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! Eidgenössische
Technische Hochschule
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Eidgenössische Technische Hochschule

CH-8092 Zürich
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1 Introduction

Multigrid methods are efficient iterative solvers for large linear systems of equations,
which result from the discretization of partial differential equations – see Brandt [8],
Hackbusch [14, 15], Wesseling [25], and the references therein. They also yield
efficient preconditioners when combined with Krylov subspace methods [7]. Any
multigrid algorithm relies on the complementary interplay of smoothing and coarse
grid correction. While the smoothing process aims at reducing the high-frequency
error component, namely that which cannot be represented on coarser grids, the
coarse grid correction solves for the low frequency error component, precisely that
which is well represented on the coarser grid. The careful combination of both
smoothing and coarse grid correction yields a multigrid iteration, which has a high
convergence rate independent of the mesh size.

Standard smoothing techniques typically result from the application of a few
steps of a basic iterative method. Here we shall consider smoothers that are based
on sparse approximate inverses. Starting from the linear system

(1) Ax = b,

we denote by M a sparse approximation of A−1. Then, the corresponding basic
iterative method is

(2) x(k+1) = x(k) −M(Ax(k) − b).

As the approximate inverse M is known explicitly, each iteration step requires only
one additional M×v matrix-vector multiply; thus, it is easy to parallelize and cheap
to evaluate, because M is sparse.

Recently, various algorithms have been proposed, all of which attempt to com-
pute directly a sparse approximate inverse of A. Examples are the FSAI approach
by Kolotilina and Yeremin [17], the MR algorithm by Chow and Saad [10], and the
AINV approach by Benzi, Meyer, and Tuma [5]. Once computed, the approximate
inverse M is applied as a preconditioner to the linear system (1) for use with a
Krylov subspace iterative method. For a comparative study of various sparse ap-
proximate inverse preconditioners we refer to Benzi and Tuma [6]. By choosing an
a priori sparsity pattern for M , the cost of computing M can be greatly reduced.
Possible choices include powers of A or A"A, as suggested by Huckle [16] and Chow
[11].

Approximate inverse techniques are also gaining in importance as smoothers
for multigrid methods. First introduced by Benson and Frederickson [3, 4], they
were shown to be effective on various difficult elliptic problems on unstructured
grids by Tang and Wan [23]. Advantages of sparse approximate inverse smoothers
over classical smoothers, such as damped Jacobi, Gauss-Seidel or ILU, are inherent
parallelism, possible local adaptivity and improved robustness.

Here we shall consider sparse approximate inverse (SPAI) smoothers based on the
SPAI-Algorithm by Grote and Huckle [13]. The SPAI-Algorithm computes an ap-
proximate inverse M explicitly by minimizing I−MA in the Frobenius norm. Both
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the computation of M and its application as a smoother are inherently parallel.
Since an effective sparsity pattern of M is in general unknown a priori, the SPAI-
Algorithm attempts to determine the most promising entries dynamically. This
strategy has proved effective in generating preconditioners for many difficult and ill-
conditioned problems (see Barnard, Bernardo, and Simon [1], Tang [22], and [13]).
Moreover, it provides the means for adjusting the smoother locally and automati-
cally, if necessary.

We shall consider the following hierarchy of sparse approximate inverse smoothers:
SPAI-0, SPAI-1, and SPAI(ε). For SPAI-0 and SPAI-1 the sparsity pattern of M is
fixed: M is diagonal for SPAI-0, whereas for SPAI-1 the sparsity pattern of M is
that of A. For SPAI(ε) the sparsity pattern of M is determined automatically by
the SPAI-Algorithm ([13]); the parameter ε controls the accuracy and the amount
of fill-in of M .

Besides the SPAI smoothing operators, all other multigrid components, such as
the prolongation, the restriction, and the coarse grid operators, result from standard
choices. It is well-known that for certain classes of problems, such as convection-
diffusion equations, a significant improvement in the efficiency of the multigrid solver
can be obtained by using matrix-dependent prolongation and restriction operators
(see [12, 19, 25, 27]). An interesting topic for future research is the combination of
this new hierarchy of local and inherently parallel smoothers with algebraic multigrid
techniques (see for instance [18, 20, 21, 24]).

In Section 2 we briefly review the SPAI-Algorithm and show how sparse approx-
imate inverses are used as smoothers in multigrid. In Section 3 we prove that for
SPAI-0 the smoothing property ([15]) holds under reasonable assumptions on the
matrix A. More precisely, for A symmetric and positive definite, we prove that
SPAI-0 satisfies the smoothing property, either if A is weakly diagonally dominant,
or if A has at most seven nonzero off-diagonal entries per row. To our knowledge
this is the first fairly general theoretical result on the smoothing property of itera-
tive methods that are based on sparse approximate inverses. Previously Tang and
Wan [23] analyzed the smoothing property of sparse approximate inverse smoothers
for boundary value problems with constant coefficients on a two-dimensional regular
grid. From a comparison of the SPAI-0 and damped Jacobi smoothers via numerical
experiments, we conclude that the parameter-free SPAI-0 smoother is usually prefer-
able to the damped Jacobi method. Finally, in Section 4, we present an extensive
set of numerical experiments, which demonstrate the usefulness of SPAI smoothing.

2 Sparse approximate inverse smoothing

Starting from a standard multigrid setting, such as found in [14], ([15], Ch. 10),
or [25], we recall some basic notions and briefly introduce relevant notation. We
assume the following hierarchy of spaces,

X! = R
n! , " = 0, 1, 2, . . . , n0 < n1 < n2 < . . . ,
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together with the prolongation and restriction operators

p : X!−1 → X!, r : X! → X!−1, " = 1, 2, . . . .

