 3.03 3.0e-5 2.00
2 1.8e-3 2.86 1.4e-3 2.66 5.8e-5 3.98 2.4e-4 2.80

3 3 2.4e-4 2.91 1.9e-4 2.82 3.6e-6 4.02 3.9e-5 2.65
4 3.0e-5 2.96 2.5e-5 2.91 2.2e-7 4.02 5.3e-6 2.87

Table 4.2
Convergence rates for Qk-elements.

degree grid |e|A ‖eσ‖0 ‖eu‖0 ‖ep‖0

k level error order error order error order error order
3 2.4e-1 0.94 2.2e-1 0.73 5.6e-3 2.06 2.9e-2 1.50

1 4 1.3e-1 0.96 1.2e-1 0.86 1.4e-3 2.04 1.0e-2 1.52
5 6.4e-2 0.97 6.2e-2 0.93 3.4e-4 2.01 3.8e-3 1.43
3 2.6e-3 2.00 6.3e-4 2.10 6.5e-5 3.01 4.5e-4 1.90

2 4 6.4e-4 2.00 1.6e-4 2.02 8.1e-6 3.00 1.2e-4 1.94
5 1.6e-4 2.00 3.9e-5 2.00 1.0e-6 3.00 3.0e-5 1.97
2 6.1e-4 2.76 3.8e-4 2.37 1.9e-5 3.82 2.4e-4 2.24

3 3 8.1e-5 2.92 6.4e-5 2.55 1.1e-6 4.12 3.8e-5 2.63
4 1.0e-5 2.98 9.3e-6 2.80 6.0e-8 4.19 5.2e-6 2.88

4.1. Verifying the sharpness of the theoretical error estimates. We be-
gin by considering LDG methods with the same polynomial spaces for σ, u and p,
and take C11 = h−1, D11 = h, C12 = 0 and D12 = 0. The results are shown in
Tables 4.1 and 4.2 for P k- and Qk-elements, respectively. The tables confirm that
the orders of convergence predicted by the theory are sharp since they are actually
achieved. However, one exception needs to be pointed out: The pressure converges
better than expected for linear and bilinear shape functions since super-linear con-
vergence is observed. This phenomenon is particularly well accentuated in the case of
bilinear functions for which the order of convergence of 3/2 can be clearly seen. The
same order of convergence has recently been observed by Berrone [5] for the stabilized
P 1-P 1 SUPG method.

4.2. The effect of the use of different polynomial spaces. To get an idea
of what is the effect of the use of P k- versus Qk-spaces on quadrilateral elements, the
errors of quadratic and biquadratic elements are compared in relation to the numerical
effort in Figure 4.1. We use the number of non-zero elements in the stiffness matrix as
a measure of the solution cost of a discretization. The graphs show that it is possible
to compute the velocities u with the same accuracy and effort with P 2- and Q2-shape
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Fig. 4.1. Comparison of quadratic P 2- and biquadratic Q2-elements.
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Fig. 4.2. Comparison of mixed spaces for quadratic P 2-velocities.

functions; however, the pressures are computed more efficiently with P 2-elements.
Finally, since the theoretical results predict the same orders of convergence for all
quantities if we take lower order P–elements for σ and p, we compare the efficiency of
LDG methods obtained with several combinations of local spaces S(K)/V(K)/Q(K)
in Figures 4.2 and 4.3.
We can see that all these LDG discretizations converge with the same order, as ex-
pected and proved for P -elements, and that, in most cases, it is more efficient to use
the same local approximating spaces for all quantities. In fact, only the velocities in
the Q2-case are computed slightly more efficient using a lower degree for the pressure.
On the other hand, using lower order polynomials for σ and/or p increases the error
in p such that at least one additional refinement is necessary to recover the accuracy
corresponding to an LDG method using the same local spaces.

5. Extensions and concluding remarks. In this paper, we have introduced
LDG methods for the Stokes system and have carried out an a priori error analysis.
We have shown that if polynomial approximations of degree k − 1 are used for the
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Fig. 4.3. Comparison of mixed spaces for biquadratic Q2-velocities.

pressure p and the stress tensor σ and polynomial approximations of degree k for the
velocity u then optimal error estimates are obtained when the stabilization parameters
C11 and D11 are taken to be of order h−1 and h, respectively. Future work will be
devoted to the extension of the LDG method to the incompressible Navier-Stokes
equations.

Extensions of our analysis to curvilinear elements and to (nonconvex) polygonal do-
mains as well as to error estimates in negative-order norms for both the velocity and
the pressure can easily be carried out; see [8] for details of the corresponding exten-
sions for the Laplacian. Here, we simply must note that, to take into account the
presence of the pressure, we have to consider the following modified adjoint problem

−∆z +∇q = λ in Ω,

∇ · z = g in Ω,

z = 0 on ∂Ω,

where g is in H1(Ω). The elliptic regularity result we have used in (2.26) is a particular
case of the above more general case; see, for example, Proposition 3.14 in [2] and the
references therein.

The technique of analysis employed is an extension of that used in [8] for the simpler
case of the Laplacian. This same technique was then used in [13] to get improved
convergence estimates for a special LDG method on Cartesian grids by changing
some auxiliary projections used in the analysis. In a forthcoming paper, we shall
carry out a similar study for the Stokes system. The numerical results in Table 5.1
already suggest a similar improvement as obtained for the Laplacian.
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Table 5.1
Orders of convergence for “superconvergent” fluxes.

Level P 2-elements Q2-elements

‖eσ‖0 ‖eu‖0 ‖ep‖0 ‖eσ‖0 ‖eu‖0 ‖ep‖0

1 1.77 2.85 2.38 2.28 2.80 2.05
2 1.86 2.94 2.49 2.43 2.90 2.33
3 1.92 2.98 2.60 2.48 2.95 2.45
4 1.96 2.99 2.66 2.49 2.98 2.48
5 1.98 3.00 2.68 2.50 2.99 2.49

Indeed, the use of these special fluxes with quadratic shape functions increases the
order of convergence of the pressure by 1/2; moreover, they improve the order of
convergence of the pressure and the stresses by 1/2 when biquadratic finite elements
are used.
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D. Schötzau, C. Schwab

hp Discontinuous Galerkin Time Stepping for
Parabolic Problems

99-26 J. Waldvogel Jost Bürgi and the Discovery of the
Logarithms

99-25 H. Brunner, Q. Hu, Q. Lin Geometric meshes in collocation methods for
Volterra integral equations with proportional
time delays
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