To each space X! we associate a nonsingular operator,

A! : X! → X!.

We now wish to solve iteratively the linear system

A!max
x!max

= b!max

by using a multigrid method. A multigrid iteration results from the recursive ap-
plication of a two-grid method. A two-grid method on level " consists of ν1 pre-
smoothing steps on level ", a coarse grid correction on level " − 1, and ν2 post-
smoothing steps again on level ". The corresponding error propagation is

e(m+1)
! = [Sν2

! (I − pA−1
!−1rA!)S

ν1
! ] e(m)

! ,

where S! denotes the iteration matrix of the smoother.

2.1 Classical smoothers

We shall limit the present discussion to the choice of the smoother. All other multi-
grid components, such as p, r, and A!−1, follow from standard choices. If the
smoother results from a consistent linear iterative method, the iteration matrix of
the smoother, S!, can be written as

(3) S! = I −N!A!.

For instance, let A = D+L+U , with D the diagonal, L the lower triangular part,
and U the upper triangular part of A. Then damped Jacobi smoothing corresponds
to

(4) Sω = I − ωD−1A,

whereas Gauss-Seidel smoothing corresponds to

(5) SGS = I − (D + L)−1A.

In (4) the choice of ω must ensure good smoothing properties of the resulting damped
Jacobi method. Yet the “optimal” value of ω is known only for certain model prob-
lems (see Sect. 3.2). In contrast, the Gauss-Seidel method is parameter-free and
typically leads to improved smoothing over the damped Jacobi method. Unfortu-
nately, the Gauss-Seidel method (5) is inherently sequential and therefore difficult
to implement on a parallel architecture. Yet with an appropriate coloring of the
unknowns (e.g., red-black ordering on a regular grid) it is sometimes possible to
attain reasonable parallel efficiency with the Gauss-Seidel approach.
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If neither damped Jacobi nor Gauss-Seidel leads to satisfactory smoothing, one
can resort to more robust smoothers, such as the popular ILU smoothers based on
the incomplete LU decomposition (ILU) of A! – see for instance [26]. Because each
ILU smoothing step requires the solution of upper and lower triangular systems, it
remains inherently sequential and difficult to implement in parallel. It is also difficult
to improve the ILU smoother locally, say near the boundary or a singularity, without
seriously affecting the sparsity of the LU factors.

2.2 SPAI smoothers

Most smoothers commonly used in multigrid methods, such as damped Jacobi,
Gauss-Seidel, or ILU, have the form

(6) x(k+1)
! = x(k)

! −W−1
! (A!x

(k)
! − b!),

with W! a (sparse) approximation of A!; moreover, the computational cost of solving
a linear system with matrixW! must be reasonable. In contrast, the SPAI smoothers
lead to the iteration

(7) x(k+1)
! = x(k)

! −M! (A!x
(k)
! − b!),

where M! is sparse and explicitly known. Hence the iteration in (7) requires only
matrix-vector multiplications and vector-vector additions, and no solution of a linear
system; it is therefore easy to implement in a parallel environment.

To construct the sparse approximate inverse M of A, we shall minimize I −
MA in the Frobenius norm for a prescribed sparsity pattern of M – here we have
dropped the index " to simplify the notation. The Frobenius norm, denoted by ‖·‖F ,
naturally leads to inherent parallelism because the rows mk of M can be computed
independently of one another. Indeed since

(8) ‖I −MA‖2F =
n

∑

k=1

‖e"k −mkA‖22 ,

the solution of (8) separates into the n independent least-squares problems for the
sparse (row) vectors mk,

(9) min
mk

‖e"k −mkA‖2, k = 1, . . . , n.

Here ek denotes the k-th unit vector. Because A andM are sparse these least-squares
problems have small dimensions.

Since an effective sparsity pattern of M is usually unknown a priori, the original
SPAI-Algorithm ([13]) begins with a diagonal pattern. Then the algorithm proceeds
with augmenting the sparsity pattern of M to further reduce each residual rk =
e"k −mkA. The progressive reduction of the 2-norm of rk involves two steps. First,
the algorithm identifies a set of potential new candidates, based on the sparsity
pattern of A and the current (sparse) residual rk. Second, the algorithm selects
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the most profitable entries, usually less than five entries, by computing for each
candidate a cheap upper bound for the reduction in ‖rk‖2. Once the new entries
have been selected and added to mk, the (small) least-squares problem (9) is solved
again with the augmented set of indices. The algorithm proceeds until each row mk

of M satisfies

(10) ‖e"k −mkA‖2 < ε.

Here ε is a tolerance set by the user, which controls the fill-in and the quality of the
preconditioner M . A lower value of ε usually yields a more effective preconditioner,
but the cost of computingM = SPAI (ε) may become prohibitive; moreover, a denser
M results in a higher cost per iteration in (7). The optimal value of ε minimizes
the total time; it depends on the problem, the discretization, the desired accuracy,
and the computer architecture. Further details about the original SPAI-Algorithm
can be found in [13].

In addition to SPAI(ε), we shall also consider the following two greatly simplified
SPAI smoothers with fixed sparsity patterns: SPAI-0, where M is diagonal, and
SPAI-1, where the sparsity pattern of M is that of A. Both solve the least-squares
problem (9), and thus minimize ‖I−MA‖F for the sparsity pattern chosen a priori.
This eliminates the search for the sparsity pattern of M , and thus greatly reduces
the cost of computing the approximate inverse. The SPAI-1 smoother coincides with
the SAI(0,1) smoother of Tang and Wan [23].

For SPAI-0, M = diag(mkk) is diagonal and can be calculated directly:

(11) mkk =
akk

‖ak‖22
, 1 ≤ k ≤ n,

with ak the k-th row of A. We note thatM is always well-defined ifA is non-singular.
Unlike damped Jacobi, the SPAI-0 smoother is parameter-free.

To summarize, we shall consider the following hierarchy of SPAI smoothers,
which all minimize ‖I −MA‖F for a certain sparsity pattern of M .

SPAI-0: M = diag(mkk) is diagonal, with mkk given by (11).

SPAI-1: The sparsity pattern of M is that of A.

SPAI(ε): The sparsity pattern ofM is determined automatically by the SPAI-Algorithm
[13]. Then each row mk satisfies (10) for a given ε.

We have found that in many situations, SPAI-0 and SPAI-1 yield ample smooth-
ing. However, the added flexibility in providing an automatic criterion for improving
the smoother via the SPAI-Algorithm remains very useful. Indeed, either SPAI-0
or SPAI-1 can be used as initial guess for SPAI(ε), and thus be locally improved
upon where needed by reducing ε (see Section 4.2). For matrices with inherent
(small) block structure, typical from the discretization of systems of partial differen-
tial equations, the Block-SPAI-Algorithm [2] greatly reduces the cost of computing
M .
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3 SPAI-0 smoothing

In this section we consider the simplest sparse approximate inverse smoother, SPAI-
0. First, we shall show that SPAI-0 satisfies the smoothing property in two quite
general situations. Second, we shall compare the two diagonal smoothers, SPAI-0
and damped Jacobi, via numerical experiments.

3.1 The smoothing property

From [14] and [15] we recall the following two conditions, which play a fundamental
role in multigrid convergence theory:

1. The smoothing property ([15], Definition 10.6.3):

(12) ‖A!S
ν
! ‖2 ≤ η(ν)‖A!‖2, for all 0 ≤ ν < ∞, " ≥ 1,

η(ν) any function with lim
ν→∞

η(ν) = 0.

2. The approximation property ([15], Section 10.6.3):

(13) ‖A! − pA!−1r‖2 ≤
CA

‖A!‖2
, for all " ≥ 1.

Although we have stated these properties with respect to the Euclidean norm, other
choices are possible. In general, the smoothing and approximation properties to-
gether imply convergence of the two-grid method and of the multigrid W-cycle, with
a contraction number independent of the level number ". Moreover, for symmetric
positive definite problems, both conditions also imply multigrid V-cycle convergence
independent of " – see Hackbusch ([15], Sect. 10.6) for details.

The approximation property is independent of the smoother, S!; it depends only
on the discretization (A!, A!−1), the prolongation operator p, and the restriction
operator r. In [15] the approximation property is shown to hold for a large class of
discrete elliptic boundary value problems. For symmetric positive definite problems
the smoothing property usually holds for classical smoothers like damped Jacobi,
(symmetric) Gauss-Seidel, and incomplete Cholesky. We shall now prove that the
smoothing property (12) holds for SPAI-0 under reasonable assumptions on A!.
To do so, we first recall (in a slightly simpler form) the following result for later
reference.

Lemma 1 (Lemma 10.7.4, [15]) Let A! and W! be symmetric and positive definite,
and S! = I −W−1

! A!. Assume that

(14) 0 < A! ≤ ΓW! for all " ≥ 0 with 0 < Γ < 2,

and that

(15) ‖W!‖2 ≤ CW‖A!‖2, ∀" ≥ 0.

Then S! satisfies the smoothing property (12), with

(16) η(ν) = CW max{η0(ν),Γ|1− Γ|ν}, η0(ν) =
1

eν
+O(ν−2) (ν → ∞)
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In (14) and (15) both Γ and CW must be independent of ".
We shall now apply Lemma 1 to prove that SPAI-0 satisfies the smoothing prop-

erty (12). To do so, we must show that W! satisfies (14) and (15), with Γ < 2. Here
W! is the inverse of the diagonal approximate inverse defined in (11). Hence

(17) W = diag

(

‖ai‖22
aii

)

,

where ai denotes the i-th row of A – we have dropped the level index " to simplify
the notation. Since A is symmetric and positive definite, aii > 0, 1 ≤ i ≤ n, and
thus W is positive definite.

Lemma 2 Let W be given by (17). Furthermore, let pi denote the number of
nonzero off-diagonal entries in the i-th row of A, and assume that

(18) p ≡ max
i

pi ≤ 7.

Then A satisfies A ≤ ΓW , with Γ = (1 +
√
1 + p)/2 < 2.

Proof:
We seek Γ < 2 such that A ≤ ΓW . First, we let A = D − R, with D = diag(A).
Then

ΓW − A ≥ 0

⇐⇒ Γ

(

D + diag

(

∑

j %=i

a2ij
aii

))

−D +R ≥ 0

⇐⇒ (Γ− 1)D + Γ diag

(

∑

j %=i

a2ij
aii

)

+R ≥ 0.(19)

We note that the first two terms in (19) are diagonal matrices, while all off-diagonal
entries are located in R. We now assume that Γ ≥ 1, so that all entries on the main
diagonal in (19) are non-negative. According to Gershgorin’s theorem, for (19) to
hold it is sufficient to have

(20)
∑

j %=i

|aij| ≤ (Γ− 1)aii + Γ
∑

j %=i

a2ij
aii

, 1 ≤ i ≤ n.

Next, we divide (20) by aii, which yields the equivalent condition

(21)
∑

j %=i

βij ≤ Γ− 1 + Γ
∑

j %=i

β2
ij, 1 ≤ i ≤ n.

Here we have defined

βij =
|aij |
aii

.
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Since pi is the number of nonzero off-diagonal elements in row i of A, we conclude
by Cauchy-Schwarz that

∑

j %=i

βij ≤
√
pi

√

∑

j %=i

β2
ij ≤

√
p

√

∑

j %=i

β2
ij, 1 ≤ i ≤ n.

Thus, for (21) to hold it is sufficient to have

√
p

√

∑

j %=i

β2
ij ≤ Γ− 1 + Γ

∑

j %=i

β2
ij, 1 ≤ i ≤ n.

Therefore, since x =
∑

j %=i β
2
ij is real, non-negative, but otherwise arbitrary, it is

sufficient to require that

√
p
√
x ≤ Γ− 1 + Γx, ∀x ∈ [0,∞),

⇐⇒ Γ2x2 + (2Γ(Γ− 1)− p)x+ (Γ− 1)2 ≥ 0, ∀x ∈ [0,∞),

⇐⇒ (2Γ(Γ− 1)− p)2 − 4Γ2(Γ− 1)2 ≤ 0.(22)

The last inequality (22) is equivalent to

−4Γ(Γ− 1)p+ p2 ≤ 0,

which holds for Γ = (1 +
√
1 + p)/2. The assumption p ≤ 7 yields Γ < 2.

!

Lemma 3 Let W be given by (17), and assume that

(23) max
i

n
∑

j=1

a2ij
a2ii

≤ Ĉ.

Then W satisfies ‖W‖2 ≤ Ĉ ‖A‖2.

Proof:
The proof is immediate, since

‖W‖2 = ‖ diag(aii) diag
(

‖ai‖22
a2ii

)

‖2

≤ ‖ diag(aii)‖2‖ diag
(

‖ai‖22
a2ii

)

‖2

≤ ‖A‖2 Ĉ.

!

From lemmas 1, 2, and 3 we now immediately conclude the following result.
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Theorem 1 Let A be symmetric positive definite, and let S = I−MA, with M the
SPAI-0 preconditioner given by (11). Assume that the maximal number of nonzero
off-diagonal entries in each row (≡ p) is less than or equal to 7 (condition (18)),
and that (23) holds. Then S satisfies the smoothing property (12), with η(ν) as in
(16), CW = Ĉ, and Γ = (1 +

√
1 + p)/2 < 2.

We remark that neither M-matrix properties nor diagonal dominance of A! are
needed to show that the smoothing property holds for SPAI-0. In the context of a
multigrid convergence analysis the constant Ĉ in (23) must be independent of the
level number ". Still, condition (23) is very mild and satisfied by most reasonable
discretization schemes. Condition (18) is satisfied by standard second-order finite
difference approximations of scalar elliptic boundary value problems in two or three
space dimensions. It is also satisfied by linear finite element discretizations on a
triangular mesh, if each node on the coarsest mesh has at most seven neighbors.
This property is then transfered to all finer levels, if regular mesh refinement is
used.

Next, we show that if A is weakly diagonally dominant, that is
∑

j %=i

|aij| ≤ |aii| for all i,

we may drop condition (18) and thus obtain another criterion for the smoothing
property.

Theorem 2 Let A be symmetric, positive definite, and weakly diagonally dominant.
Furthermore, let S = I−MA, with M the SPAI-0 preconditioner given by (11), and
assume that

(24)
∑

j %=i

a2ij
a2ii

≥ C > 0.

Then S satisfies the smoothing property (12) with η(ν) as in (16), CW = 2, and
Γ = 2/(1 + C) < 2.

Proof:
Again we seek Γ < 2 such that A ≤ ΓW . To do so, we first follow the proof of
lemma 2 until equation (21). Now, since A is weakly diagonally dominant, we have

(25)
∑

j %=i

βij =
∑

j %=i

|aij|
aii

≤ 1.

Hence for (21) to hold, it is sufficient to require

1 ≤ Γ− 1 + Γ
∑

j %=i

β2
ij , 1 ≤ i ≤ n,

which is equivalent to

Γ ≥
2

1 +
∑

j %=i β
2
ij

, 1 ≤ i ≤ n.
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Because of assumption (24) we can choose Γ = 2/(1 + C) < 2.
To show that inequality (15) is indeed satisfied with CW = 2, we first note that

‖W‖2 = ‖M−1‖2 = max
i

(

‖ai‖22
aii

)

= max
i

(

aii +
1

aii

∑

j %=i

a2ij

)

≤ max
i



aii +
1

aii

(

∑

j %=i

|aij|

)2


 .

The weak diagonal dominance of A then implies

‖W‖2 ≤ 2max
i

aii ≤ 2‖A‖2.

!

Condition (24) is very mild and satisfied by most discretization schemes. It is not
satisfied if a particular row i of A has the single entry aii. In that case, however,
equation i is trivial and can be solved independently of the remaining equations.

In summary, we have shown for A symmetric positive definite that SPAI-0 sat-
isfies the smoothing property, either if A is weakly diagonally dominant, or if the
maximal number of nonzero off-diagonal entries per row is less than or equal to
seven.

3.2 SPAI-0 versus Jacobi

Before we proceed with a comparison of the performance of these two diagonal
smoothers via numerical experiments, we first point out a very special situation
where SPAI-0 and damped Jacobi, with optimal relaxation parameter ω∗, lead to
identical smoothers.

For the discrete Laplacian on a regular grid with periodic boundary conditions,
the damping parameter ω∗, which is “optimal” with respect to smoothing, is known.
Following the standard Fourier analysis in ([25], Section 7.3), we consider a regular
d-dimensional equispaced mesh with n grid points in each dimension – for simplicity
we assume n to be even. Then the eigenvalues of the discrete Laplacian with periodic
boundary conditions are

µ(θ) =
4

h2

d
∑

j=1

sin2

(

θj
2

)

, θ = (θ1, θ2, . . . , θd),

with h = 1/n and θj ∈ {−π + 2πh,−π + 4πh, . . . , π}. Note that θ ∈
∏d

j=1[−π, π].
The iteration matrix of the damped Jacobi method has eigenvalues

λ(θ) = 1−
2ω

d

d
∑

j=1

sin2

(

θj
2

)

.
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We now concentrate on the high frequencies, which correspond to the subset

Θ̄r =
d
∏

j=1

[−π, π] \
d
∏

j=1

(−
π

2
,
π

2
).

The amount of damping on the high-frequency components is measured by the
smoothing factor,

ρ(ω)sm = max
θ∈Θ̄r

|λ(θ)|.

It is independent of the mesh size but depends on ω. The optimal damping param-
eter, ω∗, is that for which the smoothing factor is minimal,

ρ(ω
∗)

sm = min
ω

ρ(ω)sm .

To determine ω∗ we first calculate ρ(ω)sm . For θ ∈ Θ̄r, the extreme values of
∑d

j=1 sin
2(θj/2)

are 1/2 and d. Thus, we find that

ρ(ω)sm = max{|1−
ω

d
|, |1− 2ω|}.

The minimization of ρ(ω)sm then yields the optimal damping parameter,

(26) ω∗ =
2d

2d+ 1
.

Proposition 1 Consider the discrete Laplacian with periodic boundary conditions
in d space dimensions, which results from a standard second-order finite difference
discretization on an equispaced grid. Then SPAI-0 and Jacobi smoothing, with op-
timal damping parameter ω∗ given by (26), are identical.

Proof:
Since for the discrete d-dimensional Laplacian we have aii = (2d)h−2 and ‖ai‖22 =
2d(2d + 1)h−4, for all 1 ≤ i ≤ n, the approximate inverse M defined in (11) for
SPAI-0 has the constant diagonal entry mii = h2/(2d + 1). Therefore M = ω∗D−1

and the SPAI-0 and the damped Jacobi smoothers, with optimal damping parameter
ω∗ given in (26), coincide.

!

In this special situation, the parameter-free SPAI-0 smoother automatically yields a
scaling of diag(A) which minimizes the smoothing factor; in that sense it is optimal.

Although both SPAI-0 and damped Jacobi yield diagonal smoothers, they typ-
ically differ, even with constant coefficients on an equispaced mesh. Indeed, the
presence of boundary conditions modifies the rows of A!, which correspond to nodes
on the boundary, and thus modifies SPAI-0 locally. We now compare quantitatively
the performance of these two diagonal smoothers on the following class of model
problems:

−div(a(x, y)∇u(x, y)) = 1, in Ω

u(x, y) = 0, on ∂Ω.
(27)

11
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Figure 1: Comparison of the convergence rates q obtained with SPAI-0 and damped
Jacobi for varying relaxation parameter ω – see (29) for the definition of q.

First, we choose Ω = (0, 1)× (0, 1), set a(x, y) ≡ 1, and discretize the problem
with continuous, piecewise linear finite elements on a triangular mesh. The various
meshes are obtained successively by uniform refinement, starting from the coarsest
mesh with a single unknown in the center of Ω. Here we use a multigrid V-cycle
iteration with one pre- and one post-smoothing step (ν1 = ν2 = 1). We recall that
SPAI-0 is parameter-free, whereas damped Jacobi contains the single relaxation
parameter ω. In general the optimal damping parameter ω∗ is unknown in advance
and must be determined numerically in any given situation.

Is it possible for damped Jacobi to beat SPAI-0 by varying ω and thus determin-
ing the optimal value ω∗ ? In Figure 1 we compare the convergence rate of SPAI-0
with that of Jacobi smoothing. The minimal convergence rate with damped Jacobi
is attained with ω∗ / 0.81, but the convergence rate obtained with SPAI-0 still lies
slightly below it.

Next, we repeat the above numerical experiment, first forΩ the L-shaped domain,
and second for discontinuous a(x, y) with contrasts as high as 106. In all cases
the overall picture remains the same: the convergence rate obtained with SPAI-0
smoothing consistently lies below that obtained with damped Jacobi smoothing for
all values of ω. Although the improvement is usually small, and thus not really
significant, it is remarkable because SPAI-0 is parameter-free.

In summary our numerical experiments with multigrid for 2D elliptic boundary
value problems suggest that SPAI-0 is an attractive alternative to damped Jacobi.
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Indeed SPAI-0 is parameter-free and typically leads to slightly better convergence
rates than damped Jacobi.

4 Numerical results

To illustrate the usefulness and versatility of SPAI smoothing, we shall now consider
various standard test problems. In all cases we use a regularly refined sequence of
equispaced grids. The differential equation considered is discretized on the finest
level with standard finite differences. The coarse grid operators are obtained via
the Galerkin product formula, A!−1 = r A! p, with r = p" and p standard linear
interpolation. We use a multigrid V-cycle iteration, with two pre- and two post-
smoothing steps (ν1 = ν2 = 2) and x(0)

! = 0 as initial guess. On the coarsest
level (" = 0), we solve exactly for the single unknown remaining at the center of the
domain. The iteration proceeds until the relative residual drops below the prescribed
tolerance,

(28)
‖b− A! x

(m)
! ‖

‖b‖
< 10−8.

Then we calculate the average rate of convergence,

(29) q =

(

‖b−A! x
(m)
! ‖

‖b‖

)1/m

.

We recall that the ordering of the unknowns does not affect the SPAI-smoothing
iteration (7), but that it does affect the Gauss-Seidel iteration. In all numerical
examples we shall use lexicographic ordering of the unknowns.

Clearly, when comparing the performance of various smoothers, we cannot limit
ourselves to comparing the number of multigrid iterations, but must also take into
account the amount of arithmetic work due to the smoother. To do so, we calculate
the total density ratio, ρ, of nonzero entries in M to those in A on all grid levels,
1 ≤ i ≤ ", where smoothing is applied:

(30) ρ =

∑!
i=1 nnz(Mi)

∑!
i=1 nnz(Ai)

.

Hence the additional amount of work due to the smoother is proportional to ρ. For
a standard five-point stencil on a regular two-dimensional grid, ρSPAI-0 / 1/5, like
damped Jacobi. Since ρSPAI-1 = 1, the SPAI-1 smoother is about 67% times more
expensive here than the SPAI-0 smoother. For SPAI(ε), the total density ratio,
ρSPAI(ε), depends on ε: it increases monotonically with decreasing ε. We remark
that ρSPAI(ε) < 1, whenever SPAI(ε) leads to a sparser approximate inverse than
SPAI-1.
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4.1 Poisson problem

We first consider the Poisson problem on the unit square with Dirichlet boundary
conditions (27). In Table 1 we compare the convergence rates obtained with various
smoothers. All SPAI smoothers lead to h-independent convergence rates. We ob-
serve a steady decrease of the convergence rate, q, for smaller values of ε, paralleled,
of course, by an increase in ρ given in parenthesis. Note that SPAI-1 leads to a
more effective but denser smoother than SPAI(ε) with ε = 0.35, yet the situation is
reversed as ε decreases below 0.25.

Grid size G-S SPAI-0 SPAI-1 SPAI(0.35) SPAI(0.25)

32× 32 0.04 0.09 0.04 0.06 (0.7) 0.03 (1.5)
64× 64 0.05 0.09 0.04 0.07 (0.7) 0.03 (1.5)
128× 128 0.05 0.09 0.04 0.08 (0.7) 0.04 (1.5)

Table 1: Convergence rates q obtained with SPAI-0, SPAI-1, SPAI(ε), and Gauss-
Seidel smoothing. The relative total density, ρ, defined in (30), is given in paren-
thesis. For SPAI-0, ρ = 0.17 and for SPAI-1, ρ = 1.

4.2 Locally anisotropic diffusion

We now consider the locally anisotropic diffusion problem

(31) −
(

ν(x, y)
∂2u

∂x2
+

∂2u

∂y2

)

= 1 in (0, 1)× (0, 1),

with u(x, y) = 0 on the boundary. We set ν(x, y) = 1 everywhere except inside the
square [1/4, 3/4]× [1/4, 3/4], where ν(x, y) ≡ ν is constant.
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Figure 2: The error after five smoothing steps for the locally anisotropic diffusion
problem with ν = 0.01. Left: Gauss-Seidel; right: SPAI(0.25).
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In Table 2 we compare the performance of Gauss-Seidel with SPAI smoothing for
varying ν. For ν ≤ 0.1, the convergence rates for SPAI(0.4) lie consistently below
those for Gauss-Seidel, while SPAI(0.25) leads to an even greater improvement. In
particular, for ν = 0.01 Gauss-Seidel smoothing barely converges, whereas SPAI(ε)
with ε ≤ 0.4 still yields acceptable convergence. Figure 2 shows that Gauss-Seidel
is unable to smooth the error throughout Ω, mainly in the x-direction. In contrast,
SPAI(ε) smoothing with ε = 0.25 results in a smooth error across the entire com-
putational domain for ν = 0.01. In Figure 3 we compare rows e"j A

−1 and e"j M ,
where M is computed with SPAI(0.25), for two unit basis vectors ej . We consider ej
corresponding to the grid points (1/2, 1/2) in the center of Ω, where ν = 0.01, and
(1/8, 1/8) inside the surrounding region where ν = 1. We observe how the approxi-
mate inverse, computed by the SPAI-Algorithm, captures the distinct local features
of the true inverse. We recall that the sparsity pattern ofM is not fixed a priori, but
adapted automatically by the SPAI-Algorithm. For ν ≤ 0.1, the SPAI(0.4) smoother
is not only more effective but also sparser than the SPAI-1 smoother. Hence the
sophisticated search of the SPAI-Algorithm for an effective sparsity pattern of M
clearly benefits the smoother.

Smoother ν
1 10−1 10−2 10−3 10−6

Gauss–Seidel 0.05 0.42 0.89 0.97 0.98
SPAI-0 0.09 0.72 0.95 0.98 0.98
SPAI-1 0.04 0.37 0.89 0.97 0.98
SPAI(0.4) 0.12 (0.7) 0.16 (0.7) 0.81 (0.7) 0.95 (0.8) 0.97 (0.8)
SPAI(0.25) 0.04 (1.5) 0.07 (1.6) 0.37 (1.7) 0.75 (1.9) 0.87 (1.9)

Table 2: Locally anisotropic diffusion: convergence rates q for varying ν on a 128×
128 grid. The relative density, ρ, is given in parenthesis.

These results demonstrate the usefulness of SPAI smoothing; they corroborate
previous results obtained in [23], with ν = 0.01 everywhere in Ω. Nevertheless, as
the contrast in the anisotropy increases further, the convergence rates obtained with
SPAI smoothing deteriorate as well. If the anisotropy occupies a small area of the
domain of interest, say only within a boundary layer, further reducing ε enables to
locally adjust the smoother and still reach acceptable convergence rates. But if the
anisotropy is strong and present throughout the domain, the SPAI smoothers will
become too dense, and thus too expensive.

Of course, various standard approaches combined with Gauss-Seidel smoothing,
such as line relaxation or semi-coarsening, allow to circumvent some of these prob-
lems. However, these techniques are specifically designed for regular Cartesian grids
in two space dimensions, when the anisotropy is usually constant and aligned with
the grid. They are difficult to use on unstructured grids and become expensive in
three dimensions. In contrast, the SPAI smoothers are not tied to a regular mesh
or any special discretization; moreover, they do not encounter any particular hurdle
in three dimensions.
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Figure 3: Comparison of a row of the true inverse, e"j A
−1 (left), and of the approx-

imate inverse, e"j M (right), for ν = 0.01, where M is computed with SPAI(0.25).
Top: ej corresponds to the grid point (1/8, 1/8); bottom: ej corresponds to the grid
point (1/2, 1/2).

4.3 Convection-diffusion problems

We now consider

(32) −ν∆u(x, y) + ,v(x, y) ·∇u(x, y) = 1, ν > 0,

in the unit square, where u vanishes on the boundary. Here u represents any scalar
quantity advected by the flow field ,v. For convection dominated flow, ν << h, the
linear systems cease to be symmetric and positive definite, so that these problems lie
outside of classical multigrid theory. We use centered second-order finite differences
for the diffusion, but discretize the convection with first-order upwinding to ensure
numerical stability.

First, we consider a situation of unidirectional flow, with angle α from the x-
axis, that is with constant flow direction ,v(x, y) = [cos(α), sin(α)]. In Table 3
we compare the performance of Gauss-Seidel with SPAI smoothing on a regular
128×128 grid. For diffusion dominated flow, ν = 0.1, the convergence rates obtained
either with Gauss-Seidel or with SPAI smoothing are essentially independent on the
flow direction.
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Table 3: Constant flow direction with angle α from the x-axis: the convergence
rates, q, obtained with different smoothers on a 128×128 grid, for the diffusion and
the convection dominated cases, ν = 0.1 and ν = 0.001, respectively. The relative
density, ρ, is given in parenthesis.

Problem G-SG SPAI-0 SPAI-1 SPAI(0.35) SPAI(0.25)

ν = 0.1,α = 45◦ 0.05 0.11 0.05 0.08 (0.8) 0.04 (1.6)
ν = 0.1,α = 225◦ 0.05 0.11 0.05 0.08 (0.8) 0.04 (1.6)

ν = 0.001,α = 45◦ † 0.98 0.98 0.06 (1.7) 0.02 (2.2)
ν = 0.001,α = 225◦ † 0.98 0.98 0.06 (1.7) 0.02 (2.2)

For convection dominated flow, the multigrid iteration with Gauss-Seidel smooth-
ing does not converge, when the coarse grid operators are computed via Galerkin
projection. To obtain a convergent scheme, one needs to compute the coarse grid
operators via discrete coarse grid approximation, that is by discretizing (32) ex-
plicitly on all grid levels ([25], pp. 79). In that situation it is well-known that the
convergence with Gauss-Seidel smoothing strongly depends on the ordering of the
unknowns: the mere reversal of the flow direction (or equivalently the ordering of
the unknowns) results in a large increase in the convergence rate, from q = 0.17 to
q = 0.55; the contrast becomes even more striking for smaller values of ν. Indeed,
when the flow direction is aligned with the ordering of the unknowns, the problem
degenerates into a quasi-lower triangular system as ν → 0. In that situation, the
Gauss-Seidel inverse, (L+D)−1 essentially yields A−1 and thus results in rapid con-
vergence. In contrast, the SPAI smoothers are not affected by the ordering of the
unknowns, and thus yield identical results in Table 3 for both α = 45◦ and α = 225◦.
For ν = 0.001 the performance of SPAI-1 is poor, while SPAI(ε) with ε ≤ 0.35 yields
excellent convergence rates at little extra cost.

Next, we consider a situation of rotating flow, where u solves (32) with ,v(x, y) =
[y− 1/2, 1/2−x]. In this special situation, shown in Figure 4, it is generally impos-
sible to reorder the unknowns so that the entire system becomes lower triangular for
vanishing ν. As a consequence, the multigrid iteration with Gauss-Seidel smoothing
usually diverges for small ν. Convergence can be attained with symmetric Gauss-
Seidel smoothing, that is by repeated application of the Gauss-Seidel iterations in
natural and reverse ordering of the unknowns [25]; this approach does not generalize
easily to unstructured grids. In contrast, SPAI-1 and SPAI(ε) lead to convergent
multigrid iterations regardless of the flow pattern or the ordering of the unknowns,
and without modifying additional components of the multigrid iteration.

In Table 4 we observe that all SPAI smoothers yield h-independent convergence
rates in the diffusion dominated case, with ν = 0.1. Although the convergence
rate essentially doubles from SPAI-1 to SPAI-0 smoothing, the density ratio ρ drops
from 1 to 0.17, which reduces the amount of work in applying the smoother. For
SPAI(0.35) the convergence rate lies between those obtained with SPAI-0 and SPAI-
1, and so does the relative density ρ = 0.7.
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Figure 4: Rotating flow, ν = 10−3, 32 × 32 grid: flow field ,v(x, y) (upper left); the
effect of three smoothing steps applied to an initially random error: Gauss-Seidel
smoothing (upper right), ILU(0) smoothing (lower left), SPAI-1 smoothing (lower
right). Note that Gauss-Seidel is unable to smooth the error throughout the domain.

Finally, we set ν = 10−3 and thus consider a convection dominated rotating flow,
that is ν << h. Both the convergence rates and the relative densities ρ are shown
in Table 5 for different smoothers. Neither Gauss-Seidel nor SPAI-0 smoothing lead
to a convergent multigrid iteration. Indeed Gauss-Seidel is unable to smooth the
error throughout the domain due to the absence of a dominant “unidirectional” flow
direction, as shown in Figure 4. Again we note that convergence may be achieved
by using symmetric Gauss-Seidel smoothing [25]. Our attempt to use ILU(0) on
the 128× 128 grid eventually failed because of numerical instability encountered in
the computation of the incomplete LU-decomposition – alternative variants of ILU
would probably work [26].

Table 5 illustrates the typical behavior of SPAI smoothing versus ε. It shows that
reducing ε in the SPAI Algorithm produces a steady reduction in the convergence
rate. Hence a greater reduction of ‖I−MA‖F typically yields an improved smoother.
Of course, as ε decreases, both the work in computing and in applying the smoother
M rapidly increase, so that the optimal value of ε with the smallest total time
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Table 4: Diffusion dominated case, ν = 0.1: the convergence rates q obtained with
various smoothers. For SPAI(0.35) the relative density is ρ = 0.7.

Gauss-Seidel SPAI-0 SPAI-1 SPAI(0.35)

64× 64 0.04 0.10 0.04 0.07
128× 128 0.05 0.10 0.04 0.08
256× 256 0.05 0.10 0.04 0.08

probably lies between 0.2 and 0.5 for this problem. For SPAI(0.4) both q and ρ
remain essentially constant as the mesh is refined. As we compare the performance
of SPAI-1 with that of SPAI(0.4), we remark that both the convergence rate q
and the total density ratio ρ are reduced. Therefore the sophisticated search of
the original SPAI-Algorithm ([13]) benefits the smoother by selecting an effective
sparsity pattern forM ; clearly, the increase in the cost of computingM is worthwhile
when memory resources are critical. It may even pay off in reducing total time, since
fewer nonzero entries inM results in a cheaper smoother. Again these considerations
are problem and architecture dependent; hence the importance of providing the user
with a simple but effective way to tune the algorithm, here by adjusting the value
of ε.

Table 5: Convection dominated case, ν = 10−3: the convergence rates q obtained
with various smoothers. The values of ρ are given in parenthesis.

SPAI-1 SPAI (0.5) SPAI (0.4) SPAI (0.3) SPAI (0.2)

128× 128 0.61 0.67 (0.4) 0.42 (0.6) 0.22 (1.4) 0.09 (3.6)
256× 256 0.68 0.75 (0.2) 0.45 (0.6) 0.31 (1.3) 0.12 (3.2)
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Table 6: Robust convergence with SPAI (0.3) smoothing with respect to ν on a
128× 128 grid: both the convergence rate q and the relative density ρ are shown.

ν = 1 ν = 0.1 ν = 0.01 ν = 10−3 ν = 10−4 ν = 10−5 ν = 10−6

q 0.07 0.07 0.05 0.22 0.73 0.74 0.75
ρ 0.86 0.85 0.92 1.41 2.11 2.29 2.31

What if we decrease ν while keeping the grid spacing fixed ? Do we obtain a
robust multigrid algorithm (in the sense of [26]) ? In Table 6 we show the convergence
rate and density obtained with SPAI (0.3) on the 128 × 128 grid for varying ν.
Although both q and ρ vary throughout the range of values for ν, they remain
bounded as ν → 0.

5 Conclusion

Our numerical results show that sparse approximate inverses based on minimizing
the Frobenius norm are an attractive alternative to classical Jacobi or Gauss-Seidel
smoothing. For symmetric positive definite problems, SPAI-1 typically behaves like
Gauss-Seidel, whereas SPAI-0, which is parameter-free, usually has a slight edge
over damped Jacobi with optimal relaxation parameter. Moreover, our proof of
the smoothing property for SPAI-0 applies also in situations, where that of Jacobi
smoothing cannot be shown. For convection dominated flow problems, such as
rotating flow, the ordering independence of SPAI-1 leads to a more robust smoother
than Gauss-Seidel. In situations, where neither SPAI-0 nor SPAI-1 suffice, SPAI(ε)
automatically improves the smoother locally where needed. Both the computation
and the application of the SPAI smoothers are inherently parallel.

Nevertheless, our results also show the limitations of SPAI smoothing in difficult
situations, such as strong anisotropy, where the lack of isotropic smoothing needs
to be compensated by appropriate prolongation and restriction operators. It is very
interesting to combine this new hierarchy of local and inherently parallel smoothers
with matrix-dependent coarsening strategies, such as found in algebraic multigrid
[21]. The first two authors are currently pursuing these issues and will report on
them elsewhere [9] in the near future.

The C/MPI version of the SPAI-Algorithm ([1, 2]) with Matlab and PETSc
interfaces can be downloaded from the following address:
http://www.sam.math.ethz.ch/ g̃rote/spai/.
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D. Schötzau, C. Schwab

hp Discontinuous Galerkin Time Stepping for
Parabolic Problems

99-26 J. Waldvogel Jost Bürgi and the Discovery of the
Logarithms

99-25 H. Brunner, Q. Hu, Q. Lin Geometric meshes in collocation methods for
Volterra integral equations with proportional
time delays
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